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Parafermion zero modes can arise in hybrid structures composed of ν = 1/m fractional quantum
Hall edges proximity coupled by an s-wave superconductor. Here we consider a Josephson junction
formed in such hybrid structures in addition to parafermion tunneling, Cooper pair tunneling, and
backscattering. We find that the 4πm periodicity due to parafermion-only tunneling reduces, in the
presence of backscattering, to 4π-periodic at zero temperature and 2π-periodic at finite temperature
unless the fermion parity is fixed. Nevertheless, a clear signature of parafermion tunneling remains
in the shape of the current-phase relation.

I. INTRODUCTION

Non-Abelian topologically ordered phases are among
the most promising platforms for fault-tolerant quan-
tum computation [1]. The excitations in these phases
are non-Abelian anyons that have non-trivial fusion rules
and braiding statistics [2]. These fusion rules provide
a source of topological ground state degeneracy, which
allows for non-local storage of information and anyon
braiding that is topologically protected against decoher-
ence [3–7]. While there has been significant interest in us-
ing Majorana zero modes (MZMs) for topological quan-
tum computation [1], the ZN generalization of MZMs,
parafermion zero modes (PZMs) [8], is necessary to per-
form universal topological quantum computation. It was
shown in Ref. [9] that an array of PZMs provides a real-
ization of Fibonacci anyons that is capable of universal
topological quantum computation [1, 10–12].

It has been theoretically proposed that PZMs can arise
in fractional topological superconductors (FTSCs) [13–
15]. A key example of an FTSC comprises edge states of
a ν = 1/m fractional quantum Hall (FQH) system prox-
imitized with an s-wave superconductor. The physics
of proximitized FQH edges is particularly relevant at the
moment due to recent experiments demonstrating the vi-
ability of experimental setups to manipulate and control
parafermions in hybrid structures at moderate magnetic
fields [16, 17]. In particular, a recent experiment has
focused on implementing such a structure in graphene
and observed crossed Andreev reflection (CAR), which
was suggested to indicate the presence of PZMs [18]. A
theoretical analysis in Ref. [19] showed that CAR is a
necessary but not sufficient condition for the existence of
PZMs.

In this letter, we consider an FTSC resulting from
the proximity effect between an s-wave superconduc-
tor and two edges of a ν = 1/m FQH state and
identify the PZM at one end. We demonstrate that
a Josephson junction consisting of two copies of such
FTSCs captures unique features due to the fractional-

ization of PZMs. In the low-energy effective Hamil-
tonian, we determine the energy spectra and current-
phase relation in the presence of parafermion tunnel-
ing, Cooper pair tunneling, and backscattering. We find
that backscattering explicitly breaks the Zm symmetry
present in the junction, which results in the periodic-
ity of the Josephson phase being the same for PZMs
and MZMs. While the periodicity is an insufficient
distinguishing metric, additional features arise in the
thermally-averaged current-phase relation that discrimi-
nates between PZMs and MZMs. As an alternative mea-
sure, we propose the parity-projected thermally-averaged
current-phase relation which results in a temperature-
dependent 4π-periodic fractional Josephson effect that
occurs only under the presence of parafermion tunneling.

II. MODEL FOR FTSC AND PZM

We first discuss our model for an FTSC, which consists
of two edges from a (fully spin-polarized) ν = 1/m FQH
system proximity coupled by an s-wave superconductor
(SC) finger as in Fig. 1. Since at each finger, the edges
are in proximity with an s-wave superconductor finger,
we include a density-density interaction term and a pair-
ing term ∆ψLψR + h.c. Here we denote by L and R the
top and bottom FQH edges states in contact with the
SC finger. The corresponding bosonized (see Appendix
B for reviews on bosonization) Hamiltonian is,

H =

∫ 0

−L

dx

{
mvF
4π

[
(∂xϕR)

2
+ (∂xϕL)

2
]

+
mU

2π
∂xϕR∂xϕL − ∆

ℓ20
cos [m (ϕR − ϕL)]

}
,

(2.1)

where vF is the Fermi velocity of the edges, ϕR/L are the
bosonic fields on the top/bottom edge, U is the inter-
action strength, ∆ > 0 is the (dimensionless) proximity
gap, and ℓ0 is the magnetic length which plays the role
of a UV cutoff.
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FIG. 1: The Josephson junction includes two copies of
FTSCs, parafermion tunneling ΓP , Cooper pair
tunneling Γ∆, and backscattering ΓB . Each FTSC
consists of two edges from ν = 1/m FQH system (pink)
proximity coupled by an s-wave SC (cyan). The spacing
between the two FTSCs is exaggerated to emphasize
the presence of a junction.

It is useful to rewrite the bosonic fields as ϕR/L = φ±ϑ,
which obey the commutation relation,

[φ(x), ϑ(x′)] = i
π

m
Θ(x− x′), (2.2)

where ρ ≡ ∂xφ/π = ρR + ρL is the total charge density
operator. The Hamiltonian in the new basis is,

H =

∫ 0

−L

dx

{
mu

2π

[
K (∂xφ)

2
+

1

K
(∂xϑ)

2

]
− ∆

ℓ20
cos(2mϑ)

}
,

(2.3)

with effective velocity mu/π with u =
√
v2F − U2 which

we set to 1 in the following sections and Luttinger pa-
rameter K = (vF +U)/

√
v2F − U2, making this theory a

sine-Gordon theory on a finite interval. In the vicinity of
the critical point, the proximity gap ∆ and the distance of
the Luttinger parameter to the critical point x ≡ 2−mK
parametrize Kosterlitz RG [20, 21] (see Appendix C for
details of RG analysis),

d∆

dl
= x∆,

dx

dl
= 128m2π5∆2. (2.4)

For the FTSC to be in the superconducting phase, either
Luttinger parameter must satisfy K < Kc = 2/m [22] for
the superconducting term to be relevant, which requires a
sufficiently large attractive interaction, or strong pairing
∆ > ∆c is required. This is different from the ν = 1 case
where the superconducting term is always relevant even
in the absence of a density-density interaction (K = 1)
(see Fig. 5). Deep in the superconducting phase, the ϑ
field is pinned to one of the 2m minima of the cosine term
in Eq. (2.3), ϑ(x) = ñπ

m , where ñ ∈ Z2m is an integer-
valued operator which is related to the clock operator in
the N -state clock model on a single site with N = 2m [2]
(see Appendix A for review on N -state clock model).
This Hamiltonian has a Z2m symmetry, ϑ → ϑ + π

m ,
representing charge conservation modulo e/m. The cor-
responding symmetry generator is a Z2m generalization

of the fermion parity operator (−1)F , which we call quasi-
particle parity,

P̂ ≡ exp
(
iπQ̂

)
= exp [i (φ0 − φ−L)] , (2.5)

where Q ≡
∫ 0

−L
dx ρ(x) is the number operator and

φ0 ≡ φ(x = 0). One can check that this is indeed the
symmetry generator since,

P̂−1ϑP̂ = ϑ+
π

m
. (2.6)

In the ground state, the Z2m symmetry sends the system
from one pinned minima to another ñ→ ñ+1 mod 2m,
implying a 2m-fold ground state degeneracy and the ex-
istence of parafermion zero modes at the ends of the
FTSC (see Appendix A for review on PZM algebra). The
parafermion operator localized at one end of the FTSC
is,

α0 =
1

b

∫ 0

−b

dx eiϑ(x) ∝ eiϑ0 , (2.7)

where ϑ0 ≡ ϑ(x = 0), and b denotes the length of the
region where a PZM is localized and is comparable to
the coherence length ξ. From the solutions of the sine-
Gordon equation, ϑ has exponentially small fluctuations
for x ∈ [−b, 0]; hence, we can treat eiϑ(x) as a constant
in this region as well. From the form of the PZM, we can
interpret it as “half” of a quasiparticle pair, which reflects
the fractionalized nature of the system. One can check
α0 is the PZM operator by the commutator between the
Hamiltonian and the PZM,

[H,α0] = −K∂xφ0e
iϑ0 = 0. (2.8)

The commutator vanishes since the total current density
j = ∂xφ/π is 0 at x = 0, representing no total cur-
rent flowing from the edge to the FQH background [23].
The commutation relation between the parafermion zero
mode operator α0 and the quasiparticle parity P̂ is,

P̂α0 = ei
π
mα0P̂ . (2.9)

Physically this means that the parafermion operator
changes the number operator by one.

III. JOSEPHSON JUNCTION AND
TUNNELING

One way to experimentally identify topologically non-
trivial zero modes is the fractional Josephson effect [13–
15, 24], i.e. 4mπ-periodic signal in the current-phase re-
lation. The Josephson junction of interest consists of two
copies of FTSCs as in Fig. 1,

H =

∫ 0

−L

dx

{ ∑
i=1,2

m

2π

[
K

(
∂xφ

(i)
)2

+
1

K

(
∂xϑ

(i)
)2

]

− ∆

ℓ20
cos

(
2mϑ(1)

)
− ∆

ℓ20
cos

(
2mϑ(2) − δϕsc

)}
,

(3.1)
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where δϕsc is the Josephson phase between the two SCs,
and i = 1, 2 describes the edges near the left/right
SC, respectively. This system has symmetries includ-
ing an overall Z2m quasiparticle parity and charge con-
jugation ϑ(i) → −ϑ(i), φ(i) → φ(i). The allowed
tunneling between two FTSCs are parafermion tunnel-
ing (charge e/m), Cooper pair tunneling (charge 2e),
and backscattering (charge 0). There are additional
symmetry-allowed terms involving tunneling of a group
of parafermions, e.g. Majorana fermion tunneling can be
understood as tunneling of a group of m parafermions.
Here we study the simplest terms as higher-order terms
are exponentially suppressed.

The parafermion tunneling Hamiltonian can be written
as,

HP = ΓPα
(1)†
0 α

(2)
0 + h.c.

= ΓP e
i
(
ϑ
(1)
0 −ϑ

(2)
0 − δϕsc

2m

)
+ h.c.,

(3.2)

where ΓP is the parafermion tunneling amplitude and
for ν = 1, ΓP represents Majorana tunneling. For clarity,
we will denote the Majorana tunneling amplitude as ΓM .

Similarly, the Cooper pair tunneling can be written as,

H∆ = Γ∆e
2mi

(
ϑ
(1)
0 −ϑ

(2)
0 − δϕsc

2m

)
+ h.c. (3.3)

We can see the Josephson phase δϕsc is 4mπ-periodic.
Another process consistent with symmetry is the tun-

neling of “half” of a quasiparticle-quasihole pair, which
we call backscattering,

HB = ΓBe
i
(
φ

(1)
0 −φ

(2)
0

)
+ h.c. (3.4)

This tunneling term tunnels 0 charge; hence, it does not
couple to the electromagnetic field and does not con-
tribute to tunneling current.
To see the behaviors of these tunneling terms, we con-

sider energies below the superconducting gap, |E| ≪ ∆
[25], where the system can be described by an effec-
tive Hamiltonian including all of the tunneling processes.
The effective Hamiltonian can then be written in the

basis where exp
(
iφ

(i)
0

)
are diagonal, with eigenvalues

exp
(
in(i)π/m

)
, where n(i) can be thought as the eigen-

value of the number operator n(i) ∈ Z2m. In this basis,

the parafermion operator eiϑ
(i)
0 shifts n(i) by one and the

Cooper pair tunneling term shifts n(i) by 2m, which is
equivalent to not changing n(i). The effective Hamilto-
nian is,

Heff =

2m−1∑
n(1),n(2)=0

{
2|ΓB | cos

[
(n(1) − n(2))π

m

]
+ 2|Γ∆| cos(δϕsc)

} ∣∣∣n(1), n(2)〉〈n(1), n(2)∣∣∣
+ |ΓP |

(
e−i δϕsc

2m

∣∣∣n(1) + 1, n(2) − 1
〉〈
n(1), n(2)

∣∣∣+ ei
δϕsc
2m

∣∣∣n(1), n(2)〉〈n(1) + 1, n(2) − 1
∣∣∣) .

(3.5)

Since n(i) ∈ Z2m and all tunneling terms conserve the to-
tal quasiparticle parity n(1) + n(2) mod 2m, this Hamil-
tonian can be block diagonalized. In the following, we
only consider the effective Hamiltonian in the sector
where the total quasiparticle parity is zero. Sectors with
nonzero quasiparticle parity have spectra that differ by
multiples of 2π. The wavefunction Ψr(δϕsc) satisfies a
Harper-like equation [26],

|ΓP |
[
e−i δϕsc

2m Ψr+1(δϕsc) + ei
δϕsc
2m Ψr−1 (δϕsc)

]
+
[
2|ΓB | cos

(
2π

r

m

)
+ 2|Γ∆| cos(δϕsc)

]
Ψr(δϕsc)

= Er(δϕsc)Ψr (δϕsc) ,

(3.6)

with 1 ≤ r ≤ 2m. The eigenstates satisfy the periodic

boundary condition Ψr

(
δϕsc

2m + 2πk
)
= Ψr

(
δϕsc

2m

)
with

k ∈ Z.
We can see the effect of each tunneling term from

Eq. (3.5) and Fig. 2. The Cooper pair tunneling

term is proportional to identity; hence it only provides a
δϕsc-dependent shift to all states. With no backscat-
tering, the eigenstates satisfy the boundary condition
Ψr(δϕsc + 2π) = Ψr+1(δϕsc) and the Hamiltonian is
invariant under Z2m transformation n(1) → n(1) + 1
mod 2m. The backscattering term explicitly breaks the
Z2m down to Z2, corresponding to n(1) → n(1) + m
mod 2m. The eigenstates now satisfy a different bound-
ary condition, Ψr(δϕsc + 2π) = Ψr+m(δϕsc).

These effects demonstrate that the Zm part of the sym-
metry is inherently different from the Z2 fermion parity.
The unbroken Z2 represents the topologically protected
fermion parity and can only be broken by nonlocal terms

like tunneling of parafermion across the FTSC, α†
−Lα0,

whereas the Zm symmetry can be broken by local tunnel-
ing terms like tunneling of a quasiparticle and a quasihole

ψ
(1)†
R,qpψ

(1)
L,qpψ

(2)
R,qpψ

(2)†
L,qp + h.c. ∼ cos[2(φ

(1)
0 − φ

(2)
0 )]. This

suggests that in systems with backscattering, one cannot
distinguish PZM from MZM tunneling from the period-

3
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FIG. 2: Spectra of tunneling effective Hamiltonian as
functions of the Josephson phase δϕsc with (a) only
parafermion tunneling, (b) parafermion and Cooper pair
tunneling, (c) parafermion tunneling and backscattering
and (d) backscattering, parafermion, and Cooper pair
tunneling. Ground states at each δϕsc are indicated by
thin lines. Dashed thin lines can be mapped to solid
thin lines by a symmetry transformation. In (c) and
(d), excited states are indicated with bold lines.

icity of energy-phase relation since both of them have Z2

symmetry.

IV. TUNNELING CURRENTS

The difference between the Z2 and Zm parts of the
quasiparticle parity can also be seen in the current-phase
relation where the Josephson phase is 4mπ-periodic with-
out the backscattering term and 4π-periodic with it, as
shown in Fig. 3. From our effective Hamiltonian, the
tunneling current operator is given by the commutator
between tunneling Hamiltonian and the total number op-

erator N̂ (2) =
(
φ
(2)
−L − φ

(2)
0

)
/π,

Î(δϕsc) =e
dN̂ (2)

dt
= ie

[
Heff, N̂

(2)
]

=
2e

m
|ΓP | sin

(
ϑ
(1)
0 − ϑ

(2)
0 − δϕsc

2m

)
(4.1)

+ 4e|Γ∆| sin
[
2m

(
ϑ
(1)
0 − ϑ

(2)
0

)
− δϕsc

]
.

As an operator, this definition is equivalent to Î(δϕsc) =

2e dHeff

dδϕsc
. The tunneling current for each eigenstate |Ψr⟩
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FIG. 3: Single-channel current-phase relations Ir(δϕsc)
with ν = 1/3 for (a) only parafermion tunneling, (b)
parafermion and Cooper pair tunneling, (c) parafermion
tunneling and backscattering, (d) backscattering,
parafermion, and Cooper pair tunneling. Currents
associated with additional parafermion states that are
not shown are related to the currents in this figure by
symmetry transformations of the eigenstates,
represented by 2π shifts in the Josephson phase. The
currents have the same color as the corresponding
energy states in Fig. 2.

of Eq. (3.5) is then given by,

Ir(δϕsc) =
⟨Ψr|Î|Ψr⟩
⟨Ψr|Ψr⟩

= 2e
dEr

dδϕsc
. (4.2)

We can see from Fig. 3(c,d) that the backscattering term
explicitly breaks the Zm symmetry and results in a 4π
periodicity in the Josephson current.
If no terms violate the total quasiparticle parity at the

junction, e.g. terms proportional to α
(1)†
L α

(1)
0 , there will

be no transitions between different channels of the tun-
neling current. However, at finite temperature, thermal
excitations can break fermion parity where the thermal
averaged current is,

〈
Î(δϕsc)

〉
β
=

tr
(
e−βHeff Î

)
tr e−βHeff

, (4.3)

at inverse temperature β = 1/T . For ν = 1 with
|Γ∆| = |ΓB | = 0, Eq. (4.3) reduces to the known re-
sult in Ref. [27, 28]. In the thermally-averaged current-
phase relation Eq. (4.3), each of the tunneling terms has
different contributions. The thermally-averaged current-
phase relation for parafermion and Majorana fermion
tunneling are shown in Fig. 4(a,b). Both parafermion
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and Majorana fermion terms exhibit a zig-zag pattern
with a slope proportional to β whereas the Cooper pair
tunneling term has a sine-wave contribution. There
is a difference in the relative amplitude between Ma-
jorana fermion/parafermion tunneling and Cooper pair
tunneling contribution in Eq. (4.1). Backscattering does
not contribute to the shape of the thermally-averaged
current. All thermally-averaged currents exhibit 2π-
periodicity due to the contributions from states with dif-
ferent quasiparticle parity.

The fractional Josephson effect can be detected at fi-
nite temperatures if one is capable of projecting into indi-
vidual states. We can define the projected current using
a projection operator P̂r in the definition of trace in Eq.
(4.3),

⟨Ir(δϕsc)⟩β =
tr
(
e−βHeff P̂r Î

)
tr
(
e−βHeff P̂r

) . (4.4)

These projection operators P̂r are generalizations of the
fermion parity projection operators P̂± = [1± (−1)F ]/2,
and r depends on the parity symmetry of the system, i.e.
it is± if there is finite backscattering and ranges from 1 to
2m otherwise. The projection operators can be obtained
by a linear combination of powers of the clock matrix
σ (see Appendix D for details). In experiments, these
projections can be realized by fixing the charge differ-
ence between the two FTSCs, represented by n(1) − n(2)

mod 2m in Eq. (3.5). If there is no backscattering, the
projected currents are equivalent to the single-channel
currents in Eq. (4.2), similar to the ν = 1 case in Fig.
4(c). When there is backscattering, as in Fig. 4(d), the
parafermion tunneling adds a 4π-periodic contribution to
the current with the amplitude that scales as a power-
law of inverse temperature β. This behavior is unique to
parafermion tunneling, and therefore, is a fingerprint of
PZMs.

V. DISCUSSION

We have presented a model for FTSC consisting of
two edge states from a ν = 1/m FQH system prox-
imity coupled by an s-wave superconductor and iden-
tified a PZM at one end of the FTSC. We have con-
structed an effective Hamiltonian and shown the roles
played by parafermion tunneling, Cooper pair tunneling,
and backscattering by identifying the symmetry of the
ground states and Josephson periodicity in different tun-
neling currents. We showed that for a Z2m FTSC, only
the Z2 part of the symmetry is topologically protected
while the Zm part can be explicitly broken by local tun-
neling terms like tunneling of a quasiparticle and a quasi-
hole. We proposed using a projected thermally-averaged
current to detect parafermion tunneling, which has a 4π-
periodic fractional Josephson effect, in various supercon-
ducting qubit junctions [29–31]. We have also illustrated

0 π 2π 3π 4π
δφsc

−1.0

0

1.0

〈Î
(δ
φ
sc

)〉 β
/|Γ

M
|

|Γ∆| = 0.05|ΓM |, |ΓB| = 0.1|ΓM |

(a)

0 π 2π 3π 4π
δφsc

−0.1

0

0.1

〈Î
(δ
φ
sc

)〉 β
/|Γ

P
|

|Γ∆| = 0.05|ΓP |, |ΓB| = 0.1|ΓP |

(b)

0 π 2π 3π 4π
δφsc

−1.0

0

1.0

〈I
+

(δ
φ
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)〉 β
/|Γ

M
|

|Γ∆| = 0.05|ΓM |, |ΓB| = 0.1|ΓM |

(c)

0 π 2π 3π 4π
δφsc

−0.2

0

0.2

〈I
+

(δ
φ
sc

)〉 β
/|Γ

P
|

|Γ∆| = 0.05|ΓP |, |ΓB| = 0.1|ΓP |

(d)

FIG. 4: Thermal average of the current-phase relation
with all tunneling terms for different values of β for (a)
ν = 1 and (b) ν = 1/3. Projected thermal average of
the current-phase relation with all tunneling terms for
different values of β for (c) ν = 1 and (d) ν = 1/3.
β = 0.01 (blue), 0.1 (orange), 1 (green) in units of

|ΓM |−1
in (a,c) and |ΓP |−1

in (b,d).

the different behaviors in junctions of FTSCs between
the ν = 1 and the ν = 1/3 cases respectively.
Although the results we presented hold for general val-

ues of the tunneling amplitudes, the relative strength
of the tunneling terms is important for experimental
detection of the fractional Josephson effect, i.e., the
parafermion tunneling term should be larger than the
Cooper pair tunneling and the backscattering term. For
a Josephson junction with gap distance l, the backscat-
tering amplitude is expected to scale as ΓB ∼ e−l/ℓ0 .
The parafermion and Cooper pair tunneling amplitude
are expected to scale as ΓP , Γ∆ ∼ e−l/ξ. As a real-
istic example, we can consider niobium nitride, which
under a magnetic field of ∼6 T where ν = 1/3 has been
shown to arise in graphene-based structures [16, 17], has
a larger coherence length (∼50 nm) than the magnetic
length (∼10 nm). Hence, we expect the backscattering to
be much weaker than both Cooper pair and parafermion
tunneling. We expect the Cooper pairing amplitude to
be much smaller than the parafermion tunneling because
the tunneling of multiple charges is suppressed through
an FQH background. The effects described in this let-
ter should therefore be observable in experiments. Addi-
tional screening layers may also be beneficial for entering
the regime where parafermion tunneling dominates.
In this letter, we assumed an absence of disorder in

the FQH background. For FQH background with disor-
der, the result would depend on details of the platform,
and edge reconstruction would lead to a discrepancy be-
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tween theory and experiment. For spin-unpolarized FQH
background, there are additional effects from spin-charge
separation but such a system is difficult to realize in a
graphene-based device due to its untunable g-factor. In
such a platform the spin up and down branches of the
edge states are spatially separated due to the sizable Zee-
man interaction, unlike in GaAs heterostructures where
the g-factor can be tuned.

Our results can be generalized to FTSCs with FQH
backgrounds at different filling fractions. For clean,
spin-polarized FQH systems in the Jain sequence [32],
the proximity effect on the spatially outermost edge is
stronger than that on the inner edges [18]. We expect
to see only the behavior corresponding to the outermost
edge. For example, with ν = 2/5 FQH background, the
thermal-averaged current-phase relations should be sim-
ilar to ν = 1/3 in Fig. 4 (b,d).
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Appendix A: Review of PZM in the N-state
quantum clock model

Here we review the N -state clock model [8] which can
host PZMs with an open boundary condition. The N -
state clock model is a ZN generalization of the Ising spin
chain defined on a one-dimensional lattice with L sites,

Hclock = −
L−1∑
j=1

(
σ†
jσj+1 + h.c.

)
− λ

L∑
j=1

(
τ †j + τj

)
,

(A1)

where λ > 0 is a coupling constant; σ and τ are the
“clock” and “shift” operators [8]. These operators satisfy,

σN
j = τNj = 1, σ†

j = σN−1
j , τ †j = τN−1

j ,

σjτj = ωτjσj ,
(A2)

where ω ≡ e2πi/N . In the representation where σj is
diagonalized, σj and τj have the following matrix repre-
sentation,

σj =


1
ω
ω2

. . .

ωN−1

, τj =

0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

0 0 0 · · · 1 0

.
(A3)

With the Fradkin-Kadanoff transformation [8], the
clock model Hamiltonian can be written in terms of

parafermion operators αk,

α2j−1 = σj
∏
i<j

τj , α2j = −eiπ/Nτiσj
∏
i<j

τi. (A4)

These parafermion operators satisfy the parafermion al-
gebra,

αN
k = 1, α†

k = αN−1
k ,

αkαk′ = ei
2π
N sgn(k−k′)αk′αk,

(A5)

and the clock model Hamiltonian in the parafermion ba-
sis writes,

Hclock =

L−1∑
j=1

(
e−i π

N α†
2jα2j+1 + h.c.

)

+ λ

L∑
j=1

(
ei

π
N α†

2j−1α2j + h.c.
)
.

(A6)

The clock model reduces to the Kitaev chain [24] and
the parafermion operators become Majorana fermion op-
erators when N = 2. Similar to the Kitaev chain,
when λ ≪ 1, the first term dominates and couples the
parafermions on the same site. This leads to a unique
ground state and a gapped spectrum, i.e. a trivial phase.
For λ ≫ 1, the second term dominates and the chain
now supports two PZMs α1 and α2L at the ends. There

are N distinct eigenvalues for α†
2Lα1 (that does not affect

energy); hence, there are N degenerate ground states in
this topological phase.
A parafermion zero mode operator commutes with the

Hamiltonian, and has a non-trivial commutation relation

with a charge operator P ≡ ∏
j τ

†
j , which is a ZN gener-

alization of the fermion parity (−1)F [33],

[Hclock, α] = 0, Pα = ωαP. (A7)

P is the symmetry generator of the ZN symmetry σj →
ωσj for all j representing “turning the clocks for all sites”
and it satisfies PN = 1.

Appendix B: Bosonization and Klein Factors

The electron and quasiparticle operators in FTSC i on
the top/bottom edge (R/L) can be written as bosonic
fields using the standard (1+1)-D bosonization proce-
dure,

ψR ∼ F (i)eimϕ
(i)
R , ψL ∼ F (i)†e−imϕ

(i)
L ,

ψqp,R ∼ F (i)
qp e

iϕ
(i)
R , ψqp,L ∼ F (i)†

qp e−iϕ
(i)
L ,

(B1)

where F (i) and F
(i)
qp are Klein factors for electrons and

quasiparticles to keep operators’ commutation relation

6



on different FTSCs consistent. The bosonic fields satisfy
the commutation relations,

[
ϕR/L(x), ϕR/L(x

′)
]
= ±i π

m
sgn(x− x′),

[ϕL(x), ϕR(x
′)] = i

π

m
,

(B2)

and the Klein factors satisfy,{
F (i)†, F (j)

}
= 2δij ,{

F (i)†, F (j)†
}
=

{
F (i), F (j)

}
= 0,

F (i)
qp F

(j)
qp = ei

π
m sgn(i−j)F (j)

qp F
(i)
qp ,

F (i)
qp F

(j)†
qp = ei

π
mF (j)†

qp F (i)
qp ,

(B3)

The quasiparticle Klein factors and the electron Kelin

factors are related by
(
F

(i)
qp

)m

= F (i). Since all of

the Klein factors are unitary, F (i)†F (i) = F (i)F (i)† =

F
(i)†
qp F

(i)
qp = F

(i)
qp F

(i)†
qp = 1, they will not affect any physi-

cal observables in the main text. However, they play an
important role in parafermion braiding.

Appendix C: Kosterlitz renormalization group for
sine-Gordon theory

In this section, we aim to present a detailed calculation
of the RG flow. The Lagrangian of the FTSC is,

L =
m

2πK
(∂µϑ)

2
+

∆

ℓ20
cos(2mϑ). (C1)

Rescaling the ϑ → ϑ′ =
√

m
πKϑ, we obtain the sine-

Gordon Lagrangian,

L =
1

2
(∂µϑ)

2
+

∆

ℓ20
cos(βϑ), (C2)

with β = 2
√
mπK. In the vicinity of the critical point,

the proximity gap ∆ and the distance from the Luttinger
parameter to the critical point x ≡ 2−mK follow Koster-
litz RG equations [20, 21],

d∆

dl
= x∆+ ...,

dx

dl
= 128m2π5∆2 + ... (C3)

A rescaling of ∆ → ∆′ = 8
√
2mπ5/2∆ could eliminate

the coefficient in RG flow of x. With a repulsive Coulomb
interaction U > 0 and a Luttinger parameter K, the
critical proximity gap ∆c needed for the system to be in
the superconducting phase is,

∆c ≃
mK − 2

8
√
2mπ5/2

(C4)

The actual proximity gap is proportional to ∆ multiplied
by a transparency factor determined by how well the su-
perconductor couples to the edge states of the quantum
Hall fluid.

x

Δ'

ν=1ν=1/3

FIG. 5: RG flow for x and ∆′. The orange line
∆′

c = −x is the locus of the phase transition between
the proximity-induced superconducting phase (∆′ > −x
and the non-superconducting phase. For a given value
of K > Kc there is a given (negative) value of x. At
fixed x there will be a phase transition to the
superconducting state given in Eq. (C4). The green
lines represent values of x without any interaction,
which means that for ν = 1 there is always a proximity
effect whereas for ν = 1/3 a critical ∆c is needed for the
system to be superconducting. This estimate is
accurate only for K close to Kc = 2/m.

Appendix D: Projection Operators

Here we present the projection operators P̂r in terms
of clock model matrix σ and ω ≡ eiπ/3,

P̂1 =
1

6

(
1 − ω2σ − ωσ2 − σ3 + ω2σ4 + ωσ5

)
,

P̂2 =
1

6

(
1 − ωσ + ω2σ2 + σ3 − ωσ4 + ω2σ5

)
,

P̂3 =
1

6

(
1 − σ + σ2 − σ3 + σ4 − σ5

)
,

P̂4 =
1

6

(
1 + ω2σ − ωσ2 + σ3 + ω2σ4 − ωσ5

)
,

P̂5 =
1

6

(
1 + ωσ + ω2σ2 − σ3 − ωσ4 − ω2σ5

)
,

P̂6 =
1

6

(
1 + σ + σ2 + σ3 + σ4 + σ5

)
,

(D1)

where r represents the eigenvalue of n(1), which fixes the
charge difference between two FTSCs n(1) − n(2) for a
fixed total quasiparticle parity n(1) + n(2). For systems
with finite backscattering, the projection operators be-
come P̂± = 1

2

(
1 ± σ3

)
.
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