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Abstract

Two-way fixed effects (TWFE) models are ubiquitous in causal panel analysis in po-
litical science. However, recent methodological discussions challenge their validity in
the presence of heterogeneous treatment effects (HTE) and violations of the parallel
trends assumption (PTA). This burgeoning literature has introduced multiple estima-
tors and diagnostics, leading to confusion among empirical researchers on two fronts:
the reliability of existing results based on TWFE models and the current best practices.
To address these concerns, we examined, replicated, and reanalyzed 37 articles from
three leading political science journals that employed observational panel data with
binary treatments. Using six newly introduced HTE-robust estimators, we find that
although precision may be affected, the core conclusions derived from TWFE estimates
largely remain unchanged. PTA violations and insufficient statistical power, however,
continue to be significant obstacles to credible inferences. Based on these findings, we
offer recommendations for improving practice in empirical research.
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1. Introduction

Over the past decade, political scientists have increasingly relied on observational panel data

to draw causal conclusions (Xu, 2023). A favored method for such analyses is the two-way

fixed effects (TWFE) model because of its ability to control for unobserved time-invariant

characteristics of units and common time trends across units. In our survey of 90 articles

published in three top political science journals from 2017 to 2022 using observational panel

data with binary treatments, we find that 52 studies (58%) employ the following canonical

specification:1

Yi,t = δTWFEDi,t +Xi,t
′β + αi + ξt + εi,t, (1)

in which Yi,t is the outcome variable for unit i at time t; Di,t is the treatment variable;

Xi,t is a vector of covariates; αi, ξt are unit fixed effects and time fixed effects; and εi,t are

idiosyncratic errors.2 The primary parameter of interest is δTWFE, which researchers often

interpret as the treatment effect. Moreover, researchers often equate TWFE models such as

Model (1) with difference-in-differences (DID) designs and use the two terms interchangeably.

Recent methodological discussions challenge the validity of TWFE models, leaving em-

pirical researcher in a quandary. First, they do not know whether existing findings based on

TWFE models are trustworthy. Second, with the introduction of numerous new estimators

and diagnostics, researchers are uncertain about which estimator is most appropriate for

their research context and what diagnostics they should employ. This paper seeks to bridge

this gap by reviewing new methods from the methodological literature and by reanalyzing

1The remaining 38 articles can be categorized into five groups: articles focusing on interaction effects (8 ar-
ticles), articles using nonlinear links such as logit and Poisson (5 articles), articles employing instrumental
variables or regression discontinuity designs (8 articles), and articles using other linear specifications, such
as only one-way fixed effects or lagged dependent variables (17 articles).
2This is with some abuse of notation. In some articles that we classify as using TWFE models, “unit” fixed
effects are at the level of “groups” g, within which multiple units i are nested (e.g. county fixed effects when
i indexes city), or time fixed effects are at a higher level p (e.g. year fixed effects when t indexes day). While
it would be more general and accurate to use the notation αg and ξp, with g = i and p = t when fixed effects
are at the finest-unit or -time level, we elect not to for the sake of simplicity.
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published studies using both these new methods and the traditional TWFE models. Based

on the findings, we offer recommendations for researchers.

Recent criticisms of the use of TWFE models mainly come from two directions. First,

TWFE models require the strict exogeneity assumption, which critics argue is stronger than

many researchers realize and is often unrealistic in real-world settings (Imai and Kim, 2019).

Strict exogeneity implies the parallel trends assumption (PTA),

E[Yit − Yit′|Xit, Xit′ ] = E[Yjt − Yjt′|Xjt, Xjt′ ] ∀i, j, t, t′, (2)

and threats to the PTA, such as the presence of time-varying confounders, anticipation

effects, and feedback, also invalidate strict exogeneity. Therefore, in the rest of the paper,

we refer to violations of strict exogeneity as violations of the PTA.

The second group of criticism concerns the consequences of heterogeneous treatment ef-

fects (HTE) (e.g., Goodman-Bacon, 2021; de Chaisemartin and D’Haultfœuille, 2020; Strezh-

nev, 2018; Athey and Imbens, 2022; Callaway and Sant’Anna, 2021; Borusyak, Jaravel and

Spiess, 2023). Researchers have shown that, under HTE, TWFE estimates in general do not

converge to a convex combination of the individual treatment effects (ITE) for units under

the treatment condition, even when the PTA is valid. The so-called “negative weighting”

problem, as described in de Chaisemartin and D’Haultfœuille (2020), is an extremely alarm-

ing theoretical result because it implies that a TWFE estimand can be negative (positive)

even when all ITE are positive (negative). To address this issue, researchers have proposed

many new estimators that are robust to HTE.

This paper thus pursues two goals. First, we explain and compare six recent proposals to

amend TWFEmodels, including the interaction weighted (IW) estimator (Sun and Abraham,

2021), stacked DID (Baker, Larcker and Wang, 2022), CS-DID (Callaway and Karami, 2023),

DID multiple (de Chaisemartin and D’Haultfœuille, 2017), PanelMatch (Imai, Kim and

Wang 2023, hereafter IKW 2023), and the imputation method (Borusyak, Jaravel and Spiess
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2023, hereafter BJS 2023; Liu, Wang and Xu 2022, hereafter LWX 2022). These estimators

produce causally interpretable estimates under HTE and the PTA or its variants. Second,

we replicate and reanalyze 37 studies published in the American Political Science Review

(APSR), American Journal of Political Science (AJPS), and Journal of Politics (JOP) from

2017 to 2022 and whose main identification strategies rely on the PTA. Our aim is to assess

the consequences of using or not using HTE-robust estimators and the severity of PTA

violations in political science research.

Our reanalysis shows that HTE-robust estimators largely produce point estimates in

alignment with those from TWFE models. In fact, these estimators only change the sign

of the original findings in a single study, suggesting that the alarm over HTE generated by

the theoretical literature is potentially out of proportion. The HTE-robust estimates are,

however, more often statistically insignificant than the TWFE estimates. This may be at-

tributed to the loss of efficiency that arises when switching to HTE-robust estimators, as well

as the potential overconfidence of the TWFE estimator. Moreover, we also observe signs of

severe PTA violations in a large number of studies, which likely have led to spurious findings.

This underlines how PTA violations persist in threatening the credibility of inferences drawn

from observational panel data despite being a long- and well-known assumption.

Overall, we find that 30-40% of the articles in our sample present compelling evidence,

based on current methodological literature, that the PTA is plausible and the average treat-

ment effect on the treated (ATT) is statistically distinguishable from zero. This is not to say

that the remaining studies lack credibility; often, the data at hand do not allow us to detect

or dismiss violations of the PTA or to reject the null hypothesis of no effects with sufficient

power when using an HTE-robust estimator.

These findings have important implications for practice. First, whenever the PTA is

invoked, it is essential for researchers to evaluate its plausibility using both graphical and

statistical tools. Second, we advise researchers to favor HTE-robust estimators over TWFE.
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We argue that the potential loss of efficiency is outweighed by the risk of potential biases

arising from HTE. The specific choice of estimator will depend on the research context and

feasibility.

In addition to providing researchers with a set of practical recommendations, this paper

makes several contributions. First, we propose a typology for and provide a comprehensive

comparison of various estimators for causal panel analysis with binary treatments under the

PTA or its variants. We discuss the properties and assumptions of each estimator. Moreover,

our reanalysis both instills confidence in existing political science research conducted with

TWFE models when done properly and raises warnings about potential risks, such as the

failure of the PTA and a lack of power. Our work also contributes to the ongoing conversation

on replication and reproducibility in political science (e.g., Eggers et al., 2015; Lall, 2016;

Hainmueller, Mummolo and Xu, 2019; Lal et al., 2023).

Our work is closely related to Baker, Larcker and Wang (2022), who evaluate the credi-

bility of a handful of studies with staggered adoption designs in the finance and accounting

literature. Our work differs from theirs in two important ways: (1) we apply a wider range

of estimators and diagnostic tests to a much larger number of empirical applications from a

more diverse selection of settings, including cases with treatment reversal, and (2) this more

comprehensive review finds that the weighting problem caused by HTE is not the primary

threat to causal inference with panel data in political science research. Our work is also re-

lated to Roth et al. (2023), who synthesize the recent methodological advancements of DID

in the econometrics literature. What differs is that we apply these innovations to empirical

data and evaluate the robustness of existing findings.

Our research has a few notable limitations. First, we do not explore methods that operate

under sequential ignorability, an alternative identification framework that assumes no unob-

served confounders but allows for dynamic treatment selection based on variables up to the

current time period. Second, we do not address the challenge of cross-sectional interference,

4



a phenomenon that is arguably prevalent in political and social settings. Third, although we

point out the commonness of sensitivity to model specification in the literature by providing

estimates when incorporating lagged dependent variables (LDVs) or unit-specific linear time

trends (ULTs) in the Supplementary Material (SM), we do not further the debate regarding

whether or why these estimates should be trusted over the original ones. Fourth, our analysis

does not encompass studies that use continuous treatments, which is a common occurrence

in political science research. Despite these limitations, which we aim to address in subse-

quent studies, our replication and reanalysis exercise provides valuable insights into some of

the widespread and significant challenges in using TWFE models for panel data analysis.

2. TWFE and Its Pitfalls

In this section, we review the pitfalls of TWFE models identified in the literature. In the

classic two-group and two-period case, the OLS estimator (or equivalently, the least square

dummy variable estimator) for the specification in Equation (1), δ̂TWFE, is equivalent to

the DID estimator, which consistently estimates the ATT under the PTA even with HTE.

These results do not hold more generally in more complex settings with differential treatment

adoption times (known as staggered adoption) or treatment reversal, as we will discuss below.

Our survey of the top journals reveals that Model (1) is the most commonly adopted

approach for estimating causal effects using panel data in political science. Fixed effects (FE)

models began their rise to prominence in political science in the early 2000s, and criticism

promptly followed. For example, in a debate with Green, Kim and Yoon (2001), Beck and

Katz (2001) and King (2001) argue that linear FE models often lead to misleading findings

because they throw away valuable information in data, ignore rich temporal dynamics, and

are incapable of capturing complex time-varying heterogeneities. Moreover, because both the

treatment and outcome variables are often serially correlated in a panel setting, researchers

have cautioned against using standard error (SE) estimators suitable for cross-sectional data,
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such as Huber-White robust SEs (Bertrand, Duflo and Mullainathan, 2004). Scholars have

also advocated for bootstrap procedures to better control Type I error rates when the number

of clusters (units) is small (Cameron, Gelbach and Miller, 2008).

In the past few years, a surge of studies has renewed investigation into the proprieties

of the TWFE estimator and the assumptions it requires to achieve casual identification.

One group of work studies TWFE models from a design-based perspective. For example,

Imai and Kim (2019) point out that the strict exogeneity assumption required by TWFE

models is stronger than researchers normally believe. Importantly, it not only implies the

well-known no time-varying confounder requirement, but it also forbids a “feedback” effect

from past outcomes to treatment assignment. Blackwell and Glynn (2018) clarify that such

an assumption corresponds to baseline randomization in which the treatment vector is gen-

erated prior to, or independent of, the realization of the outcome. When knowledge about

the treatment assignment mechanism is available, researchers have proposed design-based

estimators to address unmeasured confounding of particular forms (e.g., Arkhangelsky and

Imbens, 2022; Arkhangelsky et al., 2021). Strict exogeneity or the PTA are the key iden-

tification assumptions of both the TWFE and the newer HTE-robust estimators that we

discuss, but we find that in practice, a large number of studies in political science do not

evaluate their plausibility.

A second body of research explores the implications of HTE with binary treatments within

TWFE models (e.g., Goodman-Bacon, 2021; de Chaisemartin and D’Haultfœuille, 2020;

Strezhnev, 2018; Callaway and Sant’Anna, 2021; Borusyak, Jaravel and Spiess, 2023; Athey

and Imbens, 2022). Most of this literature assumes staggered adoption, but the insights from

that setting are still relevant when there are treatment reversals. In Figure 1, we present

two simplified examples with staggered treatment adoption. Figure 1(a) represents outcome

trajectories in line with standard TWFE assumptions, which not only include the PTA but

also require that the treatment effect be immediate and unvarying across units and over
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time. In contrast, the right panel portrays a scenario where the PTA holds but the constant

treatment effect assumption is not met. Various decompositions by the aforementioned

researchers reveal that even under the PTA, when treatments begin at different times (such

as in staggered adoption) and when treatment effects evolve over time, the TWFE estimand

is not in general a convex combination of the ITE for observations subjected to the treatment.

The basic intuition behind this theoretical result is that TWFE models use post-treatment

data from units who adopt treatment earlier in the panel as controls for those who adopt

the treatment later (e.g., Goodman-Bacon, 2021). HTE-robust estimators capitalize on this

insight by avoiding these ‘invalid’ comparisons between two treated units.3 In the next

section, we present a typology of HTE-robust estimators, along with an introduction to the

estimators themselves.

A third limitation of the canonical TWFE model is its presumption of no temporal and

spatial interference. In most uses of TWFE models, researchers assume that there are no

spatial spillovers and that treatment effects occur contemporaneously, hence no anticipation

or carryover effects.4 These are obviously strong assumptions that are rarely questioned

or tested in practice (Imai and Kim, 2019; Athey and Imbens, 2022; Wang, 2021). Al-

though some recent methods permit arbitrary carryover effects in staggered adoption set-

tings (Strezhnev, 2018; Callaway and Sant’Anna, 2021), they are not distinguishable from

contemporaneous effects. This limitation becomes more complex when treatment reversal is

possible, as demonstrated in Figure 1. In Figure 1(b), data in the left panel are consistent

with TWFE assumptions, while the right panel shows deviations from the PTA, constant

treatment effect, and the absence of anticipation or carryover effects. What is concerning is

that many real-world data resemble the problematic right figure rather than the ideal left

one. Nevertheless, recent methods have been proposed to handle arbitrary carryover effects

3The comparisons are valid if we are willing to assume constant treatment effects but not otherwise.
4No anticipation effects means that future treatments do not affect today’s potential outcomes; no carryover
effects means that today’s treatment does not affect future potential outcomes.
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Figure 1. Toy Examples: TWFE Assumptions Satisfied vs. Violated
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(a) Staggered DID: without Treatment Reversal
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(b) Staggered DID: with Treatment Reversal

Note: The above figures show outcome trajectories of units in a staggered adoption setting (a) and in a
general setting (b). Solid and hollow circles represent observed outcomes under the treatment and control
conditions, respectively, while triangles represent counterfactual outcomes (in the absence of the treatment).
The data on the left panels in both (a) and (b) are generated by DGPs that satisfy TWFE assumptions
while the data on the right are not. The divergence between hollow circles and triangles in the right panel
of (b), both of which are under the control condition, is caused by carryover effects.

over a limited number of periods in more general settings (IKW 2023; LWX 2022). The

challenge of addressing spatial spillover effects without strong structural assumptions still

persists (Aronow, Samii and Wang, 2020; Wang, 2021), but its resolution is beyond the scope

of this paper.
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Notation and Causal Estimands. Consider the panel setting where multiple units i ∈

{1, . . . , N} are observed at each time period t ∈ {1, . . . , T}. Each unit-time pair (i, t)

uniquely identifies an observation. For each i, let Ei,t = max{t′ : t′ ≤ t,Di,t′ = 1, Di,t′−1 = 0}

for all t such that ∃s ≤ t : Di,s = 1 and Ei,t = min{t′ : Di,t′ = 1, Di,t′−1 = 0} otherwise. That

is to say, Ei,t is the most recent time at which unit i switched into treatment or, if i has not

yet been treated at any point up until time t, the first time i switches into treatment. If

i is never treated, we let Ei,t = ∞. In the staggered setting, we call this the “event time”

Ei = Ei,t, and Di,t = 1 {t ≥ Ei,t}, where 1 {·} is the indicator function. In a staggered

adoption context, we partition units into distinct “cohorts” g ∈ 1, . . . , G according to the

timing of treatment adoption Ei,t. Units transitioning to treatment at period g (i such that

Ei,t = g) form cohort g, whereas units that never undergo treatment belong to the “never-

treated” cohort (i : Ei,t = ∞). Zi,t (Zi,g,t) represents the variable Z for unit i (part of cohort

g) at time t. We use Yi,t(1) and Yi,t(0) to denote the potential outcomes under treatment and

control, respectively, and Yi,t = Di,tYi,t(1)+(1−Di,t)Yi,t(0) to denote the observed outcome.5

The finest estimand is the ITE, τi,t = Yi,t(1)− Yi,t(0), of which there exists one for each

observation (i, t).6 Most political science research, however, typically focuses on estimating a

single summary statistic. Commonly, this is the ATT, which represents ITE averaged over all

observations exposed to the treatment condition. In between these extremes of granularity

and coarseness are time-varying dynamic treatment effects (DTE), which are across-unit

averages of ITE at each time period relative to treatment adoption (e.g., all observations

immediately proceeding treatment adoption). In the staggered adoption setting, we can

further subdivide by cohort. We denote the DTE l periods after treatment adoption (for

5In some of the articles we refer to, potential outcomes are defined in terms of treatment history, as op-
posed to current treatment status. We adopt similar notations for these frameworks. For instance, we use
Yi,t(Di,t = 1, {Di,s}s<t = 0) to represent the potential outcome under the specified treatment history.
6This is without loss of generality when feedback and interference are excluded. In staggered DID designs,
carryover effects are permissible. When potential outcomes are defined in terms of treatment history, τi,t
is defined as Yi,t(1) − Yi,t(∞) where Yi,t(∞) signifies the untreated potential outcome when unit i never
undergoes treatment.
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treatment cohort g) as δl (δg,l) and use l = 1 to represent the period immediately after

treatment adoption.7 δg,l is also what some authors refer to as cohort average treatment

effect on the treated (CATT) (Strezhnev, 2018; Sun and Abraham, 2021) or group-time

average treatment effect (Callaway and Sant’Anna, 2021).

Each of the estimators we discuss can be used to estimate δl. The analogous specification

for estimating DTE is a lags-and-leads specification. Let Ki,t = (t−Ei,t +1) be the number

of periods since the most recent event date that unit i has been in treatment at period t

(Ki,t = 1 if unit i switches into treatment at time t). Consider a regression based on the

following specification:

Yi,t = αi + ξt +X ′
i,tβ +

b∑

l=−a
l ̸=0

δTWFE
l · 1 {Ki,t = l}+ δTWFE

b+ 1 {Ki,t > b} ·Di,t + εi,t, (3)

where a and b are the number of lag and lead terms (BJS 2023). In the social science

literature, the typical practice is to exclude l = 0, which corresponds to the time period

immediately before the transition into the treatment phase, and use it as a reference period

as suggested by Roth (2022). Conventionally, δ̂TWFE
l is interpreted as an estimate of δl or as

a meaningful weighted average of pertinent ITE. Meanwhile, δ̂TWFE
b+ is viewed as an estimate

for the long-term effect. We refer readers to the section on “Implementation Details” in the

SM for more information on Model (3), including in the case where there are treatment

reversals.

3. HTE-Robust Estimators

In this section, we offer a brief overview and comparison of several recently introduced HTE-

robust estimators. For a more comprehensive discussion, please refer to the SM.

7Another common practice used by some authors we reference is to denote this first post-treatment period
with l = 0.
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Summary of HTE-robust estimators. Table 1 summarizes the estimators we discuss

in this paper. The primary difference resides in the mechanics of their estimation strategies:

there are methods based on canonical DIDs and methods based on imputation. We refer to

the former as DID extensions and the latter as imputation methods.8 DID extensions use

DTE, estimated from local, 2× 2 DIDs between treated and control observations, as build-

ing blocks. Imputation methods use ITE, estimated as the difference between an imputed

outcome under control and the observed outcome (under treatment), as building blocks. Im-

putation methods connect to TWFE through the outcome model, which is fit globally on all

available controls, that they use to impute counterfactual outcomes. Different strategies also

entail different assumptions. Each DID extension, for example, relies on a particular type

of PTA, whereas imputation methods presuppose a TWFE model for untreated potential

outcomes and require a zero mean for the error terms.

Another noteworthy difference lies in the settings in which these estimators are applicable:

some function exclusively in settings with staggered treatment adoption, while others can

accommodate scenarios with treatment reversals. Furthermore, these estimators diverge in

terms of (1) how they select untreated observations as controls for treated units, (2) how

they incorporate pre-treatment or exogenous covariates, and (3) the choice of the reference

period. We discuss these details further below and in the ‘Survey of HTE-Robust Estimators’

and ‘Implementation Details’ sections of the SM.

DID extensions. DID extensions are all built from local, 2×2 DID estimates—hence our

choice of terminology. The overarching strategy for these estimators is to estimate the DTE,

δl (or δg,l for each cohort g in the staggered setting), for each period since the most recent

initiation of treatment, l, using one or more valid 2× 2 DIDs. By ‘valid,’ we mean that the

DID includes (1) a pre-period and a post-period and (2) a treated group and a comparison

8Liu, Sha and Zhang (2022) use a similar dichotomy to describe these estimators.
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Table 1. Summary of HTE-Robust Estimators
Type DID Extensions: uses 2× 2 DIDs as building blocks Imputation Methods

Setting
Staggered: treatment
reversals not allowed

General: treatment reversals allowed

Research
article

Sun and
Abraham
(2021)

Callaway and
Sant’Anna
(2021)

de Chaise-
martin and

D’Haultfœuille
(2020)

IKW (2023) BJS (2023) LWX (2022)

Method
known as

interaction

weighted
csdid did mulitple PanelMatch DIDM FEct

Key ID
assumption

Parallel trends Parallel trends Parallel trends Parallel trends
Zero

conditional
mean

Strict
exogeneity

Finest
estimand

δg,l δg,l δl δl τi,t τi,t

Comparison
group

Never-treated
or last-treated

Never-treated
or not-yet-
treated

Matched
stable group
(not-yet-
treated)

Matched
stable group
(not-yet-
treated)

Imputed
Counterfactual

(not-yet-
treated)

Imputed
Counterfac-

tual
(not-yet-
treated)

Reference
period(s)

Period 0
An arbitrary
pre-treatment

period

Untreated
period

Period 0
All

pre-treatment
periods

All
pre-treatment

periods

Covariate
adjustment

Possible
extension

Outcome &
propensity

score modeling

Possible
extension

Refined
matched set &

outcome
modeling

Outcome
modeling

Outcome
modeling

group. The pre-period is such that all observations in both groups are in control, while

the post-period is such that observations from the treated group are in treatment and those

from the comparison group are in control. The choice of the comparison group is the primary

distinction between estimators in this category. To obtain higher-level averages such as the

ATT, we then average over our estimates of δl (or δg,l), typically employing appropriate,

convex weights.

We cover two estimators in this category that are appropriate only for the staggered

setting. Sun and Abraham (2021) propose an interaction-weighted (iw) estimator, which is

a weighted average of δg,l estimates obtained from a TWFE regression with cohort dummies

fully interacted with indicators of relative time to the onset of treatment. They demonstrate

that each resulting estimate of δg,l can be characterized as a difference in the change in

average outcome from a fixed pre-period s < g to a post-period l periods since g between

12



the treated cohort g and the comparison cohorts in some set C.9 The authors recommend

using C = supi Ei, which is either the never-treated cohort or, if no such cohort exists, the

last-treated cohort. By default, iw uses l = 0 as the reference period and can accommodate

covariates in the TWFE regression.

Employing the same general approach, Callaway and Sant’Anna (2021) propose two

estimators, one of which uses never-treated units (δ̂CS−dr
nev ) and the other not-yet-treated units

(δ̂CS−dr
ny ) as the comparison group. We label these estimators collectively as csdid. Note that

δ̂CS−dr
nev uses the same comparison group as iw when a never-treated cohort exists, whereas

δ̂CS−dr
ny uses all untreated observations of not only never-treated units but also later adopters

as controls for earlier adopters. Besides the choice of comparison cohort, csdid estimators

differ from iw in that they allow users to condition on pre-treatment covariates using both an

explicit outcome model and inverse probability weighting (IPW) simultaneously, with at least

one needing to be correct for the estimator to be consistent. We will only implement δ̂CS−dr
ny ,

as most models in our replication sample do not include additional covariates, rendering

δ̂CS−dr
nev and δ̂IW numerically identical. While iw uses one period before the treatment’s onset

as the reference period, csdid allows users to choose one or multiple pre-treatment periods

as the reference

10

In settings with treatment reversals, separate groups of researchers have converged on

9This equivalence holds when the panel is balanced, i.e. there is no missing data. When there is missing data,
the estimator from the saturated regression differs from one that directly estimates local DIDs, including
the never-treated version of the next estimator we introduce, csdid.
10The “stacked” DID or regression is another related estimator sometimes used to address HTE concerns,
but it is not HTE-robust. As described by Baker, Larcker and Wang (2022), it involves creating separate
sub-datasets for each treated cohort by combining data from that cohort (around treatment adoption) and
never-treated cohort data from the same periods. These cohort-specific datasets are then “stacked” to form
a single dataset. An event study regression akin to Equation (3) is then run, using sub-dataset specific unit
and time dummies. This method is akin to iw and the never-treated version of csdid without covariates;
they all use the same data. However, stacked regression estimates a single DTE for a given relative period,
rather than separate estimates for each cohort. Essentially, stacked DID is a DID extension using implicit,
immutable weights selected by OLS, and is not HTE-robust because OLS does not assign cohort-proportional
weights; the effects for lower variance (larger) cohorts are generally down-weighted relative to their size.
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the same strategy for choosing a comparison group: matching treated and control observa-

tions that belong to units with identical treatment histories. IKW (2023) suggest one such

estimator, PanelMatch, which begins by constructing a “matched set” for each pair (i, t)

such that unit i transitions into treatment at time t. This matched set includes units that

are both (1) not under treatment at time t and (2) share the same treatment history as i for

a fixed number of periods leading up to the treatment onset. For each post-period l periods

since treatment adoption, it then estimates a local DID. It uses a fixed pre-period s < t and

the post-period t− 1+ l. The treatment “group” comprises solely of (i, t), and the members

of the matched set for (i, t) that are still under control during the post-period serves as the

comparison group. To obtain δl for a given l, it then averages over the local estimates from

all treated (i, t) such that (i, t + l − 1) is still under treatment (i.e., no treatment reversal

has occurred yet). IKW (2023) propose incorporating covariates by “refining” matched sets

and use l = 0 as the reference period.

Using a similar strategy, de Chaisemartin and D’Haultfœuille (2020) propose a “multiple

DID” estimator, DIDM . Importantly, they include local DIDs for units leaving treatment

and not only those joining treatment. DIDM also only consider the case where we match on

a single period and where l = 1. Consequently, their target estimand is not the ATT but

rather an average of the contemporaneous effects of “switching” (i.e., the effect of joining

or the negative of the effect of leaving at the time of doing so). Interestingly, another

DID extension can be seen as a special case of PanelMatch: In the staggered setting, the

PanelMatch estimator aligns with the not-yet-treated version of csdid (without covariate

adjustment). We delve into details on the connections between these three estimators in the

‘Survey of HTE-Robust Estimators’ section of the SM.

All DID extensions are built using local, 2× 2 DIDs, and their assumptions reflect this.

Specifically, they each rely on a form of the PTA—that is, the expected changes in potential

outcomes under control from one period to the next are equal between the treated and the
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chosen comparison groups. In Table 1, we refer to all these assumptions collectively as the

PTA. We defer readers to the SM for a fuller account of each method’s assumptions.

The imputation method. Imputation estimators do not explicitly estimate local DIDs.

Instead, they take the difference between the observed outcome and an imputed counter-

factual outcome for each treated observation. The connection to the TWFE model is in

the functional form assumption used to impute counterfactual outcomes. Specifically, an

imputation estimator first fits a parametric model for the potential outcome under control

Yi,t(0)—in our case, this is Model (1)—using only control observations {(i, t) : Di,t = 0}.

It is also through this outcome model that one can adjust for covariates. Then, it imputes

Yi,t(0) for all treated observations {(i, t) : Di,t = 1} using the estimated parameters. Finally,

it estimates the ITE, τi,t, for each treated observation (i, t) by calculating the difference

between its observed outcome Yi,t = Yi,t(1) and its imputed counterfactual outcome Ŷi,t(0).

Inference for the estimated τ̂i,t is possible, although uncertainty estimates need to be adjusted

to account for the presence of idiosyncratic errors (e.g., Bai and Ng, 2021). BJS (2023) and

LWX (2022) each propose estimators in this category. Each group proposes a more general

framework that nests many models, including TWFE. The latter also introduces several

specific imputation estimators. One of these uses the TWFE model, and the authors refer

to the resulting astimator as the fixed effect counterfactual estimator, or FEct.

Compared to DID extensions, which typically use a single pre-period and, with the ex-

ception of csdid, only a subset of units under control at both the pre- and post-periods as a

comparison group, imputation estimators use all available control observations to estimate

treated counterfactuals. As such, for each unit, the reference period can be understood as

(the average of) all pre-treatment periods. Intuitively, this approach should result in higher

efficiency. In fact, BJS (2023) demonstrate that imputation estimators are the most efficient

among all estimators under the condition of homoskedastic errors. Also in contrast to DID
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extensions, imputation estimators do not directly assume the PTA. Instead, they restrict the

expectation of the error terms from a parametric TWFE model. In Table 2, this is denoted

as “zero conditional mean” for BSJ (2023) or “strict exogeneity” for LWX (2022). Again, we

refer readers to the SM for the formal statements of these assumptions. Collectively, these

assumptions imply a form of conditional, baseline randomization of treatment assignment,

which in turn implies the PTA (e.g., Blackwell and Glynn, 2018).

Although DID extensions and imputation methods rely on slightly different identification

assumptions, such as the PTA and specific constraints on the error terms, they usually lead

to similar observable implications. Researchers commonly use the presence or absence of

pretrends in the pre-treatment periods to judge the plausibility of the PTA. In the classic two-

group, two-period setting, if there are data from additional pre-treatment periods, researchers

can plot the time series of (average) outcomes of each group and visually inspect whether

they indeed trend together. The intuition is that if the PTA holds and the outcome trends

of the treated and control groups are indeed parallel when Y (0)’s are observed for all units,

then it is plausible that the PTA also holds in the post-treatment periods, when Y (0)’s are

no longer observable for units in the treatment group. Conversely, differential trends in the

pre-treatment periods should make us suspicious of the PTA. In more complex settings or

where we wish to control for observed confounders, we can substitute the outcome time series

with estimates of the dynamic effects before the onset of treatment, δl for l ≤ 0. If the PTA

holds, then these pre-treatment effect estimates should be zero. We provide a more thorough

discussion and examples of DTE plots, which are also known as “event study plots,” in the

next section when we introduce our procedure.

4. Data and Procedure

Next, we assess the robustness of empirical findings from causal panel analyses in political

science and compare results obtained using the different methods we have discussed. We will
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explain our sample selection rules, describe standard practices in the field, and outline our

reanalysis approach. Readers can find a more detailed explanation of our sample selection

criteria and replication and reanalysis procedure in the “Sample and Replicability” and

“Implementation Details” sections of the SM.

Data. Our replication sample comprises articles from three leading political science journals—

the APSR, AJPS, and JOP—published over a recent six-year span from 2017 to 2022. We

initially include all studies, including both long and short articles, that employ panel data

analyses with a binary treatment as a crucial component of their causal argument, resulting

in a total of 90 articles. After a careful review of each of these articles, we find that 52

articles use a TWFE model similar to Model (1). We then attempt to replicate the main

results of these 52 articles and are successful in 37 cases (71.2%). A detailed explanation

of how we select the “main model” is provided in the ‘Sample and Replicability’ section of

the SM. Table 2 depicts the distribution of successful replications, along with reasons for

replication failures, across the various journals.

Table 2. Sample Selection and Replicability of Qualified Articles

TWFE Incomplete Replication Success
Journal All (attempted) data error Replicable Rate%

APSR 18 9 2 1 6 66.7
AJPS 28 18 3 3 12 66.7
JOP 44 25 6 0 19 76.0

Total 90 52 11 4 37 71.2

Settings and common practices. Table 3 presents an overview of the standard practices

and settings in the articles that we successfully replicated. The vast majority of studies in our

sample (92%) use DID designs to justify the use of the TWFE model, while the remaining

studies advocate for the model’s ability to exploit “within” variations in the data. Out of the

37 articles, five (13%) employ a classic DID design, which includes two-group, two-period

designs (three articles) and multi-period DID designs (two articles). 10 articles (27%) use
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a staggered (but not classic) DID design, while the remaining 22 articles (59.5%) fall into

the “general” category, meaning they allow for treatment reversals. Except for four articles,

all studies have a continuous outcome of interest. Most studies adopt cluster-robust SEs or

panel-corrected SEs (Beck and Katz, 1995), while five articles apply bootstrap procedures

for estimating uncertainties. A subset of authors explore alternative model specifications

by adding LDVs (six articles), ULTs (11 articles) and higher-than-unit-level time trends (5

articles). Notably, 22 studies use some type of plot—either average outcomes over time,

DTE/event-study plots, or both—to evaluate the plausibility of the PTA.

Table 3. Settings and Common Practice

Motivations for TWFE Variance Estimator
“Difference-in-differences” 34 92% Cluster-robust SE or PCSE 36 97.3%
“Within” variations 3 8% Cluster-bootstrapped procedures 5 13.5%

Treatment Setting Variants in specifications
Classic 2×2 DID 3 8.1% LDVs 6 16.2%
Classic multi-period DID 2 5.4% Higher-than-unit-level time trends 5 13.5%
Staggered DID 10 27% ULTs 11 29.7%
General 22 59.5%

Data visualization
Outcome Variable Group average outcomes 14 37.8%
Continuous 33 89.2% DTE/event-study plots 18 48.6%
Binary 4 11.8% Neither 15 40.5%

Procedure. We use data from Grumbach and Sahn (2020) to illustrate our process for

replication and reanalysis. The study investigates the influence of coethnic mobilization by

minority candidates during US congressional elections. To simplify our analysis, we focus

on the impact of the presence of an Asian candidate on the proportion of general election

contributions from Asian donors.

To begin, we aim to understand the research setting and data structure. We visualize

the patterns of treatment and outcome variables using plots like Figure 3 (a) and (b). In

this application, treatment reversals clearly take place. Some data is missing (due to re-

districting), but the issue does not seem to be severe. We record important details such
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as the number of observations, units, and time periods, the type of variance estimators,

and other specifics of the main model (not shown here). Next, we replicate the main find-

ing, employing both the original variance estimator and a cluster-bootstrap procedure. We

also use a bootstrap refinement procedure recommended by Cameron, Gelbach and Miller

(2008) to conduct statistical testing; the results are broadly consistent with the ones based

on cluster-bootstrapped SEs and CIs.

Figure 2. Visualizing Data from Grumbach and Sahn (2020)
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Note: Visualizing data from Grumbach and Sahn (2020), who investigate the effects of Asian candidates in

congressional elections on the share of campaign contributions by Asian donors.

We then re-estimate the ATT and DTEs using estimators discussed in Section 3. For

staggered adoption treatment cases, we apply six estimators: TWFE (with always treated

units removed for easier comparisons with other estimators), PanelMatch, FEct, Stacked

DID, iw, and csdid (not-yet-treated). For applications with treatment reversals like Grum-

bach and Sahn (2020), we use the first three estimators only. The comparison between the

TWFE estimate and the other estimates sheds light on whether original findings are sensitive

to the presence of HTE. Results from this example are shown in Figures 3(a)-(d). The sim-

ilarity between estimates for ATTs in (a) suggests the robustness of the original finding to
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the choice of estimators. The DTE plots from HTE-robust estimators in (c)-(d) are broadly

consistent with the DTE plot from TWFE in (b).

Figure 3. Reanalysis of Grumbach and Sahn (2020)
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(c) DTE: PanelMatch

F test p−value: 0.216
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(d) DTE: FEct

Placebo test p−value: 0.534
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(e) Placebo test

Carryover effect test p−value: 0.557
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(f) Test for carryover effects

Note: Reanalysis of data from Grumbach and Sahn (2020). Subfigures (a): Treatment effect or ATT

estimates from multiple methods; subfigures (b)-(d): DTE plots using TWFE, PanelMatch, and FEct;

Subfigure (e)-(f): results from the placebo test and test for carryover effects usingFEct—the blue points in

(g) and red points in (h) represent the holdout periods in the respective tests. CIs for TWFE, PanelMatch,

and FEct In all subfigures are produced by bootstrap percentile methods.

Finally, we conduct diagnostic tests based on FEct to further assess the PTA and, in

applications with treatment reversal, the no-carryover-effect assumption. We use FEct be-

cause it is applicable across all studies in our replication sample and does not discard data.

One important caveat is that the results of these formal statistical tests need to be com-

bined with visual inspections of DTE plots, as they may either suffer from low power with
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a small sample size or be “too powerful” with abundant data.11 To guard against the latter

possibility, we also perform an equivalence test of the null that pre-treatment (or carryover)

effects are “large,” i.e. outside of some θ-neighborhood of 0. Note this test requires us to

specify a threshold θ, and we conduct tests with a default threshold and with the ATT set

as the threshold.12 Small p-values are evidence in favor of the claim that PTA violations

are either nonexistent or mild. Figures 3(d), (e) and (f) show the results from the F test,

placebo test, and test for no carryover effects on our running example, respectively. Both

a visual inspection and the formal tests suggest that the PTA and the no-carryover-effect

assumption are quite plausible.

On the whole, the result from Grumbach and Sahn (2020) that we reanalyze seems highly

robust. The study also seems to have sufficient power to not only distinguish the ATT from

zero, but also to assess the validity of its identification assumptions. There is strong evidence

that the PTA is satisfied and that there are no carryover effects. The results are consistent

across choice of estimator and robust to using cluster-bootstrapped standard errors.

5. Systematic Assessment

We carry out the replication and reanalysis procedure described above for all 37 articles in

our sample. This section offers a summary of our findings; the complete results for each paper

can be found in the SM. We structure our results around two main questions: (1) Is the PTA

plausible, and (2) do HTE-robust estimators provide results that are qualitatively different

from those obtained with TWFE? Additionally, we report on other issues we observe in the

replicated articles, which include lack of statistical power, presence of carryover effects, and

11By a test being too powerful, we mean that it has power against alternatives that are very close to the null
(which might occur, for example, in the presence of an outlier or a marginally consequential confounder) and
unlikely to be a source of significant bias in the treatment effect estimates.
12We provide the implementation details of all tests mentioned in this section in the ‘Diagnostics Tests’
section of the SM and refer readers to Liu, Wang and Xu (2022) for more details on all the tests we use,
including how θ is chosen.
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lack of robustness to alternative specifications, such as the addition of LDVs or ULTs.

PTA violations remain a concern. Although the recent methodological literature heav-

ily focuses on the issue of HTE, we report that PTA violations remain a major concern in

practice despite having been a well-known pitfall for some time now. Notably, over half of

the studies in our sample do not include a DTE/event-study plot of any kind in the main

text or SM. In Figure 4, we plot the DTE estimates from FEct. We also report the ATT

estimates and their bootstrapped SEs, as well as the p-values of the F tests and equivalence

tests used to assess the presence of “pretrends.” Due to space limitations, we present the

DTE plots from other estimators, as well as results from the placebo tests, in the SM.

The encouraging news is that in over 40% of the studies, we have fairly substantial

evidence to attest that the PTA is plausible. In these instances, the DTE estimates in the

pre-treatment periods align with zero, and formal statistical tests suggest that the remaining

imbalance likely results from randomness in data. Specifically, in these papers the F test does

not reject and the equivalence test does reject using the |ÂTT | as the equivalence threshold,

both at the 5% level. In approximately 20% of studies, we find compelling evidence that

the PTA is implausible. These are the cases in which we observe a strong pretrend and

statistical tests indicate violations of the PTA, i.e. the F test rejects at the 5% level. For

the remaining 40% of studies, the results are less clear: We either lack the statistical power

or a sufficient number of pretreatment periods to reliably assess the plausibility of the PTA.

HTE-robust estimators do not alter substantive findings but affect power. To

examine the possible impact of the weighting problem caused by HTE, we compared the

estimates obtained from the imputation estimator, FEct, to those originally reported. The

dissimilarity between the FEct estimates and the original estimates proxies the extent to

which the negative weighting problem is consequential in practice.

Figure 5 plots the comparison. The horizontal axis represents the originally reported
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TWFE estimates, and the vertical axis represents estimates from FEct, both normalized

using the originally reported SE. If the point estimates are identical, then the corresponding

point should lie exactly on the 45-degree line (dashed). Red solid circles represent studies

whose FEct estimates are not significant at the 5% level based on bootstrapped CIs. To assess

how the imputation estimator differs from TWFE, we depict the ratio of the FEct estimates

to the TWFE estimates, after excluding the always-treated units (ensuring identical sample

sets), using solid circles in Figure 6. We also juxtapose the cited TWFE estimates with

those omitting the always-treated units, represented by hollow circles. The red circles denote

studies where the FEct estimates are not statistically significant at the 5% level.

We make several observations on Figures 5 and 6. First and foremost, the FEct estimates

and the original estimates are highly correlated and always bear the same signs. This sug-

gests that scenarios where accounting for HTE entirely reverses the empirical findings, while

theoretically possible, are rare. There are, however, cases where the magnitude of the coef-

ficient changes substantially; the ratios of FEct estimate to TWFE estimate range between

0.25 to 2.081 in our sample. Notably, both the mean and median of these ratios are close to

one. This finding suggests that, although there are noticeable differences in individual cases,

TWFE does not systematically under- or over-estimates the ATT. Figure 6(a) also shows

that the presence of always-treated units is not the primary driver of these differences. When

these units are excluded, the TWFE estimates align closely with the reported estimates.

Alarmingly, when switching from TWFE to FEct, the number of studies that are statis-

tically insignificant at the 5% level rises from one to 11, constituting 28% of all articles. This

loss of significance is, at least in part, driven by larger uncertainty estimates. Interestingly,

three out of the ten cases that become insignificant have larger FEct estimates compared

to their TWFE counterparts. In Figure 6(b), we plot the ratio of the absolute value of the

TWFE estimate to the bootstrapped TWFE SEs against the ratio of the absolute value

of the TWFE estimate to the bootstrapped FEct SEs. Thus, this visualization exclusively
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contrasts the SEs derived from each estimator. In the majority of instances, the SEs for

FEct are larger than those from TWFE, and the data points for such cases fall below the

45-degree line. While the gap is generally not substantial, at its maximum, the FEct SE can

be more than triple the size of the TWFE SEs. In seven cases, when retaining the TWFE

point estimate, adopting the SE from FEct would be sufficient to render the result insignifi-

cant. It is not surprising that the loss of statistical significance often occurs in studies where

the original results have limited power. One takeaway from this finding is that although it

is impossible to definitively tell whether the results from any given model are incorrect (es-

pecially without knowing the validity of the PTA), the combination of potential biases from

HTE and overconfidence of uncertainty estimates may have produced a significant number

of false positives, especially when the original estimates carry a high level of uncertainty.

HTE-robust estimators tend to agree with each other. To compare the behavior

of the different HTE-robust estimators, we focus on the seven staggered cases where all

estimators are applicable.13 Figure 7 plots the point estimates obtained from each HTE-

robust estimator, in addition to TWFE and stacked DID, all normalized by the reported

SE, for these cases. We observe that the estimates from all HTE-robust estimators are

qualitatively similar to each other, though there is a noticeable amount of variation. As

before, this spread does not change substantive findings for studies with highly substantively

significant results, whereas studies whose original z scores are smaller than 3 are much more

sensitive to the choice of estimators. Furthermore, though it is difficult to economically

present the comparison, our more extensive analyses of each individual paper in the SM

show that the DTE estimates from various HTE-robust estimators also generally align with

each other and with those from the dynamic specification of the TWFE model.

When it comes to choosing among various HTE-robust estimators, our advice for re-

13Kogan (2021) and Magaloni, Franco-Vivanco and Melo (2020) are not included because the original speci-
fications include additional time trends, which are not supported by HTE-robust estimators except FEct.
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searchers is to first narrow the selection to those estimators suitable for their specific re-

search context. For instance, if treatment reversal occurs, estimators such as iw and csdid

are not applicable. Likewise, if researchers anticipate that long-term effects are more prob-

able than short-term ones, the multiple-DID estimator proposed by de Chaisemartin and

D’Haultfœuille (2020) may be less suitable due to their primary focus on short-term effects.

Note again that the multiple-DID estimator has a different estimand than the other HTE-

robust estimators we discuss: The estimand is partly composed of the (negative of the)

effects of exiting treatment, which are ITEs of untreated observations.

We also point out that there is merit to employing multiple HTE-robust estimators. If

the estimators are all being used to estimate the same causal estimand, such as the ATT

(uniformly weighted over treated observations), they should generally provide qualitatively

similar results. This is because, theoretically, they converge to the same target parameter if

the identification assumptions hold true. If different results are produced, researchers should

be concerned that the PTA is invalid or that the level of precision for which the data allows

is insufficient to draw credible conclusions. It may also suggest that there are differential

violations of the PTA by different types of units, as these methods vary primarily in how

they weight control units.
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Figure 4. Estimated Dynamic Treatment Effects
Beazer and Reuter (2022)

ATT: 24.38 (9.36);
p-values: 0.19, 0.71

Bischof and Wagner (2019)
ATT: 0.08 (0.09);
p-values: 0.79, 0.49

Bisgaard and Slothuus
(2018)

ATT: -0.05 (0.02);
p-values: n.a., n.a.

Blair, Christensen and
Wirtschafter (2022)
ATT: -0.50 (0.37);
p-values: 0.35, 0.49

Bokobza et al. (2022)
ATT: 0.10 (0.03);
p-values: 0.04, 0.90

Caughey, Warshaw and Xu
(2017)

ATT: 0.01 (0.005);
p-values: 0.32, 0.51

Christensen and Garfias
(2021)

ATT: 0.04 (0.04);
p-values: 0.77, 0.30

Clarke (2020)
ATT: 0.10 (0.02);
p-values: 0.29, 0.00

Clayton and Zetterberg
(2018)

ATT: 0.19 (0.42);
p-values: 0.13, 0.99

Cox and Dincecco (2021)
ATT: 0.44 (0.07);
p-values: 0.00, 0.00

Distelhorst and Locke (2018)
ATT: 0.15 (0.05);
p-values: 0.29, 0.00

Eckhouse (2022)
ATT: 0.01 (0.01);
p-values: 0.21, 0.17

Fouirnaies (2018)
ATT: 0.87 (0.10);
p-values: 0.00, 0.00

Fouirnaies and Hall (2018)
ATT: 0.29 (0.02);
p-values: 0.15, 0.00

Fouirnaies and Hall (2022)
ATT:-0.26 (0.03);
p-values: 0.00, 0.00

Fresh (2018)
ATT: 0.17 (0.07);

p-values: 0.86, 0.000

Garfias (2019)
ATT: 0.07 (0.03);
p-values: 0.59, 0.42

Grumbach and Sahn (2020)
ATT: 0.14 (0.03);
p-values: 0.07, 0.00

Grumbach and Hill (2022)
ATT: 0.033 (0.019);
p-values: 0.68, 0.69

Hainmueller and Hangartner
(2019)

ATT: 1.51 (0.22);
p-values: 0.02, 0.00
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Figure 4. Estimated Dynamic Treatment Effects (Cont.)
Hall and Yoder (2022)
ATT: 0.06 (0.003);
p-values: 0.00, 0.00

Hirano et al. (2022)
ATT: 0.56 (0.17);
p-values: 0.47, 0.00

Jiang (2018)
ATT: -0.87 (0.20);
p-values: 0.36, 0.00

Kilborn and Vishwanath
(2022)

ATT: 0.05 (0.02);
p-values: 0.90, 0.00

Kogan (2021)
ATT: 0.45 (0.43);
p-values: 0.86, 0.00

Magaloni, Franco-Vivanco
and Melo (2020)
ATT: -2.28 (0.96);
p-values: 0.59, 0.65

Paglayan (2022)
ATT: 6.45 (2.01);
p-values: 0.67, 0.00

Payson (2020b)
ATT: 0.04 (0.02);
p-values: 0.34, 0.35

Payson (2020a)
ATT: 13.04 (7.27);
p-values: 0.87, 0.02

Pierskalla and Sacks (2018)
ATT: -0.07 (0.04);
p-values: 0.65, 0.00

Ravanilla, Sexton and Haim
(2022)

ATT: 0.36 (0.18);
p-values: n.a., n.a.

Schafer et al. (2022)
ATT: -0.02 (0.003) ;
p-values: 0.07, 0.00

Schubiger (2021)
ATT: 0.05 (0.01);
p-values: n.a., n.a.

Schuit and Rogowski (2017)
ATT: -0.16 (0.04) ;
p-values: 0.88, 1.00

Trounstine (2020)
ATT: -0.06 (0.01);
p-values: 0.00, 0.07

Weschle (2021)
ATT: 1.11 (0.79);
p-values: 0.01, 0.58

Zhang et al. (2021)
ATT: 0.11 (0.06);
p-values: n.a., n.a.

Note: We report the estimated ATT and corresponding bootstrap SEs (in parentheses)
using FEct. We also provide the p-values from the F test and equivalence test. Rejecting
the null in the F test indicates potential violations of the PTA while rejecting the null in
the equivalence test provides evidence in support of the PTA. These tests are infeasible
for four cases with only one pre-treatment period.
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Figure 5. TWFE vs. Imputation Method
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Note: The above figures compare TWFE coefficients and estimates from the imputation method (FEct).

Estimates for each application are normalized by the same TWFE SE. The red solid circles represent studies

whose ATT estimates from FEct are statistically insignificant at the 5% level based on bootstrapped CIs.

Fouirnaies and Hall (2018) and Hall and Yoder (2022) are close to the 45-degree line but not included in the

figure as their TWFE z-scores are above 15.
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Figure 6. TWFE versus Imputation Method: Estimates and SEs
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Note: In subfigure (a), solid circles represent the ratios of the estimates from the imputation method (FEct)

to TWFE coefficients with always-treated units removed; hollow circles represent the ratios of reported

TWFE coefficients to TWFE coefficients with always-treated units removed. Subfigure (b) shows how

changes in SEs lead to changes in z-scores for the imputation method: the numerators on both axes are the

absolute values of the TWFE coefficients (with always-treated observations removed); the denominators are

cluster-bootstrapped SEs from TWFE and from FEct, respectively. Statistically insignificant FEct estimates

at the 5% level are painted in red in both subfigures.
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Figure 7. Comparison of Estimators: Staggered Cases
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All seven estimates for each application are normalized by the same reported SE. We multiply the estimates

by Sign(δ̂TWFE) for easier visualization; in other words, we flip the signs of all estimates for applications

with a negative TWFE estimate.

30



Other issues. Our reanalysis highlights several additional issues. First, as we have hinted

throughout this section, a large number of studies either lack sufficient statistical power or are

on the borderline of being underpowered. According to the authors’ original specifications,

one (3%) and 11 (29.7%) studies are not statistically significant at the 5% and 1% levels,

respectively. As previously noted, 10 studies lose statistical significance at the 5% level once

we apply an HTE-robust estimator. The cause is a combination of a loss of power and, in

some cases, smaller point estimates. While only a small fraction of studies in our sample

(five articles, 13.5%) employ a bootstrap procedure to estimate SEs or CIs, we observe that

the widely practiced cluster-robust SEs typically perform adequately because the numbers

of clusters/units are usually fairly large.

Second, the presence of missing values is widespread. Although most methodological

work presumes balanced panels without missing data, in reality, many empirical studies

encounter varying degrees of data missingness. We plot patterns of treatment status as

we do in Figure 2(a) for each study in the SM. Based on these plots, we see that in some

studies, the pattern of missingness is either nonrandom or extremely prevalent, which calls

into question the reliability and validity of the respective empirical findings.

Third, we perform carryover effect tests for all studies that feature treatment reversals.

If this test fails, it suggests that the treatment effects persist beyond the treatment periods.

Among 22 articles, five reject the null hypothesis of no carryover effects at 5%. LWX (2022)

note that the presence of carryover effects for a limited number of periods is less concerning,

as researchers can recode treatment to persist for some time after a unit transitions out of

treatment. By adopting this guideline, we observe that carryover effects do not substantially

alter the findings in most studies. Specifically, estimates are similar in magnitude, and

results initially deemed statistically significant continue to hold their statistical significance

(Figure A7 in the SM). Nevertheless, we recommend that researchers make it a practice to

check for potential carryover effects, considering the low cost of conducting such tests and
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adjustments.

Many studies also exhibit sensitivity to model specifications. When we incorporate an

LDV or ULT into the authors’ original specifications, a large number of studies lose their

statistical significance (29% and 41% respectively).14 While it is true that such models may

be vulnerable to additional biases, such as the Nickell bias in short dynamic panels, and the

additional parameters reduce efficiency, these results underscore that a significant number

of empirical findings in the literature rely heavily on the modeling assumptions. Hence,

we recommend researchers carefully assess the robustness of their findings using different

model specifications, possibly in combination with HTE-robust estimators. We reserve a

more careful and rigorous analysis of this issue for future studies.

Relatedly, some studies that we exclude from our sample employ one-way FE or FE at a

level different from that at which treatment is assigned. Many of these findings do not hold

when we reanalyze them using a TWFE model. We should clarify that this does not imply

that the original results are not credible; rather, it underlines the fact that these models

operate under distinct identification assumptions, and there is substantial variation in how

much consideration authors give to this point. We notice that some studies do not provide

a rationale for their choice to use one-way fixed effects, while others explicitly outline the

type of unobserved confounders they intend to control for. In one instance, the authors

inaccurately label their specification as a DID design. We emphasize that TWFE and DID

are generally not equivalent. This difference becomes even more pronounced when the fixed

effects are not assigned at the level of treatment.

Summary. In Table 4 below, we summarize the main findings of our reanalysis. The first

three columns indicate the proportion of studies in each journal, and across all journals, that

14Plümper and Troeger (2019) raise a cautionary note against the blanket use of fixed effects models in panel
data analysis. They show that if both the treatment and the outcome variables are highly autoregressive,
these models may lead to spurious correlations.
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have potential PTA violations. The numbers represent the proportion of studies where the

null hypothesis is rejected at the 5% significance level for the F test and the placebo test and

not rejected for the equivalence test. Across all journals, around a quarter of studies reject

the null hypothesis using the F test, with slightly fewer rejecting when using the placebo

test, indicating potential PTA violations. Note, though, that failure to reject to reject may

result from insufficient power. In 47% of the cases, the equivalence test fails to reject the

null hypothesis using |ÂTT | as the threshold, implying that for these studies we cannot

confidently state that the pre-treatment residual averages lie within a narrow range defined

by the estimated ATT.

Table 4. Summary of Findings
Potential PTA violations Consequence of HTE Insufficient power

(1) (2) (3) (4) (5) (6) (7)
F test Placebo test Equiv. test FEct-TWFE FEct-TWFE TWFE not FEct not

Journal reject null reject null not reject null Ratio < 0.8 Ratio < 0.5 reject null reject null

APSR (6) 0.33 0.33 0.50 0.00 0.00 0.00 0.17
AJPS (12) 0.25 0.17 0.42 0.15 0.00 0.00 0.15
JOP (19) 0.19 0.12 0.50 0.32 0.11 0.05 0.42

All (37) 0.24 0.17 0.47 0.21 0.05 0.03 0.29

Note: A null is deemed being rejected if p < 0.05. “Ratio” refers to the ratio of the FEct estimate to TWFE estimate
for the average effect. Four studies with only a single pre-treatment period are not included in the summary statistics in
columns (1)–(3).

Columns (4) and (5) show the ratio of the FEct estimator to the TWFE estimator,

which proxies the consequences of HTE. Across all journals, in 21% of studies, this ratio

is less than 0.8, and in 5% of studies, the ratio is less than 0.5, indicating that while HTE

might be a significant concern theoretically, its practical influence on yielding qualitatively

different findings may not be as substantial as the existing literature might suggest. Lastly,

columns (6) and (7) show the proportion of studies in which the null hypothesis of no effect

is not rejected by TWFE and FEct respectively. When employing the TWFE method,

this happens in 3% of the studies across all journals; however, when the FEct estimator is

utilized, this number increases to 29%, suggesting many studies in our sample are potentially

underpowered.
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When we synthesize these multiple lines of evidence, we find that 12 studies (or 32%

of our sample) provide strong evidence supporting the plausibility of the PTA—reflected

by the rejection of the equivalence test—and distinguish the ATT from zero with sufficient

statistical power. If we instead consider studies where the F test has a p-value greater than

0.05 (acknowledging that the F test is often underpowered), this number increases to 16

studies (42%).

We emphasize that our goal is not to pass judgment on each individual paper, but rather

to understand the state of the literature at large. We thus do not attempt to label ambiguous

cases that neither suffer from clear PTA violations and weighting problems nor provide strong

evidence to the contrary. Similarly, we do not tabulate subjective calls on whether pretrends

look “good” or “bad,” despite our advice for researchers to do so themselves. In practice,

when readers are attempting to evaluate the strength of evidence for a specific study, we

remind readers that credibility is not binary and urge readers to take a holistic view of the

evidence.

6. What To Do and (Not) To Do with Causal Panel Analysis

We conclude by sharing practical advice based on both our findings and our experiences con-

ducting a vast number of replications and reanalyses using observational panel data. Table 5

summarizes these lessons. The first consideration is the research design. Our results echo

the advice from Rubin (2008): “Design trumps analysis,” and it is imperative to understand

the underlying assignment mechanism. While fixed effects allow us to control for certain

unobserved confounders, this comes at the cost of strong assumptions about functional form

as well as the dynamics between the treatment and outcome, such as the absence of antic-

ipation, feedback, and time-varying confounders. If a glaring violation is already known to

exist at this stage, a new identification strategy is needed.

If confounding at the unit level is a major concern and the PTA or strict exogeneity

34



is plausible, we encourage researchers to plot the data at hand in order to understand the

patterns in treatment assignment and missing data. Ideally, treatment assignments will vary

both by unit and time. If the majority of variation occurs over time (unit) with little or

no variation between units at any given time period (or across time within a given unit),

the TWFE estimand will be dominated by impermissible comparisons and thus potentially

highly biased. Furthermore, HTE-robust estimators will estimate the treatment effect using

very little data and thus be underpowered. Equally important is the need for researchers to

understand the degree and possible origins of data missingness prior to initiating statistical

analysis. If missingness does not seem to be random, or if it is too prevalent, leaving

insufficient meaningful variation in the data, researchers should consider halting the analysis

at this stage. Indeed, proceeding under these circumstances can lead to biased estimates

and unreliable conclusions. Just as in the cross-sectional case, plotting the raw data can

also help researchers to spot outliers and highly skewed distributions. The time dimension

of panel data creates unique concerns about the distribution of the data: If the outcome

variable is highly serially correlated, further transformation such as first-difference or adding

LDVs may be needed (Beck and Katz, 2011), as our analysis has shown many models are

sensitive to such modeling choices.

At the stage of estimation, we recommend choosing an estimator that is robust to HTE.

Although our study reveals that most results are not sensitive to choice of estimators, this

is an empirical observation and not a theoretical guarantee. A non-negligible minority of

HTE-robust estimates in our sample are substantively different from the TWFE, and it is

not sufficient to simply hope that one’s own study does not fall within this group. There is

a loss of efficiency, but we argue this is an acceptable price. Moreover, it is always possible

to include a potentially more precise TWFE estimate in addition to the main, HTE-robust

estimate when power is a concern and effects are close to homogeneous (or, if effects are

heterogeneous, weighting does not seem to be an issue).
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Table 5. Do’s and Don’ts with Causal Panel Analysis

Do’s Don’ts

Design trumps
analysis

Start empirical analysis with a research
design; stop if “feedback” from past
outcomes to treatment assignment is a
major concern

Start empirical analysis by
blindly running regressions

Discussion of
designs

Clearly specify designs and their
corresponding identification assumptions

Equate designs with outcome
models

Plot raw data

Plot raw data to better understand the
research setting, missingness, sources of
variations in the treatment and outcome
variables, and whether some variables need
to be transformed first because of
nonstationarity, outliers, or highly skewed
distributions

Run regressions without
inspecting and visualizing the
data

Estimation
Choose HTE-robust estimators and always
plot the estimated DTE

Choose models solely based on
your beliefs; report regression
coefficients only; no results
visualization or diagnostics

Diagnostics
Conduct both visual and statistical tests to
gauge whether the PTA and the
no-carryover-effect assumption are plausible

Quantify
uncertainties

Cluster SEs at the level of unit or treatment
assignment, whichever is high; use
cluster-bootstrap procedures when the
number of clusters is small (e.g., < 50)

Use unclustered SEs or use
clustered SEs when the number
of clusters is small

Explore HTE

Explore HTE along time, unit (cohort), and
theoretically important pretreatment
covariates with flexible estimation
strategies; visualize your findings

Do not explore HTE or do so
through rigid parametric
models

We recommend using the chosen estimator to estimate and plot DTE, then conducting

both statistical tests and a visual inspection to assess the validity of strict exogeneity or the

PTA. While we focus on statistical tests and hesitate to publish ‘results’ of visual inspections

in our systematic analysis, our omission of the latter is due solely to its subjective nature

and does not imply its irrelevance. While statistical tests are useful, they are not sufficient to

replace visual inspections for two main reasons. First, all statistical tests risk making errors.

Second, visual inspections can reveal a lot about the nature and severity of a pretrend that

is masked by a simple p-value; the F test for a study with a clear, monotonic pretrend but

a small sample size may return a much larger p-value than the one for a very-large-N study

with a similar or more mild pretrend. The existence of a pretrend may reflect a fundamental
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flaw in the study design. Researchers may attempt to resolve the issue in several ways—

for example, by conditioning on additional (pre-treatment) covariates, or by using a more

flexible estimator. It may also involve small alterations to the research design, such as a

more careful selection of the “control” group. This strategy is also related to the choice of

estimator, which differs in their choices of comparison groups. We urge practitioners to be

transparent about the results of these tests and the DTE (event study) plots, as well as any

measures taken as a result of seeing them. The reader can then determine for themselves if

and how the estimates should update their beliefs about the answers to the research question

being investigated. We also recommend checking for carryover effects, whose existence may

be addressed by recoding the treatment so that it persists for some time after a unit switches

out of treatment.

For statistical inference, researchers should employ cluster-robust SEs when the number

of clusters is large (e.g., exceeds 50) or a cluster-bootstrap procedure when the number of

clusters is relatively small. The selection of the level on which to cluster should be based on

the level of time-series units or the level of treatment assignment, opting for the higher of the

two. Recent research indicates that clustering at the level of treatment assignment can be

considered a conservative approach if potential outcome variations are primarily driven by

idiosyncratic errors (Abadie et al., 2023); however, we believe this strategy is a safer route for

conducting inference, as it can help minimize the occurrence of false positives because it is

usually difficult for researchers to perfectly determine the primary sources of these variations.

Panel data provides unique opportunities that can assist social scientists in answering

difficult causal questions. Such data, particularly when operating under the PTA, also

presents its own set of challenges. Our findings and recommendations should not dissuade

researchers from employing panel data for causal analysis. Rather, we hope they guide

researchers in carrying out this task in a more transparent and credible manner. To facilitate

this process, we develop an open-source package, paneltools, in R, along with a detailed
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tutorial (https://yiqingxu.org/tutorials/panel.html), for researchers to implement all

the procedures used in this paper.
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A.1. Survey of HTE-Robust Estimators

Scholars have proposed a number of novel estimators that relax TWFE assumptions and

allow for HTE. We discuss several of them below. Broadly, we can categorize these estimators

along two dimensions: (1) estimation strategy and (2) applicable settings. Along (1), we

divide estimators into two groups. We call one group of methods “DID extensions,” which

use local, 2 × 2 DIDs between treated and control observations as building blocks, and

the other “imputation methods,” which impute counterfactual outcomes using an explicit

outcome model (in particular, the TWFE model) that is fit globally on all available control

observations. We see the former as direct extensions to DID, while the latter embed DID’s

functional form assumptions in their outcome models. For (2), estimators either are suited

only to the staggered setting (which includes the classic DID setting) where treatment is an

absorbing state or can accommodate treatment reversals. Those suited to the latter are also

suited to the former, which is just a special case of the latter. The reverse is not true.

In the following subsections, which are organized by this typology, we introduce and

compare several recently introduced HTE-robust estimators. Although these estimators all

relax the TWFE assumption of homogeneous effects, they do not absolve us of needing

the parallel trends assumption (PTA) or strict exogeneity. These estimators can, however,

estimate dynamic treatment effects, which in turn allow us to assess the validity of parallel

trends by testing for pretrends.

A.1.1. DID Extensions for the Staggered Setting

We first introduce a set of estimators, each constructed from local 2× 2 DID estimates, that

are suitable only for the staggered adoption setting. The general strategy of these estimators

is to estimate the dynamic cohort average treatment effect on the treated (CATT), δg,l, for

each cohort g and for each period since treatment adoption l using a valid 2 × 2 DID.

By valid, we mean that the DID consists of (1) a pre-period and a post-period and (2)

a treated group and a comparison group. The pre-period is such that all observations in

both groups are in control, and the post-period is such that observations from the treated

group are in treatment and the observations from the comparison group are in control. The

choice of comparison group is what primarily distinguishes estimators in this category. To

obtain higher-level averages, we then average over our estimates of δg,l using appropriate,

non-negative weights.
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? propose an interaction-weighted (iw) estimator that is a weighted average of CATT

estimates obtained from a TWFE regression with cohort dummies fully interacted with

indicators of relative time to the treatment’s onset. Specifically,

Yi,t = αi + λt +
∑

g/∈C

∑

l ̸=0

δg,l1{Ei = g} · 1 {Ki,t = l}+ ϵi,t, (A1)

where C is some set of reference cohorts and Ki,t is similarly defined as in the main text.

Equivalently, each estimate of δg,l from equation A1 can can be characterized as a difference

in the average changes in outcome from some fixed pre-period s < g to l periods since g

between the treated cohort g and comparison cohorts in C:

δ̂(g, l) =
1

|{i : Ei,t = g}|
∑

i:Ei,t=g

(Yi,g+l − Yi,s)−
1

|{i : Ei,t ∈ C}|
∑

i:Ei,t∈C
(Yi,g+l − Yi,s),

The authors recommend using C = {supi Ei,t}, which is either the never-treated cohort or

(if none exists) the last-treated cohort. The estimator then weights δ̂g,l by the sample share

of each cohort ŵg before taking some average thereof. For example, the dynamic treatment

effects (DTE) from relative period l between −a and b can be estimated from

δ̂IWl =
∑

g

ŵg δ̂g,l, a ≤ l ≤ b,

and the ATT up to b periods after the treatment’s onset from

δ̂IW =
1

b

∑

1≤l≤b

∑

g

ŵg δ̂g,l.

The authors note that their estimator can be extended to include covariates, but also that

this may require additional functional form assumptions.

Using the same general strategy, ? propose doubly robust estimators that directly incor-

porate pre-treatment covariates. These estimators, which we collectively refer to as csdid,

use either never-treated (δ̂CS−dr
nev ) or not-yet-treated units (δ̂CS−dr

ny ) as the comparison group.

δ̂CS−dr
nev uses the same comparison group as iw when a never-treated cohort exists, whereas

δ̂CS−dr
ny differs and uses all untreated observations of later adopters (including the never-

treated) as potential controls for early adopters. Besides the choice of comparison cohort,

these estimators both differ from the iw estimator in that they allow the user to condition on

pre-treatment covariates using both an explicit outcome model and inverse propensity score
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weighting (IPW).A1 If either the outcome model or the propensity score model is correct,

the estimators will be consistent.

A.1.2. DID Extensions for the General Setting

The next group of estimators we discuss also use local DIDs as building blocks, but estimators

in this group can accommodate treatment reversals. The general strategy is once again to use

valid 2× 2 DIDs, but this time the goal is to estimate the DTE δl for all treated units some

number of periods since treatment l—cohorts are no longer defined, since treatment reversals

make it insensible to group units by their time of treatment adoption. The literature has

effectively proposed one common strategy of selecting a comparison group, which is to match

treated and control observations belonging to units with the same treatment history.

IKW (?) propose one such estimator. Formally, to estimate the ATT, we first define a

matched set for each observation (i, t) satisfying Di,t = 1 and Di,t−1 = 0,

Mi,t =

{
i′ : i′ ̸= i,Di′,t = 0, Di′,t′ = Di,t′ ∀t′ ∈ {t− 1, t− 2, . . . , t− a}

}
,

where a is the number of periods on which we wish to match treatment histories. The authors

also propose “refining” the matched set to incorporate other pre-treatment covariates and

past outcomes. We do not further discuss refinement for a more seamless comparison with

other estimators and refer interested readers to the original paper. Without refinement and

fixing the number of periods a on which to match, the proposed estimator for the DTE l

periods since treatment δl is,

δ̂PM
l,a =

∑T−l+1
t=a

∑N
i=1Gi,tδ̂

(i,t)
l∑T−l

t=a+1

∑N
i=1Gi,t

,

where Gi,t = 1 {|Mi,t| > 0}Di,t(1 −Di,t−1) is equal to 1 if and only if the observation (i, t)

switches into treatment at time t and has a non-empty matched set (and is zero otherwise)

and δ̂
(i,t)
l = (Yi,t−1+l−Yi,t−1)−

∑
i′∈Mi,t

1
|Mi,t|(Yi′,t−1+l−Yi′,t−1) is the local DID obtained from

the pre- and post-periods t−1 and t−1+ l, respectively, the treatment “group” consisting of

just (i, t), and the comparison group consisting of the matched set for (i, t). To then obtain

an estimate for the DTE δ̂l, we then average over all δ̂
(i,t)
l such that (i, t) Essentially, the

strategy is to average over the estimates of the DTE for all units that switch into treatment

A1The IPW estimator proposed by ? is similar to δ̂CS−dr
ny . One small difference is that δ̂CS−dr

ny allows more
complex outcome modeling than a simple before-and-after estimator.
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at t (if there are any) for each time period t, and then to average across all time periods for

which we can obtain an estimate.A2 If the goal is to estimate the average effect of treatment

reversal (ART), we then analogously defined matched sets for each observation (i, t) satisfying

Di,t = 1 andDi,t−1 = 0,Mi,t = {i′ : i′ ̸= i,Di′,t = 1, Di′,t′ = Di,t′ ∀t′ ∈ {t−1, t−2, . . . , t−a}}.
We use δ̂PM−ART

l,a to denote the resulting estimator.

Interestingly, several DID extensions can be viewed as special cases of PanelMatch.

Remark A.1 (Relation between δ̂PM
1,1 without refinement and δ̂M).

Assume we have a balanced panel of units, i.e. every unit i is observed at every time period

t. For the special case when we match on only one period (a = 1) and are estimating the

contemporaneous treatment effect (l = 1), without refinement, a weighted average of the

PanelMatch estimators for the ATT and ART is equivalent to the multiple DID estimator

proposed by ?, or δ̂M , when there exists a ‘stable’ group (i.e., whenever there is a unit

switching into or out of treatment, there is at least one other unit staying in control or

treatment; see the next section for a formal statement of this assumption), where the weights

are the proportion of ‘switchers’ that are ‘joiners’ versus ‘leavers.’ That is, if we do not refine

the matched set, then NJ

NS
δ̂PM
1,1 + NL

NS
δ̂PM−ART
1,1 = δ̂M , where NJ , NL, and NS are the numbers

of joiners, leavers, and switchers. The proof is in the next section. This observation allows

us to appeal to the results that ? prove about δ̂M . Minor adjustments of their proofs

will give us that, under some typical assumptions (the details of which we provide later in

this section), δ̂PM
1,1 without refinement is asymptotically normal, unbiased, consistent for the

average contemporaneous treatment (reversal) effect on the treated.

Remark A.2 (Equivalence of PanelMatch and csdid without covariate adjustment).

Again assume we have a balanced panel of units. If we use a simple difference in means

as the outcome model for csdid and employ uniform propensity score weights (i.e., do not

adjust for covariates), then csdid is equivalent to PanelMatch with an arbitrary number of

lags and without refinement (in the staggered setting). This follows from the facts that in

the staggered setting, for any time period t: (1) Any observation belonging to a unit that

switches into treatment at time t (‘switchers’) must have been under control for the periods

1, . . . t−1; and (2) all control observations must belong to units that have been under control

A2Note that, without refinement, all treated observations with the same treatment history share the same
matched set, so we can group these observations together and rewrite the inner sum to instead be over
all possible treatment histories. We can thus also express the inner sum of the numerator as a weighted
sum of local DIDs using a slightly different treatment group—all treated observations with the treatment
history—where the weights are proportional to the size of said group.
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for the periods 1, . . . t − 1 (i.e., they have the same treatment history as switchers). Thus,

the matched set will always include all units under control (all “not-yet treated” units).

A.1.3. Imputation Methods for the General Setting

The last class of estimators we discuss no longer directly take the difference between differ-

ences; instead, they take the difference of the observed outcome and an imputed counterfac-

tual outcome (for treated observations)—the before-and-after difference is embedded in the

functional form assumption used to impute treated counterfactuals. Under strict exogeneity

or a stronger version of the PTA, the imputation method allows researchers to make infer-

ences about the ITE of treated observations, τi,t,∀(i, t) s.t. Di,t = 1, the most fine-grained

estimand (e.g., ?).

BJS (?) propose an “imputation procedure” that first imputes the counterfactual out-

comes for treated units based on the outcome model,

Yi,t = A′
i,tλi +X ′

i,tβ +Di,tΓ
′
i,tθ + ϵi,t,

and then estimates the treatment effect for treated observations with the difference be-

tween their observed and their imputed counterfactual outcomes. That is, first use only

the untreated observations {(i, t) : Di,t = 0} to estimate λi and β (by λ̂i and β̂) using

OLS on the regression Yi,t = A′
i,tλi + X ′

i,tβ + εi,t. Then, for each treated observation, set

Ŷ BJS
i,t (0) = A′

i,tλ̂i +X ′
i,tβ̂ and estimate the ITE as δ̂BJS

i,t = Yi,t − Ŷ BJS
i,t (0). We can then com-

bine these ITE estimates to estimate aggregate quantities, including the ATT and dynamic

effects.

LWX (?) refer to imputation-based estimators as “counterfactual estimators” and discuss

several such estimators. LWX (?) consider a class of outcome models of the form Yi,t(0) =

f(Xi,t) + h(Ui,t) + εi,t, where f(·) and h(·) are known parametric functions, Xi,t is observed,

and Ui,t is unobserved (whereas in BJS (?), both Xit and Ait are observed). Note that this

framework subsumes the TWFE outcome model as we can model Yi,t(0) = X ′
i,tβ+αi+ξt+εi,t.

We can then use an estimation procedure similar to the one in BJS (?). LWX (?) call this

estimator the fixed effect counterfactual (fect) estimator, δ̂fect (for the ATT) or δ̂fectl (for

the dynamic effects).

A.1.4. PTA and Strict Exogeneity

We first discuss and compare the key identification assumptions required by each method.
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? define potential outcomes based on treatment history and assume parallel trends for the

never-treated potential outcome Yi,t(∞) of the comparison group: E[Yi,t(∞)−Yi,s(∞)|Ei,t =

e] is the same for all s ̸= t and e ∈ suppEi,t.
A3 Call this assumption “parallel trends A.”

? similarly assume parallel trends for the comparison group, but define potential outcomes

based on current treatment status. As a result, the statement of the assumption becomes,

for all g, E[Yi,t(0)− Yi,t−1(0)|Ei = g] = E[Yi,t(0)− Yi,t−1(0)|Ei,t ∈ C] for each t ≥ max{2, g}.
Call this version “parallel trends B.”

? assume both “strong exogeneity” and “common trends.” They define the former as,

E[Yi,t(d)− Yi,t−1(d)|{Di,t}Tt=1] = E[Yi,t(d)− Yi,t−1(d)] for all i, all t ≥ 2, and all d ∈ {0, 1}.A4

The common trends assumption requires that this last quantity — that is, E[Yi,t(d)−Yi,t−1(d)]

— does not vary across i for all t ≥ 2 and d ∈ {0, 1}. Combining these two assumptions, we

can instead write that E[Yi,t(d)−Yi,t−1(d)|{Di,t}Tt=1] = E[Yj,t(d)−Yj,t−1(d)] for all j (including

j = i), all i, all t ≥ 2, and all d ∈ {0, 1}. Call this combined version of the assumptions

“parallel trends C.” Like ?, IKW (?) define potential outcomes in terms of treatment

histories. IKW (?) do not, however, assume staggered adoption, and so a much wider range

of treatment histories are possible. The comparison group is also substantially different.

The latter compares units that switch into treatment with those that stay in control and

asks that their respective trends be parallel: E[Yi,t+l(Di,t = 0, Di,t−1 = 0, {Di,t−s}as=2)|Di,t =

1, Di,t−1 = 0] = E[Yi,t+l(Di,t = 0, Di,t−1 = 0, {Di,t−s}as=2)|Di,t = 0, Di,t−1 = 0]. Call this

assumption “parallel trends D.”

Recall that the imputation estimators connect to DID in a less direct way, which in

turn implies different assumptions: They assume a TWFE model for untreated potential

outcomes, which requires mean independence for all pairs of units i, j and all pairs of time

periods t, s. For example, BJS (?) define a version of parallel trends as E[Yi,t(0)− Yi,s(0)] =

E[Yj,t(0)− Yj,s(0)] for all i, j and all t, s. The estimator from BJS (?) does not require this

to hold, instead requiring a weaker assumption, E[Yi,t(0)] = A′
i,tλi + X ′

i,tδ for all i, t. Note

that this assumption implies that each idiosyncratic error is zero in expectation, and thus

we refer to this assumption as “outcome model and mean-zero errors.” δ̂fect from LWX (?)

requires strict exogeneity and the TWFE outcome model, which together imply the PTA

defined by BJS (?).

A3We state the unconditional versions of these assumptions for simplicity.
A4The actual assumption is that this equality holds for all groups g, where g is the level of the fixed ef-
fects, which may be at a higher level than the unit level (e.g., if i indexes cities, g might be counties or
states/provinces). For consistency and simplicity, we assume that this is equal to the unit level in our
discussion (i.e., unit fixed effects).
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A.1.5. Assumptions for Each Estimator

Next, we provide a fuller account of all assumptions invoked by each method.

?

• Parallel trends A; and

• No anticipation for the comparison group: E[Y e
i,e−l − Y ∞

i,e−l|Ei,t = e] = 0 for all l > 0

and e ∈ C.

Under the above assumptions, the IW estimator is unbiased and consistent.

?

• Random sampling: {Yi,g,t, Xi, Di,g,t}Ni=1 : 1 ≤ t ≤ T is iid;

• Limited anticipation up to a known number of periods s: E[Yi,g,t(0)−Yi,g,t−1(0)|X,Ei =

g] = E[Yi,g,t(0)− Yi,g,t(0)|X,C = 0] for each t ≥ g − s;

• Overlap: For each t ≥ 2 and g, there exists ϵ > 0 such that P(Gg = 1) pg,t(X) < 1− ϵ

almost surely; and

• Parallel trends B.

Under the above assumptions, δ̂CS−dr
nev and δ̂CS−dr

ny are point-identified when the compari-

son groups are the never-treated or not-yet-treated cohorts, respectively. Additionally, when

there are covariates X, the estimators are consistent and asymptotically normal if we also

assume the following (dropping the i subscript):

• For all g = 2, . . . , T , (i) there exists a known function Λ : R→[0, 1] such that pg(X) :=

P(Gg = 1|X,Gg + C = 1) = Λ(X ′π0
g), where C is an indicator variable for whether

a unit belongs to the comparison group; (ii) π0
g int(Π), where Π is a compact subset

of Rk; (iii) supp(X) ⊆ S for some compact S, and E[XX ′|Gg + C = 1] ≻ 0; (iv)

for U = {x′π : x ∈ supp(X), π ∈ Π}, for all u ∈ U , there exists ϵ > 0 such that

Λ(u) ∈ [ϵ, 1 − ϵ], Λ(u) is strictly increasing and twice continuously differentiable with

first derivatives bounded away from zero and infinity and bound second derivatives;

(vi) E[Y t
t ] < ∞ for all t = 1, . . . , T .

A-8



IKW (?) The authors discuss several assumptions, including

• Balanced panel;

• No spillover (temporally, or across units);

• Limited carryover; and

• (Conditional) parallel trends E[Yt+F (Dt = 0, Dt−1 = 0)− Yt−1|Dt = 1, Dt−1 = 0, Zt] =

E[Yt+F (Dt = 0, Dt−1 = 0)−Yt−1|Dt = 0, Dt−1 = 0, Zt] where Zt =
(
{Dt−l, Yt−l}Ll=2, {Xt−l}Ll=0

)

? Note that in the original paper, ? define their estimator in terms of a group level (the

level of the fixed effects) that need not be equal to the unit level. For simplicity and ease

of comparison, we state their assumptions for the case where the group level is the same as

the unit level (i.e., unit fixed effects). δ̂M is unbiased, consistent, and asymptotically normal

under the following assumptions:

• Balanced panel;

• Independent groups, i.e. (Yi,t(0), Yi,t(1), Di,t)1≤t≤T are mutually independent;

• Strong exogeneity;

• Common trends; and

• The existence of stable groups, i.e. whenever there exists a ‘joiner’ (i, t) : Di,t =

1, Di,t−1 = 0 or a ‘leaver’ (i, t) : Di,t = 0, Di,t−1 = 1, then there also exists a unit

staying in control (i′, t) : Di′,t = Di′,t−1 = 0 or treatment (i′, t) : Di′,t = Di′,t−1 = 1,

respectively.

BJS (?) The imputation estimator is unbiased under the following assumptions:

• General model for Y (0) (which subsumes the TWFE model) and zero mean error, for

all (i, t), Yi,t(0) = A′
itλi +X ′

itδ + ϵi,t, where E[ϵi,t] = 0;

• No anticipation, Yi,t = Yi,t(0) for all (i, t) such that Di,t = 0;

• Null model for causal effects (i.e., no restrictions on the ITEs), (τi,t)(i,t):Di,t=1 is some

unknown vector of length N1, where N1 is the number of treated observations.
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Furthermore, if errors are homoskedastic and mutually uncorrelated, E[ϵϵ′] = σ2IN , then

the imputation error is efficient. Two additional assumptions ensure that the estimator is

consistent:

• Clustered standard errors, ϵi,t are uncorrelated accross units and have bounded vari-

ance, Cov(ϵi,t, ϵj,s) = 0 for all i ̸= j, and V ar(ϵi,t) < σ̄2 for some finite σ̄2; and

• Herfindahl condition, ∥v∥2H :=
∑

i(
∑

t |vi,t|)2→0, where vi,t are weights such that τ̂ =∑
i,t vi,tYi,t.

Lastly, asymptotic normality is guaranteed by the following:

• Higher moments of weights, there exists δ > 0 such that E[|ϵi,t|2+δ is uniformly bounded

and
∑

i

(∑
t |vi,t|
∥v∥H

)2+δ

; and

• lim inf nHσ
2 > 0, where nH = ∥v∥−2

H and σ2 = V ar(τ̂).

LWX (?) Under the following two assumptions along with some regularity conditions,

fect is unbiased and consistent:

• Functional form, Yi,t(0) = Xi,t
′β + αi + ξt + εi,t; and

• Strict exogeneity, εi,t ⊥⊥ {Dj,t, Xj,t, αj, ξt} for all i, j = 1, . . . , N and all s, t = 1, . . . , T .
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A.2. Proof of Remark A.1

First, we note that ? define δ̂M to allow for ‘group’ level fixed effects that may be higher up

than the unit level. Let Ng,t denote the number of observations in group g at time t. We

assume a “sharp design,” meaning all units in the same cell (g, t) have the same treatment.

Let Nd,d′,t =
∑

g:
Dg,t=d,

Dg,t−1=d′
Ng,t denote the number of observations with treatment status d in

period t and status d′ in period t−1. Let Y.,g,t =
1

Ng,t

∑Ng,t

i=1 Yi,g,t denote the average outcome

(across observations) in group g at time t. Define the following quantities:

DID+,t =
∑

g:Dg,t=1,Dg,t−1=0

Ng,t

N1,0,t

(
Y.,g,t − Y.,g,t−1

)
−

∑

g:Dg,t=Dg,t−1=0

Ng,t

N0,0,t

(
Y.,g,t − Y.,g,t−1

)
and

DID−,t =
∑

g:Dg,t=Dg,t−1=1

Ng,t

N1,1,t

(
Y.,g,t − Y.,g,t−1

)
−

∑

g:Dg,t=0,Dg,t−1=1

Ng,t

N0,1,t

(
Y.,g,t − Y.,g,t−1

)
,

lettingDID+,t = 0 whenever min{N1,0,t, N0,0,t} = 0 andDID−,t = 0 whenever min{N1,1,t, N0,1,t} =

0. Finally, define

δ̂M =
T∑

t=2

(
N1,0,t

NS

DID+,t +
N0,1,t

NS

DID−,t

)
,

where NS := |(g, t) : t ≥ 2, Dg,t ̸= Dg,t−1| is the number of switchers.

Now, we consider the case where the group level is the same as the unit level. Note that

then Ng,t = 1 always.

We can now write

DID+,t =
∑

i:Di,t=1,Di,t−1=0

1

N1,0,t

(
Yi,t − Yi,t−1

)
−

∑

i:Di,t=Di,t−1=0

1

N0,0,t

(
Yi,t − Yi,t−1

)

and similarly

DID−,t =
∑

i:Di,t=Di,t−1=1

1

N1,1,t

(
Yi,t − Yi,t−1

)
−

∑

i:Di,t=0,Di,t−1=1

1

N0,1,t

(
Yi,t − Yi,t−1

)

Now consider δ̂PM with the choice of l = 1, which estimates the contemporaneous treat-
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ment effect at the moment of joining treatment,

δ̂PM
1,a =

∑N
i=1

∑T
t=a+1 1 {|Mit| > 0}Di,t(1−Di,t−1)

(
(Yi,t − Yi,t−1)−

∑
i′∈Mi,t

1
|Mi,t|(Yi′,t − Yi′,t−1)

)
∑N

i=1

∑T
t=a+1 1 {|Mit| > 0}Di,t(1−Di,t−1)

.

Now further restrict lags used for matching to a = 1. Then the matched set Mi,t =
{
i′ :

i′ ̸= i,Di,′t = 0, Di,′t−1 = Di,t−1

}
is just units that have the same treatment status in the

previous period and are in control in the current period. Under the assumption that a stable

group exists, the matched set must be nonempty for any ‘joiner’ ((i, t) : Ji,t = 1), where

Ji,t = 1 {Di,t = 1}1 {Di,t−1 = 0}, and so 1 {|Mit| > 0}Di,t(1− i,t) = Ji,t. Let NJ := |(g, t) :
t ≥ 2, Ji,t = 1| be the number of joiners.

Now we have,

δ̂PM
1,1 =

∑
t≥2

∑
i:Ji,t=1

(
(Yi,t − Yi,t−1)− 1

|Mi,t|
∑

i′∈Mi,t
(Yi′,t − Yi′,t−1)

)

NJ

=
1

NJ

∑

t≥2

∑

i:Ji,t=1

(
(Yi,t − Yi,t−1)−

1

|Mi,t|
∑

i′:Di′,t=Di′,t−1=0

(Yi′,t − Yi′,t−1)
)

=
1

NJ

∑

t≥2

∑

i:Ji,t=1

(
(Yi,t − Yi,t−1)−

1

N0,0,t

∑

i′:Di′,t=Di′,t−1=0

(Yi′,t − Yi′,t−1)
)

=
1

NJ

∑

t≥2

( ∑

i:Ji,t=1

(Yi,t − Yi,t−1)−
N1,0,t

N0,0,t

∑

i′:Di′,t=Di′,t−1=0

(Yi′,t − Yi′,t−1)

)

=
N1,0,t

NS

DID+,t.

We can alter the definition of the matched set to target ‘leavers’ {(i, t) : Di,t = 0, Di,t−1 =

1} to get an estimate for the contemporaneous effect of leaving δ̂PM−ART
1,1 and similarly

show that δ̂PM−ART
1,1 = N0,1,t

NL
DID−,t, where NL is the number of leavers. Observe that

δ̂M = NJ

NS
δ̂PM
1,1 + NL

NS
δ̂PM−ART
1,1 .
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A.3. Sample and Replicability

A.3.1. Sample Selection Criteria

We collect our replication sample from three leading journals in political science, APSR,

AJPS, and JOP. We screen all full research articles published in these journals during 2017-

2022 using the following four criteria:

1. The paper uses panel data analysis as a critical piece of evidence to support a causal

argument. Specifically, either the abstract or the introduction of the paper needs to

mention the results from the panel analysis.

2. The paper uses at least one linear model to analyze panel data, such as DID, TWFE,

or lagged dependent variable (LDV) models, and the treatment variable has to be

binary. In other words, papers that use only discrete outcome models or continuous

treatments are excluded. We include this criterion because most of the analytical

tools the literature has developed so far are designed for linear models with binary

treatments.

3. We exclude papers that use a regression discontinuity design or an instrumental vari-

ables (IVs) design, including Bartik IVs, as their primary identification strategy.

4. We exclude papers that do not exploit within-unit variation despite the longitudinal

structure of the data. These designs are drastically different from the rest of the panel

studies in their estimand, their identification assumptions, and the properties of their

estimators and are worth investigating separately.

A-13



A.3.2. Replicability

For papers that meet our four screening criteria, we try to find replication materials from

public data-sharing platforms, such as the Harvard Dataverse, and the authors’ personal

websites. For each paper, we choose one model that we think can best represent the paper’s

central claim. Specifically, we sequentially go through the following two criteria: (1) the

authors claim that it is the preferred model; and (2) the model uses the most complete

dataset (i.e., with the least missing values). Using data and code from the replication

materials, we are able to successfully replicate the main results of 37 of 52 papers that meet

our criteria. By successful replication, we mean that we can replicate the point estimate of

the chosen specification up to the second decimal point. Figure A1 shows the number of

replicable and non-replicable papers by year.

Figure A1. Replicability by Year
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Note: The above figure shows the number of papers that meet our criteria. The grey

and black bars represent the number of replicable papers and the number of papers

that cannot be replicated.
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A.4. Implementation Details

This section provides an elaboration of our reanalysis procedures documented in replication

markdown files. For each paper, the reanalysis process encompasses four parts: (1) funda-

mental summary and visualization, (2) point estimates, (3) dynamic treatment effects, and

(4) diagnostic tests.

A.4.1. Summary of Context and Visualization

Summary Table. We meticulously document various aspects of each paper, including

the outcome variable, treatment variable, unit and time indicators, covariates, treatment

patterns, and fixed effects utilized.

Researchers primarily use two ways to motivate the TWFEmodel: they equate estimating

a TWFE as employing a “difference-in-differences” (DID) strategy or they exploit “within”-

unit (group) variations using a TWFE model.

We categorize the treatment pattern into three types as follows: (1) “Classic:” All

treated units receive the treatment simultaneously, resembling a conventional difference-

in-differences design; (2) “Staggered:” The treatment kicks in at different time points for

different units and never reversal; and (3) “General:” The treatment can have reversals.

Visualizing Treatment Status: We visualize the treatment status using the package

panelView (?). The treated observations are visually represented by deep blue, whereas

observations under control status are indicated by a lighter shade of blue. Additionally, we

rearrange the units based on the chronological order of their initial exposure to the treatment.

Visualizing the Outcome: Using the package panelView, we depict the trajectory of the

outcome variable within the study’s time window for each individual unit. Control units are

visually distinguished in gray, whereas treated units are represented by blue. Additionally,

for studies with staggered adoption designs, we also plot the average outcome trajectory for

each cohort.

A.4.2. Point Estimates

Original (Reported) Results: We employ the fixest package (?) to run a fixed effect

regression incorporating the treatment indicator, covariates, and fixed effects specified in the

original specification. We print the raw regression output in the markdown file.
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Replicated Results: The replicated estimate are identical to the reported estimates ex-

cept for ?. Due to the large scale of the data from ?, e base our analysis on a 1% sub-sample

of the original data for computational efficiency. As a result, our estimate deviates slightly

from the reported one. We present the unit-level clustered standard error and the stan-

dard error obtained from a 200-round clustered bootstrap, along with their corresponding

confidence intervals.

Goodman-Bacon Decomposition: For the analysis involving a staggered treatment pat-

tern and no additional fixed effects apart from the unit and time fixed effects, we employ

the Goodman-Bacon decomposition (?). This decomposition allows us to break down the

replicated estimate into a weighted average of all possible 2 × 2 DID estimates across dif-

ferent cohorts. Since the bacondecomp package is designed for balanced panel data, the

weighted DID estimates may not perfectly align with the replicated estimate. Nonetheless,

this approach serves as a valuable diagnostic tool to assess the potential impact of ‘invalid’

comparisons on the point estimate.

TWFE: While maintaining the same regression specification as the replicated estimates,

we modify the analysis by excluding always-treated units from the sample.

fect: We employ the fect package to implement the imputation methods. When the

levels of fixed effects in the original specifications are higher than unit or time levels, we use

the “cfe” method provided by the package for the imputation procedure. This is applied

to three studies, including ?? and ?. To obtain uncertainty estimates, we employ a 200-

round cluster bootstrap approach. The program automatically excludes all always-treated

observations.

Lagged Dependent Variables (LDVs): In the estimation process using TWFE and

fect, we include the lagged-one-period outcome variable as a covariate. For studies with

only two periods, we omit this step.

Unit-specific Linear Time Trends (ULT): During the estimation process using TWFE

and fect, we introduce an additional fixed effect in the form of a unit-specific linear trend. If

the original design already incorporates such trends, we omit this step to avoid redundancy.
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Other HTE-Robust Estimators: For all replications with no additional fixed effects

apart from unit and time fixed effects, we implement the PanelMatch estimator (?). For

analyses involving a staggered treatment pattern, we also implement multiple HTE-robust

estimators, including the iw estimator (?), the csdid estimator (?). We also implement

the stacked DID estimator for these staggered cases (?). We report the unit-level clustered

standard error and the standard error derived from a 200-round clustered bootstrap, along

with their corresponding confidence intervals. All always-treated units are always dropped

automatically.

Stacked DID: We adopt the methodology described in ? to implement the stacked DID

estimator. We first construct a cohort-specific dataset for each ever-treated cohort, which

includes the respective cohort and all never-treated units. Subsequently, these cohort-specific

datasets are stacked to compute an average effect across all cohorts using a fixed effect

regression model incorporating the treatment indicator, covariates, stack-unit interaction

and stack-year interaction fixed effects.

iw Estimator: We employ the sunab() command available in the fixest package to

implement the iw estimator. To obtain the total average treatment effect, we set the att

option to TRUE. We maintain the default values for other options.

csdid Estimator: We utilize the did package to implement the csdid estimator (?). We

specifically set the est method option to “reg,” employing only the outcome model rather

than the double-robust model to estimate the ATT. Additionally, to compare the point

estimate under different comparison group scenarios, we set the control group option to

both “notyettreated” and “nevertreated.”

PanelMatch: For the analysis without additional fixed effects apart from the unit and time

fixed effects, we use the PanelMatch package to implement the eponymous estimator. To

determine the number of treatment history periods on which to matched, we set the lag

option to the maximum value that does not result in an error from the command. By

setting the match.missing option to TRUE, units are also matched based on the pattern of

missingness in their treatment histories. Additionally, we set the covs.formula option to

NULL and the refinement.method option to “none” to ensure equal weighting of control

units within each matched set sharing the same treatment histories. The confidence interval

is obtained from the built-in bootstrap method.
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Balanced fect: By setting the option balance.period in fect, we are able to estimate

the ATT for a specific subset of the sample using the imputation method. This subset

comprises units with certain non-missing pre-treatment and post-treatment periods. The

lag and lead parameters employed here are kept consistent with the PanelMatch command.

A.4.3. Dynamic Treatment Effects

In the estimation of DTE, we designate the relative period 0 as the last pre-treatment period

and the relative period 1 as the first post-treatment period. The rule of indexing the relative

periods when treatment has reversals is clarified in ?. To implement this indexing rule, the

get.cohort() command available in the paneltools package can be utilized. We use the

command esplot() from the same package to visualize the DTE. All always-treated units

are dropped in the estimation of DTE.

TWFE (No Reversals): When the treatment doesn’t have reversals, we include a series

of interaction terms between a dummy that indicates whether a unit is a treated unit and

each lead (lag) indicator relative to the treatment in a fixed effect regression that incorporates

the same fixed effects as specified in the original paper. We set the reference period as the

last pre-treatment period and obtain the confidence interval using clustered standard error

and a 200-round clustered bootstrap.

TWFE (With Reversals): When the treatment has reversals, we first use the get.cohort()

command to determine the relative periods in relation to the treatment. We then generate

the treated unit indicator “treat” using the following steps: First, for observations of units

that have never been treated, we assign “treat” a value of 0. Second, for ever-treated units

with treatment reversals, we assign “treat” a value of 1 only for observations prior to the

last treatment exit. For instance, if a unit’s treatment status sequence is 0, 0, 0, 1, 1, 0, 0, we

set “treat” to 1 for the first five observations. Third, if certain units are already under the

treated status in the initial period of the data, we exclude observations prior to their first

treatment exit since their relative periods to treatment are uncertain. We then proceed to in-

teract the binary variable “treat” with each lead (lag) indicator relative to the treatment and

run the fixed-effect regression as previously described. We designate the last pre-treatment

period as the reference period and obtain the confidence interval using clustered standard

error and a 200-round clustered bootstrap.
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fect: The procedure here is the same as the one described in the previous section on point

estimates.

For the analysis involving a staggered treatment pattern, we also implement the afore-

mentioned HTE-robust estimators to estimate the DTE.

Stacked DID: We create the cohort-specific datasets and the stacked data the same as

we do in the point estimate section. The difference is that the fixed effect regression includes

interaction terms between a dummy that indicates whether a unit is ever-treated and each

lead (lag) indicator along with stack-unit interaction and stack-year interaction fixed effects.

We designate the last pre-treatment period as the reference period and obtain the confidence

interval using clustered standard error and a 200-round clustered bootstrap.

iw Estimator: We employ the same command as stated in the point estimate section,

with the exception of setting the att option to FALSE. We aggregate the treatment effects

to the relative period level without binning any periods. The reference period is still the last

pre-treatment period.

csdid Estimator: We utilize a similar command to the one outlined in the point estimate

section, with a few differences. Firstly, we specify the type option as “dynamic” to aggregate

the treatment effects on the relative period level. Secondly, we set the cband option to

FALSE to obtain period-wise confidence intervals. Lastly, we assign the base period option

as “universal” to establish the last pre-treatment period as the base period.

PanelMatch: We employ the same command as stated in the point estimate section, with

the exception of setting placebo.test = TRUE to obtain the pseudo treatment effects for

the pre-treatment periods.

Balanced fect: The same as the point estimate.

A.4.4. Diagnostic Tests

For studies with sufficient numbers of pre-treatment periods (> 3), we employ the F -test,

equivalence test, and placebo test to evaluate the validity of the parallel trend assumption

(PTA). In the case of a study with treatment reversals and an adequate number of periods

following the treatment exit (> 3), we conduct a test to assess the absence of carryover effects.
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All these tests are based on estimations obtained from fect, and information regarding the

specific details of these tests can be found in ?. We report the p-values of these tests in the

test results table.

F -Test: We use an F -test to examine the presence of a pretrend. “Residuals” are defined

as the differences between Y (0) and Ŷ (0). The null hypothesis posits that the residual

averages in each pre-treatment period is (jointly) equal to zero. This test encompasses all

pre-treatment periods wherein the count of treated observations exceeds 0.3 times the total

number of treated units. A small p-value, leading to the rejection of the F -test, indicates

the potential failure of the PTA.

Equivalence Test: The equivalence test evaluates whether the 90% confidence intervals

(corresponding to a 5% significance level) for the residuals in the pre-treatment periods

surpass a predetermined range, known as the equivalence range. The null hypothesis posits

that the residual exceeds this specified range for each pre-treatment period, thus a smaller

p-value from the equivalence test indicates a better fit in pre-treatment periods. We perform

the equivalence test using two different pre-specified ranges. The first criterion uses the

default range, set at 0.36σε, where 0.36σε represents the standard deviation of the outcome

variable partialling out the two-way fixed effects. The second criterion uses the estimated

average treatment effect obtained through fect. The p-values using the second criterion are

reported in the main text.

Placebo Test: We use the placebo test feature available in the fect package. We set

the placebo.period option as c(-1,0), thereby excluding observations in the last two pre-

treatment periods during model fitting. We then examine whether the estimated ATT in

these “placebo periods” significantly deviates from zero. The null hypothesis assumes that

the average pseudo-treatment effects within this specified range are equal to zero. A small

p-value, leading to the rejection of the placebo test, points to the potential failure of the

PTA.

(No) Carryover Effects Test: We utilize the (no) carryover test feature offered by the

fect package. By specifying the carryover.period option as c(1,2), we exclude observa-

tions in the first two periods after exiting the treated status during model fitting. We then

assess whether the estimated ATT in these periods significantly deviates from zero. The null

hypothesis assumes that the average pseudo-treatment effect within this specified range is
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equal to zero. A small p-value, leading to the rejection of the carryover effects test, points

to the potential failure of the assumption of no carryover effects.
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A.5. More Replication Results

A.5.1. Reported vs TWFE and fect Estimates

The figures below show that (1) the presence of always-treated units does not significantly

change the TWFE estimates; and (2) the application of fect, an HTE-robust estimator,

modestly changes the point estimates, resulting in a relatively large proportion of studies

becoming statistical insignificant.

Figure A2. Reported, TWFE, and fect Estimates: Full Sample

−10 −5 0 5 10

−
10

−
5

0
5

10

Reported Coefficient / Reported SE

T
W

F
E

 C
oe

ffi
ci

en
t /

 R
ep

or
te

d 
S

E

(a) Reported vs TWFE (alawys treated removed)
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(b) TWFE (always treated removed) vs fect

Note: The above figures compare reported coefficients, coefficients from a TWFE model with the authors’

preferred specification based on samples in which the always treated units are removed, and ATT estimates

from fect. The same reported SE estimate normalizes all three estimates in each application. Red triangles

represent cases whose estimates on the y-axes are statistically insignificant at the 5% level
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A.5.2. Inferential Methods

The following figures show that cluster-robust SEs, which were used by almost all authors

in the original studies, yield SE estimates similar to those obtained from cluster-bootstrap

procedures in the majority of studies. One exception is ? in which the number of units is

very small (N = 10).

Figure A3. Robustness to Inferential Methods
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(a) TWFE w/ cluster-robust SEs
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(b) TWFE w/ cluster-bootstrapped SEs

Note: The left panel compares the absolute values of the original z scores and replicated z scores using
cluster-robust SEs. The right panel compares the absolute values of the original z scores and replicated z
scores using cluster-bootstrapped SEs. Both axes are on log scales. The original estimate in ? is statistically
insignificant at the 5% level. Our replication analysis finds that, additionally, ? and ? are statistically
insignificant at the 5% with the cluster-robust SE; ? and ? are statistically insignificant at the 5% with
cluster-bootstrapped SEs. Bootstrap percentile methods yield similar findings.
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A.5.3. Alternative Specifications

The following figures show that many studies in our sample are sensitive to alternative model

specifications, such as adding a lagged dependent variable or unit-specific linear time trends.

Figure A4. Robustness to Alternative Specifications
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(a) TWFE w/ LDV
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(b) TWFE w/ ULT

Note: The left panel compares the absolute values of the original z scores and replicated z scores with
lagged dependent variables (LDV). The right panel compares the absolute values of the original z scores and
replicated z scores with unit-specific linear time trends (ULT). Both axes are on log scales.
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A.5.4. Placebo Tests
Figure A5. Placebo Tests

?
p-value = 0.60

?
p-value = 0.55

?
p-value = 0.89

?
p-value = 0.00

?
p-value = 0.92

?
p-value = 0.24

?
p-value = 0.16

?
p-value = 0.10

?
p-value = 0.72

?
p-value = 0.26

?
p-value = 0.40

?
p-value = 0.01

?
p-value = 0.78

?
p-value = 0.00

?
p-value = 0.87

?
p-value = 0.83

?
p-value = 0.09

?
p-value= 0.26

?
p-value = 0.22

?
p-value =0.56

A-25



Figure A5. Placebo Tests (Cont.)
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Note: We report p-values from the placebo test (hiding two pre-treatment periods for each switch from the control condition
to the treatment condition). Four cases with only one pre-treatment period are excluded.
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A.5.5. Carryover Effects

Figure A6. Test for (No) Carryover Effects
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Figure A6. Test for (No) Carryover Effects (Cont.)
?

p-value: 0.309
?

p-value: 0.696
?

p-value: 0.934
?

p-value: 0.575

?
p-value: 0.000

?
p-value: 0.479

Note: We report p-values from the test for no carryover effects for 22 studies with treatment reversal. The test hides two
post-treatment periods for each exiting from the treatment condition to the control condition.
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The figure below illustrates that the substantive findings obtained from fect remain unal-

tered when we exclude two post-treatment periods in six studies that reject the no-carryover-

effect test. This implies that, although carryover effects are frequently observed in applied

settings, the cost of addressing them (such as by excluding a few post-treatment periods

potentially affected by the treatment) is typically minimal.

Figure A7. Robustness to Removing Two Post-Treatment Periods
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Note: The figure compares the z-scores from fect using all data and z-scores from fect after removing two

post-treatment periods in six studies that reject the no carryover effects test. We observe no sign flipping.

Both axes are on log scales.

A.5.6. Summary of Findings
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Table A1. Summary of Findings

Paper Journal Subfield T N #Obs Setting
Specifica-

tions
ATT

p < 0.05

F Test

p > 0.05

Equiva-

lence test

p < 0.05

Placebo

test

p > 0.05

Carryover

effect test

p > 0.05

? JOP CP 11 199 2,027 General u+t x x x x
? AJPS CP 42 17 534 Staggered u+ht x x n.a.
? AJPS CP 2 570 1,140 2× 2 u+t x n.a. n.a. n.a. n.a.
? JOP IR 18 177 3,186 General u+t x x x
? JOP CP 50 115 3,715 General u+t x x
? JOP AP 79 50 3,586 General u+t x x x x
? JOP CP 12 3,289 25,536 Staggered u+t x x x n.a.
? AJPS AP 17 702 3,603 General u+t x x x x
? JOP CP 17 139 2,227 Staggered u+t x x n.a.
? JOP CP 259 10 1,361 General u+t x x x x
? AJPS IR 4 2,447 6,915 General u+t x x x x
? AJPS AP 24 47 1,023 Staggered u+t x x n.a.
? AJPS AP 23 16,404 45,639 General u+hu*t x x x
? AJPS AP 20 161,820 443,490 General u+hu*t x x x x x
? APSR AP 130 4,642 11,109 General u+hu*t x x x
? JOP AP 17 100 1,695 Classic u+t x x x x n.a.
? JOP CP 17 29 445 Classic u+t x x x n.a.
? APSR AP 17 489 6,847 General u+t x x x x x
? JOP AP 20 49 980 General u+t x x
? AJPS CP 21 1,209 22,971 Staggered u+t x x x n.a.
? JOP AP 9 98,885 765,012 General u+t x x x
? JOP AP 26 33 769 Staggered u+t x x x x n.a.
? AJPS CP 12 326 3,891 General u+hu*t x x x x x
? AJPS AP 7 347 1,062 General u+t x x x x
? JOP AP 8 3,005 23,610 Staggered u+hu*t+ult x x x n.a.
? APSR CP 138 286 36,956 Staggered u+t+ult x x x n.a.
? APSR CP 40 183 2,882 Staggered u+t x x x x n.a.
? APSR AP 9 738 6,307 General u+t x x x x
? JOP AP 13 467 5,982 General u+t x x x x
? JOP CP 9 455 2,524 General u+t x x x x
? JOP CP 2 189 378 2 × 2 u+t x n.a n.a n.a n.a
? AJPS CP 4 381,256 1,163,307 General u+t x x x x
? JOP CP 2 11,958 23,916 2× 2 u+t x n.a. n.a. n.a. n.a.
? AJPS AP 5 261 902 General u+t x x x x
? APSR AP 43 4,568 182,809 Staggered u+t x n.a.
? JOP CP 7 845 4,714 General u+t x
? JOP CP 3 61 166 General u+t x n.a. n.a. x x

Note: x and n.a.. stand for “true” and “not applicable,” respectively. The strongest case for the validity of the design is when we have x in all five columns (or the first four columns with staggered adoption). In the
“Specification” column, “u” and “t” represent unit and time fixed effects, respectively; “ht” represents time effects higher than the basic time level; “hu*t” represents group-specific time effects (group is at a higher
level than unit); “ult” represents unit-specific linear time trends.
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