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We investigate a model many-body system of spinless Fermi gas in two dimensions, where the
bare two-body interaction is repulsive and takes the form of a soft-core disk potential. We obtain
the zero temperature phase diagram of this model by numerical functional renormalization group
(FRG), which retains the effective interaction vertices in all channels to provide a detailed picture of
how Cooper pairing emerges under the renormalization flow. The repulsion drives the system to a
series of superfluid states with higher angular momentum paring, for example in the f - and h-wave
channels instead of the p-wave channel. This is in sharp contrast to the original Kohn-Luttinger
mechanism where pairing of very large angular momenta and exponentially small transition temper-
ature was predicted. We trace the stabilization and enhancement of f - and h-wave pairing back to
the momentum dependence of the bare interaction. A perturbative calculation is carried out to show
that while the second order Kohn-Luttinger diagrams provide a qualitative understanding of the
onsets of the various superfluid phases, they are unable to accurately capture the phase boundaries
predicted by FRG. Our findings suggest that tuning the shape of the interaction potential offers
a promising route to achieve stronger “pairing glue” and to realize nontrivial superfluid phases in
repulsive Fermi gases beyond the scope of the original Kohn-Luttinger analysis.

I. INTRODUCTION

It remains a long-standing goal to realize non-s-wave
superfluids in ultracold Fermi gases. For example, the
conventional wisdom to realize the px+ ipy state in spin-
polarized (single-species) Fermi gases is to bring it close
to a p-wave Feshbach resonance where the p-wave inter-
action between two fermionic atoms becomes attractive
[1–4]. Unfortunately, this effort has been hampered by
severe three-body losses near the resonance. Despite the
recent success in improving the gas lifetime in one- and
three-dimensional optical lattices [5–8], it remains a chal-
lenge to suppress the atom loss. Here in this paper, we
explore an alternative route that does not require p- or
higher-wave resonances. In particular, we address the
following questions: Is there room for superfluidity in
polarized Fermi gases if the bare interaction is purely re-
pulsive? If so, in which parameter regimes is the super-
fluid transition temperature Tc enhanced and thus more
accessible by experiments?

Central to these questions is the issue of “pairing glue”
in a repulsive Fermi liquid. The term “pairing glue” is
often used in the literature on quantum materials, and
it refers to the microscopic mechanism that binds the
fermions into Cooper pairs [9, 10]. It is well known that
in most conventional s-wave superconductors, phonons
act as the glue [11]. On the other hand, while there is
no consensus yet, spin fluctuations are likely responsible
for the d-wave pairs observed in cuprate superconduc-
tors, or the the putative d-wave superfluid phase of the
repulsive Fermi-Hubbard model (for a review see for in-
stance [12, 13]). For continuum gases of spinless fermions,
however, neither lattice vibration nor spin fluctuation is

present, so only density fluctuation can step in to make
the glue. Since the system cannot remain a Fermi liquid
down to zero temperature, it is long believed that many-
body effects will turn the repulsive bare interaction into
attractive effective interaction in certain pairing chan-
nels. In other words, the force between two fermions
may flip sign under renormalization [14].
A well-known example is the Kohn-Luttinger (KL)

mechanism discovered by W. Kohn and J. M. Luttinger
back in 1965 [15, 16]. They showed that for spin 1/2
fermions in three dimensions (3D) with weak short-range
repulsive interactions, the effective interaction Γℓ in the
ℓ-th angular momentum channel always turns attractive
for sufficiently high partial waves, e.g. some odd ℓ ≫ 1.
This means that a repulsive Fermi liquid is always un-
stable against pairing (there may be other competing in-

stabilities as well), albeit the corresponding Tc ∝ e−αℓ4 ,
with α some constant, is exponentially small [15]. Fay
and Layzer generalized the KL analysis for large ℓ to in-
clude small ℓ. In the dilute limit, regardless the strength
of the interactions, they found the dominant instability
is toward a p-wave superfluid with ℓ = 1 [17]. Kagan
and Chubukov reached the same conclusion and com-
puted the Tc [18]. The KL effect in two dimensions (2D)
requires a more delicate analysis beyond second order
perturbation theory, but as shown by Chubukov [19], the
dominant pairing instability remains in the p-wave chan-
nel. We stress that all these results were obtained for
spin-1/2 fermions where the bare interaction is replaced
by a pseudopotential that can be parametrized by the
s-wave scattering length a [15].
The main goal of this paper is to understand how re-

pulsion drives pairing in spinless Fermi gas in two dimen-
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FIG. 1. The FRG phase diagram of a repulsive Fermi gas
in 2D: the superfluid phases resemble four fingers of a hand
(with the thumb ℓ = 1 missing). The Cooper pair angular
momentum is ℓ = 3 (f -wave), 5 (h-wave), 7 and 9 respectively.
The model and the dimensionless interaction strength g are
defined in Section II, and the interaction range R is measured
in 1/kF , the inverse Fermi momentum. The empty circles
mark the phase boundaries, and the “critical scale” Λc in
false color gives a rough estimate of the superfluid Tc.

sions from the modern perspective of functional renor-
malization group (FRG). We focus on a simple model of
bare interaction in the form of the disk potential Eq. (1)
which is often referred to as the square (or step function)
potential in quantum mechanics textbooks. In order to
go beyond the aforementioned KL analysis, we treat the
many-body problem using FRG which goes beyond lead-
ing order perturbation theory and retains the interaction
vertices in all (e.g. pairing, density wave, and Pomer-
anchuk) channels. We solve the FRG flow equation nu-
merically to obtain the full phase diagram and compare
the transition temperature in different parameter regions.
The main results are summarized in Fig. 1. We observe
that, surprisingly, the behaviors of this system differ sig-
nificantly from the classical KL results outlined in the
preceding paragraph. For instance, f -wave or h-wave (in-
stead of p-wave) superfluid states are stablized, and their
transition temperatures are not exponentially small.

To gain further understanding of the numerical FRG
result, we also carry out a perturbative calculation which
becomes accurate in the dilute (low density) limit. We
show that evaluation of the so-called KL diagrams for our
model yields results in qualitative agreement with FRG.
The perturbative calculation enables us to see how and
when the effective interaction Γℓ turns negative, and why
it differs significantly from the well-known KL physics
in spin-1/2 systems. The calculation also illustrates the
limitations of perturbation theory. For example, the pre-
dicted phase boundaries (see Fig. 10) deviate signifi-
cantly from the FRG phase diagram (Fig. 1) which is

much more accurate because it includes many-body pro-
cesses well beyond the KL diagrams.
The bare potential Eq. (1), as a simple model to eluci-

date the intriguing many-body physics, may not be easily
realized in experiments. Our model choice however is not
arbitrary and in fact inspired by the interaction potential
in Rydberg-dressed Fermi gases which recently became
available in experiments [20]. In Ref. [21], three of us
discovered that an f -wave superfluid naturally emerges
in these systems even when the bare Rydberg-dressed in-
teraction is repulsive. The disk potential here retains the
soft-core part of Rydberg-dressed potential but discards
its long-range tail. By comparing the phase diagrams
of the two models, one makes an important observation:
it is the repulsive core, rather than the long-range tail,
that is crucial to f -wave pairing. The current model also
features a much richer phase diagram. The perturbative
analysis (Section IV) and its comparison against FRG
are also new results beyond the scope of Ref. [21].
Our results for model Eq. (1) makes it clear that the

shape of the bare interaction matters to enhancing the
pairing glue in repulsive Fermi gases. A nice feature of
the disk-potential V (r) is that its Fourier transform v(q)
develops oscillations and becomes attractive for certain
range of momenta, see Eq. (3). This is in contrast to pre-
vious works on spin-1/2 Fermi gases, where v(q) is usu-
ally assumed to be a constant u. Under renormalization,
these attractive segments of v(q) feed to the flow of the ef-
fective interaction Γℓ toward negative values, eventually
leading to a slew of superfluid phases with ℓ = 3, 5, 7, 9...
in Fig. 1 (this feature is absent in Ref. [21]). In the
original KL picture [15], the effective interaction between
two fermions acquires a long-range oscillatory part be-
cause of the sharp Fermi surface, which is related to the
Friedel oscillations in real space. In our case, we have not
only a sharp Fermi surface (a step function in momentum
space), but also a sharp two-body interaction potential
(a step function in real space). This double whammy also
partly explains why the of Tc of these superfluid phases
is not exponentially small as in the original KL analy-
sis. To our knowledge, the importance of the interaction
shape has not received a lot of attention in the literature.
We hope the model study presented here can stimulate
new ideas to engineer stronger pairing glues by shaping
the bare interactions. Our results suggest that this is
a promising route to observe higher angular momentum
pairing in repulsive Fermi gases.

II. MODEL AND BARE INTERACTION

Our model is a spin-polarized (spinless) Fermi gas in
2D with the short-range interaction potential

V (r) = V0θ(R− r). (1)

Here r is the distance between two fermions, θ(x) is the
Heaviside step function, R is the radius of the disk, and
V0 > 0 is the interaction strength. In the limit of large
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FIG. 2. The bare interaction Γ
(1)
ℓ in angular momentum chan-

nel ℓ = 1 (blue), 3 (orange), and 5 (green), all being repulsive.

Γ
(1)
ℓ is defined in Eq. (5) for two fermions on the Fermi sur-

face and measured in unit of (2πR2V0).

V0, V (r) gives the hard-disk potential (not hard-sphere
because we are in 2D). For this reason, we shall call Eq.
(1) the soft-core disk potential. Let kF be the Fermi
momentum, m the mass of the fermion, then the density
of state is N = m/2πh̄2 (we will set h̄ = 1 hereafter).
We define dimensionless parameter

g = (2πR2V0)N (2)

which measures the strength of interaction. Another in-
dependent dimensionless parameter is kFR, which mea-
sures the range of the interaction in units of 1/kF . In Ref.
[21], similar parameters were defined for the Rydberg-
dressed Fermi gases.

Let us look at the bare interaction in more detail. The
Fourier transform of V (r) is given by the Bessel function

v(q) = 2πV0R
2 J1(qR)

qR
(3)

with q = |q|, and q is the momentum. The function v(q)
is a damped oscillation and turns negative repeatedly.
For example, its first negative minimum is at x = qR =
5.136, where J1(x)/x = −0.06614. Again, it is useful to
compare it to the Meijer G-function discussed in Ref. 21
which only has one negative minimum. For pairing, the
relevant bare interaction is between two fermions on the
Fermi surface at momentum pF and p′

F respectively, i.e.
v(|pF − p′

F |). Let ϕ be the angle between pF and p′
F ,

the bare interaction can be written as

Γ(1)(ϕ) = v(2kF | sin
ϕ

2
|). (4)

Here the superscript of Γ(1) emphasizes that this is the
leading order (to order V0) contribution from the perspec-
tive of perturbation theory. We can decompose Γ(1)(ϕ)
into angular momentum channels by defining

Γ
(1)
ℓ =

∫
dϕΓ(1)(ϕ) cos(ℓϕ), ℓ = 1, 3, 5, ... (5)

Only odd ℓ values are taken, because we are dealing with
spinless fermions. The integral in Eq. (5) can be eval-
uated analytically by exploiting the properties of Bessel
functions. The results are plotted in Fig. 2 for ℓ = 1, 3, 5.

We observe that Γ
(1)
ℓ are all positive. This is as expected,

for the bare repulsion does not directly lead to Cooper
pairing (to order V0). We need many-body effects to in-
duce effective attraction to overcome the bare repulsion.

III. MAIN RESULTS FROM FRG

We analyze the interacting fermion problem by Func-
tional Renormalization Group (FRG) [22, 23]. Techni-
cal details of the FRG approach to 2D continuum Fermi
gases can be found in Refs. 21 and 24, and our im-
plementation here follows Ref. 21 closely. For examples
of FRG applied to Fermi gases on optical lattices, see
Refs. [25–27]. We obtain the zero temperature phase dia-
gram using the following procedure. Starting from an ul-
traviolet scale ΛUV , where the effective interaction equals
to the anti-symmetrized bare interaction, we slowly slide
down the momentum scale Λ → Λ−δΛ by successively in-
tegrating out the higher energy, shorter wavelength fluc-
tuations. The result is a set of coupled flow equations,
e.g., for the self-energy Σ

∂ΛΣ1′,1 = −
∑
2

S2Γ1′,2;1,2, (6)

and for the four-fermion vertex Γ

∂ΛΓ1′,2′;1,2 =
∑
3,4

(
G3S4 + S3G4

)[1
2
Γ1′,2′;3,4Γ3,4;1,2

− Γ1′,4;1,3Γ3,2′;4,2 + Γ2′,4;1,3Γ3,1′;4,2

]
. (7)

Here 1, 2 (1′, 2′) labell the incoming (outgoing) legs of the
effective interaction Γ, and we have used the short-hand
notation 1 ≡ (ω1,p1) to denote the fermion frequency
ω and momentum p. The sum in Eqs. (6)-(7) includes
integration over frequency and momentum, e.g.,∑

3

(...) =

∫
dω3d

2p3

(2π)3
(...).

Eq. (6) and Eq. (7) can be represented diagrammati-
cally. The first term inside the square bracket in Eq. (7)
gives the BCS diagram in the particle-particle channel,
while the second (third) term gives the ZS (ZS’) dia-
gram in the particle-hole channel. Here ZS stands for
zero sound [28]. The term (G3S4 + S3G4) on the right
hand side of Eq. (7) is the analogue of the polarization
bubble, but it has a crucial difference as it involves two
scale-dependent Green functions defined by

Gω,p =
θ(|ξp| − Λ)

iω − ξp − Σω,p
, Sω,p =

δ(|ξp| − Λ)

iω − ξp − Σω,p
, (8)

where ξp = p2/2m−EF , with EF the Fermi energy. We
stress that G, S, Σ and Γ all depend on the sliding scale
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Λ, even though we have suppressed the Λ-dependence in
our notation for brevity.

The FRG flow equations are formally exact, but in
practice they must be truncated and approximated in
order for the numerical calculation to become feasible.
Higher order contributions have been dropped from Eqs.
(6) and (7). We further neglect the frequency depen-
dence of Γ and drop Σ, which is typically not necessary
to reveal the leading instabilities. Finally, we project
the momenta radially onto the Fermi surface because the
angular dependence is most relevant, and accordingly we
discretize the Fermi surface evenly into N patches. Then,
Γ is reduced to a three-dimensional array,

Γ1′,2′;1,2 → Γ(p′
F1,p

′
F2,pF1) → Γi,j,k.

Here only three momentum variables are needed thanks
to the conservation of the total momentum, and i, j, k =
1, 2, ..., N are the patch indices giving the angular posi-
tion on the circular Fermi surface. We stress that similar
truncation and approximation schemes have been exten-
sively employed and benchmarked in the application of
FRG to correlated electrons. For a detailed assessment
and justification of these steps, the readers may consult
the review Ref. [22]. In principle, one can systemat-
ically include higher order diagrams and take into ac-
count the frequency dependences. These improvements
however come with a steep increase in the requirement
of computing resources.

Even with these simplifications, the computation re-
mains heavy. For example, for an angular grid with
N = 128, Γ contains N3, roughly 2 million, elements. We
call them running couplings, because they undergo non-
trivial evolutions as Λ is reduced. Among all the running
couplings, the largest absolute value is denoted as

Γmax = max|Γi,j,k|.

From Γ, we also construct the channel matrix for BCS
pairing

VBCS(p
′,p) = Γ(p′,−p′,p). (9)

and the channel matrix for charge density wave (CDW)
order with wavevector q

V q
CDW(p′,p) = Γ(p+ q/2,p′ − q/2,p− q/2). (10)

Another example is the Pomeranchuck channel

VPOM(p′,p) = Γ(p,p′,p), (11)

the instability of which points to spontaneous deforma-
tion of the Fermi surface. With these approximations,
the flow equation (7) is solved numerically by sliding Λ
on a logarithmic grid from the ultraviolet (UV) scale
ΛUV = EF down to a very small infrared (IR) scale,
e.g., ΛIR = 0.01EF . Typically we have hundreds of grid
points along the Λ axis, and at each RG step, the most
time consuming part is the summation over internal lines,

∑
3,4 in Eq. (7). The calculation is checked to ensure the

result does not change upon further refining the angular
or Λ grids.

To detect possible many-body instabilities of the in-
teracting Fermi gas, we monitor the flow of Γ and look
for signs of divergence as Λ → 0. For example, a clear
signal of divergence is when Γmax quickly exceeds a large
threshold such as 100EF at some “critical value” Λ = Λc.
In such cases we record Λc and use it as an estimate
of the Tc of the corresponding broken symmetry phase.
In other cases (see Fig. 5 below), the flow continues
smoothly down to ΛIR, indicating the Fermi liquid is
stable down to this temperature scale, within the approx-
imation and numerical precision of our calculation. The
channel matrices defined above provide a systematic way
to identify the broken symmetry phases. In each chan-
nel ch ∈ {BCS,CDW,POM, ...} and at each RG step, we
diagonalize the channel matrix Vch and record its most
negative eigenvalue Γch

min (for density waves, we also vary
q to seek the lowest eigenvalue among all q). The leading
divergence can be easily identified by comparing all Γch

min

as Λ is reduced. The eigenvector of the most divergent
Γch
min reveals the orbital symmetry of the incipient order.

Fig. 3 shows the competition of the BCS, CDW, and
Pomeranchuck channel for interaction strength g = 4 and
interaction range kFR = 2. We observe from the upper
panel that long before ΛIR is reached, the BCS chan-
nel (in blue) develops into the leading divergence, with
the other two channels trailing behind. The polar plot
in the lower panel shows the eigenvector for ΓBCS

min as a
function of ϕ as it varies from 0 to 2π around the Fermi
surface. It features 6 nodes, and can be fit nicely by
fBCS(ϕ) = A cos(3ϕ− ϕ0). The evidence unambiguously
points to an ℓ = 3, or f -wave, superfluid phase. Another
example is shown in Fig. 4 for g = 6 and kFR = 5. While
the flow looks rather similar to Fig. 2 and the leading
instability remains in the BCS channel (upper panel),
the eigenvector (lower panel) tells a different story. The
orbital symmetry in this case is clearly different, suggest-
ing an ℓ = 5, or h-wave superfluid instead. Yet another
example is shown in Fig. 5. Here none of the channel ma-
trix eigenvalues develops divergence as ΛIR is reached.

Similar FRG analysis can be performed for other pa-
rameter values on the (g,R) plane, and the results are
summarized in the phase diagram shown in Fig. 1. The
most striking feature of the phase diagram is a series of
superfluid phases with Cooper pair angular momentum
ℓ = 3, 5, 7, 9. The empty circles mark the phase bound-
ary, and the background false color shows the critical
scale Λc serving as a rough estimate of the Tc of each
ordered phase. The overall shape of the phase diagram
resembles a hand with the index, middle, ring, and little
finger. Note that p-wave superfluid with ℓ = 1, or the
“thumb,” is missing.

The phase boundaries (empty circles) in Fig. 1 are
determined numerically as follows. In the first method,
we decompose the eigenvector fBCS(ϕ) corresponding to
ΓBCS
min in the basis {cos(ℓϕ)} with odd ℓ ≥ 1. We find
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FIG. 3. The FRG flow for parameter g = 4 and kFR = 2.
Upper panel: the most negative eigenvalue, Γmin, in the BCS,
Pomeranchuck, and CDW channel. As the sliding RG scale
Λ is reduced from ΛUV , BCS becomes the leading instability.
Lower panel: the eigenvector fBCS(ϕ) corresponding to the
BCS instability, with ϕ going from 0◦ to 360◦ around the
Fermi surface. Its nodal structure shows f -wave pairing with
angular momentum ℓ = 3 (see main text).

that there is only one dominant ℓ component in each su-
perfluid phase, and the value of ℓ jumps at the phase
boundaries to form a terrace as kFR is varies along a
vertical cut at constant g = 9 (in blue, Fig. 6). In the
next method, we plot the second most negative eigen-
value of VBCS (in magenta, Fig. 6). The idea is that
as a phase boundary is approached, say going from the
f -wave to the h-wave phase, the lowest two eigenvalues
of VBCS are expected to become degenerate. Thus, the
second lowest eigenvalue will take a dip whenever a phase
boundary is crossed. Fig. 6 shows that the phase bound-
aries determined from these two independent measures
agree well with each other. And there is no indication of
phase coexistence.

We stress that the empty circles in Fig. 1 represent
only part of the phase boundaries. For small g or large
R, the critical scale Λc is pushed down toward ΛIR, mak-
ing it challenging to reliably determine the phase bound-
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FIG. 4. Evidence of h-wave pairing from FRG for parameter
g = 6 and kFR = 5. Upper panel: the competition between
the BCS, Pomeranchuck, and CDW instability. Lower panel:
the eigenvector fBCS(ϕ) can be fit by A cos(5ϕ−ϕ0), pointing
clearly to h-wave pairing with ℓ = 5.
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the second lowest eigenvalue of the BCS channel matrix VBCS

(rescaled by 103), in color magenta. The phase boundaries
from the two methods agree with each other.

ary using the methods outlined above. For this reason,
only well resolved data points are presented. For exam-
ple, both the f - and h-wave superfluid persist to lower
g values with significantly reduced Tc, and their phase
boundaries are expected to extend to the left as well.
Superfluid phases with ℓ > 9 may exist at larger g and
R values (not shown in Fig. 1), they are not well re-
solved due to the limitation of our angular grid and the
diminishing Tc values.

Despite the apparent simplicity of our model, the phase
diagram in Fig. 1 is quite rich and to our knowledge has
not been reported before. Let us recall that generalizing
the Kohn-Luttinger analysis to spin-1/2 Fermi gas with
short-range repulsion in 2D predicts a p-wave superfluid
state [19], which has gone missing in our case. It is also
worthwhile to compare Fig. 1 to the phase diagram of
the Rydberg-dressed Fermi gas in 2D, which harbors an
f -wave superfluid that becomes intertwined with, and
eventually yields to a CDW as the interaction range is
increased [21]. Here, we do not see a CDW phase, be-
cause it is pushed to very high g values, g > 15, according
to the random phase approximation. Instead, we see the
emergence of a series of superfluid phases with higher
angular momentum pairing.

Since the FRG calculation involves delicate interplays
of particle-particle and particle-hole fluctuations on a
sliding momentum/energy scale, one might wish a sim-
pler “explanation” of how the bare repulsion is turned
into a pairing glue. In the next section, we shed more
light on these phases using perturbation theory.

1

FIG. 7. The four Kohn-Luttinger diagrams as the second
order contributions to the effective interaction. From left to
right are D1, D2, D3 and D4.

IV. INSIGHTS FROM PERTURBATION
THEORY

The superfluid phases occupy a large portion of the
parameter space in Fig. 1. A perturbation expansion in
power series of V0 will not be justified everywhere, e.g.
when V0 or g is large. However, it is well recognized that
in the dilute, low-density limit (corresponding to small
kFR), a perturbative expansion is possible even for large
g [29]. With these caveats in mind, our main objective
in this section is to look for the trends (rather than the
exact numbers) suggested by perturbation theory.
To the first order of V0, the effective interaction is

given by the bare repulsion in Eq. (4). As shown in

Fig. 2, all its angular components Γ
(1)
ℓ are positive. For

kFR ≤ 2, Γ
(1)
ℓ=1 dominates, with all other components

negligibly small. To order V 2
0 , the corrections to the ef-

fective interaction in the Cooper channel consist of four
contributions shown in Fig. 7, often referred to as the
Kohn-Luttinger diagrams [15]. They are vertex func-
tions describing a fermion pair (p,−p) being scattered to
(p′,−p′) that involves two bare interactions (wavy lines)
and two internal fermion propagators (solid lines). The
first diagram contains a particle-hole bubble,

D1 = −i

∫
d2kdω

(2π)3
v(q)v(q)G0(k)G0(k + q).

Here for spin-polarized fermions, the factor 2 associated
with the fermion bubble is absent but the negative sign
is retained. G0 is the bare fermion Green function at
T = 0 (different from the scale-dependent Green function
in the previous section), the 4-momentum k = (ω,k),
and similarly q = (Ω,q) with the momentum transfer
q = p′ − p. The second diagram contains the vertex
correction

D2 = i

∫
d2kdω

(2π)3
v(q)v(−p− k)G0(k)G0(k + q).

The third diagram is very similar to the second,

D3 = i

∫
d2kdω

(2π)3
v(q)v(p′ − k)G0(k)G0(k + q).

And the fourth diagram is the exchange scattering

D4 = i

∫
d2kdω

(2π)3
v(p− k)v(p′ − k)G0(k)G0(k − p− p′).
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FIG. 8. The second order contribution to the effective inter-
action, Γ(2)(ϕ). It is defined in Eq. (12) and contains the
contributions from four Kohn-Luttinger diagrams, D1 to D4.
Most noticeably, D1 turns negative (attractive). The black
curve is the total sum of all four diagrams. kFR = 2.5.

To evaluate these diagrams, first the ω integral is carried
out analytically, then the integration over k is computed
numerically.

The second-order contribution to the effective interac-
tion is given by summing over D1 to D4 for p and p′ on
the Fermi surface. In unit of (2πV0R

2), the result can be
organized into

Γ(2)(ϕ) =
π

g

4∑
i=1

Di. (12)

As an example, the function Γ(2)(ϕ) for the case of
RkF = 2.5 is plotted in Fig. 8. We find that the contri-
bution for diagram D1 (the red curve) turns negative for
a significant range of ϕ values, e.g. ϕ < π, while in the
same region the contributions from D2 + D3 (in green)
and D4 (in blue) remain positive. As a result, the total
sum (the black curve) develops oscillations with ϕ. This
clearly shows that density fluctuations as captured by D1

plays an important role in making the pairing glue. We
can further decompose Γ(2)(ϕ) into angular momentum

channels, the resulting Γ
(2)
ℓ for ℓ = 1 (blue square), ℓ = 3

(orange circle), ℓ = 5 (green triangle), and ℓ = 7 (red
plus) are shown in Fig. 9. One observes that as R is in-
creased, all components eventually turn attractive. For
ℓ = 3, the effect is most pronounced around R ∼ 3.7/kF .
Now we can combine the second-order contribution

Γ
(2)
ℓ with the bare repulsion Γ

(1)
ℓ . We ask at what crit-

ical values g = gc the total effective interaction turns
attractive, i.e.,

Γ
(0)
ℓ +

gc
π
Γ
(2)
ℓ = 0. (13)

Solving this equation for gc, we arrive at the perturbative
phase diagram in Fig. 10, where the phase boundaries
of the ℓ = 1, 3, 5, 7 superfluid are plotted using the
same symbols as in Fig. 9. The unconventional Cooper
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FIG. 9. The second order contribution to pairing interaction

Γ
(2)
ℓ in angular momentum channel ℓ = 1, 3, 5, and 7. They

all become attractive for sufficiently large kFR.
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FIG. 10. The onset of superfluid phases with ℓ = 1 (blue),
3 (orange), 5 (green), and 7 (red) according to second order
perturbation theory. The data points represent the critical
value gc. For fixed kFR, pairing occurs for g > gc.

pairing discovered here is to some degree parallel to the
high partial-wave pairing in the particle-hole (or density
wave) channel predicted for fermionic systems with soft-
core interactions [30]. One crucial difference is that the
high partial-wave pairing in the particle-particle (super-
fluid) channel only requires time-reversal or parity sym-
metries of the Fermi surface whereas the corresponding
particle-hole pairing requires Fermi surface nesting effects
in addition [30].

Now we are in position to compare Fig. 10 to Fig.
1. According to the second order perturbation theory,
p-wave pairing (blue square in Fig. 10) is pushed toward
large g and R values. This is mainly because the bare in-

teraction Γ
(1)
ℓ=1 is large and positive, and therefore rather
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hard to overcome. Another reason is that Γ
(2)
ℓ=1 only be-

comes negative when R > 2.4 as shown in Fig. 9. Note
that according to FRG which contains many more dia-
grams to higher order, p-wave pairing is actually absent
from the phase diagram. The onset of f -wave pairing
(orange circles) in Fig. 10 is roughly consistent with the
FRG phase boundary except for large R. It is stabi-
lized within the window between kFR ∼ 2 and kFR ∼ 4,

where the bare repulsion Γ
(1)
ℓ=3 is not particularly strong

but Γ
(2)
ℓ=3 already turns negative. For these reasons, the

onset of f -wave superfluid requires much a smaller gc
than the p-wave. In short, perturbation theory correctly
predicts that f -wave superfluid is preferred over p-wave
in our model. Pairing with larger ℓ moves successively to
larger R and lower gc, and the relative positions of the
ℓ = 3, 5, 7 lobes from Fig. 10 are roughly in line with
Fig. 1.

In summary, it is fair to say that the perturbative cal-
culation above captures some of the rough features of
the FRG phase diagram. On the one hand, it is able to
pinpoint certain microscopic processes (e.g. D1 to D4)
that work together to turn the effective interaction at-
tractive, i.e. to provide the pairing glue. On the other
hand, the details of Fig. 10 differ significantly from Fig.
1. This is not surprising, for the perturbation results are
not reliable at higher kFR values.

V. SUMMARY AND OUTLOOK

We have presented evidence for superfluid phases with
Cooper pair angular momentum ℓ = 3, 5, 7, 9 in a model
system of spin-polarized fermions with short-range repul-
sive interactions. Our main goal is to elucidate how the
repulsion is turned into glue that binds the fermions into
Cooper pairs. While FRG provides the full picture and
more accurate results, some of the trends and gross fea-
tures can already be appreciated from perturbative con-
siderations. According to our calculation, it is inaccurate
to only credit density fluctuations such as diagram D1

for providing the glue, because other processes also con-
tribute to the renormalization of the effective interaction,

e.g. to the second order correction Γ
(2)
ℓ . Comparing the

phase diagram Fig. 1 with the case of Rydberg-dressed
Fermi gas [21] clearly shows that the form of the bare
interaction matters.
These considerations naturally lead to the open ques-

tion: assuming that we can engineer arbitrary v(r) us-
ing the tricks of Atomic Molecular and Optical physics,
which kind of bare repulsive interaction v(r) offers the
best route toward superfluid with a reasonably high Tc?

A heuristic argument is that we would like v(r) to have
sharp features, so that its Fourier transform v(q) will
acquire negative segments which could be potentially ad-
vantageous to pairing. While this intuition serves us well
by inspiring the choice of Eq. (1) in the present work,
it must be kept in mind that this is not a first order
effect. For example, in our example, to the first order

of V0, all Γ
(1)
ℓ > 0; one must carefully compute the ef-

fective interaction by taking many-body processes into
account. Roughly speaking, higher angular momentum
(rather than p-wave) pairing is preferred because there
is less bare repulsion to overcome, and it can take better
advantage of the oscillation of Γ(2)(ϕ) around the Fermi
surface. It may be challenging to realize the simple model
and the phases predicted here in near future experiments.
But the lessons learned from the case study, including the
general trend and the underlying mechanism, can bene-
fit the ongoing effort to engineer stronger pair glue in
repulsive Fermi gases.
Previously f -wave pairing has been discussed for ex-

ample in the context of superfluid helium three [31, 32]
as well as cold atoms on optical lattice [33], but in those
cases it is stabilized by very different mechanisms. We
stress that in the present work, the bare interaction is
repulsive and the system is two dimensional. This differs
from previous studies on Rydberg-dressed Fermi gas in
3D with attractive interactions [34] including the appear-
ance of high partial wave pairing [35] by coupling to a nD
state. In our case, pairing beyond f -wave (with ℓ ≥ 5) re-
quires larger value of kFR, i.e. away from the dilute limit.
It remains an open problem regarding what happens if
we generalize the model to spin-1/2 Fermi gases, where
the effect of long-range potentials on pairing has been
discussed [36, 37]. Whether the f -wave pairing found
here can lead to topological superfluid state is another
question left for future study.
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