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Abstract
We develop a combined theoretical and exper-
imental method for estimating the amount of
heating that occurs in metallic nanoparticles
that are being imaged in an electron micro-
scope. We model the thermal transport be-
tween the nanoparticle and the supporting ma-
terial using molecular dynamics and eqivariant
neural network potentials. The potentials are
trained to Density Functional Theory (DFT)
calculations, and we show that an ensemble of
potentials can be used as an estimate of the
errors the neural network make in predicting
energies and forces. This can be used both to
improve the networks during the training phase,
and to validate the performance when simulat-
ing systems too big to be described by DFT.
The energy deposited into the nanoparticle by
the electron beam is estimated by measuring
the mean free path of the electrons and the av-
erage energy loss, both are done with Electron
Energy Loss Spectroscopy (EELS) within the
microscope. In combination, this allows us to
predict the heating incurred by a nanoparticle
as a function of its size, its shape, the support
material, and the electron beam energy and in-
tensity.
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Introduction
In High-Resolution Transmission Electron Mi-
croscopy (HR-TEM) the sample is irradiated
with high energy electrons that move through
the sample, interacting with it to form the final
image. In order to have a good time resolution
and sufficient signal-to-noise ratio (S/N) a high
electron dose rate is needed, typically in the
order of 103 − 105e−/Å2s). However, this un-
avoidably results in interactions with the sam-
ple, mainly in the form of beam damage and
localized heating.1

In this paper we show how molecular dynam-
ics (MD) simulations using machine learning
potentials can be used to quantify the amount
of heating incurred by the sample due to ef-
fects of the beam. As a model system, we
choose gold nanoparticles supported on hexag-
onal boron nitride (hBN), where we also pro-
vide experimental data on the energy deposi-
tion into the nanoparticle. We illustrate the
generalizability of the method by also applying
it to titanium dioxide (TiO2) supports.

Metallic nanoparticles supported by metal ox-
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ides are widely used in heterogeneous cataly-
sis. Electron microscopy is often used to study
these kind of systems, but the effect of the elec-
tron beam on the sample is difficult to quan-
tify. Model catalysts based on Au nanoparti-
cles on Titanium dioxide (TiO2) supports are
actively studied, both to understand the rela-
tion between shape, size, and catalytic activ-
ity,2–4 and to study and quantify for the effects
of the beam. Experimentally, there have been
attempts to measure the local heating for ex-
ample through the shift in the plasmon energy
due to thermal expansion.5

There have also been a number of studies of
the local heating of nanoparticles in the electron
beam,6–9 but it is difficult to model both the in-
teractions between beam and nanoparticle, and
the heat flow away from the nanoparticle.

During the imaging process, the beam elec-
trons interact elastically and inelastically. In
the latter case, these interactions result in the
deposition of energy in various forms such as
plasmons, excitons, electron hole-pairs, etc.
These excitations in the nanoparticle decay rel-
atively quickly (in the range of femtoseconds
to picoseconds) compared to the electron dose
rate and contribute to the generation of heat.
This heat has to be transported away from the
nanoparticle, mainly through thermal conduc-
tivity by the support. This heat transport is to
a large degree limited by heat flow through the
interface between the nanoparticle and the sup-
port, where the mismatch of phonon frequencies
limits the rate of heat flow.

To quantify this, we perform molecular dy-
namics (MD) simulations of the heat flow.
Due to the large size of these systems (sev-
eral nanometers), calculations based on Density
Functional Theory (DFT) is limited by compu-
tational capacity. While realistic interatomic
potentials are available for most metals,10 the
quality of interatomic potentials for oxides are
limited, and the matching between the metal-
lic nanoparticle and the oxide support can typ-
ically not be described by interatomic poten-
tials. For this reason, we fit Machine Learn-
ing interatomic potentials to the relevant sys-
tems, this enables us to make medium to large
scale molecular dynamics simulations with al-

most the accuracy of DFT, but with a computa-
tional cost that is orders of magnitude smaller.

We chose the recently proposed E(3)-
equivariant machine learning potentials of
Batzner et al.11 as implemented in the NequIP
package.12 It implements a E(3)-equivariant
neural network13 approach for learning inter-
atomic potentials from ab-initio calculations for
molecular dynamics simulations. It has shown
good performance and accuracy in the field
of machine learning potentials, while needing
fewer data to produce the same or better re-
sults as machine learning potentials based on
invariant descriptors.11,14,15

Results and discussion
We employ the NequIP package to create two
interatomic potentials: one tailored for Au on
TiO2, and another designed for Au on hBN. It’s
important to note that these potentials are not
intended to be universally applicable to all sys-
tems involving these three elements. Specifi-
cally, the Au/TiO2 potential is not suitable for
predicting behaviors in unrelated systems such
as gold oxides or metallic titanium-gold alloys.

For the Au/TiO2 potential, we used a data set
of around 3800 DFT calculations that contains
diverse configurations of bulk Au, bulk TiO2,
Au Nanoparticles (Au-NP), TiO2 surfaces, and
Au-nanoparticles on TiO2 surfaces. Both the
anatase and rutile crystal structures were used
for TiO2. Similarly, a data set was made with
around 1325 DFT calculations, containing Au
bulk, bulk hBN, hBN layers, Au nanoparticles
on hBN.

After hyperparameter optimization, the re-
sulting network has the parameters given in
table 1, and produces RMS errors in the
forces and energies of respectively 0.071 eV

Å and
0.11 eV/atom. The Supplementary Online In-
formation (SOI) Figure SOI-1 shows a learning
curve, i.e. the quality of the prediction as a
function of the training set size.

In order to validate the accuracy of predic-
tions made by a neural network on large sys-
tems that cannot be calculated using Density
Functional Theory (DFT), we correlated the
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Table 1: Parameters of the network, values for
the error in the forces and energies shown at
the bottom

Parameter TiO2 hBN

cutoff [Å] 5 5
No. of vectors 32 32
No. of scalars 32 32
Training size 3188 1150

Validation size 797 125
Batch size 7 7
Epochs 200 200

Weight on forces 50 50
Weight on forces 50 50
F-RMSE [ eVÅ ] 0.071 0.045

E-RMSE [eV/atom] 0.011 0.014

accuracy with the uncertainty of an ensemble
comprised of M networks trained with the same
hyperparameters and on the same training set;
we use M = 5 unless otherwise noted. To eval-
uate the uncertainty, we take a trajectory file
from a Molecular Dynamic (MD) simulation
and calculate the forces at each time step for
each atom using the M different networks. The
MD simulation is performed using the arith-
metic ensemble average of the forces and ener-
gies from the M networks, while keeping track
of the variation within the ensemble. If the
model is performing well, we expect both low
disagreement between the networks and DFT,
as well as low uncertainty between the M net-
works. To evaluate the accuracy of the model
we stick to the Root Mean Square Error magni-
tude (RMSEmag) as recommended by Morrow
et al.16

The error in the prediction of the force is de-
fined as

δFk =
∣∣∣F⃗ pred

k − F⃗DFT
k

∣∣∣ (1)

where F pred
k is the ensemble-averaged predicted

force on the k-th atom, and FDFT
k is the cor-

responding force from DFT. Note that δF is a
scalar. The variance of the force is calculated
as

σFk =

√√√√ 1

M

M∑
j=1

∣∣∣F⃗j,k − F⃗ pred
k

∣∣∣2 (2)
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Figure 1: 2D histogram plot of the error in the
forces as a function of the uncertainty, when the
uncertainty between the networks increases the
error also increases. Each atom in the data set
produce a data point in this graph. The x-axis
is the variance between the neural networks in
the ensemble (σF ), the y-axis is the error with
respect to DFT (δF ). The error bars show the
standard deviation of each column, while the
dotted line represents the average value of each
column.

where F⃗j,k is the force on atom k as predicted
by the j-th member of the ensemble of neural
networks. Thus σFk measures the disagreement
amongst the neural networks, while δFk mea-
sures their error compared to DFT.

The results from the ensemble shown in Fig-
ure 1 demonstrate the relationship between the
uncertainty of the network and the error in the
predictions. As the uncertainty increases, the
error in the predictions also increases, indicat-
ing that the network is struggling to understand
the interactions between the atoms. The vari-
ance between networks can thus also be used to
gauge the error in simulations that are too large
to validate with DFT simulations of snapshots.
The ability to correlate the uncertainty with the
error furthermore allows for greater insight into
the limitations of the network and areas where
further improvement may be needed.

For example, we realized that many of the
atoms with a large value of σF are located at
the interface between Au and TiO2, this can be
seen in Figure 2. The σF values of the atoms
within the interface are on average twice as
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Figure 2: Where does the network struggle to
predict the forces? In the top panel, we visu-
alize a gold nanoparticle positioned on a TiO2
substrate. Here, we’ve identified the top 10%
of atoms with the highest variance in forces
and color-coded them based on this variance; a
deeper shade of red indicate higher σF values.
The blue box indicates the interface region. Be-
low the mean values of σF as a function of time
for all the atoms (orange), the interface atoms
(blue) and the 10% worse atoms (green). The
majority of the 10% worse atoms are in the in-
terface.

large as the average, we believe this is because
of the complexity of the interactions of oxygen
atoms with both gold and titanium, causing the
network to struggle to predict forces accurately.

Once a machine learning potential has been
fitted to the relevant systems, molecular dy-
namics can be used to estimate the heat trans-
fer, as described in the Methods section.

The heat input rate into the nanoparticle
from the electron beam can be approximated
using the following equation:8

Q̇in = SD⟨E⟩ t
λ

(3)

where S is the cross-sectional area of the
nanoparticle in the beam, D is the dose rate,
⟨E⟩ is the average energy deposited by an elec-
tron if it is scattered, t is the average thick-
ness of the nanoparticle in the direction of the
beam, and λ is the mean free path of the elec-
trons in the nanoparticle. We obtain typical
values for ⟨E⟩ and λ from Electron Energy-Loss
Spectroscopy (EELS) as described in the Meth-
ods section; for Au nanoparticles exposed to a
300 keV electron beam, we find ⟨E⟩ ≈ 43.6 eV
and λ ≈ 104 nm.

The energy absorption density is much lower
in the substrate as the lower atomic number
(Z) results in a larger mean free path for the
electrons (λ ≈ Z−1/2).17 Furthermore, not all
the substrate is illuminated by the beam, so we
assume that the temperature of the substrate
is the close to the operating temperature of the
microscope.

In equilibrium, the heat flow into the
nanoparticle must match the heat flow between
the nanoparticle and the substrate

Q̇out = kA∆T (4)

where k is a thermal conductance per unit area
(its reciprocal is often denoted the R-value), A
is the area of the interface between the nanopar-
ticle and the support, and ∆T is the tempera-
ture difference. Note that the areas S and A
are often not the same, their ratio depend on
the shape of the nanoparticle (Supplementary
Online Information (SOI) Figure SOI-2). The
temperature rise of the nanoparticle thus be-
comes

∆T =
SD⟨E⟩
kA

t

λ
(5)

Here we are assuming that the transfer of
heat between the nanoparticle and the sub-
strate is significantly slower than heat conduc-
tivity within both the nanoparticle and the sub-
strate, that is easily verified to be the case (see
Methods). This differs from at least some previ-
ous studies, which assumed that the heat trans-
fer within the nanoparticle was rate limiting.9

The thermal conductance k in equation (4) is
estimated using molecular dynamics for the two
cases of an Au nanoparticle on a TiO2 substrate
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and on a substrate of hexagonal boron nitride
(hBN). Nanoparticles are created with different
sizes and different shapes, to vary both their
volumes and the ratio between the beam cross-
section (S) and the contact area to the support
(A). In all cases, the nanoparticle is oriented
with (111) planes parallel to the support, as
that is how they are usually orientated when
observed in the electron microscope.18,19

The temperature difference between the
nanoparticle and the substrate is tracked
throughout the simulation, and fitted to the
exponential decay expected from Eq. (4):

∆T (t) = ∆T (0) exp

(
− kA

Ncp
t

)
(6)

where N is the number of atoms in the nanopar-
ticle, and cp its atom-specific heat capacity. It
is found from the simulations to be approxi-
mately 2.9 × 10−4 eV

K
in good agreement with

the experimental value of 2.63× 10−4 eV
K

,20 and
with the value expected in a harmonic poten-
tial, cp ≈ cv ≈ 3kB = 2.58 × 10−4 eV

K
. The

deviation is most likely due to anharmonic ef-
fects of the surface atoms, as we find a value of
2.55× 10−4 eV

K
for bulk gold.

From the simulations, we get average values
of k for the two substrates: kTiO2 = 5.1 ×
10−4 eV

nm2 psK
and khBN = 3.7×10−4 eV

nm2 psK
. For

TiO2, we use only anatase (101) surfaces values
because they are the most stable and lowest in
energy,21 the k-value for the rutile surfaces are
approximately a factor 2 higher. This confirms
the assumption that the majority of the tem-
perature difference is over the interface. With
an experimental value for the heat conductiv-
ity of gold of 317 W

mK
, a nanoparticle would need

a thickness of 3.7 µm for the temperature drop
across the nanoparticle to be similar to the tem-
perature drop across the interface, confirming
that we are in the regime where the interface
dominates the heat transport.

Now the temperature increase as a function of
dose rate can be calculated, it depends on the
area ratio S/A, which can vary by more than an
order of magnitude depending on the wetting
angle, see Figure SOI-2 in the SOI. Figure 3
shows the temperature increase as a function of
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Figure 3: Temperature increase as a function of
electron dose rate for small (left) and medium
sized (right) gold nanoparticles on TiO2 sub-
strate at beam energy of 80 keV. Curves are
shown for three different ratios of S/A corre-
sponding to the nanoparticles shown in the top.

dose rate for TiO2-supported nanoparticles of
different shape and size.

The heating also depends on the substrate
(through k) and on the beam energy (through
λ). This is illustrated in Figure 3, showing
that reducing the beam energy leads to in-
creased heating, as the mean free path scales
as λ ∝ Ebeam.22 We also see that the heat-
ing is more pronounced on hBN than on TiO2,
due to the lower k value, which is due to the
larger ratio between the masses of the atoms in
the nanoparticle and the substrate, leading to
a larger mismatch in phonon frequencies.

It should be noted that while increasing the
beam energy decreases the heating, it will in-
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Figure 4: Comparison of the heating of a gold
particle with S/A = 3.6 supported by hBN
(left) and TiO2 (right) for different beam ener-
gies, showing both that heating increases with
decreasing beam energy, and that the heating is
significantly larger on hBN. In the case of beam
energies other than 300 keV or 80 keV, the cor-
responding λ values were taken from.23

crease other kinds of beam damage, in partic-
ular knock-out damage from Rutherford scat-
tering. The maximal energy that can be trans-
ferred to an atom by Rutherford scattering is:24

Emax = 2Ebeam
Ebeam + 2mec

2

Mc2
(7)

where me is the electron rest mass, M the mass
of the atom, and c the speed of light. For gold
this gives a maximal energy transfer of 4.3 eV at
beam = 300 keV, which is slightly larger than
the minimal energy required to remove atoms
from gold nanoparticles, reported as 3.8 eV.25

Conclusions
Equivariant Neural Network potentials can be
successfully fitted to DFT simulations of small
supported nanoparticles, and an ensemble of
such potentials can be used to gauge the ac-
curacy of the potentials. This allows us to ex-
trapolate to much larger systems that cannot be
described by DFT, while still having a measure
of the error in the predicted energy and forces.
We used these potentials to perform molecular
dynamics simulations of the heat transfer coeffi-
cients k between the nanoparticle and the sup-
porting substrate. We found that k depends
both on the chemical composition of the sub-
strate and on its crystal structure, with a fac-
tor of two between the values found for a gold
nanoparticle on rutile and anatase TiO2. We
use EELS to measure the mean free path in the
nanoparticles, and the average energy lost by
scattered electrons. This finally enables us to
predict the heating incurred in nanoparticles of
different size and shape as a function of the sup-
port material, the beam energy and the beam
intensity.

Methods

Fitting the Machine Learning po-
tential

All DFT calculations were performed using the
GPAW DFT calculator26 in the Atomic Sim-
ulation Environment.27,28 The Projector Aug-
mented Wave (PAW)29 method was used to rep-
resent the wave functions near the nuclei, and
the smoothed wave functions were then repre-
sented on a plane wave basis with a cutoff en-
ergy of 500 eV. The PBE approximation was
used for the exchange-correlation energy.30 As
all systems were large, the Brillouin zone was
sampled with a single k-point, the Γ point.

To create the data set, several Molecular Dy-
namics (MD) simulations were carried out at
different temperatures using DFT. Then, we
trained a NequIP potential with these config-
urations. All networks were trained for 200
epochs with a batch size of 7, a learning rate
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of 0.005, and the Adam optimizer. The loss co-
efficients for forces and energies were the same.
The training set consisted of 2700 DFT calcu-
lations, the validation set had 700, and the rest
were used as test set. The machine learning
potential generated using this method was used
to run MD simulations until configurations were
reached that were sufficiently far from the train-
ing data to lead to bad predictions. These bad
predictions were determined either by the MD
simulation crashing, or by forces appearing that
were absurdly large (exceeding 100 eV

Å ). The
last configurations before this happened were
then recalculated with DFT and added to the
training set. A few iterations of this method
led to stable machine learning potentials. We
find that including some configurations with
very large forces is essential to properly describe
medium-sized forces, see section A.2 in the sup-
plementary information. The exact same pro-
cedure was then followed to train the Au on
hBN potential, except that here van der Waals
forces were taken into account in the DFT cal-
culations by using the DFT-D3 method.31

Hyperparameters were optimized to obtain
the best possible results, within the constraints
set by computational resources. The main hy-
perparameters to optimize are the cutoff radius,
and the number of quantities in each neural
network layer for different l, where l represent
the character of the E(3)-equivariant quantities,
such that l = 0 is scalars and pseudoscalars,
l = 1 is vectors and pseudovectors, and higher
l are quantities transforming as spherical har-
monics with the respective l. Here, we limit
ourselves to l ≤ 1.

We optimize the number of scalars and vec-
tors in the layers versus the computational com-
plexity of the model. Table 2 shows the num-
bers used and the resulting number of weights
in the neural network that need to be opti-
mized, and Figure 5(a) shows the resulting er-
ror in the forces predicted on the validation set.
In all cases half the quantities were with even
parity, and half with odd (i.e. same number of
scalars and pseudoscalars, and same number of
vectors and pseudovectors); and in all cases the
number of interaction blocks was set to 4. The
best network is the largest that we can com-

Table 2: Number of trainable weights (in thou-
sands) as a function of the number of scalars
and the number of vectors. Half of these have
each parity, so half the scalars are actually pseu-
doscalars and half the vectors are pseudovec-
tors. The letters are used to label the data
points in figure 5(a).

Vectors 16 32 64
Scalars

16 74a 128b 292c

32 109d 171e 351f

64 208g 287h 501i

fortably handle, with 64 scalars and 64 vectors,
although reducing the number of vectors gives
a network with almost the same performance.

One of the most important hyperparameters
in this kind of networks is the cutoff radius, we
optimize that in Figure 5(b) where we find that
a cutoff radius of 5.0Å is optimal. It should be
noted that the actual range of the potential is
larger than the cutoff radius: in each interaction
block, the atoms gather information about their
neighbors inside the cutoff radius, in the second
block the atoms thus have indirect access to
information about positions up to two times the
cutoff radius, etc.

The machine learning potentials can now be
used in molecular dynamics to model the heat
transfer between nanoparticle and support. For
both types of supports, an potential was fit-
ted as described above. Initially, separate sys-
tems were created for the nanoparticle and the
support. Both the nanoparticle and the sub-
strate were thermalized to 600K and 300K, re-
spectively, using 15 ps of Langevin dynamics
with a friction parameter of 0.005. The sub-
strate and nanoparticle are then brought into
thermal contact, and Velocity Verlet dynamics,
which preserves the total energy, is performed
for 200 ps. A time-step of 2 fs is used for both
Langevin and Velocity Verlet dynamics. The
Atomic Simulation Environment (ASE)27,28 is
used for all simulations.

Figure 6 shows typical temperature fits to-
gether with snapshots of the systems color-
coded by the instantaneous temperature of
the atoms, defined from their kinetic energy:
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Figure 5: Top panel shows RMSE error of the
predicted forces as a function of the number
of weights in the neural network. The letters
refer to the combinations of scalars and vectors
shown in Table 2. Lower panel The same error
as a function of cutoff radius.

Ekin = 3
2
kT . It is seen that the temperature

gradient is small within the nanoparticle and
within the support, compared to the tempera-
ture difference between nanoparticle and sup-
port. From the fits, the time constant Ccp

kA
can

be extracted, and from there the heat transmis-
sion coefficient k is determined. Clearly, some
variability in k is expected (see e.g. Figure SOI-
4 in the supplementary information), and a ta-
ble of extracted parameters is available as Table
3.

Measuring transfer of energy

The sample was made by ultrasonicating hexag-
onal boron nitride (hBN) in ethanol for 5 min-
utes. The suspension was then drop-cast on
a DENSsolutions Wildfire through-hole heater
chip. The chip was left to dry and subsequently

Table 3: Extracted heat transfer coefficients k
and heat capacities per atom (cp) for Au sup-
ported on TiO2 and hBN.

# V A cp k
# [nm3] [nm2] [eV/K] [ eV

nm2 psK ]
rut(101) 3.956 2.63 2.96·10−4 1.08·10−3

rut(101) 7.901 3.45 2.85·10−4 1.12·10−3

rut(101) 14.624 3.38 2.83·10−4 1.00·10−3

rut(101) 20.338 6.52 2.80·10−4 0.94·10−3

ana(101) 3.956 2.63 2.96·10−4 0.56·10−3

ana(101) 7.901 3.45 2.85·10−4 0.54·10−3

ana(101) 14.624 3.38 2.83·10−4 0.43·10−3

ana(101) 20.338 6.52 2.80·10−4 0.54·10−3

hBN 3.956 2.63 2.96·10−4 0.44·10−3

hBN 7.901 3.45 2.85·10−4 0.39·10−3

hBN 14.624 3.38 2.83·10−4 0.38·10−3

hBN 20.338 6.52 2.80·10−4 0.29·10−3

coated with 3 nm gold in a Quorom Q150T
sputter coater. The sample was inserted in the
microscope and heated to 500°C for 30 minutes
resulting in a break-up of the Au film into par-
ticles (see Figure SOI-5).

Drift-corrected electron energy-loss line spec-
tra were acquired using a FEI Titan ETEM
in scanning transmission electron microscopy
mode (STEM). Data was acquired at both 300
kV and 80 kV. The entrance aperture of the
spectrometer was 2.5 mm giving a collection
semi-angle of 7.4 mrad and the acquisition time
was 10 ms in each spot.

The mean free path of the electrons in the
sample (λ) is measured by calculating the rel-
ative thickness T = t

λ
from EELS spectra of

Au-nanoparticles on hBN, assuming approxi-
mately hemispherical shape of the nanoparticle,
see Figure 7. We find λ as

λ =
Rest

Hcenter −Hbackground
(8)

where Rest is the thickness of the nanoparticle
estimated from its observed radius, and Hcenter

and Hbackground are the calculated t/λ ratios for
the center of the nanoparticle and the back-
ground, respectively, calculated as H = t/λ =
ln (IT/IZLP), where IT is the total intensity of
the spectrum, and IZLP is the intensity of the
zero-loss peak, i.e. the intensity that is trans-
mitted without being scattered.
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Figure 6: Temperature evolution of nanoparticles and substrate for an Au nanoparticle supported
by either TiO2 (top row) or hBN (bottom row). The left column shows the temperatures, the
right shows the atomic structures with atoms colored according to their temperature, defined as
the kinetic energy averages over . The nanoparticle has Cp = 2.80 ·10−4[eV/atom ·K] and from the
fitted temperature we get kTiO2 = 0.54 · 10−3[ eV

nm2 psK
] and khBN = 0.29 · 10−3[ eV

nm2 psK
].

In our EELS data processing methodology, all
EELS spectra undergo alignment to the zero-
loss peak, which is positioned at energy zero.
We subsequently define the zero-loss peak re-
gion as spanning the energy interval (−Eth,
Eth), where Eth represents the calculated elastic
scattering threshold energy of the EELS spec-
trum. Furthermore, the low-loss region is de-
fined as spanning the range (Eth, 110eV ). The
alignment and threshold energy calculations are
carried out using the EELS module integrated
into the Hyperspy package.32

While there is some uncertainty in these mea-
surements, it gives λ at least within a fac-
tor two. The average mean free path value
is determined from the data in figure 7 to be
λ = 104 nm for a beam energy of 300 keV and
λ = 37 nm at 80 keV . This is in good agree-
ment with the theoretically determined value of
λ = 74 nm for a 200 keV beam23 on bulk gold,

as the mean free path is expected to increase
with increasing energy. Similar values are found
from two different experiments, see Figure SOI-
6 in the supplementary information.

Additionally, we determined the average in-
elastic energy loss, denoted as ⟨E⟩, within a
thin gold (Au) film through electron energy-
loss spectroscopy (EELS) measurements. To
obtain this value, we calculated the expecta-
tion value of the spectrum within the low loss
region, yielding a value of approximately 44 eV.

An alternative way to estimate the power en-
ergy absorbed by the nanoparticle due to the
electron beam irradiation previously used in,34

is:
Q̇in = SDt⟨dE

dx
⟩ (9)

Here, t⟨dE
dx
⟩ represents the mean energy loss of

electrons per unit distance traveled through a
material of thickness t. By calculating the en-

9



0 5 10 15
Line scan (nm)

0.18

0.20

0.23

ln
(I T

/I Z
LP

)
E0 = 300keV

(a)

0 10 20 30 40
Line scan (nm)

0.30

0.40

0.50

0.60

ln
(I T

/I Z
LP

)

E0 = 80keV
(b)

0 5 10 15
Line scan (nm)

2

3

4

5

t
dE dx

 (e
V)

E0 = 300keV hBN
Au

(c)

0 10 20 30 40
Line scan (nm)

10

15

t
dE dx

 (e
V)

E0 = 80keV hBN
Au

(d)

(e)

0 20 40 60 80 100
Energy Loss(eV)

0

2

4

El
ec

tro
n 

co
un

ts
 (#

)

×103 Au thin film EELS

ZLP
J(E)

(f)

Figure 7: The mean free path λ is calculated from the relative thickness obtained using the log
ratio method on the left column using EELS Line scans (T = t

λ
= ln IT

IZLP
). Panel (a) and (b) show

data for Au-NP supported by hBN at different beam energies (300 keV and 80 keV). The red line
highlights the nanoparticle in the line scan. The values for λ are 104 nm and 37 nm for 300 keV
and 80 keV respectively. Panel (c) and (d) show the average energy lost by the electrons in the
beam, from the estimated thickness of the nanoparticle the energy loss per distance is calculated,
we find that values for ⟨dE

dx
⟩NP are ≈ 0.4 eV

nm
and ≈ 1.0 eV

nm
for the two beam energies. Panel (e)

shows the line scans across the particles used to take the data. Panel (f) visualizes the calculation
of average energy loss per inelastic collision within a thin Au film. This calculation is based on the
determination of the expected energy value within the low-loss spectrum (J(E)), as indicated by
the orange line. The solid blue line represents the estimated expected value (⟨E⟩ ≈ 44eV ) and the
blue dotted line the Zero Loss Peak (ZLP) region. Data from EELS.info.33
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ergy’s expectation value from the EELS signal,
including the Zero Loss Peak (ZLP), along the
line scan, we obtain the value of t⟨dE

dx
⟩. The

contribution from the substrate is quantified as
thBN⟨dEdx ⟩hBN .

The relationship between t⟨dE
dx
⟩ and

thBN⟨dEdx ⟩hBN is given by the following equa-
tion:

t⟨dE
dx

⟩ = tNP ⟨
dE

dx
⟩NP + thBN⟨

dE

dx
⟩hBN (10)

By knowing the thickness of the nanoparti-
cle (approximated as a hemisphere) and taking
the values of thBN⟨dEdx ⟩hBN just before and af-
ter the nanoparticle, we can determine ⟨dE

dx
⟩NP .

Figure 7(c-d) shows t⟨dE
dx
⟩ at an electron en-

ergy of 300 keV and 80 keV, which is approxi-
mately ⟨dE

dx
⟩NP ≈ 0.4 eV

nm
and ≈ 1.0 eV

nm
respec-

tively. This value is compared to the theoretical
value of around ≈ 0.26 eV

nm
for bulk Au at 300

keV, calculated using the Bethe equation.34

Upon comparing the two previously described
methods for estimating heat input into the
nanoparticle, we observed a substantial level of
agreement, with a percentage agreement of ap-
proximately 95% for the 300 keV electron beam
energy and approximately 85% for the 80 keV
energy. As a result, we have chosen to adopt
the method described by equation 4. We have
utilized these values in a qualitative manner,
taking into consideration the variability of the
electron mean free path, average energy, and
relative thickness under different experimental
conditions.35 However, it is important to note
that our specimen has a significantly smaller
thickness compared to the electron mean free
path (λ ≫ t).
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Supplementary Online Information

Learning curve

Figure SOI-1 shows how the RMSE error of the forces depend on the training set size. The curve
is obtained by randomly picking subsets of the full training set, and shows that beyond 2000
configurations in the training set no further improvement is seen.
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Figure SOI-1: Learing curve: The RMSE force error in the validation set as a function of the
training set size (the validation size was the same for all the models).

Surface area ratio

The ratio between the contact area for thermal conductivity (A) and the transverse area presented
to the beam may vary by more than an order of magnitude, see Fig. SOI-2.

Figure SOI-2: Depending on the wetting angles, the S/A ratios can vary by an order of magnitude
or more.

Importance of unrealistically large forces when training

In principle, the potential should be able to extrapolate the configuration with relatively large forces
on the atoms without any problem. In the figure SOI-3 we can see how diverse is our training set in
the magnitude of the force, most of the dataset lies with relative small forces (between 0–2 eV/A),
however the error versus magnitude of the force is a relative flat curve (see lower panel figure SOI-3)
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which means that the model is also able to predict large forces; the errors in large forces (between
3–5eV/A) are around twice the average of the error in the small forces(between 0–1eV/A).

Given that we are interested in modelling systems that on average have relatively small forces
(between 0–5 eV/A), the majority of our training set lie in this range. However, we trained a
model where the training set only contains forces below 5 eV/A; we can see that the results are
significantly worse than for a model trained with the same training set size but not excluding the
small fraction of configurations with large forces (Figure SOI-3, lower panels). We speculate that
this is because it is important for the neural network to see atomic configurations that would not
be well described by a harmonic approximation near a local energy minimum.
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Figure SOI-3: The top panel of the graph illustrates the performance of two potentials: the orange
curve represents the potential trained with a training set containing forces below 5eV/A, while the
blue curve corresponds to a potential trained without restrictions on the magnitude of forces. Both
potentials were trained with training set of identical size. Error bars represent the the standard
deviation of δF within each column bin. A vertical line is placed at |F⃗ | = 5eV/A to indicate
the forces cutoff threshold. The lower panel displays the histogram of δF as a function of force
magnitude. Additionally, we provide a visualization of the forces distribution within our testing
dataset. To aid interpretation, error bars are included to visually emphasize the standard deviation
of δF within each column bin. This illustration offers valuable insights into how error variability
correlates with different force magnitudes
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Determination of the heat transfer coefficient

Figure SOI-4 shows the determination of the heat transfer coefficient k for three differently sized
gold nanoparticles on rutile TiO2, corresponding to the three first rows in Table 3.
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Figure SOI-4: Temperature fits of three different Au nanoparticles with different volume and contact
area. The values for k are k = 1.08× 10−3 eV

nm2 ps
, k = 1.12× 10−3 eV

nm2 ps
, and k = 1.0× 10−3 eV

nm2 ps

respectively.
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Overview image of a sample

Figure SOI-5 shows an overview image of one of samples produced displaying gold nanoparticles
on a hBN substrate, as described in the main text.

Figure SOI-5: STEM image of gold nanoparticles supported by hBN at 300keV
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Additional determinations of the electron mean free path
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Figure SOI-6: Additional determination of the electron mean free path λ. See figure 7 in the main
text.

The electron mean free path was determined from the most regularly shaped nanoparticles in
Figure 7. Similar results are found here from two additional nanoparticles at each beam energy,
see Figure SOI-6.
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Electron Energy Loss Spectrum

To determine the average energy loss per inelastic scattering event in Electron Energy Loss Spec-
troscopy (EELS), we analyze the inelastic low-loss region of the EELS spectrum, typically ranging
from 5 to 110 eV and the Zero Loss Peak (ZLP) ranging from −Eth to −Eth. The signal is treated
as follows:

Signal(E) =

{
ZLP (E), if − Eth < E < Eth

J(E), if Eth < E < 110eV

Here, Eth represents the elastic scattering threshold energy of the signal. This threshold is deter-
mined using the hyperspy package, which provides tools for EELS analysis. See Figure SOI-7.
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Figure SOI-7: Treatment of the signal, dotted lines are the ZLP region and solid lines are inelastic
low-loss region of the EELS
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