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The Random Language Model (De Giuli 2019) [1] is an ensemble of stochastic context-free gram-
mars, quantifying the syntax of human and computer languages. The model suggests a simple
picture of first language learning as a type of annealing in the vast space of potential languages. In
its simplest formulation, it implies a single continuous transition to grammatical syntax, at which
the symmetry among potential words and categories is spontaneously broken. Here this picture is
scrutinized by considering its robustness against extensions of the original model, and trajectories
through parameter space different from those originally considered. It is shown here that (i) the
scenario is robust to explicit symmetry breaking, an inevitable component of learning in the real
world; and (ii) the transition to grammatical syntax can be encountered by fixing the deep (hidden)
structure while varying the surface (observable) properties. It is also argued that the transition
becomes a sharp thermodynamic transition in an idealized limit. Moreover, comparison with hu-
man data on the clustering coefficient of syntax networks suggests that the observed transition is
equivalent to that normally experienced by children at age 24 months. The results are discussed in
light of theory of first-language acquisition in linguistics, and recent successes in machine learning.

Language is a way to convey complex ideas, instruc-
tions, and structures through sequences. While ubiqui-
tous in everyday life, it also has a central role in com-
puter science and molecular biology. One can ask if these
disparate applications of language have any common fea-
tures. The answer, apparently, is positive: the formalism
of generative grammar, due to Post and Chomsky [2, 3],
though initially developed for human language, was im-
mediately applied to computer languages, where it has
remained important [4], and has also been applied to the
molecular languages spoken by the cell [5, 6]. Other id-
iosyncratic applications highlight the flexibility of the ap-
proach [7].

Generative grammar models the syntax of language by
a set of rules that, upon repeated application, yield ‘gram-
matical’ sentences. In this framework, for any grammat-
ical sentence, there is a latent ‘derivation’ structure that
encodes the syntax of that sentence; some examples are
shown in Fig. 1.

In the computer science and linguistics literature, re-
search on generative grammars focuses on classifications
and algorithms: classifications of grammars based on the
complexity of the rules, corresponding classifications on
the types of simple computers (automata) that can read
languages, and algorithms to parse text. Many results
exist on the time and resource cost of parsing [4]. Yet, if
we admit that languages are always used by systems em-
bedded in the physical world, then new questions arise:
how much energy does it take to parse a grammar of
a given complexity [8]? How does a child navigate the
space of all potential languages to hone in on the one
taught to her? More broadly, one can ask, in the spirit
of statistical physics, whether large grammars will show
universality of the same type familiar from equilibrium
statistical mechanics.

As an inroad to these questions, in Ref.[1] the senior
author proposed a simple ensemble of context-free gram-
mars, the class of grammars most relevant to human and
computer language. In its stochastic version, a context-
free grammar assigns a probability (or more generally a
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FIG. 1. Illustrative derivation trees for (a) simple English
sentence, and (b) RNA secondary structure (after [5]). The
latter is a derivation of the sequence ‘gacuaagcugaguc’ and
shows its folded structure. Terminal symbols are encircled.
Figure reproduced from [1].

weight) to each rule. Ref.[1] explored the information-
theoretic properties of grammars as functions of the vari-
ance of rule weights, the number of hidden categories, and
the number of words.

The main result of Ref.[1] is that the entropy of text
produced by a context-free grammar depends strongly
on the variance of the weights, such that two regimes
are seen: a simple one in which, despite the presence
of stochastic rules, sentences are nearly indistinguishable
from uniform random noise; and a complex one in which
sentences convey information. The transition between
these regimes could be understood as a competition be-
tween Boltzmann entropy and an energy-like quantity.

This work left many questions open:
(i) is the schematic learning scenario of Ref.[1] robust

to inevitable complications of real-world human language
learning, such as explicit symmetry breaking?

(ii) is the transition shown in Ref.[1] a true thermody-
namic phase transition in an appropriate thermodynamic
limit?

(iii) can the RLM be solved analytically?
(iv) what are the energy costs of physical systems that
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use CFGs to produce text?
In this work we address (i) and (ii) and comment on

(iii); (iv) will be addressed elsewhere. We first show how
previous theory implies that the RLM transition can be
reached by increasing the heterogeneity of surface rules,
and confirm this numerically. Then we consider the learn-
ing problem and motivate the RLM with a bias. Simulat-
ing this, we see that the RLM transition is preserved, but
shifted due to the bias. A simple theory can rationalize
the initial onset of nontrivial sentence entropy. To com-
pare with human data in Ref.[9] we measure the clustering
coefficient of a sentence graph, constructed from sampled
sentences. This clustering is small until the RLM transi-
tion, where it begins to grow. Such a growth in clustering
is also observed in syntactic networks made from human
data, and supports that the RLM transition is equiva-
lent to that typically experienced by children around 24
months. Finally, we discuss these results in the light of
linguistic theory on first language acquisition.

I. BRIEF REVIEW OF THE RANDOM
LANGUAGE MODEL

To establish notation, here we briefly review the RLM.
Without loss of generality CFGs are assumed to be in
Chomsky normal form, so that rules either take one hid-
den symbol a to two hidden symbols b, c, or one hidden
symbol a to an observable one, B. These are quantified
by weights Mabc and OaB , respectively. For a sentence
oj , j = 1, . . . , ℓ with derivation σj , j = 1, . . . , 2ℓ − 1 on
the tree T , define πabc(σ) as the (unnormalized) usage
frequency of rule a → bc and ρaB(σ, o) as the (unnor-
malized) usage frequency of a → B. Let the number
of hidden symbols be N , and the number of observable
symbols be T . Then consider the energy function

E(σ, o;M,O) = −
∑
a,b,c

πabc logMabc −
∑
a,B

ρaB logOaB .

(1)

The Boltzmann weight e−βE counts derivations with a
multiplicative weight (Mabc)

β for each usage of the inte-
rior rule a → bc, and weight (OaB)

β for each usage of the
surface rule a → B. We furthermore assign a weight to
the tree itself: if each hidden node gets a weight q and
each surface node gets a weight p, then a rooted tree with
ℓ leaves gets a weight qℓ−1pℓ. The relative probability p/q
controls the size of trees; as in Ref.[1] we fix q = 1 − p
and set p = 1/2 + ϵ where ϵ ≪ 1 to get large trees.

Given the grammar, the probability of a derivation is
then

P(T , σ, o|M,O) =
1

Z
qℓ−1pℓe−βE (2)

Note that although we write the weight of a derivation
in a Boltzmann-like form, the actual form of the weight is
simply the conventional definition of a stochastic context-
free grammar.

The RLM is an ensemble of CFGs. In Ref.[1] it was
argued that a generic model will have lognormally dis-
tributed weights, so that the probability of a grammar
is

PG(M,O) ≡ Z−1
G J e−ϵdsde−ϵsss (3)

where sd and ss are defined by

sd =
1

N3

∑
a,b,c

log2
[
Mabc

M

]
, ss =

1

NT

∑
a,B

log2
[
OaB

O

]
(4)

and J = e−
∑

a,b,c logMabc−
∑

a,B logOaB . Here M = 1/N2

and O = 1/T . It is straightforward to show that ϵd and
ϵs satisfy

sd = (2ϵ̃d)
−1, ss = (2ϵ̃s)

−1. (5)

where · denotes a grammar average and ϵ̃d = ϵd/N
3,

ϵ̃s = ϵs/(NT ).
Two arguments were given in Ref.[1] for the lognor-

mal distribution: first, since languages must be compre-
hensible to a variety of speakers at any moment, they
cannot evolve rapidly. If they evolve slowly under inde-
pendent multiplicative adjustments to the weights, then a
lognormal distribution follows by the multiplicative ver-
sion of the central limit theorem [10]. Indeed the log-
normal distribution is ubiquitous for the distributions of
positive random variables, such as transition weights, in
real-world systems [11]. In this interpretation, ϵd and ϵs
are general control parameters for the ensemble.

A second independent argument is to assume that sd
and ss are the relevant quantities to characterize gram-
mars in the course of learning; then a lognormal follows
by a maximum entropy argument. The quantities sd and
ss could be motivated a priori as appropriate measures of
heterogeneity, or a posteriori by the observation that they
control the Shannon entropy of sequences (along with N
and T ). In this interpretation, ϵd and ϵs are Lagrange
multipliers that enforce the expected values of sd and
ss.

Let us show how β can be scaled out of the problem.
Consider the grammar and derivation average of a generic
observable of a derivation O(σ, o):

O = 1
ZZG

∫
dMdO J(M,O) e−ϵdsd(M)e−ϵsss(O)

×
∑
σ,o

e−βE(σ,o;M,O)O(σ, o) (6)

Making a change of variable Mβ
abc = M ′

abc, O
β
aB = O′

aB
we get

O = 1
βN3+NT

1
ZZG

∫
dM ′dO′ J(M ′, O′) e

− ϵd
β2 s′d(M

′)

× e
− ϵs

β2 s′s(O
′)
∑
σ,o

e−E(σ,o;M,O)O(σ, o), (7)

where s′d(M), s′s(O) are defined as in (4) with the replace-

ment M → M
β
, O → O

β
. It follows that the parameters
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FIG. 2. Phase diagram of the RLM, in the replica-symmetric
approximation. Text is grammatical in the lower-left region,
demarcated approximately by ϵ̃s log T ≈ 1, ϵ̃d logN ≈ 1 (light
dotted). Three paths γj through the diagram are sketched: γ1
at fixed ϵ̃s, considered in [1]; γ2 with ϵ̃s = ϵ̃d, discussed below;
and γ3 at fixed ϵ̃d, also discussed below.

ϵd, ϵs, and β do not affect observables independently, but
only in the ratios ϵd/β

2 and ϵs/β
2, up to the other triv-

ial modifications. In particular, increasing temperature
is equivalent to increasing ϵd and ϵs. For this reason,
in Ref.[1] these parameters were called deep and surface
temperatures, respectively. From now on we set β = 1.
The model (3) was called in Ref.[1] the Random Lan-

guage Model (RLM). The properties of the sentences
as a function of grammar heterogeneity were studied in
Refs.[1, 12, 13]. The main result of Ref.[1] is that as ϵd
is lowered, there is a transition between two regimes at
ϵd ≈ N3 logα N where α = 1 or α = 2 depending on the
quantity considered. Theory in Refs.[12, 13] predicts this
scaling (with α = 1) and also predicts that the transition
can be reached by fixing ϵd but lowering ϵs.
Theory for the RLM was developed in Refs.[12, 13],

with final results obtained in the replica-symmetric ap-
proximation. For a text of m sentences and total length
ℓ, the result of Refs.[12, 13] is that the Boltzmann entropy
of configurations is

SRS = (ℓ−m) log(gN2/h) + ℓ log(gTh)

− ℓ

4ϵ̃s
− ℓ−m

4ϵ̃d
+ Sℓ,m, (8)

where Sℓ,m is a combinatorial coefficient independent of
the other parameters, and g and h are couplings that
control the size of trees. In the considered limit of large
trees g = h ≈ 1/

√
8.

Now, by a standard argument [14] the Boltzmann en-
tropy of configurations is equal to the Shannon entropy
of the probability distribution over configurations. This
latter quantity can be written as the entropy of forests

at given m and ℓ, plus the conditional entropy of hidden
configurations on those trees, plus the conditional entropy
of leaves on those configurations. Each of these entropies
can be written as the corresponding rate multiplied by
the number of symbols. There are ℓ observable symbols
and 2ℓ − m hidden symbols, but all roots are set to the
start symbol. Thus

SRS = Sforest(ℓ,m) + (2ℓ− 2m)Hd + ℓHs|d, (9)

where Hd is the entropy rate of hidden symbols and Hs|d
is the conditional entropy rate of observable symbols,
given the hidden ones. These configurational entropies
are trivial at ϵ̃d, ϵ̃s = ∞ so that we can write

SRS(ϵ̃d = ∞, ϵ̃s = ∞)

= (ℓ−m) log(gN2/h) + ℓ log(gTh) + Sℓ,m

= Sforest(ℓ,m) + (2ℓ− 2m) logN + ℓ log T

The factors of logN and log T cancel from this equality,
as they must. As a result we obtain Sforest(ℓ,m) and
finally

SRS = Sforest(ℓ,m) + (ℓ−m) log(N2) + ℓ log(T )

− ℓ

4ϵ̃s
− ℓ−m

4ϵ̃d
. (10)

Comparing with (9) and noting that this equation must
hold for all ℓ,m (with ℓ,m → ∞, ℓ/m finite ), we deduce

Hd = logN − 1

8ϵ̃d
, Hs|d = log T − 1

4ϵ̃s
, (11)

in the replica-symmetric approximation. Since these en-
tropies cannot be negative, they give lower bounds on the
validity of the replica-symmetric approximation (in ϵ̃d, ϵ̃s
space). At small enough ϵ̃d or ϵ̃s, the approximations used
to derive (11) must break down. It also follows from this
that the normalized entropies Hd/ logN and Hs|d/ log T
should collapse with ϵ̃d logN and ϵ̃s log T , respectively.
Note that Ref.[1] measured Hs, not Hs|d. In gen-

eral the Bayes rule for conditional entropy is Hs|d =
Hs − Hd + Hd|s. When ϵ̃s is small, then knowing the
observable symbols also fixes their POS tags, so Hd|s ≈ 0
and Hs(ϵ̃s ≪ 1) ≈ Hs − Hd. However when ϵ̃s is large,
then knowing the hidden symbol tells you nothing about
the observable symbol, so Hs|d ≈ Hs. Thus generally we
expect that as a function of ϵ̃s, Hs behaves similarly to
Hs|d.

We emphasize that although ϵd and ϵs play parallel
roles in the distribution, and in many aspects of theory,
they are distinct parameters with asymmetric control over
observables, since the hidden structure of trees affects
sentences but not vice-versa. Roughly speaking, we can
demarcate four regimes. To explain these, we use the
example of phrase structure, where observable symbols
are words and hidden symbols are abstract categories,
like noun phrase (NP), verb phrase (VP), verb (V), and
so on. In syntax trees, the hidden symbols that appear
just above the leaves are called part-of-speech (POS) tags
– symbols like verb, noun, adjective, and so on.
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FIG. 3. The RLM transition can be encountered by lowering the surface temperature ϵs. Curves are shown at T = 1000,
ϵ̃d ≈ 0.03, and indicated values of N ; (a) the surface entropy drops around ϵ̃s ≈ 1/ log T , while (b) the surface order parameter
P2 increases as ϵ̃s is lowered.

If ϵ̃d logN ≫ 1 while ϵ̃s log T ≪ 1, then sentences will
consistently match words with their POS tags, but there
will be no syntactic structure connecting the words to-
gether. Conversely if ϵ̃d logN ≪ 1 while ϵ̃s log T ≫ 1,
then sentences have structure, but the final observable
words are randomly assigned from POS categories. If
both of these parameter combinations are large, then sen-
tences lack all structure; while if both are small, then
sentence structure is complete. This phase diagram is
sketched in Fig.2, along with 3 paths through the space.

As a consequence, one can discuss learning by different
routes through (ϵ̃d, ϵ̃s) space (in addition to variations in
N and T which could also be considered). In particular,
theory predicts that the RLM transition can be probed
by fixing ϵ̃d and lowering ϵ̃s. We now show that this
prediction is verified by numerics.

A. The RLM transition is encountered by
increasing surface heterogeneity

We simulated the RLM with T = 1000 and ϵ̃d ≈ 0.03 at
various values of N and ϵ̃s. For each parameter value, 60
distinct grammars were constructed, and 200 sentences
were sampled for each grammar. The results for the
surface entropy are shown in Fig.3; as predicted by the-
ory, the entropy begins to drop from its trivial value at
ϵ̃s ≈ 1/ log T ≈ 0.1.

Since ϵ̃d is fixed as ϵ̃s varies, there is no variation in
the hidden parts of the derivations: the quantities shown
in Ref.[1] to quantify the RLM transition, like the deep
entropy Hd and the order parameter Q2, are flat as ϵ̃s
varies. Instead the transition can be quantified by the
surface analog of the order parameter Q2. For a surface
rule a → B define

PaB(M,O) = ⟨δσα,a(Tδoα,B − 1)⟩, (12)

averaged over all surface vertices α and over all deriva-
tions. Here σα is the hidden symbol and oα the observable
one. P measures how the application of this rule differs
from a uniform distrbution. An Edwards-Anderson type

order parameter for surface structure is

P2 =
∑
a,B

P 2
aB , (13)

where is an average over grammars. This quantity is
shown in Fig.3b. As expected, P2 increases from a small
value at high ϵ̃s around the transition point.

II. LEARNING A CONTEXT-FREE GRAMMAR

Now we consider the learning problem. How does a
child actually learn the specific grammar of its environ-
ment?

Our goal is not to completely answer this question, but
simply to motivate why and how the symmetry of symbols
should be explicitly broken. As a simple model, we sup-
pose that the speaker utters sentences by drawing them
from a stochastic grammar, which we take to be context-
free. In a stochastic grammar, the weights quantify their
frequency of use, which, for learners, is a proxy for their
correctness. When all the weights are equal, nothing is
known, and the grammar samples uniform noise (‘bab-
bling’). In contrast, when the weights have a wide distri-
bution, the grammar is highly restrictive and the output
sentences are highly non-random.

The learning scenario suggested in Ref.[1] was quite
generic: suppose the child knows, possibly due to phys-
iological constraints, that she is learning a CFG. Ini-
tially she knows nothing of weights, so she starts at
ϵd = ϵs = ∞. Her initial speech will be uniform ran-
dom noise. Now, as she tries to mimic her caregivers, we
assume that she tunes the grammar weights. In doing
so the corresponding values of ϵs and ϵd, which could be
defined from (5), will inevitably decrease. Then, the pre-
diction of the RLM is that the entropy of her speech will
remain high for some time, until quite suddenly it begins
to decrease. At this point her speech begins to convey
information.

This scenario is quite schematic. Let us try to make it
more concrete.

Consider first an optimal learning scenario. She hears
sentences γ, with words oγj , j = 1, . . . , ℓγ , and wants to
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find the optimal grammar that produces them. It is nat-
ural to maximize the log-likelihood of the grammar, given
the data, given by

L (M,O; o) = logP(o|M,O), (14)

which is considered as a function of the grammar, with
fixed sentences {o}. We assume that the space of gram-
mars that she searches is the full set of possibilities, but
of course physiological constraints may also play a role.
The sentence probability is

P(o|M,O) =
∏
γ

∑
Tγ ,σ

γ
k

P(oγ , σγ ,Tγ |M,O) (15)

=
∏
γ

1

Z

∑
Tγ ,σ

γ
k

e−E(oγ ,σγ ,Tγ ;M,O)

︸ ︷︷ ︸
≡Z(oγ)

, (16)

where Z(oγ) is then a partition function restricted to the
given sentence oγ . In principle, she can estimate these
quantities by speaking: every sentence she speaks adds a
contribution to the denominator Z. If she feels that her
caregiver understood it, then she also adds a contribution
to the numerator Z(oγ).
Unfortunately computing these restricted partition

functions is difficult, both analytically, and for the child.
So we consider a simpler, more idealized scenario. She
keeps track of a lexicon

{tree,mama, toy, book, open, close, eat, sleep, up, down, . . .},

how many times she’s heard each word, and also the cat-
egories to which each word belongs

{noun, verb, adjective, . . .},

called part-of-speech (POS) tags.
She thus obtains an estimate ρ̃aB of the joint word &

POS frequency, ρaB . Then she maximizes the likelihood
of ρ̃,

L (M,O; ρ̃) = logP(ρ̃|M,O) (17)

= log
∑

{T ,σ,o}

δρ(o,σ),ρ̃P(T , σ, o|M,O) (18)

where ρ(o, σ)aB is the count of word B and POS tag a in
the text of total length ℓ, i.e.

ρ(o, σ)aB =

ℓ∑
j=1

δoj ,Bδσj ,a (19)

The Kronecker δ in (18) counts only texts with the right
number of each word and POS tag. We have

δρ(o,σ),ℓρ̃ =

N∏
a=1

T∏
B=1

δρ(o,σ)aB ,ρ̃aB
(20)

=
∏
a,B

∫ 2π

0

dλaB

2π
eiλa,B(ρ(o,σ)aB−ρ̃aB) (21)

≡
∫

Dλ ei
∑

a,B λa,B(
∑ℓ

j=1 δoj,Bδσj,a
−ρ̃aB) (22)

The energy depends on the words through the term

∑
a,B

ρaB logOaB =
∑
a,B

 ℓ∑
j=1

δoj ,Bδσj ,a

 logOaB (23)

which has the same dependence on the text and POS
tags. So we can write

L (M,O; ρ̃) = log
1

Z

∑
{T ,σ,o}

∫
Dλ e−iλ:ρ̃e−E(T ,σ,o|M,O(λ))

(24)

where

logO(λ)aB = logOaB + iλaB (25)

is a shifted surface grammar (in the complex plane). Note
however that when a saddle point is attained (as will be
the case for large texts), iλ will be real, so that the gram-
mar is real-valued as it must be.

Finally L becomes

L (M,O; ρ̃) = log
1

Z

∫
Dλ e−iλ:ρ̃Z(M,O(λ)), (26)

so the likelihood depends on a shifted grammar. If we can
evaluate this then we can derive the maximum-likelihood
learning strategy, under the given assumptions.

However L is evaluated, the natural learning strategy
on the grammars is simply to go in the gradient of in-
creasing likelihood:

dMabc

dt
= k

∂L

∂Mabc
(27)

dOaB

dt
= k

∂L

∂OaB
, (28)

where k is the learning rate.
Roughly speaking, L is a difference of (minus) free

energies: that of the RLM in the presence of a biased
grammar (to match the observed ρ̃), but subtracting off
the original RLM free energy. Thus the simple picture
of [1] is slightly modified: the learning scenario can be
viewed as a free energy descent, but only along the di-
rections that lower the free energy coupled to the correct
biased grammar; if a change in the grammar equally af-
fects Z(M,O(λ)) and Z(M,O), then it will cancel out of
L .

Let us try to understand (26) better. It involves the
RLM partition function for a biased O matrix. Note in
general that

∂ logZ

∂ logOaB
=

1

Z

∑
{T ,σ,o}

ρaB e−E = ⟨ρaB⟩. (29)

Now it is known that natural languages exhibit Zipf’s
law: the probability of a word decreases as a power law
of its rank. Thus ρaB will exhibit such behavior, and
by this computation, so should the dependence of logZ
on logOaB . Thus to understand Z(M,O(λ)) we should
simulate the RLM in the presence of a bias iλ, which we
take to have a Zipfian form. We consider this next.
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FIG. 4. The RLM transition is robust to the addition of a Zipfian surface bias. Curves are shown at T = 100, ϵ̃d ≈ 0.03, and
indicated values of bias strength h; (a) the surface entropy versus ϵ̃s; bias increases from left to right; (b) the surface entropy
versus an effective ϵ̃effs (ϵ̃s, h) (see text). The onset of nontrivial surface entropy occurs at approximately ϵ̃effs ≈ 1, but its
development is weaker at larger biases. In (c) the same data from (b) is shown as an approach to the trivial value Hs → log T ,
valid as ϵ̃s → ∞. All curves intersect approximately at ϵ̃s ≈ 1.
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FIG. 5. Example syntax forest (a), dependency graph (b), and directed sentence graph (c) obtained from human data. Note
that the word ‘fix’ appeared in the dependency graph of [9] but not in the syntax tree shown therein.

III. RLM WITH A BIAS

The learning scenario motivates considering the RLM
with a bias in the surface grammar. Consider

logO′
aB = logOaB + haB (30)

where h is the bias, and O is given the distribution from
the RLM. Then O′ has the distribution

P(O′) ∝
∏
a,B

1

OaB
e−ϵ̃s

∑
a,B log2(O′

aBe−haB /O)

∝
∏
a,B

1

O′
aB

e−ϵ̃s
∑

a,B log2(O′
aB/O)eϵ̃s

∑
a,B haB logO′

aB/O

In order to disentangle the effect of the bias from that of
ϵs, we take haB ∝ 1/ϵ̃s. As a Zipfian form, we consider

haB =
h

ϵ̃s

1

B
, (31)

where we arbitrarily order the words in decreasing rank.
The scalar h is the bias strength.

We simulated the RLM with Zipfian bias and a variety
of field strengths, for T = 100 and ϵ̃d ≈ 0.03. The result-
ing Hs is shown in Fig.6. The RLM transition is present
in all cases, but its position depends on the bias strength
h. A larger bias causes the transition to occur earlier (at
higher ϵ̃s). This is intuitively clear, as the RLM tran-
sition was shown to induce the breaking of symmetries
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among symbols [1]; since the bias breaks this symmetry
explicitly, the transition occurs at higher ϵ̃s.
Inspecting Fig.6a, it appears as though the data for dif-

ferent magnitudes of h (‘bias strengths’) should collapse
with some rescaled version of ϵs. This suggests that a
simple model may capture the dependence on the bias.
The transition discussed in [1, 12, 13] is controlled by the
heterogeneity of the grammar, measured in the original
model by (4), which satisfy (5). Thus we can see how ss
is renormalized by the bias. We evaluate

ss(h) ≡
1

NT

∑
a,B

log2
[
OaBehaB

O

]
(32)

=
1

NT

∑
a,B

∫
dOaB

OaB

√
π/ϵ̃s

log2
[
OaBe

haB

O

]
e
−ϵ̃s log2

[
OaB
O

]

=
1

NT

∑
a,B

∫
doaB√
π/ϵ̃s

(
oaB + haB

)2
e−ϵ̃so

2
aB

=
1

NT

∑
a,B

[
1

2ϵ̃s
+ (haB)

2

]
=

1

2ϵ̃s
+ h2 (33)

We can define a renormalized ϵ̃s by

1

2ϵ̃effs

=
1

2ϵ̃s
+ h2 (34)

As shown in Figs. 3b, this approximately collapses the
initial decay of Hs from its trivial value. Looking at this
initial decay on a logarithmic scale (Fig 3c), all curves
appear to cross at a common point ϵ̃effs ≈ 1.
We also simulated the RLM with a staggered field of

the form haB = h/ϵ̃s × gB , where gB takes only three

values 1,
√
1/T ,and 1/T , for the first, second, and third

third of the symbols, respectively. The form and scaling is
chosen to have a similar overall amplitude as the Zipfian
bias. We found that for the same values of h as above,
there was no effect of the bias on Hs. We return to this
later.

IV. COMPARISON WITH HUMAN DATA

How does the RLM compare to first language acquisi-
tion in children?
In previous work, syntactic networks were built from

data of children’s utterances between 22 and 32 months
of age [9], with data from the Peters corpora [15, 16]. The
networks were built from dependency structures, with a
mix of automated and manual procedures. These struc-
tures are graphs that connect observable symbols, related
to but distinct from phrase structure trees. Their aim
is to represent, in a linear fashion, the dominant rela-
tionships between words; for example subject-verb, or
modifier-head. In Ref.[9], a variety of network-theoretic
quantities showed a clear transition around 24 months of
age; for example, both the word degree (the number of

other words used with a given word) and the clustering
coefficient (measuring the extent to which words are clus-
tered) increase dramatically at this transition. Quanti-
tatively, the clustering is found to be less than 0.01 before
age 22.5 months, and above 0.08 after 24 months. The
maximal value shown is 0.2, at age 26.5 months.

If the RLM is to apply to first language acquisition,
then we should be able to see similar behaviors in these
quantities, in appropriate graphs constructed from syn-
tax trees. However, the latter are not equivalent to the
dependency graphs. In the setting of the RLM where
words have no semantic meaning, there is no unambigu-
ous way to create dependency structures. Therefore we
build ‘sentence graphs’ as follows: we take the observed
sentences (o1, o2, . . . , oj , . . .) and add a link to the graph
from B to A if o(j) = B, o(j+1) = A, for some observable
symbols A and B and index j. This directed graph in-
cludes many true dependency relations, but also spurious
ones that would be absent in a more complete analysis.
It gives a first approximation to the dependency graphs.

To illustrate the similarities and differences between
our graphs and those in [9], in Fig.5a we reproduce the
subset of syntax trees shown in [9], along with their de-
pendency graph in Fig.5b. In Fig.5c we show our directed
sentence graph. One can see that the undirected struc-
ture of the graphs is very similar, while the direction of
links is not always the same. For example, for the phrase
“telephone go right there” the dependency graph identi-
fies ‘go’ as the head and points links towards it, while in
our directed graph the links follow the final phrase or-
dering. As a result of this incomplete matching of the
edge directions, we investigated both the directed graph
described above, along with the undirected version where
edges are not directed.

In first language acquisition, both the size of the vocab-
ulary and the manner in which the words are used changes
as the child learns. For simplicity, in comparison with the
RLM we will consider a situation where the vocabulary is
fixed. This is motivated by the fact that, in the RLM, the
position of the transition scales with ϵd logN if controlled
by ϵd and N , or ϵs log T if controlled by ϵs and T : these
show a weak logarithmic dependence on the number of
symbols/words, so that we expect the ϵ’s to characterize
the dominant changes during learning; future work could
consider an explicit model for how N and T change dur-
ing learning. Therefore in what follows we focus on the
clustering coefficient and the degree distribution, both of
which can be meaningfully compared regardless of N and
T .

Initially, we consider the path γ3 in Fig.2. We con-
firmed that the results are very similar along path γ2
(results not shown).

We investigated the clustering coefficient both for the
directed graph, constructed as above, and the undirected
graph constructed by adding the reverse links. The result-
ing clustering coefficients are shown in Fig.6 and Fig.7.
As the bias is varied, a clear increase is observed around
ϵ̃effs ≈ 0.1, consistent with the drop in sentence entropy.
Similarly, as N is varied the clustering also increases
around the transition point. Since a very similar be-



8

1
0
-7

1
0
-6

1
0
-5

1
0
-4

1
0
-3

1
0
-2

1
0
-1

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

0.2

0.4

0.6

0.8

1
0
-7

1
0
-6

1
0
-5

1
0
-4

1
0
-3

1
0
-2

1
0
-1

1
0
0

1
0
1

1
0
2

1
0
3

0.2

0.4

0.6

0.8

(a) (b)

FIG. 6. The clustering coefficient of word graphs increases at the RLM transition, for T = 100 and indicated Zipfian biases,
with strength h. Both (a) directed and (b) undirected graphs show a similar increase of clustering around the transition point
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FIG. 7. The clustering coefficient of word graphs increases at the RLM transition, for T = 1000 and indicated N . Both (a)
directed and (b) undirected graphs show a similar increase of clustering around ϵ̃s ≈ 0.1.

havior is observed for both our directed and undirected
graphs, we expect that the match between this result and
that found in [9] is not a coincidence.
The linguistic interpretation of this behavior is inter-

esting [9]: the transition marks the point where the child
begins to use functional items like a or the to connect
many words. It thus represents the learning of a particu-
lar class of grammatical rules.
Ref. [9] also looked at the degree distribution of depen-

dency graphs, finding that below the transition graphs
were scale-free with P(ds) ∼ 1/d1.3s . No information was
given on the behavior of the distribution during learn-
ing. To compare with the degree distributions measured
in [9], we measured the degree distribution of our sen-
tence graphs, shown in Fig.8. We find that a power-
law regime can be discerned, P(ds) ∼ 1/dγs , but with an
exponent that depends on ϵ̃s. In general, we find that
the exponent decreases in magnitude as ϵ̃s decreases. At
ϵ̃s = 10−2.2, the exponent matches what was observed in
[9], but we note that this result does not appear to be
stable at lower ϵ̃s, where a hump develops at large de-
gree. Moreover other corpora show various exponents:
in Ref.[17] texts from Czech, German, and Romanian
show exponents 2.3, 2.2, and 2.2, respectively 1. There-

1 These are the exponents of undirected graphs; exponents for in-

fore, both the human data and the RLM show scale-free
behavior in the nontrivial regime. A more complete anal-
ysis of the human data over the course of learning would
permit a more refined comparison.

Finally, we also looked at the clustering coefficient
across paths γ1 and γ2 in Fig.2 (data not shown). We
find that along γ1, Cs is consistently high ∼ 0.7 − 0.9,
while along γ2, the trajectory is very similar to that along
γ3 shown in Fig.7. This supports that the first-language-
acquisition learning curve does not take place at fixed
small ϵ̃s.

Overall, these results support that the RLM captures
the initial onset of learning grammatical structure in first
language acquisition.

V. FINITE-SIZE SCALING

True thermodynamic phase transitions only occur in
the thermodynamic limit, because in a finite system, the
partition function is an analytic function of control pa-
rameters. In the RLM, there are 2 distinct ways in which
systems can be large: first, the sentence size ℓ gives the

degree and out-degree graphs are similar.
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FIG. 9. Binder cumulant of observable word distribution, for T = 1000 and indicated N . (a) This quantity begins to differ from
0 around ϵ̃s ≈ 1, as expected. (b,c) On a logarithmic axis, the onset appears to collapse with a logarithmic factor of N , but not
the power-law suggested in [18].

size of derivation structures, whileN and T are the alpha-
bet sizes, controlling the potential complexity of gram-
mars. For this reason, in [1] the senior author tuned the
control parameters such that sentences were large (with
a cutoff ℓmax ∼ 1000), and moreover crucial observables
were shown at various N . The existence of finite-size
scaling in N over an appreciable range from N = 10 to
N = 40, and here up to N = 80, shows that the basic
phenomena of the RLM are not particular to small or
large N .
A recent work [18] questioned whether the RLM shows

a true thermodynamic phase transition. By a combina-
tion of analytic and numerical arguments, the authors
argue that there is no phase transition at finite ϵ̃d and fi-
nite N in the RLM. However, as already shown in [1], to
obtain satisfactory collapse of the data, quantities need
to be collapsed with ϵ̃d log

α N , where α = 1 or α = 2
depending on the quantity considered. This is confirmed
by theory that predicts α = 1, see for example (11) (after
division by logN to compare with numerical results).
Ref.[18] measured in particular the Binder cumulant

U = 1− ⟨(πa − ⟨πa⟩)4⟩
3⟨(πa − ⟨πa⟩)2⟩2

, (35)

which is 0 if πa is Gaussian, and nonzero otherwise. Here
πa is the empirical probability of observing hidden symbol
a, related to the order parameter Q2. Ref.[18] found that

U has a dip at the transition, which becomes infinitely
deep asN → ∞, suggesting that the RLM becomes a true
thermodynamic phase transition in this limit. Ref.[18]
suggest that the ϵ̃d at which the minimum of U is ob-
tained goes to zero as 1/N1.61 but their fit is suspect: at
the largest values of N that they use (only N = 10) the
plot of log ϵ̃d versus logU has a distinct curvature, indi-
cating that functional dependence on N is not a power-
law. It would indeed be very strange if U did not col-
lapse with ϵ̃d log

α N as all other quantities do. The dif-
ference between N1.61 and log2 N in the range of small
N = 1, . . . , 10 considered by Ref.[18] is slight.

We measured the same quantity over an ensemble con-
trolled by ϵ̃d but found that the fluctuations in this quan-
tity were huge, indicating that it is not self-averaging. In-
stead we found cleaner measurements of the Binder cumu-
lant of πB , the distribution of observable symbols, in the
ensemble considered above, dependent upon ϵ̃s. As shown
in Fig.9, Us begins to differ from zero at the transition.
On logarithmic axes, this onset appears to collapse with
a logarithmic factor of N , but not the power law N1.61

reported in Ref.[18]; the much larger range of N consid-
ered here allows us to distinguish these collapses much
easier than would be possible in the range N = 1, . . . , 10.
When the bias h is varied, a similar behavior is observed
(not shown).

It was mentioned in Ref.[18] that the behavior of the
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Binder cumulant is similar to that observed in the 3D
Heisenberg spin glass [19]. Thus, contrary to the title of
Ref.[18], the results within actually support the existence
of the RLM transition, in the limit N → ∞, in appropri-
ately rescaled variables. Since true thermodynamic phase
transitions reside in universality classes, with a whole host
of irrelevant variables, this further supports the robust-
ness of the RLM as a simple model of syntax.

VI. DISCUSSION

The RLM encompasses all stochastic context-free
grammars and, as such, is versatile. However, differ-
ent applications may suggest different parameter ranges.
This connects with ongoing discussion in linguistics on
the relevant formalism to capture syntax of human lan-
guages. For example, in the classic rules-based approach
of generative grammars, a child has to learn both the syn-
tactic rules and the lexicon; in the RLM this means that
their initial grammar would have large ϵ̃d and large ϵ̃s.
In the 1990’s, Chomsky attempted to unify the CFGs

of human languages by proposing in the Minimalist Pro-
gram [20] that their deep structure was essentially identi-
cal, captured by a Merge function that allows one to cre-
ate tree-like derivation structures. Then variety among
human languages would be captured by variety in the lex-
icon. More generally, this represented a shift from rules-
based to constraint-based grammars. Although the as-
sociated merge grammars are, strictly speaking, different
from CFGs, they maintain the core property of creating
trees, and are similar to fixing a small ϵ̃d so that deep
structure is fixed. Then the learning problem would fix
a small ϵ̃d and allow the other parameters to vary, for
example like path γ3 in Fig.2.
Along with the shift to constraint-based grammar, the

Minimalist Program proposed that syntax requires an op-
timality computation, which was not specified in detail.
This has been criticized as being unmotivated by core lin-
guistic data [21], so it is not accepted as mainstream by
linguists. For this reason, here we stay agnostic on the de-
tailed description of learning and the relevant parameter
ranges in the RLM, and focus on universal aspects.
To learn a human language within the CFG framework,

the Principles & Parameters (P&P) scenario for first lan-
guage learning was proposed [22]. In it, the task of learn-
ing syntax is reduced to the setting of a small number
of discrete parameters, usually considered to be binary
[23]. Ongoing debate surrounds the detailed taxonomy
of parameters and associated categorization of language,
but regardless of these details, the scenario suggests that
learning will occur in a series of discrete steps. Observ-
ables that quantify learning should then also show dis-
crete steps.
Meanwhile, connectionist models based on the physiol-

ogy of the brain use continuous variables to learn [24]. De-
bate on how people learn past-tense suggested the utility
of stochastic rule-based models [25], like those considered
in the RLM. While the early connectionist models gave
poor performance, recent models do much better, without

significant change in the underlying structure [26]. Thus
debate continues on the correct approach to learn syntax,
with some calling for a more symbiotic approach between
connectionism and generative grammar [27].

The recent success of machine learning models at learn-
ing language has further ignited this debate [28]. But
while such models are an existence proof of the ability to
learn language without significant constraints, they cur-
rently rely on a huge database to learn, and struggle with
formal reasoning. Their connection to first-language ac-
quisition in humans is thus unclear.

At variance with the P&P approach, but more aligned
with stochastic models and neural networks, human data
analyzed in Ref.[9] as well as the RLM both suggest a
single learning transition, with continuous (although in
some cases quite abrupt) variation in observables. In the
RLM this statement is robust to the inclusion of a bias,
reflecting heterogeneity in the environment 2. Thus, in all
cases considered, the RLM transition is unimodal, match-
ing that seen in human data.

These results suggest two possibilities. The first is that
learning is truly a continuous process, in which what is
learned are weights (or probabilities) rather than dis-
crete rules. Frequency effects are indeed ubiquitous in
first language acquisition [29], and there are proposals
on how measured frequencies can be used to infer rules
[30]. Moreover, the recent successes of machine learn-
ing in natural language processing [31] invariably use ap-
proaches with parameters that can be continuously tuned
during the training process. Thus the notion of discrete
syntactic parameters that are set during learning appears
overly simplistic, and may fail to account for the diver-
sity of human languages, as has been argued by linguists
and psychologists, with vociferous debate [32]. Instead
our results suggest that learning is continuous; after the
RLM transition, the entropy of children’s speech contin-
uously decreases, and concominantly, the grammar be-
comes more and more certain.

The second possibility is that discrete rules are indeed
learned, but they are only detectible by sufficiently sensi-
tive order parameters. Recent work on learning of seman-
tic information showed a mechanism for discrete-like tran-
sitions hidden within a continuous process [33]. Focusing
on an input-output correlation matrix, it was found that
singular values of this matrix are learned in a stepwise
fashion; moreover when data is hierarchical, then these
singular values are strongly graded, leading to distinct
learning transitions. If this scenario also applies to learn-
ing of syntax, then it remains elusive in the data.

2 One may wonder if the specific Zipfian bias considered above is
itself too smooth to see a series of discrete transitions. To this
end, we also tested a bias taking on only 3 values. Over the same
range of bias strengths shown above, this bias did not have any
effect on the sentence entropy.
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VII. CONCLUSION

The Random Language Model was introduced in [1]
as a simple model of language. We showed here that
the RLM transition: (i) can be encountered by a change
in properties of observable sentences; (ii) is robust to the
inclusion of a bias, and (iii) is apparently a sharp thermo-
dynamic transition as N → ∞, in appropriately rescaled
variables. A comparison with human data [9] supports
that the RLM transition is equivalent to that experienced
by most children in the age 22-26 months in the course
of first language acquisition.
In future work, two avenues look promising: first, al-

though limited by availability of quantitative data, more
attempts to make a quantitative comparison with human
data would be worthwhile; second, the astounding success

of machine learning models to model natural language,
and the lack of a theory to explain this, suggest that the
RLM might shed light on this process. Indeed, the RLM
captures several features of real-world data (long-range
correlations, hierarchy, and combinatorial structure) that
are missing from most physics models, and needed to un-
derstand modern deep neural networks [34].

Finally, the search for an analytical solution to the
RLM is ongoing. A promising approach [12, 13] repre-
sents syntax trees as Feynman diagrams for an appropri-
ate field theory, but this falls short of a complete solution.
The results of [18], as well as the results here, suggest
that one should look for a solution in the idealized limit
N → ∞.
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[34] M. Mézard, arXiv preprint arXiv:2309.06947 (2023).


	Robustness of the Random Language Model
	Abstract
	Brief review of the Random Language Model
	The RLM transition is encountered by increasing surface heterogeneity

	Learning a context-free grammar
	RLM with a bias
	Comparison with human data
	Finite-size scaling
	Discussion
	Conclusion
	References


