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Abstract— Manipulation of tissue with surgical tools often
results in large deformations that current methods in tracking
and reconstructing algorithms have not effectively addressed.
A major source of tracking errors during large deformations
stems from wrong data association between observed sensor
measurements with previously tracked scene. To mitigate this
issue, we present a surgical perception framework, SuPerPM,
that leverages learning-based non-rigid point cloud matching
for data association, thus accommodating larger deformations.
The learning models typically require training data with ground
truth point cloud correspondences, which is challenging or
even impractical to collect in surgical environments. Thus, for
tuning the learning model, we gather endoscopic data of soft
tissue being manipulated by a surgical robot and then establish
correspondences between point clouds at different time points
to serve as ground truth. This was achieved by employing a
position-based dynamics (PBD) simulation to ensure that the
correspondences adhered to physical constraints. The proposed
framework is demonstrated on several challenging surgical
datasets that are characterized by large deformations, achiev-
ing superior performance over state-of-the-art surgical scene
tracking algorithms. 1

I. INTRODUCTION

With the growing popularity of endoscopic procedures,
more assistive technologies can be integrated into operating
rooms. Overlaying virtual visualizations from pre-operative
scans of anatomy helps surgeons identify sensitive organs
during procedures [1], [2]. Further help can be done intra-
operatively by identifying tissue types directly from the
endoscopic image data [3], [4]. In the case of robotic surgery,
automation efforts are being actively researched [5], [6]. A
foundational technology for these efforts is tissue tracking
and reconstruction from endoscopic images. However, this
remains an unsolved challenge, with performance compro-
mised under demanding conditions like large tissue defor-
mations. This study focuses on tracking large deformations
in endoscopic videos, which will establish a foundation for
resolving more complex scenarios.

For endoscopic tissue tracking, the primary challenge
of handling large deformations arises from the need to
establish data associations on soft tissue surfaces, which
commonly lack robust features. Some existing methods [7],
[8] utilize the Iterative Closest Point (ICP) algorithm [9],
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Fig. 1. We propose SuPerPM, a perception framework for handling
large deformations within endoscopic surgical scenes based on deep point
matching. The perception framework, SuPer, that we built upon implements
tracking based on the ICP algorithm. It projects the points onto the image
plane to find the point cloud correspondences and suffers from incorrect
associations (Before). We substitute the projection-based matching with
a deep learning model (After). It extracts deep features, each covers
the information of a certain field of view on the point cloud, and can
achieve more accurate association after training. An example of tracking
and reconstruction results is shown in the bottom of the figure.

[10], which iteratively identifies the nearest point pairs to
compute the cost for estimating transformations. However,
this greedy search only finds correspondences within local
areas, while the true correspondences may be far apart from
each other under large deformations. For rigid scenes, all
points share the transformation parameters, so the estimation
could converge through iteration even with such inaccurate
correspondences. In contrast, within deforming scenes, each
point undergoes distinct transformations, which can cause
the ICP algorithm to prematurely “converge” to incorrect
transformations. Alternatively, other studies have proposed to
use all information in the image for data association (direct
methods) [11], adopting techniques like optical flow and pho-
tometric cost [12], [13], or leveraging semantic information
to offer additional guidance [13]. Yet, these approaches have
not resolved the gradient-locality issue, which can still trap
the estimation within a local minimum.

Recently, deep learning models have demonstrated their
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capability to derive enhanced feature representations from
3D data [14], [15], thereby enabling more robust point
cloud matching [16], [17]. This paper is built upon a point-
plane ICP cost-based surgical perception framework named
Surgical Perception (SuPer) [7], [8]. We enhance the data
association for the ICP cost within our framework, SuPerPM,
by harnessing these advancements on learning models. More-
over, most learning-based point cloud matching models re-
quire at least sparsely annotated correspondences between
point clouds for training. However, procuring dense and
accurate ground truth correspondences for surgical scenes
is quite challenging. Thus, we propose a novel pipeline
for generating deformed point cloud pairs for fine-tuning
the point cloud matching model. This pipeline leverages
the position-based dynamics (PBD) simulation [18], [19],
which formulates physical constraints with positional and
geometric data. PBD is capable of real-time simulations,
enabling the dynamic deformation of objects. Consequently,
we can establish a direct connection for mapping the physical
simulation to point-cloud perception, facilitating point-wise
positional mapping.

In summary, the main contributions are as follows:
• Integrate a learning-based non-rigid point cloud match-

ing method into a surgical perception framework to
improve data association for tissue tracking.

• Propose a pipeline for synthesizing non-rigid point
cloud pairs using a physical constraints-based simulator
(i.e., PBD), to facilitate fine-tuning of the learning-based
point cloud matching method.

• Release a robotic tissue manipulation dataset with large
deformations collected using the da Vinci Research Kit
(dVRK) [20].

• Conduct extensive experiments on public and newly col-
lected endoscopic data and demonstrate the performance
of the proposed framework.

II. RELATED WORK

A. Endoscopic Tissue Tracking and Reconstruction

Endoscopic tissue tracking is a specialized domain within
non-rigid tracking, presenting significant challenges due to
the deformable nature of the tissue. A branch of approaches
relies on the ICP algorithm, which iteratively identifies near-
est point pairs in the Euclidean or geodesic space for trans-
formation estimation [12], [21], [7], [8]. However, for the
deformable object, each point has a distinct transformation,
and the relationships between the transformations of adjacent
points are much weaker than in a rigid object. Therefore,
obtaining accurate matches in early optimization iterations
becomes crucial; otherwise, the transformations can quickly
adapt to the wrong matches. To enhance data association,
some works adopt direct methods [11] that utilize dense
image information, such as photometric loss [12], [21].
Others resort to integrating additional data modalities like se-
mantic information to guide data association [13]. Moreover,
together with the aforementioned strategies, existing works
typically employ regularization terms based on rigidness

assumptions to mitigate the impact of noisy associations.
This includes the use of the as-rigid-as-possible (ASAP) cost
to ensure neighboring points move in close proximity to
each other [22], [23], [24]. Yet, these regularization terms
can only partially address performance degradation from
incorrect data associations. In this work, we focus on further
improving data association by learning-based point cloud
matching.

B. Non-rigid Point Cloud Matching

Non-rigid matching between deformed point clouds is the
key that influences our tissue tracking and reconstruction
performance. In addition to surgical applications, precise
point cloud matching is also crucial for many other tasks
involving non-rigid objects. On top of ICP or photometric
costs, many methods also incorporate visual features like
SIFT [25] to provide additional correspondence information
[26]. However, these conventional features are known to
lack robustness for surgical scenes involving texture-less
and moistened tissues. Recently, learning-based models have
demonstrated their superior performance in representation
learning for 3D data [14], [15] and identifying correspon-
dences between data [16], [27], [28], [29], showing their
advantages for non-rigid registration [30], [31]. We leverage
these recent advances in learning-based non-rigid matching
to provide better correspondences for tissue tracking under
large deformations.

III. METHOD

The proposed method is developed on our previous work
SuPer [7], [8]. In Section III-A, we provide a brief introduc-
tion to SuPer, followed by the description of the integration
of a learning-based point matching model called Lepard [16]
into SuPer in Section III-B. Surgical scenes often have flat
tissue surfaces with fewer distinct features, unlike objects
(e.g., animals in DeformingThings4D [32]) that can be found
in public datasets for non-rigid registration. Therefore, for
fine-tuning Lepard, we present a pipeline designed to estab-
lish ground truth correspondences between deformed point
cloud pairs by employing the position-based dynamics (PBD)
simulation framework, ensuring the adherence to physical
constraints, as outlined in Section III-C. The overview of
the proposed framework is shown in Figure 2.

A. SuPer Framework

SuPer performs reconstruction and tracking of the entire
scene, encompassing both the surgical tools and the deform-
ing soft tissues. This study focuses on tissue tracking, for
further insights and details on other aspects of SuPer, please
see [7], [33], [13].

1) Scene Representation: In SuPer, the tissue is tracked
with a model-free method and is represented using surface
elements (surfels) [34], [35]. Each surfel S is defined by a
position pi ∈ R3, a normal ni ∈ R3, a color ci ∈ R3, a
radius ri ∈ R, a confidence score ci ∈ R, and a timestamp
ti ∈ N of when it was last updated. The quantity of surfels
is directly linked to the number of image pixels, which
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Fig. 2. Overview of SuPerPM. A learning-based point cloud matching method called Lepard [16] is integrated (Section III-B) into the surgical perception
framework SuPer (Section III-A). By leveraging a data-driven method for making point-wise associations, SuPerPM is more robust to larger tissue
deformations compared to the conventional approach of using ICP. Lepard is finetuned using synthetically generated point cloud pairs obtained using PBD
simulation as described in Section III-C.

can result in substantial computational requirements when
estimating individual surfel transformations. To address this
issue, SuPer employs the Embedded Deformation (ED) graph
[36] that has sparser vertices (named ED nodes) to drive
surfels’ motions. The ED graph consists of a set of vertices
V , a set of edges E , and a set of parameters Γ, i.e., GED =
{V, E ,Γ}. The parameters for each ED node are defined as
(gj ,qj ,bj) ∈ Γ, where gj ∈ R3 is the position, qj ∈ R4

and bj ∈ R3 are the quaternion and translation parameters.
2) Transformation Estimation: At every new video frame,

a total of 7 × (|V| + 1) parameters (|V| is the number
of ED nodes) will be estimated, i.e., qj and bj for each
ED node, and a global homogeneous transformation matrix
Tg ∈ SE(3) shared by all surfels. The parameters are opti-
mized by minimizing a total cost function (see Section III-
A.3) using gradient descent [37] with PyTorch’s automatic
differentiation. Subsequently, the estimated parameters are
utilized to update the surfel positions and normals:

p̃i = Tg

∑
j∈N (pi)

ωj(pi)[T (qj ,bj)(pi − g⃗j) + g⃗j ] (1)

˜⃗ni = Tg

∑
j∈N (pi)

ωj(pi)[T (qj , 0)n⃗i] (2)

where T (qj ,bj) ∈ SE(3) is the homogeneous transform
matrix of the jth ED node, · and ·⃗ are the homogeneous
representations of a point and motion, i.e. p = [p, 1]T and
g⃗ = [g, 0]T . N (pi) is the set of k-nearest neighbors (KNN)
of pi in GED and is re-determined each time new positions
and normals of the ED nodes and surfels are obtained. ωj(pi)
is a normalized weight that indicates the influence of gj to pi

and is defined as ωj(pi) =
e−∥pi−gj∥∑

j∈Ni
e−∥pi−gj∥

. Equations (1)

and (2) can be interpreted as that the surfels are transformed
with the average motion of ED nodes near them.

3) Cost Functions: The total cost function is given by

argmin
q,b,Tg

λicpLicp + λrLreg (3)

where Licp is the point-to-plane ICP cost [10] that measures
the similarity between the tracked data and the new obser-
vations, Lreg is the regularization term, λicp and λr are the
hyper-parameters.

The point-to-plane ICP cost is calculated by:

Licp =
∑
i

(n⃗T
o (p̃i − po))

2 (4)

where p̃i is a surfel from the tracked surfel cloud, and it
is transformed using the currently estimated transformations
of the ED nodes. To establish the correspondence between
p̃i and the new data, we project p̃i onto the new image
plane and conduct bilinear sampling [38] on the depth and
normal maps to acquire the corresponding position and
normal observations po and n⃗o. As illustrated in Section
I and II-A, during the initial iterations, these projective
correspondences furnish inaccurate information that can lead
the transformations toward a local minimum. In this work,
we propose to mitigate this issue by replacing the ICP cost
with an advanced learning-based approach to ensure more
accurate associations can established from the beginning.

The regularization term is composed of two costs. One is
the as-rigid-as-possible cost that enforces similar movement
among neighboring ED nodes. This cost can partially mit-
igate the effects of incorrect data associations on the ICP
algorithm. The second cost aims to ensure the estimated
quaternions hold ∥q∥2 = 1. More details and the involved
equations can be found in [7].



B. Learning-based Point Cloud Matching

To enhance data association, we adapt an advanced
learning-based point cloud matching method named Lepard
[16]. Lepard extracted multi-level geometric features and in-
troduced an adaptive relative 3D positional encoding method,
while utilizing a transformer block to further enhance point
cloud features with global and cross-point cloud attentions.
Thus, it can effectively handle point clouds with large
deformations.

Given the surfel positions U ∈ RN×3 of a source surfel
cloud (i.e., the tracked surfel cloud) and the surfel positions
V ∈ RM×3 of a target surfel cloud (i.e., the surfel cloud
extracted from the new observations), Lepard downsamples
them to U′ ∈ RN ′×3 (N ′ ≪ N ) and V′ ∈ RM ′×3

(M ′ ≪ M ) for feature extraction, resulting in a relatively
sparse match set K = {(u1,v1), (u2,v2), ..., (uK ,vK)},
where uk ∈ R3 is a point in U′ and vk ∈ R3 is a point in V′.
However, since SuPerPM requires a dense matching between
the tracked and new surfel clouds, we conduct interpolation
to extend the sparse matches to dense matches. Specifically,
for each surfel in the source surfel cloud, we estimate its
new position p̂i by averaging the correspondences within
the local region of its current position pi:

p̂i = pi +
∑

uj∈N (pi)

(vj − uj)∥uj − pi∥−1∑
uk∈N (pi)

∥uk − pi∥−1
(5)

where N (pi) is the set of KNN of pi in U′. Then, the
following point-point correspondence cost Lcorr is utilized,
with weight λc, to substitute the ICP cost Licp in the total
cost function

Lcorr =
∑
i

∥p̃i − p̂i∥2 (6)

C. Deformed Point Cloud Pair Synthesis Pipeline

We have adopted the methodology introduced in [19],
which utilizes position-based dynamics (PBD) for the for-
mulation of physics-based constraints. These constraints,
encompassing aspects like volume, distance, and shape
matching, are crucial for ensuring stability and revealing the
inherent physical properties of the system. This approach
is employed to generate a sequence of simulated surface
meshes, denoted as M, each containing a set of triangle
cells and vertices. Using the simulated surface meshes that
is registered to the real world, our objective is to produce
paired point clouds frames PA and PB , reflecting the surface
deformations induced by a physics simulation. To do so, we
first project the point cloud data onto the surface mesh by
finding the nearest point on MA and MB ,

Projected P̄A = arg min
v∈MA

∥PA − v∥

Projected P̄B = arg min
v∈MB

∥PB − v∥
(7)

where v are located inside one of the triangle cell of
the mesh. From the projected point cloud, we apply the
deformation gradient tensor, F, which is generated from the

Fig. 3. Synthetic Data Generation Pipeline. We generate paired point cloud
data to fine-tune Lepard [16] on tissue deformations based on real-world
data that is registered to a PBD simulation. The PBD simulation ensures
the associations are physically feasible.

PBD simulation, and transform the points as follows

P̄∗
B = P̄A ◦ F−1

P̄∗
A = P̄B ◦ F
F = ∇MA

MB

(8)

Hence, we can create the paired dataset for original point
clouds (PA ↔ PB) by first obtaining the indices of paired
transformed points as follows:

Paired points index =
{
(P̄∗

B , P̄B)
⋃

(P̄∗
A, P̄A)

}
(9)

The whole process pipeline is show in Fig. 3 It can be
seen that the paired points are deformed according to the
simulation with physical constraints.

IV. EXPERIMENTS AND RESULTS

We demonstrate the proposed framework using two SuPer
datasets [7], [13] that were released alongside earlier ver-
sions of the SuPer framework. Additionally, we introduce a
newly collected dataset named SupDef that features larger
deformations.

A. Datasets

1) SuPer: In the SuPer dataset [7], the da Vinci Research
Kit (dVRK) [20], [39] was used to control a surgical robotic
arm (i.e., Patient Side Manipulator) to grasp and tug a piece
of chicken tissue, generating deformations of the scene.
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Fig. 4. Experimental Setup with the dVRK System [20]. Two PSM arms
are commanded to tension and deform the tissue. Meanwhile the stereo
endoscope is used to provide the image data as inputs for SuPerPM.

A single trial (named SuPerV1 in the following sections)
that consists of 520 rectified 640×480 video frames was
annotated for evaluation. For evaluation, a total of 20 points
on the tissue surfaces were chosen, and their deformation
trajectories were annotated throughout the trial. We project
the tracked surfels onto the image plane and compare the
reprojections with their corresponding ground truth positions
to calculate the reprojection errors.

2) SupDef: The deformations of tissues in existing public
datasets are still relatively small. To demonstrate the benefits
of SuPerPM in handling large deformations, we collected a
new dataset named SupDef with substantially larger defor-
mations across the entire manipulated tissue. The experiment
setup (see Figure 4) and method for data postprocessing
were identical to the SuPer datasets. The primary difference
between SupDef and SuPer datasets is that the dVRK was
controlled to pull the chicken tissue further away and induce
larger deformations. We recorded two manipulation trials,
each comprising about 100 to 200 640×480 rectified video
frames captured at 30 fps for tissue tracking. We manually
annotated the trajectories of around 10∼20 selected points
that undergo large deformation on the tissue surface to serve
as ground truth for evaluation.

B. Evaluation Metrics

As detailed in Section IV-A, all datasets include annotated
trajectories of several selected tissue surface points as ground
truth. We compute the reprojection errors to evaluate the
tracking algorithms by projecting the tracked surfels to the
image plane and measuring the distances between the surfel
projections and their respective ground truth positions.

C. Implementation Details

To obtain the input depth maps, we employ RAFT-Stereo
[41], a deep learning model designed to estimate the disparity
map for rectified stereo images. We use RAFT-Stereo with
its pre-trained weights, without further fine-tuning on our
surgical datasets. As for tissue tracking, the procedures for
initializing and adding surfels and ED nodes follow the same

TABLE I
REPROJECTION ERROR COMPARISON ON SUPER AND SUPDEF.

Method Data

SuPerV1 SupDef-T1 SupDef-T2

DefSLAM [40] 17.1(5.5) 8.1(4.9) 28.0(8.6)
SD-DefSLAM [12] 27.2(18.0) 9.7(11.5) 37.9 (22.7)
SuPer [7] 9.2(13.1) 8.6(11.4) 40.7(26.7)

SuPerPM (Pre-trained) 11.1(12.3) 7.2(8.7) 43.4(27.0)
SuPerPM (Fine-tuned) 7.9(13.1) 6.2(9.2) 34.5(23.6)
* ‘Pre-trained’ means the Lepard model in SuPerPM is pre-trained
in [16]. ‘Fine-tuned’ means the Lepard model in SuPerPM is
fine-tuned with data generated by the proposed synthesis pipeline.
* The errors are formatted as ”mean (standard deviation)”. The best
result in each row is in bold.

manner as SuPer [7]. At each new frame, we utilize the Seg-
ment Anything Model (SAM) [42] to segment tissue region
from the background. Finally, we set the hyperparameters for
cost functions as λicp = 1, λr = 10, λc = 0.001.

Most hyperparameters that we employed to fine-tune Lep-
ard is the same as in Lepard’s experiments on the 4DMatch
Benchmark [16], except we downsample the point cloud
(∼200k) to 10k points and adjust several radius values for
matching and subsampling. Detailed hyperparameters will be
provided with code releasing.

D. Results and Discussion

We compare SuPerPM to our baseline, SuPer [7], as
well as state-of-the-art methods for surgical scene defor-
mation tracking and reconstruction: DefSLAM [40] and
SD-DefSLAM [12]. DefSLAM and SD-DefSLAM perform
scene tracking based on sparse feature matching and may
not directly track the labeled points. To obtain the motion of
a specific labeled point, we average the estimated motions
of its 3 nearest neighbors.

We report the reprojection errors in Table I. SuPerPM
surpasses its baseline, SuPer, upon which it is built. However,
when replacing the ICP cost Licp with the correspondence
cost Lcorr, derived using the pre-trained Lepard model,
there’s a potential for performance degradation due to the
large gap between the surgical data and data used to
train Lepard, especially for data with larger deformations
(SupDef-T2 and SupDef-T3). By fine-tuning the Lepard
model using data generated through the PBD-based synthesis
pipeline, we significantly reduce the reprojection errors.
Moreover, SuPerPM consistently outperforms SD-DefSLAM
in all videos, while either matching or exceeding DefSLAM’s
performance. It’s worth noting that both DefSLAM and SD-
DefSLAM base their tracking and reconstruction on sparse,
robust image features, which might result in lower repro-
jection errors. Nevertheless, as illustrated in Fig. 5, these
two algorithms yield only sparse reconstructions. In contrast
to our results, they have difficulty accurately capturing the
tissue deformations caused by grasping, which are crucial
for enabling autonomous tasks by the robot.

Figure 6 shows the average reprojection error at each
time step in SupDef-T2, where large deformations occur
throughout the entire sequence. In line with our findings
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Fig. 5. Comparison of tracking results with SOTA methods.

Fig. 6. Average reprojection error across time on SupDef-T2. The fine-
tuned Lepard model consistently yields smaller reprojection errors compared
to the pre-trained counterpart. The DefSLAM achieves the lowest projection
error due to only the use of sparse robust features, which is not ideal for
scene reconstruction.

from Table I, the fine-tuned Lepard model consistently yields
smaller reprojection errors at every time step compared to its
pre-trained counterpart. While SD-DefSLAM’s performance
is the worst, DefSLAM [40] achieves the lowest reprojection
errors on this trail, attributing to only use sparse robust image
features as mentioned above.

Furthermore, we provide examples of correspondences
established by both the pre-trained and fine-tuned Lepard
mode during the first optimization iteration of SuPerPM
at different time steps in Figure 7. Comparing the fine-
tuned Lepard model to the pre-trained Lepard model, it is
evident that the fine-tuned model yields much denser and
more accurate matching results. However, it is important
to note that the fine-tuned model, while improved, can
still produce noisy matches, as illustrated in the Figure.
The errors can be attributed to two primary sources: 1)
While PBD is capable of generating robust correspondences
by incorporating physical constraints, it may still provide
incorrect correspondences due to the inherent challenges in
simulating real surgical scenes; 2) Another factor is the gap
between the data used for fine-tuning and testing. Given that
both error sources are inevitable to some extent, in the future,

Pre-trained
Lepard

Fine-tuned
Lepard

t=50 t=210 t=240

Target Point Cloud Source Point Cloud

Fig. 7. Comparison of data association quality of SuPerPM across time. The
pre-trained Lepard’s point matching (top row) is sparse and noisy, whereas
the fine-tuned Lepard (bottom row) offers denser and more consistent
matches.

we plan to investigate techniques like RANSAC, geometric
or physical constraints to identify and eliminate matching
outliers for better tracking performance.

V. CONCLUSION

In this work, we propose a surgical perception framework
SuPerPM that leverages recent advancements in deep point
cloud matching. Tissue tracking approaches relies heavily on
point-wise matching to update the reconstructed tissue after
deformations. To achieve better point-wise matching than
the previously used ICP, we use a learning-based matching
model. The model is fine-tuned on synthetic data generated
from PBD simulations [18], [19] of deforming tissue, hence
making the model more accurate in surgical scenarios. In our
current implementation, the learning model is trained sepa-
rately from the surgical perception framework. Considering
that our framework is built in a manner that permits gradient
back-propagation, in the future, we intend to enhance the
training process by training the matching model together
with the optimization solver, allowing the correspondence
learning to be achieved in an end-to-end manner.
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