
ar
X

iv
:2

30
9.

13
91

1v
2 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  1

 A
pr

 2
02

4

Exactly solvable subspaces of non-integrable spin chains with boundaries and

quasiparticle interactions

Chihiro Matsui
Graduate School of Mathematical Sciences, The University of Tokyo

3-8-1, Komaba, Meguro-ku, 153-8914 Tokyo, Japan

(Dated: April 2, 2024)

We propose two new strategies to construct a family of non-integrable spin chains with exactly
solvable subspaces based on the idea of quasiparticle excitations from the matrix product vacuum
state [1]. The first one allows the boundary generalization, while the second one makes it possible
to construct the solvable subspace with interacting quasiparticles. Each generalization is realized
by removing the assumption made in the conventional method [2], which is the frustration-free
condition or the local orthogonality, respectively. We found that the structure of the embedded
equally-spaced energy spectrum is not violated by the diagonal boundaries, as long as quasiparticles
are identical and non-interacting in the invariant subspace. On the other hand, we show that there
exists a one-parameter family of non-integrable Hamiltonians which shows the perfectly embedded
energy spectrum of the integrable spin chain. Surprisingly, the embedded energy spectrum does not
change by varying the free parameter of the Hamiltonian. The constructed models weakly break
ergodicity, in which strong ETH is expected to be violated.

I. INTRODUCTION

Understanding the thermalization mechanism of iso-
lated quantum systems is one of the most well-developed
studies in recent statistical mechanics. After the eigen-
state thermalization hypothesis (ETH) has been recasted
as the most powerful candidate to explain thermalization
phenomena, plenty of related works have been achieved
including the ones which test validity or violation of the
ETH. Although generic isolated quantum systems are be-
lieved to obey the strong ETH [3–5], which requires that
all the energy eigenstates are macroscopically indistin-
guishable from the thermal states, it has been found that
some energy eigenstates are different from the thermal
states by violating the statement of strong ETH. These
non-thermal states often show up in the systems which
do not thermalize, including the systems with integra-
bility [6, 7] or many-body localization [7–12], while it
has been found that such non-thermal states also show
up in the systems which do thermalize [13–17]. These
non-thermal energy eigenstates are called the quantum

many-body scars, named after the single-body quantum
scar state [18], especially when they show long-lived os-
cillations for certain initial states [19, 20].

The first example of quantum many-body scars has
been found experimentally for the Rydberg-atom quan-
tum simulator [21], which shows the embedded equally-
spaced energy spectrum. The system shows strong re-
vivals and very slow thermalization when the initial state
has non-negligible overlap with the eigenstates of the
equally-spaced energies. This unforeseen behavior was
expected to be caused by violation of ETH due to the
non-thermal property of the energy eigenstates associ-
ated with the equally-spaced energies in the prepared ini-
tial state. Later, emergence of such non-thermal energy
eigenstates has theoretically been explained by employ-
ing the PXP model [22], the effective model of the Ry-
dberg atom chain, which admits exactly solvable energy

eigenstates with equally-spaced energies [19, 20]. Sur-
prisingly, the known quantum many-body scars are often
exactly solvable states of non-integrable systems. Besides
the PXP model, there exist a variety of models, includ-
ing the AKLT model [13, 14, 23] and the Hubbard-type
models [24, 25], which are non-integrable but have ex-
actly solvable energy eigenstates. All those exactly solv-
able energy eigenstates are macroscopically distinguished
from the thermal states. Therefore, we expect that ex-
actly solvable states of non-integrable models are the can-
didates of non-thermal states in thermalizing systems.
It is believed that the thermalizing systems which ad-

mit emergence of non-thermal states have the almost
block-diagonal Hamiltonians [26, 27]:

H ≃W ⊕Hthermal, (1)

consisting of the large thermal subspace Hthermal and the
relatively small subspace W which becomes negligible in
the thermodynamic limit. Existence of the small invari-
ant subspace W weakly breaks the quantum version of
ergodicity, as the states in this subspace cannot move out
from W during time evolution. Thus, the block diago-
nal Hamiltonian prevents full thermalization by keeping
each energy eigenvector staying in each diagonal block.
Recently, various methods to construct the Hamiltonian
with the small invariant subspace have been proposed.
The methods are mainly classified into three types, each
of which is called the projector embedding [28–30], the
spectrum generating algebra [14, 31–40], or the Krylov
restricted thermalization [41]. These are not always inde-
pendent methods, but sometimes grasp different aspects
of the same mathematical structure behind the Hamil-
tonians. Indeed, it can happen that a certain model is
constructed by one method, and later, the same model
is constructed by another method again. For instance,
emergence of quantum many-body scars in the PXP and
AKLT model was first explained by the spectrum gener-
ating algebra [13], and then, the projector embedding
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type construction has been proposed for each model re-
cently in [40, 42].
In this paper, we propose a new method to construct

the Hamiltonian with the small invariant subspace based
on the Bethe-ansatz method. The method is similar to
the spectrum generating algebra,

([H, Q]− EQ)
∣

∣

W
= 0, (2)

in the sense that both methods provide the Hamiltonian
and energy eigenstates in the subspace W at the same
time, although partial solvability of our method does not
come from the spectrum generating algebra (2). The
spectrum generating algebra also tells that the Hamil-
tonian has the equally-spaced energy spectrum in the
solvable subspaceW , which perfectly explains the strong
revival obtained in the Rydberg atom experiment. The
equally-spaced energy spectrum indicates that the quasi-
particles living in the subspace W are identical parti-
cles, while our method based on the Bethe ansatz pro-
vides the model with the solvable subspace in which the
equally-spaced structure of the energy spectrum is bro-
ken, instead by showing the same energy spectrum as
the spin-1/2 XXX model. This implies that no revival
phenomena will be obtained in the Bethe ansatz solvable
subspace spanned by non-identical quasiparticle excita-
tion states.
It should also be noted that most of the examples of ex-

actly solvable states for non-integrable systems are writ-
ten in the languages of non-interacting quasiparticles,
while solvable states constructed in this paper are ex-
pressed in terms of interacting quasiparticles. Only a few
examples are known as exactly solvable states consisting
of interacting quasiparticles. One example is obtained
in the deformation of the integrable Hamiltonian [43],
in which the exactly solvable energy eigenstates are con-
structed via the fully anti-symmetrized bases. Partial
solvability of our model is completely independent from
this example since its solvability comes from conventional
integrability but its mathematical structure is highly
non-trivial as we impose the integrability conditions on
the pseudo basis constituted by the matrix-valued vec-
tors. However, we would say that our model has ad-
vantage for practical uses, since the Hamiltonian simply
consists of spin-1 nearest neighbor interactions. Be-
sides, the method for constructing the partially solvable
Hamiltonian presented in this paper can be applied to
the other models associated with any integrable mod-
els. Differences among the partially models with solvable
quasiparticle excitation states are summarized in Table
I.
This paper is organized as follows. In the next section,

we define the model to be studied in this paper. We focus
on the spin-1 chain which often shows up in the discus-
sion of quantum many-body scars. The example includes
the AKLT model. We also provide the basic notion of the
matrix product state and quasiparticle excitation states,
which are first introduced in the discussion of the general-
ized tangent space of the (nonlinear) manifold formed by

the matrix product tensors [1, 2]. Many of non-thermal
states in thermalizing systems were found to be written
in the matrix-product based expressions with fixed bond
dimensions [2, 27, 38], which have relatively small entan-
glement entropies [27, 44–47] compared to those for the
thermal states exhibiting the volume law behavior. This
fact strongly motivates us to look for the solvable states
of non-integrable systems in the matrix product forms,
as the candidates of non-thermal states in thermalizing
systems. In Section III, we provide the Hamiltonian
and its invariant subspace spanned by non-interacting
quasiparticle excitation states. The first half of the sec-
tion is devoted to the review of the known results for
the periodic boundary models, whose partial solvability
comes from the hidden spectrum generating algebra. In
the last half, we discuss generalization to the non-trivial
boundary cases. We show that the structure of the spec-
trum generating algebra is not violated by the diagonal
boundary deformation. In Section IV, we discuss the
construction of the Hamiltonian with the Bethe-ansatz
solvable subspace. We show that the energy spectrum in
the Bethe-ansatz solvable subspace coincides with the en-
ergy spectrum of the integrable system, without exhibit-
ing the equally-spaced structure any more. The model
which admits the Bethe-ansatz solvable subspace pos-
sesses a free-parameter, which does not show up in the
energy spectrum of the solvable subspace. This implies
that emergence of solvable subspace is robust against a
certain kind of perturbations. We also remark that the
energy spectrum in the Bethe-ansatz solvable subspace
becomes continuous ranging to infinity in the thermo-
dynamic limit, which is never obtained for the solvable
subspace resulting from the spectrum generating algebra.
The last section is devoted to the concluding remarks and
future works.

II. THE MODEL

Let us consider the spin-1 chain with translationally
invariant nearest neighbor bulk interactions. By writing
the elementary matrix whose (t, s)-element is 1 and the
others are 0 by Et,s, the local bulk Hamiltonian is written
as

h =
2

∑

s,s′,t,t′=0

hs,s
′

t,t′ E
t,s ⊗ Et′,s′ . (3)

The whole Hamiltonian consists of the summation of the
local Hamiltonian over all the sites. In this paper, we
consider the periodic boundary:

H =

N
∑

j=1

hj,j+1 (4)

and the open boundaries:

HB =

N−1
∑

j=1

hj,j+1 + h1 + hN , (5)
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TABLE I. Classification of partially solvable models with exact quasiparticle excitation states. The abbreviation SGA stands for
the spectrum generating algebra. The models presented in this paper are highlighted by bold fonts. More detailed classification
of the partially solvable models with non-interacting quasiparticles can be found in [38].

model partial solvability
mechanism

quasiparticle
interaction

spectrum
Matrix-product
based expression

AKLT-type [2] SGA No equally-spaced Yes

PXP model [38–40] generalized SGA No equally-spaced Yes

extensively many
species [43]

fully
anti-symmetrized

bases

Yes
embedded s = 1/2

Heisenberg
No

s = 1 nearest
neighbor

Bethe ansatz Yes
embedded s = 1/2

Heisenberg
Yes

where hj,j+1 is non-trivially acts on the j and j + 1th
sites:

hj,j+1 = 1⊗ · · · ⊗ h
j,j+1

⊗ · · · ⊗ 1, (6)

while h1 and hN act on the 1st and Nth sites, respec-
tively:

h1 = hL ⊗ 1⊗ · · · ⊗ 1,

hN = 1⊗ · · · ⊗ 1⊗ hR. (7)

Besides the locality and translation invariance, we as-
sume the spin-flip invariance:

hs,s
′

t,t′ = h2−s,2−s′

2−t,2−t′ (8)

and conserved magnetization:

hs,s
′

t,t′ = hs,s
′

t,t′ δs+s′,t+t′ , (9)

besides Hermiteness:

hs,s
′

t,t′ = (ht,t
′

s,s′)
∗ (10)

for the local bulk Hamiltonian. These are natural as-
sumptions realized by many models.
Some of spin-1 chains equipped with the above prop-

erties are known to be integrable, including the Fateev-
Zamolodchikov spin chain:

hj,j+1 = ~Sj · ~Sj+1 − (~Sj · ~Sj+1)
2, (11)

while some other spin-1 chains are known to have ex-
actly solvable energy eigenstates, although they are non-
integrable. One of the most famous examples of the latter
case is the AKLT model:

hj,j+1 = ~Sj · ~Sj+1 +
1

3
(~Sj · ~Sj+1)

2, (12)

which admits not only the exactly solvable ground state
but also the exactly solvable excitation states associated
with equally-spaced eigenenergies [2, 13, 14, 27, 32].
Most of the known solvable energy eigenstates of non-

integrable models are written in the homogeneous matrix
product forms or quasiparticle excitations from the ma-
trix product states [1, 2]. The homogeneous matrix state
is written in the following form:

|ψA〉 = tra(Ka
~A⊗p · · · ⊗p

~A)

=
∑

(m1,...,mN )∈{0,...,d−1}N

tra(KaAm1Am2 · · ·AmN )|m1,m2, . . . ,mN 〉, (13)

where the χ-by-χ matrices Amn ∈ End(Cχ) (n =
1, . . . , N) act in the auxiliary space. Another index d
denotes the dimension of the local physical space. For
the spin-1 chain, the local physical space must be three-
dimensional, i.e. d = 3. Note that the trace tra is taken
over the auxiliary space and the tensor product ⊗p must
be operated on the physical spaces. The boundary ma-
trix Ka, which acts in the auxiliary space Cχ, is deter-
mined by the boundary conditions. For instance, Ka is

the identity matrix for the periodic boundary, while Ka

is a certain matrix with rankKa = 1 for open boundaries.
Throughout this paper, we focus on the matrix product
states given by

~A =





a0σ
+

a1σ
z

a2σ
−



 , a0, a1, a2 ∈ C, (14)

which has the smallest non-trivial bond dimension χ =



4

2. This class of the matrix product states includes the
exactly solvable ground state of the AKLT model [23].
On the other hand, we consider the one-quasiparticle

excitation state expressed by

|ψA,B(k)〉 =
N
∑

x=1

eikx tra(Ka
~A⊗p · · · ⊗p

~B
x
⊗p · · · ⊗p

~A),

(15)

where ~B is again the matrix-valued vector whose ele-
ments act in the auxiliary space Cχ, and locates at the
position x of the quasiparticle. In the above expres-
sion, no quasiparticle creation or annihilation is assumed,
which is true for the periodic or diagonal boundaries.
Indeed, the magnetization conservation property of the
model, which we imposed in (9), guarantees that the
number of quasiparticles does not change in the bulk.
The quasiparticle excitation state of the form (15) have
been first proposed in the discussion of the generalized
tangent space of the manifold formed by the matrix prod-
uct tensors {Am1 , . . . , AmN } [1].
The nature of quasiparticles depends on the choice of

the local quasiparticle creation operator O ∈ End(C3) de-
fined through the relation

~B = O ~A. (16)

For instance, quasiparticles show the non-interacting
property under the nearest-neighbor Hamiltonian (3) if
the quasiparticle is chosen as the spin-2 magnon created
by O = (S+)2 [2]. The spin-2 magnon excitation states
are known to form the solvable invariant subspace of the
models belonging to the AKLT type [2]. Under the other
choices of the creation operator, quasiparticles may in-
teract with one another. The interacting quasiparticles
are obtained in the Bethe-ansatz solvable subspace, as
we will show in Section IV.

III. EXACTLY SOLVABLE SUBSPACE
WITHOUT QUASIPARTICLE INTERACTION

In this section, we construct the solvable subspace
W spanned by non-interacting quasiparticle excitation
states. The non-interacting property of quasiparticles is
realized, for instance, by choosing the local quasiparticle
operator O as the spin-2 magnon creation operator:

O = (S+)2. (17)

The other examples which produce non-interacting quasi-
particles can be found in [2]. The local spin-2 magnon
creation operator satisfies the repulsive relations [2]:

O2 ~A = O ~B = 0, (18)

~B ⊗p
~B = 0, (19)

which forbid quasiparticles to occupy the same site or
adjacent sites. Thus, the spin-2 magnons do not inter-
act each other since the Hamiltonian consists only of the
nearest neighbor interactions (3).
Throughout this section, we impose the local orthogo-

nality:

(t ~A∗ ⊗p
t ~A∗) · ( ~B ⊗p

~A+ eik ~A⊗p
~B) = 0, (20)

which is the sufficient condition for the quasiparticle exci-
tation states (15) with the different number of quasipar-
ticles to be orthogonal since every inner product between
the states with the different number of quasiparticles can
be decomposed into the product of the local inner prod-
ucts including the left hand side of (20) (see also Eq. (38)
and Appendix C of [2]). Here the transpose in (20) acts
only in the auxiliary space. In the recent work of con-
structing a family of Hamiltonians with exactly solvable
subspace [2], the local orthogonality is always imposed.
The local orthogonality allows only identical quasiparti-
cles with momentum k = π to exist (see Eq. (52) of
[2]). This also means that there is a hidden spectrum
generating algebra for this model
With these properties, the multiple spin-2 magnon ex-

citation states are represented as

|ψA,Bn〉 = Qn|ψA〉, (21)

in which the index n represents the number of quasipar-
ticles running over n = 1, . . . , ⌊N/2⌋, due to the repulsive
properties of quasiparticles (18) and (19). Q is the quasi-
particle creation operator given by the summation of the
local creation operator O at each site:

Q =

N
∑

x=1

(−1)xOx, Ox = 1⊗ · · · ⊗O
x
⊗ · · · ⊗ 1,

(22)

which is interpreted as the creation operator of the spin-2
magnon carrying the momentum k = π.

A. Periodic boundary case

In this subsection, we discuss the periodic boundary
case. The first part of this section is devoted to the re-
view of the known models, which are the frustration-free
models [2]. In the latter part of this section, we give
the generalization of the known results by removing the
frustration-free condition, which turns to be important
for the boundary generalization, as we will see in the
next subsection.
In [2], it has been found that the sufficient conditions

for the subspace

WSGA = span{|ψA〉, Q|ψA〉, . . . , Q⌊N/2⌋|ψA〉} (23)

to be the solvable subspace of the Hamiltonian are given
by the frustration-free condition:

h ~A⊗p
~A = 0 (24)
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and the eigenvalue condition:

h( ~B⊗p
~A+ eik ~A⊗p

~B) = E( ~B ⊗p
~A+ eik ~A⊗p

~B). (25)

The first condition makes the vacuum state (13) be the
zero-energy eigenstate, although it is not necessarily the
ground state. The conditions (24), (25) are equivalent to
the spectrum generating algebra in the subspace WSGA

(23):

(

[H, Q]−2EQ
)

|ψA,Bn〉 = 0, n = 0, 1, . . . ,

⌊

N

2

⌋

. (26)

Therefore, the energy spectrum of the Hamiltonian in
WSGA shows the equally-spaced structure:

H |ψA,Bn〉 = 2nE|ψA,Bn〉, n = 0, . . . ,

⌊

N

2

⌋

, (27)

which is understood also as the consequence of identical
particle nature of spin-2 magnons. One thing which was
missed to be noted in [2] is that the quasiparticle exci-
tation states (15) under the periodic boundary provides
the energy eigenstate for the Hamiltonian only when the
system consists of an even number N of sites.
The frustration-free condition and the eigenvalue con-

dition are simultaneously solved by the local Hamiltonian

h =
1

2
h0000(S

x ⊗ Sx + Sy ⊗ Sy + Sz ⊗ Sz) (28)

−
(

1

2
h0000 +

a21
a0a2

h1111

)

(Sx ⊗ Sx + Sy ⊗ Sy + Sz ⊗ Sz)2

−
(

1

2
h0000 −

a21
a0a2

( a21
a0a2

− 1
)

h1111

)

(Sx ⊗ Sx + Sy ⊗ Sy)2

−
(

h0000 +
( a21
a0a2

− 1
)

h1111

)

(Sz ⊗ Sz)2

+

(

1

2
h0000 +

( a41
a20a

2
2

− 1
)

h1111

)

((Sz)2 ⊗ 1+ 1⊗ (Sz)2)

+

(

1− 2
a41
a20a

2
2

)

h1111 1⊗ 1,

where Sx, Sy, and Sz are the spin-1 operators associ-
ated with su(2), while 1 represents the identity oper-
ator acting on a single physical space C3. The ob-
tained local Hamiltonian (28) contains essentially three
free parameters, up to the overall factor, if one normal-
izes the quasiparticle excitation states (15). This class
of models includes the AKLT model, realized by choos-
ing h1111/h

00
00 = 2/3 and a0 = −

√
2a1 = −a2 =

√

2/3,
which perfectly explains the emergence of embedded
equally-spaced energy spectrum obtained by the numer-
ical test [13].
Now the question is how much we can generalize a

model in such a way that does not destroy the block
diagonal structure (1), i.e. that keeps WSGA as its in-
variant subspace. One possibility is to generalize the
sufficient conditions (24) and (25) for WSGA to be the

invariant subspace of the Hamiltonian. First, we re-
place the frustration-free condition with the generalized

frustration-free condition

h ~A⊗p
~A = ~A⊗p

~A′ − ~A′ ⊗p
~A. (29)

Here ~A′ is another matrix-valued vector whose elements
are two-by-two matrices. This generalization (29) re-
minds us the idea of constructing the steady states of
the classical solvable stochastic processes such as the
asymmetric simple exclusion process [48–51]. Accord-
ingly, modification of the eigenvalue condition (25) as

h( ~B ⊗p
~A+ eik ~A⊗p

~B) = ~B ⊗p
~Z + eik ~X ⊗p

~B (30)

guarantees that the quasiparticle excitation states (21) to
be the eigenstates of the Hamiltonian H , if the operator-

valued vectors ~X and ~Z satisfy

~Z − ~A′ = E ′(k) ~A (31)

~X + ~A′ = E(k) ~A. (32)

Besides these relations, we keep the local orthogonality
(20), which allows only k = π quasiparticles to exist.
For this reason, we hereafter do not explicitly denote the
dependence on k.
The first condition (29) again makes the vacuum state

(13) be the zero-energy (but not necessarily the lowest en-
ergy) eigenstate under the periodic boundary condition.
It also requires that the newly introduced matrix-valued

vector ~A′ to be

~A′ =





b0σ+
b1σ

z

b2σ
−



 , b0, b1, b2 ∈ C, (33)

where b2 is restricted by the condition b0/a0 = b2/a2.
The generalized frustration-free condition (29), together
with the generalized eigenvalue condition (30), produces
the hidden spectrum generating algebra:

(

[H, Q]− (E + E ′)Q
)

|ψA,Bn〉 = 0, n = 1, . . . ,

⌊

N

2

⌋

,

(34)
which implies that the embedded equally-spaced energy
spectrum:

H |ψA,Bn〉 = n(E + E ′)|ψA,Bn〉, n = 1, . . . ,

⌊

N

2

⌋

(35)

is not violated by generalizing the frustration-free condi-
tion.
The generalized conditions (29) and (30) are solve by

the local Hamiltonian given by replacing the (2, 2) and
(8, 8)-elements of (28) as h0000/2 → h0000/2 + Re(b0/a0 −
b1/a1), while the (4, 4) and (6, 6)-elements as h0000/2 →
h0000/2−Re(b0/a0−b1/a1). Thus, the local bulk Hamilto-
nian under the generalized frustration-free condition con-
tains two more free parameters besides the three parame-
ters in the frustration-free case, if one fixes the normaliza-
tion of the quasiparticle excitation states (15). However,
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this increased freedom disappears under the presence of
diagonal boundaries, when the four linearly independent
vacua degenerate. We will see this point in the next sub-
section.

B. Diagonal boundary case

When the open boundary condition is imposed, the
boundary matrix in the matrix product state must be
set as the rank 1 matrix. Here we write the boundary
matrix by:

Ka = |vR〉〈vL|, (36)

where the boundary vectors |vR〉 and |vL〉 are the vectors
in the auxiliary space C2. Since the matrix product state
takes different expressions depending on the choice of the
boundaries, we explicitly denote the boundary choice in
the superscript:

|ψ(vL,vR)
A 〉 = a〈vL| ~A⊗p

~A⊗p · · · ⊗p
~A|vR〉a. (37)

Throughout this subsection, we only consider diagonal
boundaries:

hL =





ℓ0 0 0
0 ℓ1 0
0 0 ℓ2



 , hR =





r0 0 0
0 r1 0
0 0 r2



 , (38)

where ℓi, ri ∈ R (i = 0, 1, 2). Since the diagonal bound-
aries do not produce the quasiparticles, the expression
for quasiparticle excitation state (15) is still valid.
Now we look for the Hamiltonians which have the in-

variant subspace WSGA spanned by the matrix product
state (13) and the quasiparticle excitations (15). For the
bulk solvability in the subspace WSGA, the generalized
frustration-free condition (29) and generalized eigenvalue
condition (30) must be satisfied. Besides, the boundary
solvability requires the consistency conditions at the left
boundary:

a〈vL|(hL ~A− ~A′) = EL · a〈vL| ~A,
(hR ~A+ ~A′)|vR〉a = ER · ~A|vR〉a, (39)

and the right boundary:

a〈vL|hL ~B = (E + EL) · a〈vL| ~B,
hR ~B|vR〉a = (E ′ + ER) · ~B|vR〉a, (40)

respectively.
The vacuum energy takes different values for the dif-

ferent choices of the boundary conditions. For instance,
if we choose the diagonal boundaries which satisfy (39)
and (40), the vacuum energy is given by

HB|ψ(vL,vR)
A 〉 = (EL + ER)|ψ(vL,vR)

A 〉. (41)

For this reason, we call EL and ER the left and right
boundary energies, respectively. From the boundary

solvability conditions (39) and (40), we find that the gen-
eralization of the frustration-free condition is important
to obtain non-trivial boundary solutions, since the frus-
tration free condition only allows the boundary interac-
tions proportional to the identity matrix.
The solutions to (39) are classified into two types each

for the left and right boundaries. The first type of solu-
tions do not restrict the boundary vectors:

EL = ℓ0 −
b0
a0

= ℓ1 −
b1
a1

= ℓ2 −
b2
a2
, ∀ |vL〉a,

(42)

resp. ER = r0 +
b0
a0

= r1 +
b1
a1

= r2 +
b2
a2
, ∀ |vR〉a,

(43)

and thus, leads to the degenerate vacua with degree four.
Indeed, the same degeneracy structure can be obtained in
the ground state of the AKLT model under the presence
of diagonal boundaries, since it is the special case of our
model, as was mentioned in the previous subsection. The
second type of the solutions determines the boundary
vectors uniquely:

EL = ℓ1 +
b1
a1

= ℓ2 +
b2
a2

6= ℓ0 +
b0
a0
, |vL〉a = |1〉a (44)

or

EL = ℓ0 +
b0
a0

= ℓ1 +
b1
a1

6= ℓ2 +
b2
a2
, |vL〉a = |0〉a, (45)

resp.

ER = r1 −
b1
a1

= r2 +
b2
a2

6= r0 +
b0
a0
, |vR〉a = |0〉a

(46)

or

ER = r0 −
b0
a0

= r1 +
b1
a1

6= r2 +
b2
a2
, |vR〉a = |1〉a, (47)

and therefore, does not produce degeneracy for the vac-
uum states. In any case, we observe that the total bound-
ary energy is determined by the elements of the boundary
Hamiltonians as

EL + ER = ℓ1 + r1. (48)

In general, the degeneracy structure of the vacuum
states does not survive for the quasiparticle excitation
states. Only when we restrict the quasiparticle excita-
tion energy as

E + EL = ℓ0, resp. E ′ + ER = r0, (49)

which is one of the solutions to (40), the quasiparticle
excitation states with arbitrary boundary vectors can be
the energy eigenstates, although the quasiparticles under
this restriction carry zero energy E + E ′ = 0. The other
solutions are given by

|vL〉a = |0〉a, resp. |vR〉a = |1〉a, (50)
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for which not only the quasiparticle excitation states but
also the vacuum states are not degenerate, as was ob-
tained above.
The hidden spectrum generating algebra in this model

is produced by the bulk and boundary partial solvability
conditions (29), (30), (39), and (40):

(

[HB, Q]− (E + E ′)Q
)

|ψ(vL,vR)
A,Bn 〉 = 0. (51)

Since the vacuum state |ψ(vL,vR)
A 〉 has the eigenenergy

given by EL + ER, the eigenenergies of the quasiparticle
excitation states are obtained as

HB|ψ(vL,vR)
A,Bn 〉 =

(

n(E + E ′) + EL + ER
)

|ψ(vL,vR)
A,Bn 〉. (52)

Remind that the number of quasiparticles n runs over
n = 1, . . . , ⌊N/2⌋. In this way, the embedded equally-
spaced energy spectrum structure is not violated by the
diagonal boundaries.
As was noted in the previous subsection, the boundary

solvability conditions reduce the degrees of freedom for
the desired Hamiltonian. For instance, when the four
linearly independent vacua have the same energy, i.e. the
conditions (42) and (43) are satisfied by the boundary
Hamiltonians, the local Hamiltonian is just given by the
frustration-free local Hamiltonian (28) up to the constant
ℓ0 + r0 determined by choice of the boundaries. That is,
the energy spectrum in the solvable subspace matches
that for the frustration-free energy spectrum with the
shift by ℓ0 + r0.

C. Off-diagonal boundary case

Unlike the periodic or diagonal boundary cases, the off-
diagonal boundaries create and annihilate quasiparticles.
Therefore, the states with a fixed number of quasiparti-
cles (15), including the vacuum state (13), are no more
the eigenstates of the Hamiltonian. Instead, we assume
the superposition of n-quasiparticle states as the energy
eigenstate:

|ψ(vL,vR)
A,Bn 〉 =

⌊N/2⌋
∑

n=0

cnQ
n
a〈vL| ~A⊗p · · · ⊗p

~A|vR〉a. (53)

The operatorQ is again the spin-2 magnon creation oper-
ator defined in (21). We also impose the local orthogonal-
ity (20), which allows only k = π identical quasiparticles
to exist. We immediately notice that the superposition
state (53) becomes the energy eigenstate only when its
bulk energy is zero:

E + E ′ = 0. (54)

Besides, the left and right boundary solvability condi-
tions:

a〈vL|(−cnhL ~B + cn−1
~A′) = EL · a〈vL|(cn−1

~A), (55)

a〈vL|(cnhL ~A) = EL · a〈vL|(−cn+1
~B), (56)

and

((−1)NcnhR ~B − cn−1
~A′)|vR〉a = ER · (cn−1

~A)|vR〉a,
(57)

cnhR ~A|vR〉a = ER · ((−1)Ncn+1
~B)|vR〉a, (58)

are required in order for (53) to be the energy eigenstate.
We found that the only non-trivial solutions to the

bulk solvability condition (29), (30) and boundary solv-
ability conditions (39), (40) are given by the choice of the
boundary vectors |vL〉 = |1〉, |vR〉 = |0〉 and the boundary
interactions:

hL =





0 0 ℓ02
0 0 0
ℓ∗02 0 0



 , hR =





0 0 r02
0 0 0
r∗02 0 0



 (59)

under the restrictions on the boundary energies:

EL = −ER =
b1
a1

(60)

and the ratios of the amplitudes:

ℓ02 = −EL
cn+1

cn
, r02 = (−1)NER

cn+1

cn
, (61)

EL − ℓ02ℓ
∗
02

EL
cn
c∗n

= −ER +
r02r

∗
02

ER
cn
c∗n

=
b0
a0
. (62)

That is, the only eigenvector consisting of the spin-2
magnon excitations is the zero-energy eigenstate:

H
(1,0)
B |ψA,Bn〉 = 0. (63)

Therefore, the solvable subspace of the off-diagonal
boundary model is the one-dimensional space. Interest-
ingly, the solvable state (53) shows up in the middle of
the energy spectrum under the generic choice of the off-
diagonal boundary conditions (Appendix A). This im-
plies that the superposition of quasiparticle excitations
is again the candidate of a non-thermal state.

IV. EXACTLY SOLVABLE SUBSPACE WITH
QUASIPARTICLE INTERACTIONS

In the previous section, we discussed the models with
solvable subspace coming from the hidden spectrum gen-
erating algebra. The energy spectrum in the solvable
subspace then shows the equally-spaced structure, and
therefore, it is spanned by the identical quasiparticle
excitation states with k = π. In this section, we pro-
pose new construction of the solvable subspace based on
Bethe-ansatz solvability. The idea is to remove the lo-
cal orthogonality (20), which is the sufficient condition
for the quasiparticle excitation states with different num-
ber of quasiparticles to be orthogonal. Actually, the lo-
cal orthogonality is too strong since the orthogonality
of the energy eigenstates is guaranteed by the different
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eigenenergies, as we have chosen the Hermitian Hamil-
tonian (10). Instead, we impose the algebraic structure

to produce integrability on the Hamiltonian in the sub-
space W . Then the matrix product state (13) and the
quasiparticle excitation states:

|ψA,Bn({kℓ})〉 =
∑

1≤x1<x2<···<xn≤N

f(x1, x2, . . . , xn) tra( ~A⊗p · · · ⊗p
~B
x1

⊗p · · · ⊗p
~B
xn

⊗p · · · ⊗p
~A), (64)

f(x1, x2, . . . , xn) =
∑

P∈Sn

An(P ) e
i
∑n

j=1 kP(j)xj ,

which are generalization of (15), become the energy
eigenstates in the subspace

WBA = span{|ψA〉, |ψA,B(k1)〉, . . . , |ψA,B⌊N/2⌋({kℓ})〉},
(65)

if a set of quasiparticle momenta {kj} satisfies the Bethe
equations. Here Sn denotes the symmetric group of
degree n. The amplitude An(P ) is determined by the
boundary condition. For instance, the periodic bound-
ary requires for An(P ) to satisfy

An(Pτj,j+1)

An(P )
= −1 + ei(kP (j)+kP (j+1)) − 2eikP (j+1)

1 + ei(kP (j)+kP(j+1)) − 2eikP(j)
, (66)

in which τj,j+1 represents the transposition between the
labels j and j + 1. The quasiparticle excitation states
(64) look similar to the Bethe states, but of course, they
are not the Bethe states in the normal sense.
The explicit forms of the Bethe equations depend

on the models. Here we impose the spin-1/2 isotropic
Heisenberg (XXX) like relations on the Hamiltonian in
W :

h ~A⊗p
~A = 0 (67)

h ~A⊗p
~B = − ~A⊗p

~B + ~B ⊗p
~A (68)

h~B ⊗p
~A = ~A⊗p

~B − ~B ⊗p
~A (69)

h~B ⊗p
~B = 0, (70)

although the Hamiltonian consists of s = 1 spins. The
first relation is nothing but the frustration-free condi-
tion imposed also in the previous subsection (24), and
the last relation represents the repulsive property (19)
which forbid the quasiparticles to locate at the adja-
cent sites. The spin-1/2 XXX-like relations (67)-(70)
simultaneously determine the Hamiltonian and the local
quasiparticle creation operator. The local quasiparticle
creation operator which solves (67)-(70) is given by the
diagonal matrix:

O =







b0
a0

0 0

0 b1
a1

0

0 0 b0
a0






, (71)

which apparently allows double occupation for quasipar-
ticles, since the repulsive relation (18) does not hold for

the above choice of O. This also indicates that the quasi-
particles in the subspace WBA interact with each other.
The Hamiltonian solves the relations (67)-(70) if the local
Hamiltonian is given by

h = −(Sx ⊗ Sx + Sy ⊗ Sy) +
1

2
h0000S

z ⊗ Sz (72)

− (Sx ⊗ Sx + Sy ⊗ Sy + Sz ⊗ Sz)2

+ (Sx ⊗ Sx + Sy ⊗ Sy)2 +

(

1

2
h0000 + 2

)

(Sz ⊗ Sz)2

− ((Sz)2 ⊗ 1+ 1⊗ (Sz)2),

which leaves the one parameter h0000 free. This lo-
cal Hamiltonian is not in the class of the known inte-
grable models [52–54]. Indeed, (72) satisfies the so-called
Reshetikhin condition [55–57], known as the conjecture
for Yang-Baxter solvability, only at h0000 = 0. Actu-
ally, the Hamiltonian (72) becomes the integrable XXC
model [58] at this point [59].
Then the periodic Hamiltonian consisting of (72) has

WBA spanned by the Bethe-like states (64) as its invari-
ant subspace, if a set of quasiparticle momenta satisfies
the Bethe equations for the spin-1/2 XXX model:

eikjN = −(−1)n
n
∏

ℓ=1
ℓ 6=j

ekj+kℓ + 1− 2eikj

ekj+kℓ + 1− 2eikℓ
, j = 1, . . . , n.

(73)
Of course, the energy spectrum of the Hamiltonian match
the energy spectrum of the spin-1/2 XXX model:

H |ψA,Bn({kℓ})〉 = 4
(

n
∑

j=1

cos kj−n
)

|ψA,Bn({kℓ})〉 (74)

in the subspace WBA, which means the equally-spaced
energy spectrum structure is broken in WBA. This also
implies that there is no hidden spectrum generating alge-
bra for this model, and therefore, no revival phenomena
will be obtained for this model. The embedded spin-1/2
energy spectrum also indicates that the energy spectrum
becomes gapless continuum ranging to infinity in the
thermodynamic limit N → ∞, as in the case of the spin-
1/2 XXX model, although the dimension of the sub-
space dimW < 2N becomes negligibly small, compared
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to the dimension of its complement dimW c > 3N − 2N .
This is very different structure from the solvable models
equipped with the hidden spectrum generating algebra,
as they show the embedded equally-spaced energy spec-
tra, which stay discrete in the thermodynamic limit.
We have numerically checked the energy spectrum of

the Hamiltonian (72) and indeed obtained the embedded
energy spectrum of the spin-1/2 XXX model in the full
energy spectrum (Appendix B). Remarkably, the embed-
ded XXX energy spectrum is not violated by varying
h0000, the free parameter in the local Hamiltonian. That
is, this solvable subspace is robust against the perturba-
tion:

Hpert = α

N
∑

j=1

(E0,0
j E0,0

j+1 + E2,2
j E2,2

j+1), α ∈ R. (75)

It should be noted that the model (72) does not show
the same degeneracy as that of the spin-1/2XXX model,
since the subspaceW includes only the Bethe-like states,
which correspond to the highest weight states of sl2 for
the XXX model. Unfortunately, we are not succeeding
to construct the operator for the model (72) which cor-

responds to S−
tot =

∑N
x=1 S

−
x operator of the spin-1/2

XXX model so far.

V. CONCLUSION AND DISCUSSION

We have proposed the new construction of non-
integrable spin chains with the exactly solvable subspace.
The construction is based on the Bethe-ansatz method,
which produces the invariant subspace not based on the
spectrum generating algebra, and therefore, the energy
spectrum in the solvable subspace is not equally spaced.
As an example, we have constructed the spin-1 chain with
the spin-1/2XXX-type solvable subspace, whose Hamil-
tonian shows the energy spectrum of the spin-1/2 XXX
model embedded in the full energy spectrum. The
known partially solvable models equipped with the spec-
trum generating algebra in the solvable subspace show
the discrete energy spectra consisting of infinitely many
but equally-spaced eigenenergies [2], while the model we
have proposed in this paper shows the continuous energy
spectrum even in the solvable subspace at the thermo-
dynamic limit, as it coincides with the energy spectrum
of the spin-1/2 XXX model, although the dimension of
the subspace is negligibly small in the thermodynamic
limit. This is the first difference which makes our model
distinguished from the known non-integrable Hamiltoni-
ans with solvable subspaces. Subsequently, the broken
hidden spectrum generating algebra in the subspace re-
sults in violation of the revival phenomena, which are
often referred as the defining features of the models with
quantum many-body scars [19, 20]. The second differ-
ence is obtained in the nature of quasiparticles in the
solvable subspace. The known solvable subspace pro-
duced by the spectrum generating algebra is spanned by

non-interacting quasiparticle excitation states, while the
Bethe-ansatz solvable subspace we have constructed in
this paper is spanned by interacting quasiparticle excita-
tion states. These uncommon properties as the solvable
subspace might be enough for saying that our model,
which weakly violates ergodicity in the Hilbert space, is
a very new candidate of the thermalizing system with
non-thermal energy eigenstates.

We have also constructed the partially solvable spin
chain with boundary magnetic fields. Partial solvability
of this model comes from the hidden spectrum gener-
ating algebra, if the boundary Hamiltonians are diago-
nal. That is, the diagonal boundaries do not destroy
the structure of the spectrum generating algebra in the
model. Subsequently, the solvable subspace consists of
identical and non-interacting quasiparticles, in which the
Hamiltonian shows the equally-spaced energy spectrum.
The situation is a bit different for the off-diagonal bound-
ary case, since the solvable subspace of the off-diagonal
boundary model is the one-dimensional space. However,
the solvable state is in the middle of the spectrum, which
can still be a candidate of a non-thermal state.

Although we have provided the completely new con-
struction of partially solvable models based on the alge-
braic structure of conventional integrable systems, there
are a number of interesting remaining problems to be
addressed in the future. The first thing is to identify
which solvable states among those constructed in this
paper, are non-thermal. We already observed several
signs indicating that the exactly solvable energy eigen-
states constructed in this paper are the good candidates
of non-thermal states. For instance, the existence of
infinitely long-lived quasiparticles is one of the charac-
teristic features of non-thermal states [38]. Especially
when quasiparticles are interacting, their long life-time
indicates that scattering processes are strictly restricted
in such a way that quasiparticles scatter without de-
caying, which makes the states consisting of long-lived
quasiparticles distinct from the typical (thermal) states.
Besides, the exactly solvable energy eigenstates for the
model with diagonal boundaries (Subsection III B) have
entanglement entropies which obey the sub-volume-law,
as was discussed in Subsection 3.3 of [27]. This is another
feature of non-thermal states, which is also expected for
the Bethe-like states, as they have the matrix-product
based expressions.

Another future work is to check non-integrability of the
models presented in this paper. We have already checked
that the Reshetikhin condition holds for the proposed
model only at the special point h0000 = 0, indicating that
the model is not Yang-Baxter solvable except for this
point. Emergence of the Poisson distribution in the level-
spacing statistics is another widely-used conjecture for
testing chaotic nature of quantum systems [60, 61], which
is often associated with the non-integrability property.
After all, no rigorous proofs are known for testing non-
integrability of models, so far.

From the mathematical point of view, it is a mys-
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tery where partial integrability of our model comes from.
We have imposed the spin-1/2 XXX-like relations on
the matrix-valued vectors in the quasiparticle excitation
states and accidentally found the solution, but of course,
this does not mean we can always find the solution to the
similar algebraic relations associated with the other inte-
grable models such as the XXZ model, supersymmetric
t-J model, Hubbard model, and so on. It would be nice
to explain the existence of these solutions from the view-
point of the Yang-Baxter equation, which enables us to
use the methods developed for integrable systems to non-
integrable models with embedded integrability.
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Appendix A: Energy spectrum of the N = 4 model
with the spectrum generating algebra under the

off-diagonal boundaries

Table II gives an example in which the solvable zero-
energy eigenstate (highlighted by the bold fonts) shows
up in the middle of the spectrum under the presence of
the off-diagonal boundaries. The boundary Hamiltonians
(59) are chosen as ℓ02 = 3, r02 = −3. The bulk param-
eters are chosen as h0000 = 5 with h1111/h

00
00 = 2/3, which

is the AKLT point. Accordingly, the bulk Hamiltonian
is set to satisfy the frustration-free condition, with the
choice a0 = −

√
2a1 = −a2 =

√

2/3.

TABLE II. Energy spectrum of the model with the spectrum
generating algebra under the off-diagonal boundaries.

16.849, 16.7337, 16.6279, 16.4139, 15.9501, 15.3909, 15., 15.,
15., 14.3691, 14.3503, 14.2608, 14.2187, 14.0776, 13.5355,
12.9642, 12.9597, 12.7095, 12.349, 12.1843, 12.1705, 11.5636,
11.4777, 11.4735, 10.9842, 10.9122, 10.7428, 10.2352, 10.,
9.97534, 9.67583, 9.66554, 9.5889, 9.4236, 9.35679, 9.25346,
8.89357, 8.88861, 8.64928, 8.41963, 8.03704, 7.87116, 7.86773,
7.84488, 7.63763, 7.26451, 7.23044, 6.97136, 6.7341, 6.63635,
6.57342, 6.54067, 6.46447, 6.16849, 6.15895, 6.00375, 5.72945,
5.45364, 5.38219, 5.21379, 5.21108, 5.01047, 5., 4.91893,
4.31464, 4.24784, 3.98426, 3.90293, 3.71403, 2.54418, -2.44381,
2.3304, 2.24423, 2.23303, 1.37816, -1.21692, 1.14052, 0.407693,
-0.0617388, 0.0616097, 0.

Appendix B: Energy spectrum of the N = 5 model
with the Bethe-ansatz solvable subspace

Table III-V give the energy spectra of the models with
the Bethe-ansatz solvable subspace associated with the
spin-1/2 XXX model. The parameter h0000 in each table
is chosen as h0000 = 0, 0.3, or 1.2, respectively. The embed-
ded spin-1/2 XXX energy spectrum (highlighted by the
bold fonts) is obtained, which is not violated by varying
h0000.



11

[1] J. Haegeman, T. J. Osborne, and F. Verstraete, Phys.
Rev. B 88, 075133 (2013).

[2] S. Moudgalya, E. O. Brien, B. A. Bernevig, P. Fendley,
and N. Regnault, Phys. Rev. B 102, 085120 (2020).

[3] J. Deutsch, Phys. Rev. A 43, 2046 (1991).
[4] M. Srednicki, Phys. Rev. E 50, 888 (1994).
[5] M. Rigol, Phys. Rev. Lett 103, 100403 (2009).
[6] T. Kinoshita, T. Wenger, and D. S. Weiss, Nature 440,

900 (2006).
[7] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii,

Phys. Rev. Lett 98, 050405 (2007).
[8] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev.

Mod. Phys. 021001, 91 (2019).
[9] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Ann.

Phys. 321, 1126 (2006).
[10] R. Nandkishore and D. A. Huse, Annu. Rev. Cond. Mat.

Phys. 6, 15 (2015).
[11] E. Altman and R. Vosk, Rev. Cond. Mat. Phys. 6, 383

(2015).
[12] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen,
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-9.5132, -9.5132, -9.5132, -9.5132, -8., -8., -8., -8., -8., -8., -8., -8., -8., -7.95654, -7.95654, -7.95654, -7.95654, -7.80423, -7.80423,
-7.80423, -7.80423, -7.80423, -7.80423, -7.6405, -7.6405, -7.6405, -7.6405, -7.6405, -7.6405, -7.6405, -7.6405, -7.6405, -7.6405,
-7.6405, -7.6405, -7.6405, -7.6405, -7.63005, -7.63005, -7.63005, -7.63005, -7.23607, -7.23607, -7.23607, -7.23607, -7.23607,
-7.23607, -7.23607, -7.23607, -7.23607, -7.23607, -7.23607, -7.23607, -7.23607, -7.23607, -6.35114, -6.35114, -6.35114, -6.35114,
-6.35114, -6.35114, -5.23607, -5.23607, -5.23607, -5.23607, -5.23607, -5.23607, -5.23607, -5.23607, -5.23607, -5.23607, -5.23607,
-5.23607, -5.23607, -5.23607, -5.23607, -5.23607, -4., -4., -4., -4., -4., -4., -3.95184, -3.95184, -3.95184, -3.95184, -3.72287,
-3.72287, -3.72287, -3.72287, -3.72287, -3.72287, -3.72287, -3.72287, -3.72287, -3.72287, -3.72287, -3.72287, -3.72287, -3.72287,
-3.52786, -3.52786, -3.0595, -3.0595, -3.0595, -3.0595, -2.76393, -2.76393, -2.76393, -2.76393, -2.76393, -2.76393, -2.76393,
-2.76393, -2.76393, -2.76393, -2.76393, -2.76393, -2.76393, -2.76393, -2.53562, -2.53562, -2.53562, -2.53562, -2.34315, -2.34315,
-2.34315, -2.34315, -2.34315, -2.34315, -2.34315, -1.64886, -1.64886, -1.64886, -1.64886, -1.64886, -1.64886, -1.12343, -1.12343,
-1.12343, -1.12343, -1.12343, -1.12343, -1.12343, -1.12343, -1.12343, -1.12343, -1.12343, -1.12343, -1.12343, -1.12343, -0.763932,
-0.763932, -0.763932, -0.763932, -0.763932, -0.763932, -0.763932, -0.763932, -0.763932, -0.763932, -0.763932, -0.763932,
-0.763932, -0.763932, -0.763932, -0.763932, -0.195774, -0.195774, -0.195774, -0.195774, -0.195774, -0.195774, -0.13087, -0.13087,
-0.13087, -0.13087, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.

TABLE IV. Energy spectrum of the model with the Bethe-ansatz solvable subspace for h00

00 = 0.3.

-13.6569, -13.5728, -13.5728, -13.4401, -13.4401, -12.9728, -12.9728, -12.9049, -12.9049, -12.9049, -12.9049, -12.4721, -12.4721,
-11.4187, -11.4187, -11.4187, -11.4187, -9.5132, -9.5132, -9.48707, -9.48707, -9.48707, -9.48707, -9.31358, -9.31358, -9.31358,
-9.31358, -8.88707, -8.88707, -8.88707, -8.88707, -8., -8., -8., -8., -7.6405, -7.6405, -7.63463, -7.63463, -7.63463, -7.63463,
-7.53692, -7.53692, -7.53692, -7.53692, -7.38911, -7.38911, -7.38911, -7.38911, -7.24178, -7.24178, -7.24178, -7.24178, -7.23607,
-7.23607, -7.23607, -7.23607, -7.12237, -7.12237, -7.11123, -7.08537, -7.08537, -6.93046, -6.93046, -6.93046, -6.93046, -6.91604,
-6.91604, -6.88195, -6.88195, -6.78911, -6.78911, -6.78911, -6.78911, -6.39211, -6.39211, -6.39211, -6.39211, -6.34994, -6.34994,
-6.2, -6.2, -5.4702, -5.4702, -5.41128, -5.41128, -5.41128, -5.41128, -5.23607, -5.23607, -5.23607, -5.23607, -5.23607, -5.23607,
-4.37195, -4.37195, -4.32783, -4.32783, -4.32783, -4.32783, -3.72287, -3.72287, -3.58347, -3.58347, -3.58347, -3.58347, -3.52786,
-3.52786, -3.43607, -3.43607, -3.43607, -3.43607, -3.4, -3.38211, -3.38211, -3.38211, -3.38211, -3.149, -3.149, -3.149, -3.149,
-3.12237, -3.12237, -3.07763, -3.07763, 3., 3., -2.8, -2.76393, -2.76393, -2.76393, -2.76393, -2.64315, -2.64315, -2.64315, -2.64315,
-2.62474, -2.62474, -2.549, -2.549, -2.549, -2.549, -2.34315, -2.31463, -2.31463, -2.15683, -2.15683, -2.15683, -2.15683, -1.87217,
-1.87217, -1.87217, -1.87217, -1.85326, -1.85326, -1.82805, -1.82805, -1.82718, -1.82718, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8,
1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, -1.22718, -1.22718, -1.12343, -1.12343, 1.03607, 1.03607, 1.03607, 1.03607,
0.922375, 0.922375, 0.911234, -0.788721, -0.788721, -0.788721, -0.788721, -0.776122, -0.776122, -0.776122, -0.776122, -0.77482,
-0.77482, -0.77482, -0.77482, -0.763932, -0.763932, -0.763932, -0.763932, -0.763932, -0.763932, 0.730462, 0.730462, 0.730462,
0.730462, -0.729797, -0.729797, 0.716037, 0.716037, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.192214, 0.192214, 0.192214,
0.192214, 0.19211, 0.19211, 0.19211, 0.19211, -0.17482, -0.17482, -0.17482, -0.17482, 0.149944, 0.149944, 0., 0., 0.

TABLE V. Energy spectrum of the model with the Bethe-ansatz solvable subspace for h00

00 = 1.2.

-13.6569, -13.3605, -13.3605, -12.9235, -12.9235, -12.4721, -12.4721, -12.4105, -12.4105, -12.4105, -12.4105, 12., 12., -11.0371,
-11.0371, -11.0371, -11.0371, -10.9605, -10.9605, -9.5132, -9.5132, -9.43117, -9.43117, -9.43117, -9.43117, -8.87214, -8.87214,
-8.87214, -8.87214, -8., -8., -8., -8., -7.6405, -7.6405, -7.32533, -7.32533, -7.32533, -7.32533, -7.23607, -7.23607, -7.23607,
-7.23607, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, -7.03117, -7.03117,
-7.03117, -7.03117, -6.78401, -6.78401, -6.78401, -6.78401, -6.77321, -6.77321, 6.43607, 6.43607, 6.43607, 6.43607, -6.4061,
-6.4061, -6.4061, -6.4061, -5.96757, -5.96757, -5.96757, -5.96757, -5.74062, -5.74062, -5.23607, -5.23607, -5.23607, -5.23607,
-5.23607, -5.23607, -4.73238, -4.73238, -4.58304, -4.58304, -4.58304, -4.58304, -4.57612, -4.389, -4.389, -4.38401, -4.38401,
-4.38401, -4.38401, -4.25217, -4.25217, -4.25217, -4.25217, 3.93238, 3.93238, -3.8514, -3.8514, 3.78304, 3.78304, 3.78304, 3.78304,
3.77612, -3.72287, -3.72287, 3.589, 3.589, -3.52786, -3.52786, 3.45217, 3.45217, 3.45217, 3.45217, 3.0514, 3.0514, -3.03967,
-3.03967, -2.85583, -2.85583, -2.85583, -2.85583, 2.82008, 2.82008, 2.82008, 2.82008, -2.79016, -2.79016, -2.79016, -2.79016,
-2.76393, -2.76393, -2.76393, -2.76393, -2.43671, -2.43671, -2.41017, -2.41017, -2.41017, -2.41017, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4,
2.4, 2.4, 2.4, -2.34315, 2.23967, 2.23967, 2.16049, 2.16049, -2.12275, -2.12275, 1.96393, 1.96393, 1.96393, 1.96393, 1.61017,
1.61017, 1.61017, 1.61017, -1.6, -1.57566, -1.57566, -1.57566, -1.57566, -1.4049, -1.4049, -1.4049, -1.4049, 1.39331, 1.39331,
1.39331, 1.39331, 1.32275, 1.32275, -1.12343, -1.12343, -1.08782, -1.08782, -1.08782, -1.08782, 0.9951, 0.9951, 0.9951, 0.9951,
-0.828061, -0.828061, -0.828061, -0.828061, -0.826786, -0.826786, -0.8, 0.8, -0.8, 0.775659, 0.775659, 0.775659, 0.775659,
-0.763932, -0.763932, -0.763932, -0.763932, -0.763932, -0.763932, -0.732381, -0.732381, 0.587319, 0.587319, 0.587319,
0.587319, 0.420082, 0.420082, 0.420082, 0.420082, -0.239512, -0.239512, -0.0991273, -0.0991273, -0.0676192, -0.0676192,
0., 0., 0.


