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Abstract. The availability of vast amounts of visual data with heteroge-
neous features is a key factor for developing, testing, and benchmarking
of new computer vision (CV) algorithms and architectures. Most visual
datasets are created and curated for specific tasks or with limited im-
age data distribution for very specific situations, and there is no unified
approach to manage and access them across diverse sources, tasks, and
taxonomies. This not only creates unnecessary overheads when building
robust visual recognition systems, but also introduces biases into learn-
ing systems and limits the capabilities of data-centric AI. To address
these problems, we propose the Vision Knowledge Graph (VisionKG),
a novel resource that interlinks, organizes and manages visual datasets
via knowledge graphs and Semantic Web technologies. It can serve as
a unified framework facilitating simple access and querying of state-of-
the-art visual datasets, regardless of their heterogeneous formats and
taxonomies. One of the key differences between our approach and ex-
isting methods is that ours is knowledge-based rather than metadata-
based. It enhances the enrichment of the semantics at both image and
instance levels and offers various data retrieval and exploratory services
via SPARQL. VisionKG currently contains 519 million RDF triples
that describe approximately 40 million entities, and are accessible at
https://vision.semkg.org and through APIs. With the integration of
30 datasets and four popular CV tasks, we demonstrate its usefulness
across various scenarios when working with CV pipelines.

1 Introduction

Computer vision has made significant advances and visual datasets have become
a crucial component in building robust visual recognition systems. The perfor-
mance of the underlying deep neural networks (DNNs) in the systems is influ-
enced not only by advanced architectures but also significantly by the quality of
training data [59]. There are many available visual datasets, e.g., ImageNet [9],
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OpenImage [28], and MS-COCO [33], which offer a range of visual characteris-
tics in different contexts to improve the generalization capabilities of advanced
machine learning models.

However, these datasets are often published in different data formats, and
the quality of taxonomies and annotations varies significantly. Furthermore, la-
bels used to define objects are available in diverse lexical definitions, such as
WordNet [34], Freebase [4], or even just plain text. As a result, there may be in-
consistencies in semantics across multiple datasets [30]. Isolated and non-unified
datasets not only create unnecessary overhead when building robust visual recog-
nition systems, but they also introduce biases into learning systems and limit
the capabilities of data-centric AI [46].

Although researchers and practitioners have made efforts to unify visual
datasets [29,19,36], a systematic approach to understanding the features and an-
notations underlying visual datasets is still lacking. For example, the DeepLake [19]
can access data from multiple data sources in a unified manner, however, it does
not bridge the gap in linking and managing these datasets. Fiftyone [36] can par-
tially capture inconsistencies in multiple datasets by visualizing data sets and
analyzing data pipeline failures. Although these works improve the performance
of the learned model in a data-centric manner, training DNNs with high-quality
data from multiple sources in a cost-effective way remains a formidable challenge
for researchers and engineers [51].

Knowledge graph [20] offers a flexible and powerful way to organize and
represent data that is comprehensible for both humans and machines. Thus,
to systematically organize and manage data for computer vision, we built a
knowledge graph of the visual data, named VisionKG. VisionKG is designed to
provide unified and interoperable semantic representations of visual data that are
used in computer vision pipelines. This knowledge graph captures the entities,
attributes, relationships, and annotations of the image data, enabling advanced
mechanisms to query training data and perform further analysis.

To address the data inconsistency problems mentioned above, VisionKG in-
terlinks annotations across various datasets and diverse label spaces, promoting
a shared semantic understanding and facilitating the retrieval of images that
meet specific criteria and user requirements. For instance, for training and test-
ing a specific system, developers may require images with specific types and
attributes tailored to their particular scenarios across a range of visual tasks or
sources. For example, pedestrian and vehicle detection in adverse weather con-
ditions [42] or occlusion-aware pose estimation [23] both require such tailored
image sets across multiple sources for training and testing. Our approach also
enables users to better explore and understand relationships between entities
using facet-based visualization and exploration powered by a graph data model.
Graph queries powered by a graph storage can be employed to create declarative
training pipelines from merged computer vision datasets, providing a convenient
way to navigate and discover patterns among interlinked visual datasets such as
KITTI [15], MS-COCO [33], and Cityscapes [7]. Additionally, VisionKG offers
enhanced flexibility in terms of data representation and organization, enabling
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faster and easier access to the necessary information, which supports developers
in building training pipelines more conveniently and efficiently.

VisionKG is built based on the Linked Data principles [3], adhering to the
FAIR [52] and open science guidelines [5], and encompasses various data sources.
These sources have been defined and maintained by the research community,
as they are widely used and have a significant impact on the development of
computer vision algorithms and systems. Their popularity ensures that they
will be regularly and frequently updated and extended. This makes VisionKG a
valuable resource for researchers and developers who require access to the newest,
high-quality image data. Our main contributions are summarized as follows:

– We provide a unified framework for representing, querying, and analysis of
visual datasets. By aligning different taxonomies, we minimize the inconsis-
tency between different datasets.

– We make these datasets accessible via standardized SPARQL queries. It is
available in both web user interface and via APIs.

– We demonstrate the advantages of VisionKG via three use cases: composing
visual datasets with unified access and taxonomy through SPARQL queries,
automating training and testing pipelines, and expediting the development
of robust visual recognition systems.

– Currently, VisionKG contains 519 million RDF triples that describe approx-
imately 40 million entities from 30 datasets and four popular CV tasks.

The remainder of the paper is structured as follows. In Section 2, we present
detailed steps that follow the Linked Data publishing practice [3] to enforce the
FAIR principles [52] in VisionKG. Section 3 presents the infrastructure of our
VisionKG framework. In Section 4, we demonstrate the MLOps use cases with
VisionKG and how it promotes this process. Sections 5-6 discuss related works
and conclusions, respectively.

2 Enforcing FAIR Principles for Visual Datasets

2.1 Making Visual Data Assets Findable and Accessible

To ensure the findability of visual data assets, VisionKG uses Uniform Re-
source Identifiers (URIs) to identify resources, including images and their asso-
ciated metadata. These URIs provide a unique and persistent identifier for each
resource, making it easy to find and access specific images or sets of images. Fig-
ure 1 1 illustrates an RDF data snippet linking images and their annotations
in COCO [33], KITTI [15] and VisualGenome [25].

This pays the way to use standardized or popular vocabularies/ontologies,
such as DCAT and Schema.org to enrich metadata associated with the content
and context of image data in Section 2.2. These metadata can be used to facilitate
searching, filtering, and discovery of images based on specific criteria, such as
object category or image resolution as demonstrated later in Section 3.3. In
particular, VisionKG links each piece of metadata to a URI for the corresponding
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image to ensure that metadata clearly and explicitly describe the image they
refer to, e.g ’containing’ bounding boxes of ’person’, ’pedestrian’ or a ’man’ in
Figure 1 1 . This not only enables easy retrieval and exploration of images and
their related ones based on their metadata but also ensures that more metadata
can be incrementally enriched by simply adding more RDF triples linked to the
corresponding image. Such desired features are powered by a triple storage in
terms of storing, indexing and querying (cf. Section 3)

In this context, VisionKG can greatly facilitate the accessibility of data
and metadata by using standardized communication protocols and supporting
the decoupling of metadata from data. Its publication practice makes it easier
for targeted users to access and reuse relevant data and metadata, even when the
original data are no longer available. For instance, several images of Imagenet or
MSCOCO were downloaded or extracted from web sources, the metadata will
provide alternative sources even the original sources are no longer accessible.

Fig. 1. FAIR for Visual Data Assets

To push the accessibility of VisionKG’s data assets even further, users can
access VisionKG through a well-documented web interface and a Python API.
Both interfaces allow users to explore different aspects of VisionKG, such as the
included tasks, images, and annotations with diverse semantics. Additionally,
many SPARQL query examples.4,5 enable users to explore the functionalities
of VisionKG in detail and describe their requirements or specific criteria using
RDF statements.

2.2 Ensure Interoperability across Datasets and Tasks

To make VisionKG interoperable across different datasets, computer vision
tasks, and knowledge graph ecosystems, we designed its data schema as an

4 https://vision.semkg.org
5 https://github.com/cqels/vision

https://vision.semkg.org
https://github.com/cqels/vision
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RDFS ontology as shown in Figure 2. This schema captures the semantics of the
properties of visual data related to computer vision tasks. Our approach makes
use of existing and well-developed vocabularies such as schema.org wherever
possible. This ensures interoperability and backward compatibility with other
systems that use these vocabularies and reduces the need for customized schema
development.

Fig. 2. VisionKG Data Schema

The key concepts in the CV datasets include images, annotations, and labels.
To define these concepts, we reuse the schema.org ontology by extending its
existing classes such as <schema:ImageObject>, and <schema:CreativeWork>.
For example, we extend <schema:ImageObject> to create the <cv:Image> class,
<schema:Dataset> to create the <cv:Dataset> class. By doing so, we are able to
inherit existing properties, such as <schema:hasPart> or <schema:isPartOf>,
to describe the relationships between datasets and images (Figure 2 a ). Our
created vocabulary offers the descriptors to capture the attributes of images
that are relevant for training a computer vision (CV) model (Section 3.3), such
as the image dimensions, illumination conditions, or weather patterns depicted
in Figure 2 b . The concept Annotation refers to the labeling and outlining of
specific regions within an image. Each type of annotation is used for a particular
computer vision task. For instance, bounding boxes are utilized to train object
detection models. However, annotations are also reusable for various computer
vision tasks. For example, the bounding boxes of object detection annotations
can be cropped to train a classification model that doesn’t require bounding
boxes. In order to enable interoperability of annotations across different com-
puter vision tasks, we developed a taxonomy for them using RDFS ontology, as
illustrated in Figure 2 c . In particular, defining the object detection annota-

schema.org
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tion class as a sub-class of the classification annotation enables the machine to
understand that object detection annotations can be returned when users query
annotations for a classification task. The cropping process can be performed
during the pre-processing step of the training pipeline.

Annotations are associated with labels that define the object or relationship
between two objects (visual relationship). However, labels are available in het-
erogeneous formats, and their semantics are not consistent across datasets. For
instance, as shown in Figure 1 1 , the pedestrian in KITTI dataset or the
man in Visual Genome dataset are annotated as person in MS-COCO dataset.
Furthermore, in the Visual Genome dataset, WordNet [34] identification is used
to describe the label. Such inconsistencies make it unnecessarily challenging to
combine different datasets for training or testing purposes. To tackle this is-
sue, we assign a specific label type that indicates how to integrate with other
existing knowledge graphs to facilitate the semantic interoperability across
datasets. Figure 1 2 and Figure 1 3 exemplify how inconsistent labels from
three datasets can be aligned using the RDFS taxonomies from WikiData.

2.3 Optimize Reusability through SPARQL Endpoint

To optimize the reusability of visual data assets, VisionKG provides a SPARQL
endpoint 6 to enable users programmatically discover, combine and integrate
visual data assets along with semantic-rich metadata with common vocabularies
provided in Section2.2. In particular, users can use powerful SPARQL queries to
automatically retrieve desired data across datasets for various computer vision
tasks. We provided exemplar queries at http://vision.semkg.org/.

Moreover, we annotated VisionKG with data usage licenses for more than ten
types7 of licenses associated with datasets listed in Section 3.2. With this licensed
data, users can filter datasets by their licenses to build their own custom datasets.
For example, a user can pose a single SPARQL query to retrieve approximately
0.8 million training samples to train a classification model for cars with Creative
Commons 4.0 license8.

By linking images and annotations with the original sources and related data
curation processes, we captured and shared detailed provenance information for
images and their annotations, thus, VisionKG enables users to understand the
history and context of data and metadata. By providing such detailed prove-
nance information, VisionKG can enable users to better evaluate the quality
and reliability of image and video data and metadata, promoting their reuse.

3 Unified Access for Integrated Visual Datasets

In this Section, we first provide a detailed overview of the architecture of Vi-
sionKG, and discuss how it supports access to various popular visual datasets and

6 SPARQL Endpoint of VisionKG: https://vision.semkg.org/sparql
7 List of dataset licenses in VisionKG: http://vision.semkg.org/licences.html
8 CC BY 4.0: https://creativecommons.org/licenses/by/4.0/

http://vision.semkg.org/
https://vision.semkg.org/sparql
http://vision.semkg.org/licences.html
https://creativecommons.org/licenses/by/4.0/
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computer vision tasks. We then demonstrate VisionKG’s capabilities in providing
unified access to integrated visual datasets via SPARQL queries, ultimately pro-
moting and accelerating data streaming in CV pipelines. It shows the practical
usefulness of our framework for MLOps [1] in Section 4 by exploiting knowledge
graph features.

3.1 VisionKG Architecture to Facilitate Unified Access

Figure 3 presents an overview of our VisionKG framework and the process of
creating and enriching our unified knowledge graph for visual datasets. We start
by collecting popular computer vision datasets for CV from the PaperWithCode
platform 9. Next, we extract their annotations and features across datasets us-
ing a Visual Extractor. We use RDF Mapping Language (RML)[10] to map
the extracted data into RDF. RDF data is generated using a Semantic Anno-
tator implemented using RDFizer[21]. To enhance interoperability and enrich
semantics in VisionKG, we link the data with multiple knowledge bases, such as
WordNet [34] and Wikidata [38]. The Semantic Enrichment Reasoner expands
the taxonomy by materializing the labels in each dataset using the ontology hi-
erarchy. For instance, categories like pedestrian or man isSubClassOf person

(Figure 1 2 ). Based on the interlinked datasets and Semantic Enrichment Rea-
soner, users can access the data in VisionKG in a unified way (Figure1 3 ). The
SPARQL Engine maintains an endpoint for users to access VisionKG using the
SPARQL query language.

Fig. 3. Overview of VisionKG Platform

Moreover, VisionKG offers a front-end web interface that allows users to
explore queried datasets, such as visualizing data distribution and their corre-
sponding annotations (https://vision.semkg.org/statistics.html).

9 https://paperswithcode.com/datasets

https://vision.semkg.org/statistics.html
https://paperswithcode.com/datasets
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3.2 Linked Datasets and Tasks in VisionKG

The current version of our framework (by May 2023) integrates thirty most
common-used and popular visual datasets, involved in the tasks for visual rela-
tionship detection, image classification, object detection, and instance segmen-
tation. Table 1 gives an overview of the contained datasets, images, annotations,
and triples in VisionKG. In total, it encompasses over 519 million triples dis-
tributed among these visual tasks.

Visual Tasks Datasets Images Annotations Triples

Visual Relationship 2 119K 1.2M 2.1M
Instance Segmentation 7 300K 3.9M 22.4M
Image Classification 9 1.7M 1.7M 16.6M
Object Detection 12 4.3M 50.8M 478.7M

Total 30 6.4M 57.6M 519.8M

Table 1. Statistics across various Visual Tasks in VisionKG

To enhance the effectiveness of our framework for image classification, we
have integrated both large benchmark datasets, such as ImageNet [9], as well
as smaller commonly used datasets, like CIFAR [26], the diversity of covered
datasets enables users to quickly and conveniently validate model performance,
thus avoid extra laborious work. Table 2 demonstrates that ImageNet comprises
1.2 million entities, dominating the distribution of the classification task in
VisionKG. Thanks to the interlinked datasets and semantic-rich relationships
across visual tasks, users can query different categories and the desired number
of images to tailor training pipelines for specific scenarios.

IMN SOP CIFAR MNIST CART Cars196 CUB200

Entities 2.7M 240K 240K 140K 77K 32.4K 23.6K
Triples 13.3M 1.2M 1.2M 0.7M 0.4M 0.2M 0.1M

Table 2. Statistics of Triples and Entities in VisionKG for Image Classification.
IMN:ImageNet[9], SOP: Stanford Online Products [39], CIFAR:CIFAR10/100 [26],
CART: Caltech-101/-256 [16], CUB200: Caltech-UCSD Birds-200-2011 [48].

For object detection, Table 1 and Table 3 show that VisionKG comprises
approximately 478 million triples for bounding boxes with dense annotations
mainly contributed by large-scale datasets like OpenImages [28] and Objects365 [44].
The variety of visual features allows users to create diverse composite datasets
based on their individual requirements for the size or the density of bounding
boxes, which can be helpful to reduce biases solely introduced by a single dataset
captured under specific conditions and scenarios, e.g., to enhance the model per-
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MSC UAD KIT CAR BDD OID O365 LVIS MVD VOC

Entities 1.0M 678K 47K 32K 1.5M 14.3M 28.5M 1.6M 1.2M 138K
Triples 9.7M 6.4M 0.4M 0.3M 15.1M 135.8M 277.4M 15.9M 11.9M 1.0M

Table 3. Statistics of Triples and Entities in VisionKG for Object Detection. MSC: MS-
COCO[33], UAD: UA-DETRAC [50], KIT: KITTI [15], CAR: StanfordCars196 [24],
BDD: BDD100K [55], OID: OpenImages [28], O365: Objects365 [44], LVIS [17],
MVD [37], VOC [12]

formance on densely distributed small objects, which are typically challenging
to localize and recognize [32,31].

For visual relationship detection, which aims to recognize relationships be-
tween objects in images, we have further integrated datasets such as Visu-
alGenome [25] and SpatialScene [54], containing over 1.9 million triples for both
bounding boxes and object-level relationships. Besides, VisionKG comprises 22.4
million triples for task instance segmentation, allowing users to retrieve and reuse
masks of all instance-level objects for downstream scenarios, thus improving the
pixel-level segmentation performance of models.

3.3 Visual Dataset Explorer powered by SPARQL

Organizing training data, which may be in heterogeneous formats and have dis-
tinct taxonomies, into one pipeline can be a time-consuming task. To reduce this
effort, our framework provides a SPARQL web interface that enables users to
access, explore, and efficiently combine data by leveraging the rich semantics of
SPARQL. This empowers users to describe their requirements or specific criteria
using graph query patterns

Fig. 4. VisionKG Web Interface
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Figure 4 demonstrate our visual datasets explorer equipped with a live-
interactive SPARQL web interface. Users can initiate their exploration by se-
lecting a desired task, such as Detection, Classification, Segmentation, or Visual
Relationship, from a drop-down menu in Figure4 1 . Upon task selection, the
system will promptly generate a list of all compatible datasets that support the
chosen task, as Figure4 2 illustrated.

Next, users may choose a dataset, such as COCO [33] or KITTI [15], from the
list. This will prompt the system to display all available categories within that
dataset in Figure 4 3 . To filter or select the desired categories, users can simply
enter a keyword into the text box depicted in Figure 4 4 . This process is further
facilitated by allowing users to drag and drop a category from Figure 4 3 to the
query box in Figure 4 6 . The system will then auto-generate a SPARQL query,
accompanied by an explainable text in Figure 4 5 , designed to select images
containing the specified category. It is noteworthy that multiple categories from
different datasets can be selected. Users may modify the query by removing
categories or adjusting the query conditions by selecting available options from
boxes in Figure 4 5 or Figure 4 6 . Additionally, users can also adjust the
number of images to be retrieved.

Once the query is finalized, the user may click the ”Query” button, and
the results will be displayed in table format in Figure 4 7 . Additionally, users
may select the ”Visualization” tab to view the results graphically, as shown in
Figure 4 8 . By clicking on an image, users may access additional information,
such as annotations of that image and annotations generated from popular deep
learning models shown in Figure 4 9 . Overall, the platform offers an intuitive
and efficient method for dataset selection and querying for machine learning
tasks.

4 VisionKG for MLOps

The term MLOps refers to the application of the DevOps workflow [11] specif-
ically for machine learning (ML), where model performance is primarily influ-
enced by the quality of the underlying data [1]. As demonstrated in Section 2 and
Section 3, the detailed overview of our framework’s architecture highlights its
significant potential to boost the development of MLOps (e.g., data collection,
preparation, and unified access to integrated data). In this section, we present
three use cases that demonstrate how to carry out more complicated MLOps
steps using our framework. These use cases demonstrate the ability to utilize Vi-
sionKG for composing visual datasets with unified access and taxonomy through
SPARQL queries, automating training and testing pipelines, and expediting the
development of robust visual recognition systems. VisionKG’s features enable
users to efficiently manage data from multiple sources, reduce overheads, and
enhance the efficiency and reliability of machine learning models. More detailed
features and tutorials about VisionKG can be found in our GitHub repository10.

10 https://github.com/cqels/vision

https://github.com/cqels/vision
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4.1 Composing Visual Datasets with a Unified Taxonomy and
SPARQL

Data often comes in a variety of structures and schemas, and there is a need
for consolidation of this information in a unified approach. Efficient data man-
agement with expressive query functionalities plays a pivotal role in MLOps.
However, data from heterogeneous sources with inconsistent formats presents
numerous challenges [19,41] that must be addressed to ensure the efficiency and
reliability of machine learning models under development. Additionally, the qual-
ity and consistency of data and unified access to data are paramount in devel-
oping visual recognition systems.

Fig. 5. Dataset-Exploration with SPARQL under various Conditions in VisionKG.

As discussed in Section 2 and 3, VisionKG is equipped with SPARQL engine
allowing developers to programmatically build a composite dataset (from diverse
sources with different annotated formats) to significantly reduce considerable ef-
fort in data preparation phase in MLOps. For instance, as demonstrated in Fig-
ure 5 1 and Figure 5 3 , users can query for part of images or categories from
one dataset, e.g., images containing both car and van from KITTI [15]. Besides,
as desired, they can also query for images from multiple sources with heteroge-
neous formats, e.g., images containing car from MS-COCO[33] and sedan from
UA-DETRAC[50] datasets, even though they have far different annotated for-
mats (i.e., annotations of MS-COCO and UA-DETRAC are organized in JSON
and XML format, respectively). Furthermore, benefiting from the Semantic En-
richment Reasoner described in Section 3.1 and integrated knowledge bases (e.g.,
WordNet [34]), users can query for images containing person from MS-COCO,
KITTI, and Visual Genome [25] (due to distinct taxonomies, person are anno-
tated as pedestrian in KITTI and labeled as man Visual Genome) using a simple
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query (Figure 1 3○) rather than a more complex query (Figure 1 1○) that covers
all possible cases: e.g., images which containing pedestrian in KITTI and/or
man in Visual Genome dataset, as users desired.

Thanks to the semantic interoperability (cf. Section 2.2) of interlinked anno-
tations across diverse label spaces, users can create datasets from various sources
with relevant definitions as desired. Along with the enrichment of semantic re-
lationships, VisionKG provides users with composite visual datasets in a cost-
efficient and data-centric manner and hence boosts the data flow in MLOps.
Consider the Robust Vision Challenge11 (RVC) in the context of object detec-
tion, where participants need to download terabyte-level datasets from the web
(from different sources, taxonomies, and with inconsistent formats), and then
train a unified detector to classify and localize objects across all categories in
these datasets. To accomplish this, one approach is to unify the taxonomies from
these datasets and mitigate the bias introduced by specific domains or similar
categories (e.g., the stop sign in MS-COCO is a hyponym of traffic sign,
which annotated in MVD[37]) from different taxonomies. Although the orga-
nizers provide manually aligned annotations as a good starting point, unifying
labels from distinct taxonomies can still be a time-consuming process. With Vi-
sionKG, it is one step closer to achieving this. Users can carry out this process
with the assistance of external knowledge bases like Wikidata [47], thereby lever-
aging external knowledge and facts. Additionally, the unified data model that
leverages RDF and knowledge graphs, along with the SPARQL endpoint, allows
users to conveniently query specific parts of the datasets as desired without the
extra effort of parsing and processing the entire large datasets. This constitutes
part of how VisionKG accelerates the MLOps workflow.
4.2 Automating Training and Testing Pipelines

One of the primary goals of MLOps is to automate the training and testing
pipelines to accelerate the development and deployment of ML models [1]. Au-
tomated workflows enable rapid iteration and experimentation, avoiding the
time-consuming process during the model development for both researchers and
developers. However, despite the advancements of MLOps in increased produc-
tivity and reproducibility of experiments, there are also some limitations remain
in current MLOps tools (e.g., Kubeflow [2] and MLflow [1] ), such as limited
support for complex data types and multi-modal data (e.g., images, videos, and
audios). Besides, integrating these MLOps tools with existing diverse data in-
frastructures can be challenging and requires significant effort.

As described in Section 3.3, powered by SPARQL, VisionKG supports auto-
mated end-to-end pipelines for visual tasks. Users can start a training pipeline
by writing queries to construct various composite visual datasets. As demon-
strated in Figure 6 1 , users can query images and annotations with a few
lines of SPARQL query to use RDF-based description to get desired data, such
as images containing box-level annotations of car and person from interlinked
datasets in VisionKG. In combination with current popular frameworks (e.g., Py-
Torch, TensorFlow) or toolboxes (e.g., MMDetection [6], Detectron2 [53]), users

11 http://www.robustvision.net/

http://www.robustvision.net/
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can further utilize the retrieved data to construct their learning pipelines in just
a few lines of Python code without extra effort, as Figure 6 2 demonstrated.
Users need to define solely the model they want to use and the hyperparameters
they want to set.

Additionally, users can use VisionKG for their testing pipeline. The inference
results can be integrated with data from VisonKG to provide quick insight about
the potential model for specific scenarios. Figure 6 3 demonstrates that one
can gain quick overview of a trained YOLO model [22] to detect car on images
containing car in crowded traffic scenes.

Fig. 6. Construct CV Pipelines Employing VisionKG.

These described features above significantly reduce the workload during data
collection, preparation, pre-processing, verification, and model selection for MLOps.
Further features of automated pipelines using VisionKG can be found in GitHub
repository12.

4.3 Robust Visual Learning over Diverse Data-Sources

The increasing demand for robust visual learning systems has led to the need
for efficient MLOps practices to handle large-scale heterogeneous data, main-
tain data quality, and ensure seamless integration between data flow and model
development. Moreover, a robust learning system should perform consistently
well under varying conditions, such as invariance to viewpoint and scale, stable
performance under instance occlusion, and robustness to illumination changes.
However, many existing visual datasets are specifically designed and curated for
particular tasks, often resulting in a limited distribution of image data applica-
ble only in narrowly defined situations [40]. This not only imposes unnecessary
burdens when developing robust visual recognition systems but also introduces
biases within learning systems and constrains the robustness of visual recognition
systems.

As discussed in Section 4.1 and 4.2, users can use VisionKG to compose
datasets across interlinked data sources and semantic-rich knowledge bases and

12 https://github.com/cqels/vision

https://github.com/cqels/vision
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automatically build training and testing pipelines starting from SPARQL queries.
This paves the way to support the construction of robust learning systems ex-
ploiting features from VisionKG. For instance, when users want to develop a
robust object detector, besides bounding boxes and annotated categories, other
environmental situations should also be considered and incorporated as prior
knowledge to boost the robustness of trained detectors, such as weather and
illumination conditions. Using VisionKG, as demonstrated in Figure 5 2 , users
can also employ fine-grained criteria for retrieving images with annotations, such
as querying for “images captured at night showing cars in rainy weather con-
ditions.” This extends VisionKG’s functionalities further for exploring and con-
structing datasets, allowing users to explore fruitful visual features as desired and
build models that cater to various scenarios more robustly, e.g., images captured
during adverse weather conditions or at different times of the day. This potential
can assist users in evaluating the capability of domain transfer of models (e.g., if
a detector trained on KITTI[15] is also robust to detect cars in snowy weather
conditions) or handle rare categories and long-tail phenomenon [56] (e.g., query
for a composite dataset containing specific categories which are rare in the source
dataset to balance the data distribution).

These features reduce the bias arising from unrelated samples and also enable
users to construct scenario-specific datasets covering rich semantics in a conve-
nient fashion. In this way, it allows the users to build robust training pipelines
in both data- and model-centric manners.

5 Related Work

Limitations in Existing Computer Vision Datasets
Modern computer vision models are data-intensive and rely heavily on avail-
able datasets to perform the learning progress and update learnable parameters.
However, the majority of visual datasets are typically limited to specific domains
with diverse taxonomies, and the imbalanced nature of class distribution, such
as KITTI [15] and MS-COCO [33]. Model-centric approaches, like [49] [57], have
trained models to deal with those issues, they require either a domain adapter
or adopt an additional model to learn the distribution of unified datasets. How-
ever, both model-centric solutions demand extra computing power. Data-centric
approaches such as MSeg [29] attempt to unify and interlink datasets manually
which is labor-intensive. Besides, existing data toolchains or data hubs like Deep
Lake [19], Hugging Face 13 and OpenDataLab 14 are well-established data in-
frastructures for organizing datasets from distinct web sources. However, these
toolchains are based solely on meta-data and do not interlink images and anno-
tations across datasets. In contrast, our framework employs knowledge graphs
and diverse external knowledge bases to achieve this and adheres to the FAIR
principles [52], enabling VisionKG to interlink images and annotations across
visual datasets and tasks with semantic-rich relationships.

13 Hugging Face. https://huggingface.co/docs/datasets/index
14 Opendatalab: https://github.com/opendatalab/opendatalab-python-sdk

https://huggingface.co/docs/datasets/index
https://github.com/opendatalab/opendatalab-python-sdk
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Knowledge Graph Technologies in Computer Vision
Knowledge graphs can enhance the utilization of background knowledge about
the real world and capture the semantic relationships in images and videos
through external knowledge and facts [8,58]. Approaches such as KG-CNet [13]
integrate external knowledge sources like ConceptNet[45] to capture the semantic
consistency between objects in images. KG-NN [35] facilitates the conversion of
domain-agnostic knowledge, encapsulated within a knowledge graph, into a vec-
tor space representation via knowledge graph embedding algorithms. However,
even these methods leverage external knowledge during learning or after the
learning procedure, whereas our method utilizes not only the external knowl-
edge bases but also interlinked datasets. In this way, the enhanced semantics
can serve to render fruitful features for integrated datasets. The approach pre-
sented in [14] and [38] use Wikidata [47] to empower and interlink annotations
for ImageNet [27]. Thanks to the knowledge and facts from the external knowl-
edge base, the data quality has been improved, but both are labor-intensive
and mainly target the specific dataset. Besides, the re-usability of these two
approaches for other large visual datasets, such as OpenImages [28] and Ob-
jects365 [44], and knowledge bases, e.g., Freebase, have not been investigated.
[18] employed knowledge graphs to interlink datasets. However, this approach
mainly focuses on three datasets in the context of autonomous driving scenarios.
In contrast, our framework, VisionKG, utilizes diverse knowledge bases such as
WordNet [34], Wikidata [47], and Freebase [4] to enhance the semantics in both
image- and instance-level. Additionally, KVQA [43] is a knowledge-based visual
dataset employing Wikidata. It is restricted mainly to person entities. Different
from it, our work interlinks various visual datasets and numerous entities across
diverse taxonomies and domains.
6 Conclusions and Future Works

We provide a novel VisionKG that serves as a unified framework for accessing and
querying state-of-the-art CV datasets, regardless of heterogeneous sources and
inconsistent formats. With semantic-rich descriptions, high-quality, and consis-
tent visual data, it not only helps to facilitate the automation of the CV pipelines
but also is beneficial for building robust visual recognition systems.

As new large-scale datasets emerge, there is an increasing need to develop
more efficient methods for querying and managing such a huge amount of data.
As future work, we will utilize advanced indexing techniques, query optimization,
and leveraging distributed computing technologies to improve scalability and
integrate further datasets.
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