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MATCHING POWERS OF MONOMIAL IDEALS AND EDGE
IDEALS OF WEIGHTED ORIENTED GRAPHS

NURSEL EREY, ANTONINO FICARRA

Abstract. We introduce the concept of matching powers of monomial ideals.
Let I be a monomial ideal of S = K[x1, . . . , xn], with K a field. The kth match-
ing power of I is the monomial ideal I [k] generated by the products u1 · · ·uk where
u1, . . . , uk is a sequence of support disjoint monomials contained in I. This concept
naturally generalizes that of squarefree powers of squarefree monomial ideals. We
study normalized depth function of matching powers of monomial ideals. We pro-
vide bounds for the regularity and projective dimension of edge ideals of weighted
oriented graphs. When I is a non-quadratic edge ideal of a weighted oriented
graph which has no even cycles, we characterize when I [k] has a linear resolution.

Introduction

Let S = K[x1, . . . , xn] be the polynomial ring over a field K. Recall that the
edge ideal of a finite simple graph G with vertices x1, . . . , xn is generated by all the
monomials xixj such that {xi, xj} is an edge of G. The study of minimal free reso-
lutions of edge ideals and their powers produced a great deal of interaction between
combinatorics and commutative algebra. One of the most natural problems in this
regard is to understand when those ideals, or more generally monomial ideals, have
linear resolutions. Although edge ideals with linear resolutions are combinatorially
characterized by a famous result of Fröberg [17], it is unknown in general when pow-
ers of edge ideals have linear resolutions. Herzog, Hibi and Zheng [22] showed that
if an edge ideal has a linear resolution, then so does every power of it. It is their
result that served as a starting point for the close examination of linear resolutions
of powers of edge ideals by many researchers, resulting in several interesting results
and conjectures.

For any squarefree monomial ideal I of S, the kth squarefree power of I, denoted
by I [k] is the monomial ideal generated by all squarefree monomials in Ik. Recently,
squarefree powers of edge ideals were studied in [4, 7, 9, 10, 11, 15, 29, 30]. De-
termining linearity of minimal free resolutions of squarefree powers or finding their
invariants is as challenging as those of ordinary powers although squarefree and
ordinary powers have quite different behavior. In the case that I is considered as
edge ideal of a hypergraph H, the minimal monomial generators of I [k] correspond
to matchings of H of size k, which makes combinatorial aspect of squarefree powers
interesting as well.
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This paper aims at presenting a wider framework for the study of squarefree
powers by introducing a more general concept which we call matching powers. If I
is a monomial ideal of S, then the kth matching power I [k] of I is generated by the
products u1 · · ·uk where u1, . . . , uk is a sequence of monomials in I with pairwise
disjoint support. Indeed, if I is a squarefree monomial ideal, then the kth squarefree
power of I is the same as the kth matching power of I. With this new concept, since
we are no longer restricted to squarefree monomial ideals, we can consider not only
edge ideals of simple graphs but also edge ideals of weighted oriented graphs.

We now discuss how the paper is organized. In Section 1, we summarize basic
facts of the theory of matching powers. We define the normalized depth function
gI of a monomial ideal I in Definition 1.3. This function generalizes the normalized
depth function introduced in [11] for squarefree monomial ideals. In Theorem 1.7
we show that if I is a quadratic monomial ideal, then the highest nonvanishing
matching power of I is polymatroidal.

In Section 2, we turn our attention to edge ideals of weighted oriented graphs. We
make comparisons between homological invariants of matching powers I(D)[k] and
I(G)[k], where G is the underlying graph of a weighted oriented graph D. We provide
lower bounds for the regularity and projective dimension of I(D)[k] in Propositions
2.5 and 2.6.

In Section 3, we study linearly related matching powers. The main result of the
section is Theorem 3.8 which characterizes when I(D)[k] has a linear resolution or
is linearly related provided that the underlying graph G of D has no even cycles
and I(D) 6= I(G). In particular, this result combined with [9, Theorem 41] gives a
complete classification of weighted oriented forests D such that I(D)[k] has a linear
resolution.

1. Matching Powers

Let S = K[x1, . . . , xn] be the standard graded polynomial ring with coefficients in
a fieldK. Let I ⊂ S be a monomial ideal. We denote by G(I) the minimal monomial
generating set of I. If u is a monomial, we call supp(u) = {i : xi divides u} the
support of u. The kth matching power of I is the monomial ideal defined as

I [k] = (f1 · · · fk : fi ∈ G(I), supp(fi) ∩ supp(fj) = ∅ for all 1 ≤ i < j ≤ k).

Recall that f1, . . . , fm is a regular sequence (on S) if fi is a non zero–divisor on
S/(f1, . . . , fi−1) for i = 1, . . . , m. Therefore one can write

I [k] = (f1 · · · fk : fi ∈ G(I), f1, . . . , fk is a regular sequence).

We denote by ν(I) the monomial grade of I, that is, the maximum size of a set of
monomials in I which are pairwise support disjoint. Note that I [k] 6= 0 if and only
if 1 ≤ k ≤ ν(I).

We define the support of I by supp(I) =
⋃

u∈G(I) supp(u). We say that I is

fully supported if supp(I) = {1, 2, . . . , n}. From now on, we tacitly assume that all
monomial ideals we consider are fully supported.
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Example 1.1. (i) Let I be a squarefree monomial ideal. Then, a product
u1 · · ·uk with ui ∈ G(I) is in I [k] if and only if u1 · · ·uk is squarefree. Thus,
in this case, I [k] is the usual kth squarefree power of I introduced in [4].

(ii) Let I be a complete intersection monomial ideal generated by u1, . . . , um.
Then I [k] = (ui1 · · ·uik : 1 ≤ i1 < · · · < ik ≤ m) and ν(I) = m.

(iii) Let (x2
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Normalized depth function. For a monomial u ∈ S, u 6= 1, the xi-degree of u is
defined as the integer

degxi
(u) = max{j ≥ 0 : xj

i divides u}.
Let I ⊂ S be a monomial ideal. The initial degree of I, denoted by indeg(I)

is the smallest degree of a monomial belonging to I. Following [12], we define the
bounding multidegree of I to be the vector

deg(I) = (degx1
(I), . . . , degxn

(I)),

with
degxi

(I) = max
u∈G(I)

degxi
(u), for all 1 ≤ i ≤ n.

We provide a lower bound for the depth of S/I [k] in terms of the initial degree of
I [k] and the bounding multidegree of I as follows:

Theorem 1.2. Let I ⊂ S be a monomial ideal. Then, for all 1 ≤ k ≤ ν(I), we have

depth(S/I [k]) ≥ indeg(I [k])− 1 + (n− |deg(I)|).
Proof. We divide the proof in three steps.

(Step 1). Let J ⊂ S be a monomial ideal. We claim that

pd(J) ≤ |deg(J)| − indeg(J).

To prove the assertion, we use the Taylor resolution. Let βi,j(J) be a non–zero
graded Betti number with i = pd(J). Then j ≥ indeg(J) + pd(J). It follows from
the Taylor resolution that the highest shift in the minimal resolution of J is at
most |deg(J)|, see [12, Theorem 1.3]. Thus, |deg(J)| ≥ j. Altogether, we obtain
|deg(J)| ≥ j ≥ indeg(J) + pd(J) and the assertion follows.

(Step 2). We claim that |deg(I [k])| ≤ |deg(I)| for all 1 ≤ k ≤ ν(I). Indeed, we
even show that degxℓ

(I [k]) ≤ degxℓ
(I) for all ℓ. A set of generators of I [k] is

Ω = {u1 · · ·uk : ui ∈ G(I), supp(ui) ∩ supp(uj) = ∅, 1 ≤ i < j ≤ k}.
Thus, G(I [k]) is a subset of Ω. Hence, if v ∈ G(I [k]), then v = u1 · · ·uk ∈ Ω. Let xℓ

be a variable dividing v, then xℓ divides at most one monomial ui, say uiℓ. Therefore,
degxℓ

(v) ≤ degxℓ
(uiℓ) ≤ degxℓ

(I) and the assertion follows.
3



(Step 3). By Steps 1 and 2 we have

pd(S/I [k]) ≤ |deg(I [k])| − indeg(I [k]) + 1 ≤ |deg(I)| − indeg(I [k]) + 1.

The asserted inequality follows from the Auslander–Buchsbaum formula. �

As a consequence of Theorem 1.2, we can give the next definition:

Definition 1.3. Let I ⊂ S be a monomial ideal. For all 1 ≤ k ≤ ν(I), we set

gI(k) = depth(S/I [k]) + |deg(I)| − n− (indeg(I [k])− 1),

and call gI the normalized depth function of I.

By Theorem 1.2 the normalized depth function of I is a nonnegative function. If
I ⊂ S is a squarefree monomial ideal, then deg(I) = 1 = (1, . . . , 1) and so

gI(k) = depth(S/I [k])− (indeg(I [k])− 1)

is the normalized depth function of I introduced in [11]. In the same paper, it was
conjectured that gI is a nonincreasing function for any squarefree monomial ideal
I. Later, Seyed Fakhari [28] disproved the conjecture by constructing a family of
cubic squarefree monomial ideals where gI(2) − gI(1) can be arbitrarily large. On
the other hand, it is still unknown whether the conjecture holds for edge ideals.

Next, we will see how the normalized depth function and matching powers of a
monomial ideal are related to those of its polarization. Before we proceed to this,
recall that the polarization of a monomial u = xb1

1 · · ·xbn
n ∈ S is the monomial

u℘ =
n
∏

i=1

(

bi
∏

j=1

xi,j) =
∏

1≤i≤n
bi>0

xi,1xi,2 · · ·xi,bi

in the polynomial ring K[xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ bi]. The polarization of a
monomial ideal I is the squarefree monomial ideal I℘ of S℘ where

S℘ = K[xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ degxi
(I)].

Therefore, its minimal generating set is given by G(I℘) = {u℘ : u ∈ G(I)}.
Proposition 1.4. Let I ⊂ S be a monomial ideal. Then, the following hold.

(a) ν(I) = ν(I℘).
(b) (I [k])℘ = (I℘)[k] for all 1 ≤ k ≤ ν(I).
(c) gI = gI℘.
(d) depth(S/I [k]) = depth(S℘/(I℘)[k])− |deg(I)|+ n, for all 1 ≤ k ≤ ν(I).

Proof. For any monomials u, v ∈ S, we have supp(u) ∩ supp(v) = ∅ if and only
if supp(u℘) ∩ supp(v℘) = ∅. Therefore, ν(I) = ν(I℘). Moreover, the equality
u℘
1 · · ·u℘

k = (u1 · · ·uk)
℘ holds whenever the monomials u1, . . . , uk are in pairwise

disjoint sets of variables, and thus (b) follows.
By [20, Corollary 1.6.3(d)] and equation in (b), it follows that

pd(S/I [k]) = pd(S℘/(I [k])℘) = pd(S℘/(I℘)[k]).
4



Taking into account that S℘ is a polynomial ring in |deg(I)| variables, applying the
Auslander–Buchsbaum formula we get

depth(S/I [k]) + |deg(I)| − n = depth(S℘/(I℘)[k])

which proves (d). Since indeg(I [k]) = indeg((I℘)[k]), subtracting indeg(I [k])− 1 from
both sides of the above equation, we obtain

gI(k) = gI℘(k), for all 1 ≤ k ≤ ν(I).

�

In [11, Corollary 3.5] it was proved that gI(G)(ν(G)) = 0 for any fully supported
edge ideal I(G). By part (c) of the above proposition, we extend this to all quadratic
monomial ideals.

Corollary 1.5. Let I ⊂ S be a monomial ideal generated in degree two. Then

gI(ν(I)) = 0.

Highest nonvanishing matching power of a quadratic monomial ideal. Let
G be a finite simple graph with vertex set V (G) = [n] = {1, 2, . . . , n} and edge
set E(G). The edge ideal of G is the ideal I(G) = (xixj : {i, j} ∈ E(G)) of
S = K[x1, . . . , xn]. A matching of G is a set of edges of G which are pairwise
disjoint. If M is a matching, then we denote by V (M) the set of vertices

⋃

e∈M e.
We denote by ν(G) the matching number of G which is the maximum size of a
matching of G. Then one can verify that ν(I(G)) = ν(G). Moreover, the generators
of I(G)[k] correspond to matchings of G of size k. This justifies the choice to name
I [k] the kth matching power of I.

A monomial ideal I ⊂ S generated in a single degree is called polymatroidal if its
minimal generators correspond to the bases of a polymatroid. That is, the exchange
property holds: for all u, v ∈ G(I) and all i with degxi

(u) > degxi
(v) there exists

j such that degxj
(u) < degxj

(v) and xj(u/xi) ∈ G(I). A squarefree polymatroidal
ideal is called matroidal.

A polymatroidal ideal has linear quotients with respect to the lexicographic order
induced by any ordering of the variables. Indeed, a polymatroidal ideal is weakly
polymatroidal and the above claim follows from [20, Proof of Theorem 12.7.2]. More-
over, since polymatroidal ideals have linear quotients, they have linear resolutions
as well [20, Proposition 8.2.1].

Due to a well-known result of Edmonds and Fulkerson (see Theorem 1 on page 246,
[31]), the ideal I(G)[ν(G)] is matroidal for any graph G. In particular, this implies
that I(G)[ν(G)] has linear quotients, which was independently proved by Bigdeli et
al. in [4, Theorem 4.1]. We will extend this to the matching power of any quadratic
monomial ideal.

If I is a polymatroidal ideal, then I℘ is not necessarily polymatroidal. For in-
stance, the ideal I = (x2

1, x1x2, x
2
2) is polymatroidal but I℘ is not. On the other

hand, we have

Lemma 1.6. Let I ⊂ S be a monomial ideal. If I℘ is polymatroidal, then so is I.
5



Proof. Let u, v ∈ G(I) with p = degxi
(u) > degxi

(v). Then xi,p divides u℘ but not
v℘. In fact,

degxi,p
(u℘) = 1 > 0 = degxi,p

(v℘).

Since I℘ is polymatroidal, there exists xj,k with j 6= i such that

degxj,k
(v℘) = 1 > 0 = degxj,k

(u℘)

and xj,k(u
℘/xi,p) ∈ G(I℘). This implies degxj

(u) = k − 1 and degxj
(v) ≥ k. Then

(xju/xi)
℘ = xj,k(u

℘/xi,p) ∈ G(I℘)

and thus xju/xi ∈ G(I). �

Theorem 1.7. Let I ⊂ S be a monomial ideal generated in degree two. Then I [ν(I)]

is a polymatroidal ideal.

Proof. By Proposition 1.4(a) we have k = ν(I) = ν(I℘). By Proposition 1.4(b),
(I [k])℘ = (I℘)[k]. Moreover, since I℘ is the edge ideal of some graph, it is known
that (I℘)[k] is polymatroidal. Then Lemma 1.6 implies that I [k] is polymatroidal as
well. �

Corollary 1.8. Let I ⊂ S be a monomial ideal generated in degree two. Then

reg(I [ν(I)]) = 2ν(I).

Proof. Since polymatroidal ideals have linear resolutions and I [ν(I)] is generated in
degree 2ν(I), the regularity formula follows. �

The above result and Corollary 1.5 are no longer valid for monomial ideals gen-
erated in a single degree bigger than two. For instance, for the cubic ideal

I = (x1x
2
2, x2x

2
3, x3x

2
4, x4x

2
1)

of S = K[x1, . . . , x4] we have ν(I) = 2 but I [2] does not have a linear resolution and
gI(2) = 1 6= 0.

2. Edge ideals of weighted oriented graphs

In this section, we focus our attention on matching powers of edge ideals of
weighted oriented graphs. The interest in these ideals stemmed from their rele-
vance in coding theory, in particular in the study of Reed-Muller type codes [25].
Recently, these ideals have been the subject of many research papers in combinato-
rial commutative algebra, e.g. [2, 3, 5, 19, 24, 27]. Hereafter, by a graph G we mean
a finite simple undirected graph without isolated vertices.

A (vertex )-weighted oriented graph D = (V (D), E(D), w) consists of an underlying
graph G on which each edge is given an orientation and it is equipped with a weight

function w : V (G) → Z≥1. The weight w(i) of a vertex i is denoted by wi. The
directed edges of D are denoted by pairs (i, j) ∈ E(D) to reflect the orientation,
hence (i, j) represents an edge directed from i to j. The edge ideal of D is defined
as the ideal

I(D) = (xix
wj

j : (i, j) ∈ E(D))

of the polynomial ring S = K[xi : i ∈ V (G)]. If wi = 1 for all i ∈ V (G), then
I(D) = I(G) is the usual edge ideal of G.

6



Remark 2.1. If i ∈ V (G) is a source, that is a vertex such that (j, i) /∈ E(D) for all
j, then degxi

(I(D)) = 1. Therefore, hereafter we assume that wi = 1 for all sources
i ∈ V (G).

Firstly, we establish the homological comparison between the matching powers
I(D)[k] and I(G)[k], where G is the underlying graph of D. The assumption in
Remark 2.1 is crucial for the statement (e) of Theorem 2.2.

Theorem 2.2. Let D be a weighted oriented graph with underlying graph G. Then,

the following statements hold.

(a) ν(I(D)) = ν(I(G)) = ν(G).
(b) pd(I(G)[k]) ≤ pd(I(D)[k]), for all 1 ≤ k ≤ ν(G).
(c) reg(I(G)[k]) ≤ reg(I(D)[k]), for all 1 ≤ k ≤ ν(G).
(d) βi(I(G)[k]) ≤ βi(I(D)[k]), for all 1 ≤ k ≤ ν(G) and i.
(e) gI(D)(k) ≤ gI(G)(k) +

∑

i∈V (G)

wi − |V (G)|, for all 1 ≤ k ≤ ν(G).

For the proof we recall a few basic facts. Let I ⊂ S be a monomial ideal.

(i) We have βi,j(I) = βi,j(I
℘) for all i and j [20, Corollary 1.6.3].

(ii) For a monomial u ∈ S, we set
√
u =

∏

i∈supp(u) xi. If G(I) = {u1, . . . , um},
then [20, Proposition 1.2.4] gives

√
I = (

√
u1, . . . ,

√
um).

(iii) Let P be a monomial prime ideal of S. Let S(P ) be the polynomial ring in
the variables which generate P . The monomial localization of I at P is the
monomial ideal I(P ) of S(P ) which is obtained from I by the substitution
xi 7→ 1 for all xi /∈ P . The monomial localization can also be described as
the saturation I : (

∏

xi /∈P
xi)

∞.
If F is the minimal (multi)graded free S-resolution of I, one can construct,

starting from F, a possibly non-minimal (multi)graded free S-resolution of
I(P ) [21, Lemma 1.12]. It follows from this construction that βi(I(P )) ≤
βi(I) for all i. Moreover, pd(I(P )) ≤ pd(I) and reg(I(P )) ≤ reg(I).

Proof. Statement (a) is clear. To prove (b), (c) and (d), set J = I(D)[k]. Assume
that I(D) is a fully supported ideal of S = K[x1, . . . , xn]. Let P = (x1,1, . . . , xn,1).

Identifying xi,1 with xi for all i, by applying (ii), J℘(P ) can be identified with
√
J .

Then by (i) and (iii) we obtain

βi(
√
J) = βi(J

℘(P )) ≤ βi(J
℘) = βi(J)

for all i. To complete the proof, we will show that
√
J = I(G)[k]. For this

aim, let v ∈ G(J). Then v = (xi1x
wj1
j1

) · · · (xikx
wjk

jk
) with (i1, j1), . . . , (ik, jk) ∈

E(D) and the corresponding undirected edges form a k-matching of G. Thus√
v = (xi1xj1) · · · (xikxjk) ∈ I(G)[k] and consequently

√
J ⊆ I(G)[k]. Conversely, let

u = (xi1xj1) · · · (xikxjk) ∈ G(I(G)[k]) with {{i1, j1}, . . . , {ik, jk}} a k-matching of G.

Then (i1, j1), . . . , (ik, jk) ∈ E(D) up to relabelling. So v = (xi1x
wj1
j1

) · · · (xikx
wjk

jk
) ∈ J

and
√
v = u ∈

√
J . This shows that I(G)[k] ⊆

√
J . Equality follows.

7



It remains to prove (e). Let L be a monomial ideal of S. By the Auslander–
Buchsbaum formula we have depth(S/L) = n − 1 − pd(L). Hence, for all 1 ≤ k ≤
ν(L) we can rewrite gL(k) as

gL(k) = |deg(L)| − pd(L[k])− indeg(L[k]).

By (b) we have pd(I(G)[k]) ≤ pd(I(D)[k]) for all k. It is clear that |deg(I(G))| = n
and indeg(I(G)[k]) = 2k ≤ indeg(I(D)[k]) for all 1 ≤ k ≤ ν(G). Therefore,

gI(D)(k) = |deg(I(D))| − pd(I(D)[k])− indeg(I(D)[k])

≤ |deg(I(D))| − pd(I(G)[k])− indeg(I(G)[k])

= n− pd(I(G)[k])− indeg(I(G)[k]) + |deg(I(D))| − n

= gI(G)(k) + |deg(I(D))| − n.

Since degxi
(I(D)) = wi for all i, we have |deg(I(D))| = ∑n

i=1wi, as wanted. �

The inequalities in (b), (c), (d) and (e) need not to be equalities as one can see
in the next example.

Example 2.3. Let D be the oriented 4-cycle with all vertices having weight 2
and with edge set E(D) = {(a, b), (b, c), (c, d), (d, a)}. Then I(G)[2] = (abcd), while
I(D)[2] = (ab2cd2, a2bc2d). By usingMacaulay2 [18] and the package [14], we checked
that pd(I(G)[2]) = 1 < 2 = pd(I(D)[2]), reg(I(G)[2]) = 4 < 7 = reg(I(D)[2]),

β1(I(G)[2]) = 0 < 1 = β1(I(D)[2]), and gI(G)(2) = 1 < 5 = gI(D)(2) +
∑4

i=1wi − 4.

Hereafter, we concentrate our attention on edge ideals of vertex-weighted oriented
graphs. Let D′ and D be weighted oriented graphs with underlying graphs G′ and
G respectively. We say D′ is a weighted oriented subgraph of D if the vertex and
edge sets of D′ are contained in respectively those of D and the weight functions
coincide on V (D′). A weighted oriented subgraph D′ of D is called induced weighted

oriented subgraph of D if G′ is an induced subgraph of G.
Firstly, we turn to the problem of bounding the regularity of matching powers of

edge ideals. We begin with the so-called Restriction Lemma.

Lemma 2.4. Let D′ be an induced weighted oriented subgraph of D. Then

(a) βi,a(I(D′)[k]) ≤ βi,a(I(D)[k]) for all i and a ∈ Zn.

(b) reg(I(D′)[k]) ≤ reg(I(D)[k]).

Proof. It follows from [10, Lemma 1.2]. �

Let im(G) denote the induced matching number of G. For any weighted oriented
graph D with underlying graph G, let wim(D) denote the weighted induced matching

number of D. That is,

wim(D) = max
{

m
∑

i=1

w(yi) : {{x1, y1}, . . . , {xm, ym}} is an

induced matching of G, and (xi, yi) ∈ E(D)
}

.

8



Notice that if wi = 1 for every i ∈ V (D), then wim(D) = im(G). Otherwise, we
have the inequality wim(D) ≥ im(G). We extend the regularity lower bound given
in [3, Theorem 3.8] as follows.

Proposition 2.5. Let D be a weighted oriented graph with underlying graph G.

Then

reg(I(D)[k]) ≥ wim(D) + k

for all 1 ≤ k ≤ im(G).

Proof. The proof is similar to [10, Theorem 2.1]. We include the details for the
sake of completeness. Let {{x1, y1}, . . . , {xr, yr}} be an induced matching. Suppose
that (xi, yi) ∈ E(D) with w(yi) = ti and

∑r
i=1 ti = wim(D). Let D′ be the induced

weighted oriented subgraph of D on the vertices x1, . . . , xr, y1, . . . , yr. Then by
Lemma 2.4 it suffices to show that

reg(I(D′)[k]) ≥ wim(D) + k.

To this end, we set I = I(D′) and we claim that

βr−k,wim(D)+r(I
[k]) 6= 0.

Let J = (z1, . . . , zr), where z1, . . . , zr are new variables. Then J [k] is a squarefree
strongly stable ideal in the polynomial ring R = K[z1, . . . , zr]. It was proved in [10,
Theorem 2.1] that βr−k,r(J

[k]) 6= 0.
Define the map φ : R → S = K[x1, . . . , xr, y1, . . . , yr] by zi 7→ xiy

ti
i for i = 1, . . . , r.

Since x1y
t1
1 , . . . , xry

tr
r is a regular sequence on S, the K-algebra homomorphism φ

is flat. If F is the minimal free resolution of J [k] over R, then G : F ⊗R S is the
minimal free resolution of I [k] over S. It follows that

βi,(a1,...,ar)(J
[k]) = βi,(a1,...,ar ,t1a1,...,trar)(I

[k])

for any i and (a1, . . . , ar) ∈ Zr. Then,

0 6= βr−k,r(J
[k]) = βr−k,(1,...,1)(J

[k]) = βr−k,(1,...,1,t1,...,tr)(I
[k])

and βr−k,wim(D)+r(I
[k]) 6= 0 as desired. �

We close this section by providing a lower bound for the projective dimension of
matching powers of edge ideals. Let Pn be the path of length n. That is, V (Pn) = [n]
and E(Pn) = {{1, 2}, {2, 3}, . . . , {n− 1, n}}. We denote by Pn a weighted oriented
path of length n, that is, a weighted oriented graph whose underlying graph is Pn.
It is well–known that ν(Pn) = ⌊n

2
⌋.

For a weighted oriented graph D with underlying graph G, we denote by ℓ(D) the
maximal length of an induced path of G.

Proposition 2.6. Let D be a weighted oriented graph. Then ν(I(D)) ≥ ⌊ ℓ(D)
2
⌋ and

pd(I(D)[k]) ≥
{

ℓ(D)− ⌈ ℓ(D)
3
⌉ − k if 1 ≤ k ≤ ⌈ ℓ(D)

3
⌉,

ℓ(D)− 2k if ⌈ ℓ(D)
3
⌉ + 1 ≤ k ≤ ⌊ ℓ(D)

2
⌋.
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Proof. Let ℓ = ℓ(D). There exists a subset W of V (D) such that the induced
subgraph of D on W is a weighted oriented path Pℓ. Theorem 2.2(b) combined with
Lemma 2.4 implies that pd(I(Pℓ)

[k]) ≤ pd(I(Pℓ)
[k]) ≤ pd(I(D)[k]). It was shown in

[7, Theorem 2.10] that

gI(Pℓ)(k) =

{

⌈ ℓ
3
⌉ − k if 1 ≤ k ≤ ⌈ ℓ

3
⌉,

0 if ⌈ ℓ
3
⌉ + 1 ≤ k ≤ ⌊ ℓ

2
⌋.

For a squarefree monomial ideal I ⊂ S, we have gI(k) = n− pd(I [k])− indeg(I [k]).
Hence, the assertion follows from the above formula. �

Although we only considered weighted oriented graphs in this section, our methods
can be useful to prove analogous results for matching powers of edge ideals of edge-
weighted graphs. An edge-weighted graph Gw consists of a graph G equipped with
a weight function w : E(G) → Z≥1. The edge ideal of Gw is defined as the ideal

I(Gw) = ((xixj)
w(e) : e = {i, j} ∈ E(G))

of S = K[xi : i ∈ V (G)], see [26]. Notice that if the weight of every edge is 1, then
the edge ideal of Gw coincides with that of G.

3. Linearly related matching powers

Let I ⊂ S be a graded ideal generated in a single degree. We say I is linearly

related, if the first syzygy module of I is generated by linear relations. In this
section, we want to discuss which matching powers of the edge ideal I(D) of a
vertex-weighted oriented graph D are linearly related.

Let I be a monomial ideal of S generated in degree d. Let GI denote the graph
with vertex set G(I) and edge set

E(GI) = {{u, v} : u, v ∈ G(I) with deg(lcm(u, v)) = d+ 1}.
For all u, v ∈ G(I) let G

(u,v)
I be the induced subgraph of GI whose vertex set is

V (G
(u,v)
I ) = {w ∈ G(I) : w divides lcm(u, v)}.

The following theorem provides a criterion through the graphs defined above to
determine if a monomial ideal is linearly related.

Theorem 3.1. [4, Corollary 2.2] Let I be a monomial ideal generated in degree d.

Then I is linearly related if and only if for all u, v ∈ G(I) there is a path in G
(u,v)
I

connecting u and v.

Lemma 3.2. Let I be a monomial ideal and let 1 ≤ k < ν(I). Suppose that I [k] is
generated in single degree. Then, there is an integer d such that

(a) I [k] is generated in degree dk,
(b) I [k+1] is generated in degree d(k + 1), and
(c) if u = u1 . . . uk+1 ∈ G(I [k+1]), with each ui ∈ G(I) and gcd(ui, uj) = 1 for

i 6= j, then deg(ui) = d for each i.
10



Proof. Let u = u1 · · ·uk+1 ∈ G(I [k+1]) with each ui ∈ G(I) and gcd(ui, uj) = 1
for i 6= j. Observe that u/uℓ ∈ G(I [k]) for any ℓ = 1, . . . , k + 1. First, we show
that deg(ui) = deg(uj) for each i 6= j. Without loss of generality, assume for
a contradiction that deg(u1) 6= deg(u2). Then u2u3 · · ·uk+1 and u1u3 · · ·uk+1 are
minimal monomial generators of I [k] of different degrees, which is a contradiction.
It follows that u1, . . . , uk are all of the same degree, say d. Now, suppose that
v = v1 · · · vk+1 ∈ G(I [k+1]) with each vi ∈ G(I) and gcd(vi, vj) = 1 for i 6= j. By the
above argument, each vi is of the same degree, say d′. Then u1 · · ·uk is a minimal
monomial generator of I [k] of degree dk whereas v1 · · · vk is a minimal monomial
generator of I [k] of degree d′k. Therefore d = d′ and u and v have the same degree.

�

In [4, Theorem 3.1] it was proved that I(G)s is linearly related for some s ≥ 1
if and only if I(G)k is linearly related for all k ≥ 1. Unlike the ordinary powers of
edge ideals, not all squarefree powers of I(G) are linearly related if some squarefree
power is linearly related. On the other hand, it was proved in [10, Theorem 3.1]
that if I(G)[k] is linearly related for some k ≥ 1, then I(G)[k+1] is linearly related
as well. We extend [10, Theorem 3.1] to monomial ideals, under some additional
assumptions.

Theorem 3.3 (A condition for consecutive linearly related powers). Let I
be a monomial ideal such that | supp(w)| = 2 for every w ∈ G(I). Suppose that

I [k] is linearly related for some 1 ≤ k < ν(I). If supp(u) 6= supp(v) for every

u, v ∈ G(I [k+1]) with u 6= v, then I [k+1] is linearly related.

Proof. Suppose that supp(u) 6= supp(v) for every u, v ∈ G(I [k+1]) with u 6= v. By
the previous lemma, I [k] is generated in degree dk, and I [k+1] is generated in degree
d(k+1). Let u, v ∈ G(I [k+1]) with u 6= v. By Theorem 3.1 and Lemma 3.2, it suffices

to find a path in G
(u,v)

I [k+1] connecting u to v. Let u = u1 · · ·uk+1 and let v = v1 · · · vk+1

where ui, vi ∈ G(I) for each i = 1, . . . , k + 1 and

supp(up) ∩ supp(uq) = ∅ = supp(vp) ∩ supp(vq)

for every distinct p, q ∈ {1, . . . , k + 1}. By Lemma 3.2, we have that deg(ui) =
deg(vi) = d for every i = 1, . . . , k + 1. By the initial assumption, we may assume
that there exists ℓ ∈ supp(u) \ supp(v). Without loss of generality, we may assume
that xℓ divides u1. Let supp(u1) = {ℓ,m}. By definition of matching power, there
exists at most one j such that xm divides vj . Again, without loss of generality, we
may assume that xm does not divide vi for i = 2, . . . , k + 1. Now, we have

supp(u1) ∩ supp(vp) = ∅ for all p = 2, 3, . . . , k + 1.

Let u′ = u2 . . . uk+1 and v′ = v2 . . . vk+1. Since u′, v′ ∈ G(I [k]) there exists a path

u′ = z0, z1, z2, . . . , zt, v
′ = zt+1 in G

(u′,v′)

I [k]
connecting u′ to v′. We claim that

P : u, u1z1, u1z2, . . . , u1zt, u1v
′

is a path in G
(u,u1v′)

I [k+1] . To prove the claim, we must show that

(i) u1zi ∈ G(I [k+1]) for all i = 1, . . . , t+ 1,
11



(ii) u1zi divides lcm(u, u1v
′) for all i = 1, . . . , t and,

(iii) deg(lcm(u1zi, u1zi+1)) = d(k + 1) + 1 for all i = 0, . . . , t.

Since supp(u1) ∩ supp(lcm(u′, v′)) = ∅, the monomial u1zi belongs to I [k+1] for
all i = 1, . . . , t + 1. Moreover, since u1zi is of degree d(k + 1), it follows that
u1zi ∈ G(I [k+1]), which proves (i). To see (ii) holds, observe that

lcm(u, u1v
′) = lcm(u1z0, u1zt+1) = u1 lcm(z0, zt+1).

Lastly, (iii) holds because for all i = 0, . . . , t we have

deg(lcm(u1zi, u1zi+1)) = deg(u1) + deg(lcm(zi, zi+1)) = d+ (dk + 1).

Now, let w = u1v2 . . . vk and w′ = v1v2 . . . vk. Since w,w′ ∈ G(I [k]) there exists a

path w, y1, y2, . . . , ys, w
′ in G

(w,w′)

I [k]
connecting w to w′. As before, we can then form

a path P ′

P ′ : wvk+1, y1vk+1, y2vk+1, . . . , ysvk+1, w
′vk+1 = v

in G
(u1v′,v)

I [k+1] . Connecting P and P ′ we get the required path, as u1v
′ = wvk+1. �

A matching M of G is called a perfect matching of G if V (M) = V (G). We say
that a cycle (or a path) is even (respectively odd) if it has an even (respectively
odd) number of edges. A connected graph G is called a cactus graph if every edge
of G belongs to at most one cycle of G.

For the rest of this section, we will be interested in graphs which satisfy the
property that every subgraph of them has at most one perfect matching. One can
characterize the connected components of these graphs as special cactus graphs.

Lemma 3.4 (Description of graphs studied in this section). Let G be a graph

without isolated vertices. Then the following statements are equivalent.

(a) Every subgraph of G has at most one perfect matching.

(b) G has no even cycles.

(c) Every block of G is an edge or an odd cycle, i.e., every connected component

of G is a cactus graph whose blocks are edges or odd cycles.

Proof. First, observe that every even cycle has two perfect matchings. On the other
hand, suppose that H is a subgraph of G with two perfect matchings M1 and M2.
Consider the graph N whose edge set is the symmetric difference M1△M2 and whose
vertex set is V (M1△M2). Then every vertex of N belongs to exactly two edges of
N , one from M1\M2 and the other from M2\M1. Therefore, N consists of a disjoint
union of even cycles, which shows the equivalence of (a) and (b). It is known that
(b) ⇒ (c), see Exercises 4.1.31 and 4.2.18 in [32]. Lastly, (c) ⇒ (b) because every
even cycle, being a connected graph with no cut vertex, must be contained in a
block of G. �

We will now observe that the assumption of the previous theorem is satisfied
for edge ideals of weighted oriented graphs whose underlying graphs are as in
Lemma 3.4. Hereafter, to simplify the notation, we identify each vertex i ∈ V (D)
with the variable xi. Hence, we will often write xi to denote i.

12



Lemma 3.5. Let D be a weighted oriented graph with underlying graph G. Suppose

that every subgraph of G has at most one perfect matching. Let 1 ≤ k ≤ ν(G) and

u, v ∈ G(I(D)[k]). If supp(u) = supp(v), then u = v.

Proof. Let u = x1y
w(y1)
1 . . . xky

w(yk)
k where (xi, yi) ∈ E(D) for each i and M1 =

{{xi, yi} : i = 1, . . . , k} is a matching in G. Let v = z1t
w(t1)
1 . . . zkt

w(tk)
k where

(zi, ti) ∈ E(D) for each i and M2 = {{zi, ti} : i = 1, . . . , k} is a matching in G.
Suppose that supp(u) = supp(v). Then we can set W := V (M1) = V (M2). Since
the induced subgraph of G on W has at most one perfect matching, it follows that
M1 = M2 and therefore u = v. �

If I(D) 6= I(G) and G is as in Lemma 3.4, then we will see in Theorem 3.8 that the
only linearly related matching power is the last one. Before we can prove Theorem
3.8, we need some preliminary lemmas. Hereafter, with abuse of notation, for a
monomial u, we denote by supp(u) also the set of variables dividing u.

Lemma 3.6. Let D be a weighted oriented graph and let 1 ≤ k ≤ ν(I(D)).

(a) Suppose that every subgraph of the underlying graph G of D has at most one

perfect matching. Then, u ∈ G(I(D[k])) if and only if u = x1y
w(y1)
1 . . . xky

w(yk)
k

for some (xi, yi) ∈ E(D) with {{xi, yi} : i = 1, . . . , k} a matching in G.

(b) Let u, v ∈ G(I(D)[k]) such that supp(u) 6= supp(v) and

deg(lcm(u, v)) = deg(u) + 1 = deg(v) + 1.

Then there exist variables z1 /∈ supp(u), z2 /∈ supp(v) such that v = uz1/z2,
degz1(v) = 1 and degz2(u) = 1.

Proof. (a) The “only if” side of the statement is by definition of matching power.
The “if” side follows from Lemma 3.5 and the fact that every minimal monomial
generator of I(D)[k] has a support of size 2k.

(b) Since both u and v have support of size 2k and supp(u) 6= supp(v), there exists
a variable z1 ∈ supp(v)\supp(u) and z2 ∈ supp(u)\supp(v). Since deg(lcm(u, v)) =
deg(u) + 1, we get supp(v) \ supp(u) = {z1} and degz1(v) = 1. Similarly, since
deg(lcm(u, v)) = deg(v) + 1, we get supp(u) \ supp(v) = {z2} and degz2(u) = 1.
Then for every t ∈ supp(u) ∩ supp(v), we get degt(u) = degt(v) and the result
follows. �

Lemma 3.7. Let D be a weighted oriented graph with underlying graph G. Suppose

that every subgraph of G has at most one perfect matching. Suppose that I(D)[k] is
linearly related. Let u ∈ G(I(D)[k]) and let x be a variable such that degx(u) = r > 1.
Then degx(v) = r for every v ∈ G(I(D)[k]).

Proof. Let u 6= v. By Theorem 3.1 there is a path u0 = u, u1, u2, . . . , us = v in the

graph H := G
(u,v)

I(D)[k]
. Since {u0, u1} ∈ E(H), by Lemma 3.5 and Lemma 3.6(b)

it follows that degx(u1) = r. Similarly, since {u1, u2} ∈ E(H) it follows that
degx(u2) = r. Continuing this way, we obtain degx(us) = r. �
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Theorem 3.8 (The only linearly related power is the highest one). Let G
be the underlying graph of D. Suppose that every subgraph of G has at most one

perfect matching, and that I(D) 6= I(G). Let 1 ≤ k ≤ ν(G). If I(D)[k] is linearly

related, then k = ν(G).

Proof. Assume for a contradiction that I(D)[k] is linearly related but k < ν(G). Let
M = {{ai, bi} : i = 1, . . . , k + 1} be a matching with (ai, bi) ∈ E(D). We claim

that all the bis have the same weight. To see this, we let ui = aib
w(bi)
i for each i

and z = u1 . . . uk+1. Then Lemma 3.6(a) implies that z/ui ∈ G(I(D)[k]) for each
i = 1, . . . , k + 1. Since I(D)[k] is generated in single degree, it follows that there is
a positive integer q such that w(bi) = q for all i = 1, . . . , k + 1.

Since I(D) 6= I(G) there is an edge (c, d) ∈ E(D) with w(d) = r > 1. We will
show that r = q. Without loss of generality, we may assume that

{c, d} ∩ V (M) ⊆ {a1, b1, a2, b2}.
Then {{c, d}, {a3, b3}, . . . , {ak+1, bk+1}} is a matching. On the other hand, by

Lemma 3.6(a) both cdru3 . . . uk+1 and u2 . . . uk+1 are minimal generators of I(D)[k].
Since I(D)[k] is generated in single degree, it follows that r = q > 1.

Let w1 = u1 . . . uk and w2 = u2 . . . uk+1. Using Lemma 3.7 and comparing the
b1-degrees of w1 and w2 we obtain a contradiction. �

The next example shows that we can not drop the hypothesis that every subgraph
of G has at most one perfect matching.

Example 3.9. Let D be the oriented graph on vertex set [6], with weights w(1) = 2
and w(i) = 1 for i 6= 1, and with edge set

E(D) = {(2, 1), (1, 3), (1, 4), (1, 5), (1, 6)}∪ {(i, j) : 2 ≤ i < j ≤ 6}.
Then, G has several perfect matchings, and

I(D) = (x2
1x2, x1x3, x1x4, x1x5, x1x6, x2x3, x2x4, x2x5, x2x6, . . . , x4x5, x4x6, x5x6).

We have ν(I(D)) = 3. However I(D)[2] = I(G)[2] and I(D)[3] = I(G)[3] are linearly
related, indeed they even have a linear resolution.

We can now characterize when I(D)[k] has a linear resolution or is linearly related
provided that the underlying graph G is as in Lemma 3.4.

Theorem 3.10 (Characterization of linear resolutions). Let G be the underly-

ing graph of D. Suppose that every subgraph of G has at most one perfect matching.

Suppose that I(D) 6= I(G) and 1 ≤ k ≤ ν(G). Then the following statements are

equivalent.

(a) I(D)[k] is linearly related.

(b) I(D)[k] is polymatroidal.

(c) I(D)[k] has a linear resolution.

Proof. A polymatroidal ideal has linear quotients [20, Theorem 12.6.2] and therefore
it has a linear resolution [20, Proposition 8.2.1]. We will only show that (a) ⇒ (b)
because (b) ⇒ (c) ⇒ (a) is known.
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Suppose that I(D)[k] is linearly related. Then k = ν(G) by Theorem 3.8. Let
u, v ∈ G(I(D)[k]). Let M = {e1, . . . , ek} and N = {f1, . . . , fk} be the underlying
matchings (of undirected edges) for respectively u and v. Let Mei and Nfi be the
monomial factors of u and v (respectively) corresponding to ei and fi. That is,
u = Me1 . . .Mek and v = Nf1 . . . Nfk with supp(Mei) = ei and supp(Nfi) = fi.

As in the proof of [31, Theorem 1 on page 246], let H be the graph with edge set
the symmetric difference M△N and vertex set V (M△N). Then every vertex of H
belongs to at most two edges of H . Moreover, if a vertex is in two edges, then one
edge is in M \N and the other edge is in N \M . Therefore connected components
of H are paths and even cycles. Moreover, since k is the matching number of G,
it follows that no connected component of H is an odd path. Indeed, if H has an
odd path with consecutive edges e1, . . . , e2p+1, we can assume that e1, e3, . . . , e2p+1 ∈
M\N and e2, e4, . . . , e2p ∈ N\M . But then (N\{e2, e4, . . . , e2p})∪{e1, e3, . . . , e2p+1}
is a (k + 1)-matching.

We verify the exchange property for u and v and this will imply statement (b).
Let z be a variable such that degz u > degz v. Then, Lemma 3.7 implies that z does
not divide v. Then z is the endpoint of an even path component of H . Let y be the
other endpoint of the path. Then y /∈ V (M). Since y does not divide u, it follows
from Lemma 3.7 that degz u = degy v = 1. Moreover, Lemma 3.7 implies that
degx u = degx v for any vertex x in the path. Without loss of generality, suppose
that e1, f1, . . . , eq, fq are the consecutive edges of the path. Then exchange property
is satisfied because Nf1 . . . Nfqu/Me1 . . .Meq = yu/z ∈ G(I(D)[k]). �

In [8] we classify all forests that satisfy the equivalent statements in the above
theorem.

Example 3.11. Let D be a weighted oriented graph whose underlying graph G is
an odd cycle, with vertex set V (G) = [2k + 1] and edge set

E(G) = {{1, 2}, {2, 3}, . . . , {2k, 2k + 1}, {2k + 1, 1}}.

It is well–known that ν(G) = k. If I(D) = I(G), then by Theorem 1.7, I(D)[k] is
linearly related. We claim that I(D)[k] is not linearly related if I(D) 6= I(G). Assume
for a contradiction I(D)[k] is linearly related but I(D) 6= I(G). Then without loss
of generality, we may assume that (2, 1) ∈ E(D) and w(1) > 1. Then, Lemma 3.7
implies that all generators of I(D)[k] have x1-degree bigger than 1. However, if we
consider the k-matching M = {{2, 3}, {4, 5}, . . . , {2k, 2k + 1}} of undirected edges
of G, then there is a unique generator v of I(D)[k] whose support is V (M) and so
degx1

(v) = 0, which is absurd.

Example 3.12. In Theorem 3.10, the condition that every subgraph of G has at
most one perfect matching is crucial. For example, let D be a weighted oriented
graph with I(D) = (x1x

2
2, x2x

2
3, x2x

2
4, x3x

2
1, x3x

2
4, x4x

2
1). Then I(D)[2] has a linear

resolution but it is not polymatroidal. On the other hand, we do not know the
answer to the following question:
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Question 3.13. Let D be a weighted oriented graph with I(D) 6= I(G) where G is

the underlying graph. Suppose that I(D)[k] is linearly related. Then, does I(D)[k]

have a linear resolution?

If D is a connected weighted oriented graph with I(D) 6= I(G), then the above
question has a positive answer for k = 1 by [3, Theorem 3.5].
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