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Fast rare events in exit times distributions of jump processes
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Rare events in the first-passage distributions of jump processes are capable of triggering anomalous
reactions or series of events. Estimating their probability is particularly important when the jump
probabilities have broad-tailed distributions, and rare events are therefore not so rare. We formulate
a general approach for estimating the contribution of fast rare events to the exit probabilities in the
presence of fat tailed distributions. Using this approach, we study three jump processes that are used
to model a wide class of phenomena ranging from biology to transport in disordered systems, ecology
and finance: discrete time random-walks, Lévy walks and the Lévy-Lorentz gas. We determine the
exact form of the scaling function for the probability distribution of fast rare events, in which the
jump process exits from an interval in a very short time at a large distance opposite to the starting
point. In particular, we show that events occurring on time scales orders of magnitude smaller than
the typical time scale of the process can make a significant contribution to the exit probability. Our
results are confirmed by extensive numerical simulations.

A stochastic process that reaches a certain threshold
value for the first time can trigger many events: a chem-
ical reaction occurs [1], a target is reached [2–7], the dy-
namics of a financial process starts [8], biological and eco-
logical processes take place [9, 10]. The study of these
triggering events and the probability of their occurrence
is based on the knowledge of first passage probabilities
[11]. As history-dependent quantities, first-passage prob-
abilities are difficult to determine: general results are typ-
ically available for the average first-passage time and its
lower-order moments [11, 12], but knowledge of complete
first-passage distributions is generally limited. Given the
’trigger’ property of exit times, the tails of these distribu-
tions are particularly important as they allow the proba-
bility of rare anomalous events to be estimated, such as,
for example, an exit in a very short time [13]. These esti-
mates are particularly relevant in the case of broad-tailed
distributions, where rare events are not so rare.

In particular, a few results are available for first-
passage probabilities of jump processes, which are
stochastic processes that involve random jumps between
different states or positions, occurring at random times
and with random magnitudes [14]. Jump processes are
so important in modelling the dynamics of stochastic
processes in many fields that even their one-dimensional
formulation is of great relevance [15–17]. In the one-
dimensional case, exit time probabilities refer to the pro-
cess leaving a particular state or interval within a spec-
ified time. In stochastic processes with two alternative
outcomes, the exit side can also be of importance [10],
for example to quantify observables such as transmission
or backscattering probabilities [18]. A well know exam-

ples of jump processes is that of random-walks (RWs),
in discrete and continuous time [19, 20], for which recent
results have been obtained [21–23]. An interesting ques-
tion is to determine the exit probabilities from the side of
a domain opposite to the starting point. A rare event in
this case corresponds to a fast walker leaving the inter-
val in a very short time, i.e. in a time where the typical
distances covered are still much shorter than the size of
the domain. To exit in a short time, the trajectory of the
walker should correspond to a long jump, allowing it to
travel far from the starting point. When fat-tailed distri-
butions for jumps are present in the stochastic process,
these very fast events may occur in timescales orders of
magnitude shorter than expected, proving crucial in pre-
dicting anomalous behaviors.

Recently, we have investigated the role played in rare
events by the so called big jump principle [24]. The prin-
ciple explains extreme events in a wide class of systems
with heavy tailed distributions not in terms of an accu-
mulation of many small subevents but as an effect of only
the biggest event, the big jump [25]. The principle has
been successfully applied to characterize the tail of the
probability distribution, at distances much larger than
their scaling length, for a wide class of jump processes
for RWs involving Lévy and sub-exponential statistics for
space and time [24, 26–28], even in disordered settings
such as the Lévy-Lorentz gas [29, 30].

In this letter, we first extend the big jump approach
to first passage probabilities and formulate the princi-
ple in a general way that makes it applicable to a large
set of processes with jumps following a sub-exponential
statistics, in the sense of [25, 31]. In particular, for a
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walker starting at the origin, we analytically determine
the probability of reaching for the first time a distance X
without being absorbed at the origin, in the asymptotic
limit where X is much larger than the scaling length of
the process (i.e. in the limit of very fast atypical events).
We consider three well known models of one-dimensional
jump processes: the discrete time RW, the most basic
jump process [20], the Lévy walk, widely used to model
animal movement and search patterns [32, 33], and the
Lévy-Lorentz gas, a relevant model in the study of trans-
port in complex and disordered media [34]. For this last
model, there is currently no known first-passage prob-
ability estimate [35, 36]. Taking advantage of the new
formulation, we estimate the exit probability from one
side of a domain and show that, interestingly, fast rare
events can make a significant contribution to the exit
time probability even when the scaling length is diffusive
and the bulk of the distribution is Gaussian. We test our
predictions by comparing them with extensive numerical
simulations, with very good agreement. Our results show
that the big jump principle can also be applied to first-
passage problems, whereas previously it has only been
used for probability densities. This broad applicability is
based on the fact that the principle provides insight into
the physical process that leads the walker to cover very
large distances.

The big jump for exit time probabilities. In a stochas-
tic jump process, we call PX(T ) the probability density
of reaching a distance X from the origin for the first
time at time T without being absorbed by the start-
ing point, x = 0. The characteristic length ℓ(T ) ∼ T γ

is defined by the scaling form of PX(T ) such that, for
X ∼ ℓ(T ), PX(T ) ∼ f(X/ℓ(T )) [24]. If there are inde-
pendent jumps (renewals) in the process, drawn from a
sub-exponential distribution [25, 31], that allow to reach
a distance X >> ℓ(T ), then the big jump principle is
expected to hold [24]. In particular, the principle states
that a process reaching a distance X >> ℓ(T ) is triggered
by a single very large jump, drawn from the subexponen-
tial distribution, while shorter distances of the order of
ℓ(T ) are reached by processes involving multiple jumps.
This physical insight suggests that we can focus on the
big jump and for X >> ℓ(T ) write the probability den-
sity function (PDF) PX(T ) as:

PX(T ) ∼ R(Tw) · S(Tw) · ps(X). (1)

Here, ps(X) is the probability that the walker will reach
a distance greater than X in a single jump; Tw is the time
at which the big jump occurs, i.e. Tw = T − τ(X) where
τ(X) is the time at which the walker reaches the dis-
tance X in a single jump; the survival probability S(Tw)
is the probability that the walker is not absorbed before
time Tw; and finally, R(Tw) is the rate at which jumps
are made at time Tw. The ps(X) and τ(X) can be cal-
culated directly by knowing the dynamics of the single
jump, while the rate R(Tw) and the survival probabil-
ity S(Tw) depend on the overall stochastic process. This
factorization allows us to separate the calculation into

quantities that depend on different characteristics of the
stochastic process. We note that the renewals, which al-
low the application of the big jump, may not coincide
with all stochastic events in the dynamics (see, for exam-
ple, the difference between scattering events and renewals
in the Lévy Lorentz gas).

The discrete time random walk. In discrete time RWs
[20], at each discrete time step the walker moves with
probability 1/2 to the right or to the left, with the step
length r drawn from the PDF p(r). A finite second mo-
ment of p(r) implies standard diffusion while, if the sec-
ond moment diverges, the walker performs a symmetric
Lévy flight. We consider a p(r) with a power law decay
at large r:

p(r) ∼
αrα0
r1+α

(2)

emphasizing that the principle holds for any sub-
exponential p(r) [26]. Here time is defined by the number
of steps n and x(n) is the position of the walker after n
steps (x(0) = 0). This process features standard diffu-
sion with a scaling length ℓ(n) ∼ n1/2 for α > 2 and
a Lévy superdiffusive dynamics with ℓ(n) ∼ n1/α, for
0 < α < 2. We focus on the exit time probability PX(n),
i.e. the probability that the walker at step n reaches a
distance greater than X for the first time without being
absorbed at the origin. The numerical results in Figure
1 show PX(n) as a function of the exit time n/X2, with
the time rescaling determined by the growth of ℓ(n) (for
α = 2.5, X ∼ ℓ(n) ∼ n1/2). The scaling form of PX(n)
and the analytical plot in the dashed line were obtained
in [23] using a continuous limit. Very fast events, occur-
ring on much shorter timescales (i.e. for n1/2 ≪ X) are
also observed with non-negligible probability. These are
the rare events that we want to describe.

The big jump principle states that the RW exits at
time n at a distance X ≫ ℓ(n) if it is not absorbed at the
origin, and if exactly at step n the walker makes a jump
in the positive direction, of length greater than X . The
distance covered in the previous steps can be neglected.
Now, in discrete time RW, jumps are instantaneous, so
τ(X) = 0 and Tw = T = n. Moreover, S(Tw) = S(n)
can be obtained by the Sparre-Andersen theorem [37–39],
which states that, for a general jump processes in a semi-
infinite line, the survival probability after n steps decays
asymptotically as S(n) ∼ (πn)−1/2. The probability of
making a jump greater than X is ps(X) = 1

2

∫
∞

X
drp(r)

where the factor 1/2 accounts for the 1/2 probability of
forward jumps. The renewal rate is trivially one, so for
n ≫ 1 and X ≫ ℓ(n) Eq. (1) reads:

PX(n) ∼ S(n)
1

2

∫
∞

X

drp(r) ∼
1

2(πn)1/2
·
rα0
Xα

. (3)

Eq. (3) is compared with numerical simulations in Fig-
ure 2, showing an excellent agreement in the asymptotic
regime at large X , both for the Lévy flights α < 2 and
for normal diffusion α > 2. On the other hand, the peaks
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Figure 1: The exit probability PX(n) for a Lévy flight is plot-
ted as a function of the rescaled exit time n/X2 (α > 2). We
use a step length distribution p(r) with a cut-off at short dis-
tances r0 = 1. The typical dynamics is diffusive and, at large
number of steps n, converges slowly to the theoretical predic-
tion with no free parameters (Eqs (1,5,6) in [23]) which also
provides the scaling factor X3. On the left, very fast events
are present with significant probability.

of the distributions at shorter X occur when the system
size is comparable to the scaling length ℓ(n), according
to the analytical predictions in [23], as shown in Figure
1 for α > 2.

The Lévy walk. The Lévy walk [20, 40] is a continuous-
time process in which a walker takes random steps of du-
ration t at constant velocity v. In one dimension, each
step is covered with equal probability in the positive and
the negative direction, and the duration of the steps fol-
lows the PDF p(t). We consider systems in which p(t) at
large t is again a power law:

p(t) ∼
αtα0
t1+α

. (4)

The scaling length of the stochastic process is ℓ(t) ∼ tγ ,
with γ = 1 for α < 1, γ = 1/α for 1 < α < 2 and γ =
1/2 for α > 2 [40]. In addition, the single step contains
another scaling length growing linearly with time, due
to the constant velocity motion. Therefore, for α < 1
in a single step the walker cannot cover a distance much
larger than ℓ(t) and the single big jump approach cannot
be applied. On the other hand, for α > 1 as well as for
other sub-exponential PDFs (e.g. Weibull), the principle
can be used efficiently [24, 26].

In Lévy walks the motion within a step is ballistic, so
τ(X) = X/v and Tw = T − X/v. The number of steps
in a time Tw is n = Tw/〈t〉, where 〈t〉 =

∫
dt′t′p(t′) is the

average duration of the steps. The Sparre Andersen theo-
rem can again be used and gives S(Tw) ∼ (πTw/〈t〉)

−1/2,
and the jump rate is constant, R(Tw) = 1/〈t〉 [24, 26].
Finally, Ps(X) = 1

2

∫
∞

X/v
dtp(t) where again we take into
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Figure 2: Exit probability PX(n) for a Lévy flight. PX(n) is
multiplied by n1/2 and plotted as a function of the distance
X. Upper panel α = 1.2; lower panel α = 2.5. The dashed
line shows the asymptotic analytical prediction in Eq. (3).

account of the ballistic motion within a step and of the
1/2 probability of forward jumps. Summing up from Eq.
(1) we obtain:

PX(T ) ∼
1

(vT )α+1/2

〈t〉−1/2tα0
2(π(1 − y))1/2yα

(5)

where y = X/(vT ) < 1. The ballistic motion in the big
jump naturally introduces a new length scale, vT , which
is the maximum distance that can be travelled in a time
T . Notice that 〈t〉 in Eq. (5) depends on the whole shape
of p(t) and not on its far tail only. In the simulations we
consider a distribution with a cut-off at t = t0 = 1. In
Figure 3 we show that PX(T ) plotted against X/(vT )
indeed converges to Eq. (5) at large times and distances,
showing that the big jump estimate is correct.

The Lévy Lorentz gas. The Lévy Lorentz gas [29, 30] is
a system of scatterers randomly placed in one dimension.
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Figure 3: Exit probability PX(T ) for a Lévy walk. PX(T )

is multiplied by (vT )1/2+α and plotted as a function of the
rescaled distance X/(vT ), α = 1.5. The continuous line shows
the asymptotic analytical prediction in Eq. (5).

The distances between scatterers are drawn again from a
power law PDF p(l) at large l:

p(l) ∼
αlα0
l1+α

. (6)

A RW is naturally defined on the Lévy Lorentz gas: the
walker moves at constant speed v and is reflected with
probability ǫ (0 < ǫ < 1) when it hits a scatterer [41].
We focus on the case where the walker starts at t = 0 in
a scattering site placed at x = 0 [29, 30]. For this model,
the PDF of the walker position has recently been studied

[30, 41–44]: the scaling length reads ℓ(T ) ∼ T
1

1+α̃ , where
α̃ = α if α < 1 and α̃ = 1 if α > 1 [30] and the behaviour
of the PDF at large distances has been estimated using
the big jump principle [24, 30, 45]. However, no results
are yet known for the exit time probabilities.

Here, n(Tw) is the number of times (scattering events)
in which a walker is reflected or transmitted by a scat-
terer. A renewal only occurs when a walker is transmit-
ted for the first time by a scattering point, since in this
case the distance of the next scatterer is a random vari-
able, independent of the RW history. Then, the big jump
principle [24] applies and the walker can overcome the
distance X ≫ ℓ(T ) only by entering a region where the
two scatterers are separated by a distance greater than
X . Since the motion is ballistic, the large jump occurs
at Tw = T −X/v and the rate of independent renewals

is R(Tw) ∼ T
−

1
1+α̃

w [24]. On the other hand, the Sparre-
Andersen theorem gives S(Tw) ∼ n(Tw)

−1/2. Without
considering the lattice spacing, the dynamics is a RW on
a lattice, and the number of different scatterers visited
in n(Tw) steps is v(Tw) ∼ n(Tw)

1/2. Note that v(Tw)
is also the number of scatterers within a distance ℓ(Tw);

so the result in [46] gives v(Tw) ∼ ℓ(Tw)
α̃ ∼ T

α̃

1+α̃

w and
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Figure 4: Exit probability PX(n) for a Lévy Lorentz gas.
PX(n) is multiplied by (vT )1+α and plotted as a function
of the distance X/(vT ). Upper panel α = 0.6; lower panel
α = 1.5. The continuous line shows the asymptotic analytical
prediction in Eq. (7). In this case a multiplicative constant
has been optimized to reproduce numerical data. For large
times the probabilities are small and the stochastic fluctua-
tions become large, especially for α > 1.

n(Tw) ∼ T
2α̃

1+α̃

w (for α ≥ 1 we recover that the number
of scattering events is proportional to the elapsed time).
Since two scatterers are separated by a distance greater
than X with probability Ps(X) =

∫
∞

X
dlp(l), Eq. (1)

gives:

PX(T ) ∼
1

T
1

1+α̃

w

·
1

T
α̃

1+α̃

w

·

∫
∞

X

dlp(l) ∼
1

Tα+1

1

(1− y)yα
.

(7)
where again the rescaled distance y = X/(vT ) ≤ 1 is
induced by the ballistic motion in the single jump. Eq.
(7) contains a multiplicative constant since the rate and
the number of jumps have been calculated only by scal-
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ing arguments. Figure 4 compares Eq. (7) to numerical
simulation, showing an excellent agreement.

Conclusions. We formulate a big jump approach for
first passage probabilities and use it to derive the ana-
lytical form of the tail in the exit distributions for three
fundamental jump processes: the discrete time RW, the
Lévy walk and the Lévy-Lorentz gas. In practice, the
physical information about how this single large jump un-
folds is used to give an exact analytical estimate by sepa-
rating the dynamics at the jump from the whole stochas-
tic process, which can also be very complex. Our result
shows that, in the presence of power law jump distribu-
tions, anomalous exit events can occur on time scales that
are orders of magnitude smaller than typical exit times,
even when the process is Gaussian. The result is heuristic
and based on the application of the big jump principle,
yet comparison with detailed numerical simulations sug-
gests that the estimate is essentially correct, thus open-
ing the way to a rigorous derivation. In this perspective,
a fundamental question should be to identify what are
the general characteristics of a stochastic process with

subexponential distribution, allowing the application of
the single big jump principle and in particular of Eq.
(1). In its general form, the principle can also be applied
to continuous-time processes and stochastic differential
equation, provided that one can again identify the set of
sub-exponential ’jumps’, as has been successfully done in
the case of the dynamics of cold atoms [24]. In that case,
the big jump could be related to istantonic solutions [47–
49]. Finally, we obtained our result for power law distri-
butions but we expect such estimates to hold for a large
class of sub-exponential jump processes [25, 31], provid-
ing a boost to the study of rare events in first-passage
probabilities.

Acknowledgments

We warmly thank Olivier Bénichou and Jéremie
Klinger for interesting discussions.

[1] C. W. Gardiner, Handbook of Stochastic Methods: for
Physics, Chemistry and the Natural Sciences (3rd ed.)
(Springer Berlin, 2004).

[2] O. Bénichou, M. Coppey, M. Moreau, P.-H. Suet, and
R. Voituriez, Optimal search strategies for hidden tar-
gets, Phys. Rev. Lett. 94, 198101 (2005).

[3] E. Agliari, R. Burioni, and A. Manzotti, Effective tar-
get arrangement in a deterministic scale-free graph,
Phys. Rev. E 82, 011118 (2010).

[4] O. Bénichou, C. Loverdo, M. Moreau, and
R. Voituriez, Intermittent search strategies,
Rev. Mod. Phys. 83, 81 (2011).

[5] A. Godec and R. Metzler, Universal proximity effect
in target search kinetics in the few-encounter limit,
Phys. Rev. X 6, 041037 (2016).

[6] F. Thiel, E. Barkai, and D. A. Kessler, First de-
tected arrival of a quantum walker on an infinite line,
Phys. Rev. Lett. 120, 040502 (2018).

[7] H. Meyer and H. Rieger, Optimal non-
markovian search strategies with n-step memory,
Phys. Rev. Lett. 127, 070601 (2021).

[8] R. Chicheportiche and J.-P. Bouchaud, Some ap-
plications of first-passage ideas to finance, in
First-Passage Phenomena and Their Applications,
edited by R. Metzler, G. Oshanin, and S. Redner (World
Scientific, 2014) Chap. 1, pp. 447–476.

[9] O. Pulkkinen and R. Metzler, Distance matters: The
impact of gene proximity in bacterial gene regulation,
Phys. Rev. Lett. 110, 198101 (2013).

[10] B. M. S. Arani, S. R. Carpenter, L. Lahti, E. H. van Nes,
and M. Scheffer, Exit time as a measure of ecological
resilience, Science 372, eaay 4895 (2021).

[11] S. Redner, A Guide to First-Passage Processes (Cam-
bridge University Press, 2013).

[12] O. Bénichou and R. Voituriez, From first-passage times
of random walks in confinement to geometry-controlled
kinetics, Physics Reports 539, 225 (2014).

[13] S. D. Lawley, Extreme first-passage times for random
walks on networks, Phys. Rev. E 102, 062118 (2020).

[14] N. G. Van Kampen, Stochastic Processes in Physics and Chemistry,
(North-Holland Personal Library, 2013).

[15] A. V. Chechkin, R. Metzler, J. Klafter, and V. Y.
Gonchar, Introduction to the theory of Lévy flights, in
Anomalous Transport , edited by R. Klages, G. Radons,
and I. M. Sokolov (John Wiley & Sons, Ltd, 2008)
Chap. 5, pp. 129–162.

[16] O. K. Dudko, G. Hummer, and A. Szabo, Intrinsic rates
and activation free energies from single-molecule pulling
experiments, Phys. Rev. Lett. 96, 108101 (2006).

[17] U. M. B. Marconi, A. Puglisi, L. Rondoni, and A. Vulpi-
ani, Fluctuation-dissipation: Response theory in statisti-
cal physics, Physics Reports 461, 111 (2008).

[18] S. Rotter and S. Gigan, Light fields in complex
media: Mesoscopic scattering meets wave control,
Rev. Mod. Phys. 89, 015005 (2017).

[19] G. H. Weiss, Aspects and Applications of the Random
Walk. (North Holland, Amsterdam, 1994).

[20] J. Klafter and I. Sokolov,
First Steps in Random Walks: From Tools to Applications
(Oxford University Press, 2011).

[21] N. Levernier, O. Bénichou, and R. Voituriez, Univer-
sality classes of hitting probabilities of jump processes,
Phys. Rev. Lett. 126, 100602 (2021).

[22] J. Klinger, R. Voituriez, and O. Bénichou, Split-
ting probabilities of symmetric jump processes,
Phys. Rev. Lett. 129, 140603 (2022).

[23] J. Klinger, R. Voituriez, and O. Bénichou, Leftward,
rightward, and complete exit-time distributions of jump
processes, Phys. Rev. E 107, 054109 (2023).

[24] A. Vezzani, E. Barkai, and R. Burioni, Single-
big-jump principle in physical modeling,
Phys. Rev. E 100, 012108 (2019).

[25] S. Foss, D. Korshunov, and S. Zachary,
An Introduction to Heavy-Tailed and Subexponential Distributions

https://doi.org/10.1103/PhysRevLett.94.198101
https://doi.org/10.1103/PhysRevE.82.011118
https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1103/PhysRevX.6.041037
https://doi.org/10.1103/PhysRevLett.120.040502
https://doi.org/10.1103/PhysRevLett.127.070601
https://doi.org/10.1142/9789814590297_0018
https://doi.org/10.1103/PhysRevLett.110.198101
https://doi.org/10.1126/science.aay4895
https://doi.org/10.1017/CBO9780511606014
https://doi.org/https://doi.org/10.1016/j.physrep.2014.02.003
https://doi.org/10.1103/PhysRevE.102.062118
https://doi.org/10.1016/B978-0-444-52965-7.X5000-4
https://doi.org/10.1002/9783527622979.ch5
https://doi.org/10.1103/PhysRevLett.96.108101
https://doi.org/https://doi.org/10.1016/j.physrep.2008.02.002
https://doi.org/10.1103/RevModPhys.89.015005
https://doi.org/10.1093/acprof:oso/9780199234868.001.0001
https://doi.org/10.1103/PhysRevLett.126.100602
https://doi.org/10.1103/PhysRevLett.129.140603
https://doi.org/10.1103/PhysRevE.107.054109
https://doi.org/10.1103/PhysRevE.100.012108
https://doi.org/10.1007/978-1-4614-7101-1


6

(Springer New York, NY, 2013).
[26] R. Burioni and A. Vezzani, Rare events in stochastic

processes with sub-exponential distributions and the big
jump principle, J. Stat. Mech. , 034005 (2020).

[27] A. Vezzani, E. Barkai, and R. Burioni, Rare events
in generalized Lévy walks and the big jump principle,
Scientific Reports 10, 2732 (2020).

[28] W. Wang, A. Vezzani, R. Burioni, and E. Barkai, Trans-
port in disordered systems: The single big jump ap-
proach, Phys. Rev. Res. 1, 033172 (2019).

[29] E. Barkai, V. Fleurov, and J. Klafter, One-
dimensional stochastic Lévy-lorentz gas,
Phys. Rev. E 61, 1164 (2000).

[30] R. Burioni, L. Caniparoli, and A. Vezzani, Lévy
walks and scaling in quenched disordered media,
Phys. Rev. E 81, 060101(R) (2010).

[31] C. M. Goldie and C. Klüppelberg, Subexponential dis-
tributions, in A practical guide to heavy tails: statistical
techniques and applications, edited by R. J. Adler, R. E.
Feldman, and M. S. Taqqu (Birkhauser Boston Inc., USA,
1998) pp. 435–459.

[32] M. A. Lomholt, K. Tal, R. Metzler, and J. Klafter, Lévy
strategies in intermittent search processes are advanta-
geous, Proc. Natl. Acad. Sci. U.S.A. 105, 11055 (2008).

[33] G. M. Viswanathan, M. G. E. da Luz,
E. P. Raposo, and H. E. Stanley,
The Physics of Foraging: An Introduction to Random Searches and Biological Encounters.
(Cambridge University Press, 2011).

[34] P. Barthelemy, J. Bertolotti, and D. S. Wiersma, A Lévy
flight for light, Nature 453, 495 (2008).
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