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We show how quantum-inspired 2d tensor networks can be used to efficiently and accurately sim-
ulate the largest quantum processors from IBM, namely Eagle (127 qubits), Osprey (433 qubits)
and Condor (1121 qubits). We simulate the dynamics of a complex quantum many-body system—
specifically, the kicked Ising experiment considered recently by IBM in Nature 618, p. 500–505
(2023)—using graph-based Projected Entangled Pair States (gPEPS), which was proposed by some
of us in PRB 99, 195105 (2019). Our results show that simple tensor updates are already sufficient
to achieve very large unprecedented accuracy with remarkably low computational resources for this
model. Apart from simulating the original experiment for 127 qubits, we also extend our results
to 433 and 1121 qubits, and for evolution times around 8 times longer, thus setting a benchmark
for the newest IBM quantum machines. We also report accurate simulations for infinitely-many
qubits. Our results show that gPEPS are a natural tool to efficiently simulate quantum comput-
ers with an underlying lattice-based qubit connectivity, such as all quantum processors based on
superconducting qubits.

I. INTRODUCTION

We are currently witnessing an unprecedented technol-
ogy race to develop practical large-scale quantum com-
puters. While several hardware architectures have been
developed, the largest available quantum processors are
those built with superconducting qubit technology [1].
In this setting, IBM’s quantum roadmap is particularly
promising, with the delivery of increasingly-larger quan-
tum processors every year: Eagle with 127 qubits in
2021, Osprey with 433 qubits in 2022, and Condor with
1121 qubits and expected by the end of 2023. These are
presently among the most powerful quantum machines
worldwide. Furthermore, a large effort is being devoted
to mitigate errors in the processors, to become able to run
longer quantum circuits and therefore increase quantum
volume. Such error mitigation was pushed to an unprece-
dented level in a recent paper [2], where the IBM team
simulated the dynamics of a kicked quantum Ising model
on a 127-qubit 2d lattice that matched the connectivity
topology of Eagle’s quantum computer. These results are
a great step forward towards practical quantum compu-
tation in superconducting quantum processors. However,
and unlike originally thought, they are still far from any
sort of quantum advantage: as pointed out by several
authors, the experiment can be simulated efficiently by
purely classical means [3–9], and specially by methods
using quantum-inspired tensor networks [10, 11].

In this paper we go one step further, and show how
2d tensor networks based on Projected Entangled Pair
States (PEPS) [12–14] can be used to simulate IBM’s
largest quantum processors: Eagle (127 qubits), Osprey
(433 qubits) and Condor (1121 qubits). We show this by
simulating the kicked Ising experiment mentioned above,
with unprecedented accuracy and not just for 127 qubits,
as in the original proposal, but for the larger quantum
processors and longer evolution times, setting new bench-

marks for those machines. We use graph-based Projected
Entangled Pair States (gPEPS) [15], a type of 2d ten-
sor network algorithm which provides great flexibility in
adapting to new lattices, both of finite and infinite size.
We conclude that gPEPS is a natural tool to efficiently
and accurately simulate slightly-entangled quantum com-
putations on quantum computers that have an underly-
ing lattice-based qubit connectivity.

II. MODEL

We implement a simulation of IBM kicked quantum
Ising model. Specifically, we consider the dynamics gen-
erated by the spin-1/2 Hamiltonian

H = −J
∑
⟨i,j⟩

ZiZj + h
∑
i

Xi, (1)

with Zi, Xi being the Z and X Pauli matrices at site i,
coupling J , transverse magnetic field h, and where the
the sum of interactions is over nearest neighbors ⟨i, j⟩ on
a lattice matching the topology of IBM’s quantum pro-
cessors. A first-order trotterization of the time evolution
leads to the unitary operator

U(θh) =

∏
⟨i,j⟩

ei
π
4 ZiZj

(∏
i

e−i
θh
2 Xi

)
, (2)

with θh a parameter controlling the relative strength of
the field with respect to the spin-spin interaction. Start-
ing from an initial state with all spins in the |0⟩ state (i.e.,
all “up”), we simulate the dynamics by applying the uni-
tary operator U(θh) multiple times, therefore generating
the state

|ψ(θh, n)⟩ ≡ (U(θh))
n |0⟩⊗m, (3)
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after n applications of the operator, m being the number
of spins in the lattice.

III. METHOD

Here we simulate the dynamics of the above model on
finite heavy-hexagon lattices with open boundary condi-
tions and 127, 433 and 1121 vertices, respectively match-
ing the connectivity of qubits in Eagle, Osprey and Con-
dor, see Fig.1. For this, we adapt the gPEPS method
[15]—initially proposed for infinite systems—to finite-size
lattices. We also use gPEPS to study the heavy-hexagon
lattice in the thermodynamic limit with a unit cell of 10
sites. The gPEPS algorithm is a quantum-inspired ten-
sor network method that allows to easily simulate sys-
tems on generic lattices with desired dimensionality. As
such, it is a natural evolution of the original iPEPS al-
gorithm [13, 14] to simulate two-dimensional quantum
lattice systems and also proposed years ago by some of
us. gPEPS makes use of the simple update of tensors
[16–18] and a mean-field approximation for expectation
values. These approximations are accurate for slightly-
entangled 2d quantum lattice systems. Though they can
be systematically improved, e.g., by using full and fast-
full [19] updates and corner transfer matrices [14], we
have observed that the simplest of our approximations is
already capable of simulating the system at hand with
large accuracy. In our approach, the bond dimension of
the PEPS tensor network is χ, and is also the truncation
parameter in our simulations: larger the χ, the larger
the allowed entanglement per bond. For comparison, we
have also studied the effect of re-gauging the PEPS us-
ing belief propagation (BP) after each trotter step, as
proposed in Ref.[3].

IV. RESULTS

A. Benchmarking

First, we simulate the 127-site heavy-hexagon lattice
from Fig.1(a). Using gPEPS we perform the unitary
evolution (U(θh))

n
up to n = 5 trotter steps, followed

by computing expectation values using a mean-field ap-
proximation. We reproduce Fig.3 from Ref.[2] in our
Fig.2, where we compare the outcome of our simulations
with those obtained from experimental calculations per-
formed on the IBM Eagle quantum processor. Addition-
ally, we benchmark our findings against other tensor net-
work methods. Comparison of our average magnetization
values with the available light cone-based exact solution
[2] shows exceptional precision (∼ 10−15 of absolute er-
ror), with each data point taking on average 2 seconds
to run on a standard desktop PC (Windows 11, Intel
i7-11700 @2.50GHz, 16 GB RAM). Our results not only
surpass the outcomes of IBM’s quantum simulations, but

(a)

(b)

(c)

FIG. 1: (Color online) Different heavy-hexagon lattices,
corresponding to the topology of qubit connectivity of
three IBM quantum processors: (a) Eagle, with 127
qubits; (b) Osprey, with 433 qubits; (c) Condor, with
1121 qubits. Every dot in the lattices corresponds to a
superconducting qubit, and every link corresponds to a
qubit-qubit coupling.

they also outperform some of the best state-of-the-art
tensor networks methods in both precision and speed.
Additionally, to study the effect of Belief Propagation

(BP) gauging we have independently simulated the uni-
tary evolution of 5 trotter steps, where we do BP gauging
after each trotter step. We find that BP does not improve
accuracy [20], as can be seen in Fig.2(a), even though
the average computational time per point increased to
9.2 seconds.
We also computed the expectation value of “higher-

weight” observables (Appendix.B) reported in the IBM
experiment, as shown in Figs.2(b,c). Here, we have also
included the tensor network results from Ref.[3] for com-
parison. In these plots we provide the expectation values
for the Weight-10 and Weight-17 operators, acting re-
spectively on 10 and 17 lattice sites, across a range of θh
values. The plots show that we obtain better precision
than the quantum processor with a small bond dimension
χ = 32, requiring an average compute time of 10 seconds
per computed data point. As expected, we see an in-
crease in accuracy by ramping up the bond dimension to
χ = 64 and χ = 128 in Fig.2(c).
However, in the range θh ∈ (π/8, π/4) in Fig.2(b), the

Weight-10 observable expectation value with χ = 32 is
found to be more accurate than the higher bond dimen-
sion results, the explanation can be found in the Ap-
pendix.A.
Next, we have studied the case in which the unitary

evolution spans more than 5 trotter steps. This involves
simulating the state corresponding to the extended-depth
quantum circuit, as shown in Figure 4 of Ref.[2]. We
computed the Weight-17 observable after 6 trotter steps
and compare it with the result obtained by the 127-
qubit quantum processor, and our results can be found on
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(c) O = 〈X37,41,52,56,57,58,62,79Y75Z38,40,42,63,72,80,90,91〉
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FIG. 2: (Color online) Comparing the gPEPS method in simulating the kicked transverse field Ising model against
the 127-qubit IBM Eagle quantum processor and various other tensor network methods. The operator expectation
values shown in (a) Average Magnetization, (b) Weight-10 observable, and (c) Weight-17 observable, are computed
with respect to the state |ψ(θh, 5)⟩. Each bottom plot shows the absolute difference between the light-cone based
exact results and the results obtained through simulations (gPEPS and Eagle processor). Labelling of qubits is done
sequentially, from left to right and top to bottom, starting with 0.
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FIG. 3: (Color online) Comparison of the gPEPS simulation with higher number of trotter steps with the Eagle
quantum processor and various other tensor network methods. (a) Weight-17 observable computed after 6 trotter
steps with respect to the state |ψ(θh, 6)⟩. The bottom plot shows the absolute difference between our simulation
and the available exact result. (b) Weight-1 expectation value computed after 20 trotter steps with respect to the
state |ψ(θh, 20)⟩. Because of the absence of exact result for this simulation, we have computed the absolute difference
between our simulation and the BP-approximation tensor network state approach with χ → ∞, presented in the
bottom subplot. (c) Finite-entanglement scaling of Weight-1 observable expectation value ⟨ψ(θh, 20)|Z62|ψ(θh, 20)⟩
with respect to the inverse of bond dimension (1/χ) for two distinct θh values. Labeling of qubits is done sequentially,
from left to right and top to bottom, starting with 0.

Fig.3(a). Comparison against the exact result [2] shows
that gPEPS simulations with bond dimension χ = 64
already outperform the Eagle quantum processor in ac-
curacy. As expected, we have observed further enhance-
ments in accuracy for larger bond dimension χ = 128.

To further test the algorithm we performed simulations
involving longer unitary evolutions, with 20 trotter steps,
and across a range of θh values. We computed the ex-
pectation value of the Weight-1 (single-site) operator, as
shown in Fig.3(b). Notably, we achieved numerically ex-

act results for the Clifford points θh = 0 and θh = π/2
when using bond dimension χ = 64. While an exact so-
lution for longer unitary evolution remains elusive, we
were able to compare with tensor network results in the
infinite bond dimension limit [3], obtained from finite-
entanglement scaling. While our χ = 64 bond dimension
accurately captures points for θh ≲ 3π/16, noticeable de-
viations become apparent beyond this regime. As shown
in the figure, we could improve the accuracy significantly
by increasing the bond dimension to χ = 128, 256 and
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FIG. 4: (Color online) Results of simulating various IBM quantum chips with higher number of qubits using gPEPS:
Eagle processor with 127 qubits, Osprey with 433 qubits, Condor with 1121 qubits, and the heavy-hexagon lattice in
thermodynamic limit. (a) Average magnetization, (b) Weight-10 observable near the open edge, (c) Weight-17 ob-
servable deep inside the bulk. The structure of the Weight-10 and Weight-17 observables is discussed in (Appendix.B).

512. Finally, to show the reliability of our method we
have studied the finite-entanglement scaling of ⟨Z62⟩(θh)
with the inverse bond dimension (1/χ), as shown in
Fig.3(c) for θh = 1.0 and θh = 0.7. We have plotted
the values for 9 different bond dimensions and the fitting
of extrapolation is done for the 5 highest bond dimen-
sions. While for θh = 0.7 we start to see a tendency to
saturation at large bond dimension, at θh = 1.0 we see no
clear evidence yet of bond dimension saturation, which
indicates that the quantum state has large entanglement.

B. Large systems

Next, and thanks to the computational efficiency of
gPEPS, we have successfully simulated larger IBM quan-
tum systems involving 433 (Osprey) and 1121 (Condor)
qubits, corresponding to the heavy-hexagon lattices in
Figs.1(b,c). While the original IBM experiment in Ref.[2]
was implemented only for 127 qubit system, we under-
stand our results as a benchmark for future experiments
on these larger quantum processors. In addition, we have
also implemented gPEPS for the system with infinitely-
many qubits, by assuming translation invariance in the
PEPS tensor network with a unit cell of 10 sites. For all
these sizes, we have simulated the unitary evolution of
5 trotter steps and computed a number of observables.
Our results can be found in Fig.4. First, we computed
the average magnetization in the Z-direction for χ = 32,
as shown in Fig.4(a). We can see that there are minimal
differences for all sizes (127, 433, 1121 and infinite), indi-
cating that the bulk of the system is already quite close
to the thermodynamic limit already for 127 qubits. For
this plot, the average simulation time of one data point
for sizes 127, 433, 1121 and infinite are respectively 2,
8.3, 50, and 0.17 seconds. Next, in order to test possible
boundary effects, we compare in Fig.4(b) the results for

a Weight-10 observable near the open boundary of the
heavy-hexagon lattice, for the three finite-size systems,
again for χ = 32. The composition of the observable and
its calculation is discussed in the Appendix.B. As we can
observe, there is no appreciable difference in the result,
signalling again that even the smallest lattice is already
close to the thermodynamic limit. Last but not least, we
have also computed the expectation value of a Weight-
17 operator deep inside the bulk of the system, for all
lattices (including the infinite one for χ = 64), and the
results are in Fig.4(c). Minimal difference among the re-
sults of different system sizes show that 127 qubit system
is already very close to the thermodynamic limit.

C. Longe time evolution

All the above results motivate us to test the limit of
our simulation method. One should expect that long-
time evolutions may create a large amount of entangle-
ment that is hard to be captured by the gPEPS tech-
nique. This could be captured as a loss of convergence
with the bond dimension χ in our simulations, setting
then a benchmark: a quantum computer claiming quan-
tum advantage in simulating this model should (at the
very least) be able to compute time evolutions longer
than those for which gPEPS loses convergence. There-
fore, to understand the limit of our method we computed
the results in Figs.(5) and (6), respectively for the time
evolution of the magnetization of a site deep in the bulk
and the average magnetization over all sites, for the three
considered sizes (127, 433 and 1121 qubits). The results
are for a large number of Trotter steps (between 37 and
39), and for the largest bond dimension that we could
achieve for each size. χ = 270 is the maximum common
bond dimension that we could simulate for all three sys-
tem sizes. Bond dimension scaling is shown in Figs.7.
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FIG. 5: (Color online) Long time evolution of the magnetization for a site in the bulk at θh = 1.0 and the three
different sizes: (a) 127 qubits, up to χ = 560 and 39 Trotter steps, (b) 433 qubits, up to χ = 370 and 38 Trotter
steps, (c) 1121 qubits, up to χ = 270 and 37 Trotter steps. Lower panel shows relative errors with respect to the
maximum achievable bond dimension.
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FIG. 6: (Color online) Long time evolution of the average magnetization of the whole system at θh = 1.0 and the
three different sizes: (a) 127 qubits, up to χ = 560 and 39 Trotter steps, (b) 433 qubits, up to χ = 370 and 38 Trotter
steps, (c) 1121 qubits, up to χ = 270 and 37 Trotter steps. The lower panel shows relative errors with respect to the
maximum achievable bond dimension.
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FIG. 7: (Color online) Bond dimension scaling of the
average magnetization for different system sizes.

As we can see in the plots, for all sizes we find the same

result: the study of consecutive bond dimensions shows
that the observables converge even for a large number of
Trotter steps. This is indeed surprising and seems to in-
dicate that the gPEPS technique is particularly suited to
capture the entanglement structure of the heavy hexagon
lattice. The reason behind this may be that this lattice,
after all, can be quite well approximated by a tree-like
structure with no loops (Appendix.C). And the proper-
ties of such loop-free structures can be captured with
large precision by the simple tensor update that we use
in gPEPS.

V. CONCLUSIONS

In this paper we have simulated IBM’s kicked Ising ex-
periment [2] on heavy-hexagon lattices with 127, 433,
1121, and infinitely-many qubits, using a quantum-
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inspired tensor network technique tailored to higher-
dimensional systems. Our method uses the so-called
gPEPS algorithm, which is remarkably efficient and ac-
curate. Our method not only reproduces the results of
the original experiment for 127 qubits but also settles
new benchmarks for large quantum circuits on IBM’s Ea-
gle, Osprey, and Condor quantum processors. We con-
clude that gPEPS is a natural tool to efficiently and accu-
rately simulate slightly entangled quantum computations
on quantum computers with an underlying lattice-based
qubit connectivity, be it in 2 or higher dimensions, go-
ing much beyond the capabilities of other tensor network
structures. In particular, it is an ideal tool to classically
simulate quantum computers based on superconducting
qubits. A relevant question triggered by our results is
whether quantum processors based on artificial qubits
(e.g., superconducting qubits, quantum dots, etc.), and
with an underlying lattice-based connectivity, can reach
a sufficiently-low noise level so that they cannot be sim-
ulated classically by some tailored tensor network algo-
rithm. It would also be interesting to assess gPEPS in the
simulation of other types of quantum hardware with all-
to-all qubit connectivity, such as trapped ions and neutral
atoms.
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Appendix A: Results near critical point

In the range of θh ∈ (π/8, π/4) depicted in Fig 2(b),
our gPEPS results with lower bond dimension are more
accurate than the higher ones, contrary to the monotonic
improvement of accuracy with the increament of bond
dimension. The underlying reason is the presence of a
critical point (θh ≈ 0.6) in the vicinity, where the corre-
lation length diverges. Our simple update-based gPEPS
approach, along with local measurements, struggles to
capture the correlations adequately with smaller bond di-
mensions, leading to overestimation or underestimation.
Nonetheless, we have confirmed the convergence of our
observable expectation values towards higher bond di-
mension.

Appendix B: Weight-N observables

In the process of measuring the onsite observable, we
use the mean-field approximation of the environment
within the gPEPS algorithm. We provide comprehensive
details of this approach in the main paper. However,
measuring an observable that involves multiple particles
with intricate loop structures poses a considerable chal-
lenge when aiming for optimal measurements. To address
this challenge, we leverage the special Clifford property
of the circuit at θh = π/2. This strategic choice allows us
to transform the problem of computing higher-weight ob-
servables into a more tractable task: measuring a Weight-
1 observable but with a higher number of trotter steps
involved. Though the computational cost increases with
the number of trotter steps, in this way, we can use lo-
cal measurements only to get an accurate value of the
higher-weight observables. For example, in the case of
the 127-size system, the Weight-10 and Weight-17 oper-
ators of Fig.2 are given by

W
(127)
10 = X13,29,31Y9,30Z8,12,17,28,32,

W
(127)
17 = X37,41,52,56,57,58,62,79Y75Z38,40,42,63,72,80,90,91.

(B1)

The expectation value of these operators with respect to
the state |ψ(θh, 5)⟩ (obtained after 5 trotter steps) can
be re-written at the Clifford point as

⟨W (127)
10 ⟩5 = ⟨ψ(θh, 5)|U5(π/2)Z13(U

†(π/2))5|ψ(θh, 5)⟩
⟨W (127)

17 ⟩5 = ⟨ψ(θh, 5)|U5(π/2)Z58(U
†(π/2))5|ψ(θh, 5)⟩.

(B2)

As a result, to determine e.g. the Weight-10 expectation
value after n trotter steps, one may just compute the
single site expectation value of ⟨Z13⟩ with respect to the
state

|ω(θh, n)⟩ =
(
U†(π/2)

)n |ψ(θh, n)⟩. (B3)

To obtain the state |ω(θh, n)⟩ we evolve the |ψ(θh, n)⟩
with the operator U†(π/2) for n trotter steps. We have
used this approach to compute observables for all lattice
sizes, namely 127, 433, 1121 and infinite. In particular,
we compute the expectation values

⟨W (size)
10 ⟩5 = ⟨ω(θh, 5)|ZP (size)|ω(θh, 5)⟩,

⟨W (size)
17 ⟩5 = ⟨ω(θh, 5)|ZQ(size)|ω(θh, 5)⟩. (B4)

In the above equations, integers P (size) and Q(size) rep-
resent qubit labels depending on the size, as shown in the
table below. Vertices are labeled sequentially from left
to right and top to bottom, starting with 0.

Appendix C: Local tree structure of heavy-hexagon
lattice

Simple update and local measurements are most ef-
fective for lattices exhibiting a local tree structure and
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size → 127 433 1121 Infinity
P 13 25 41 –
Q 62 181 505 2

TABLE I: Relation of qubit labels for different sizes, for
the Weight-10 and Weight-17 observables of Fig.4.

FIG. 8: (Color online) Comparing a patch of heavy-
hexagon lattice (left) with square lattice (right).

shorter-range correlations, owing to the absence of loops.
In the Figs.8, we present a comparison between a patch of
2D heavy-hexagon lattice and a 2D square lattice, illus-
trating the environment of the blue edge (pair of spins).
It is evident that for a 2D square lattice, the ‘n-th’-
neighbor environment contains loops for n > 1. Con-
versely, in the case of a heavy-hexagonal lattice, the ‘n-
th’-neighbor environment exhibits loops for n > 5. Thus,
for models with short-range correlations, such as the Ising
transverse field away from the critical point, the heavy-
hexagon lattice behaves akin to a tree structure locally.
Consequently, local tensor updates employed in gPEPS,
as well as local measurements, excel in capturing the real-
time dynamics of the kicked Ising experiment.
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jected entangled pair state contractions, New Journal of
Physics 16, 033014 (2014).

[18] M. Lubasch, J. I. Cirac, and M.-C. Bañuls, Algorithms
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