
Phases of Wilson Lines: Conformality and Screening

Ofer Aharony,a,b Gabriel Cuomo,c,d,e,f Zohar Komargodski,e,f Márk Mezeig,e and Avia

Raviv-Moshee

aDepartment of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel
bSchool of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA
cCenter for Cosmology and Particle Physics, Department of Physics, New York University, New York,

NY 10003, USA
dDepartment of Physics, Princeton University, Princeton, NJ 08544, USA
eSimons Center for Geometry and Physics, SUNY, Stony Brook, NY 11794, USA
fC. N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794, USA
gMathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, United Kingdom

E-mail: ofer.aharony@weizmann.ac.il, gc6696@princeton.edu,

zkomargodski@scgp.stonybrook.edu, mezei@maths.ox.ac.uk,

araviv-moshe@scgp.stonybrook.edu

Abstract: We study the rich dynamics resulting from introducing static charged particles

(Wilson lines) in 2+1 and 3+1 dimensional gauge theories. Depending on the charges of the

external particles, there may be multiple defect fixed points with interesting renormalization

group flows connecting them, or an exponentially large screening cloud can develop (defining

a new emergent length scale), screening the bare charge entirely or partially. We investigate

several examples where the dynamics can be solved in various weak coupling or double scaling

limits. Sometimes even the elementary Wilson lines, corresponding to the lowest nontrivial

charge, are screened. We consider Wilson lines in 3+1 dimensional gauge theories including

massless scalar and fermionic QED4, and also in the N = 4 supersymmetric Yang-Mills

theory. We also consider Wilson lines in 2+1 dimensional conformal gauge theories such as

QED3 with bosons or fermions, Chern-Simons-Matter theories, and the effective theory of

graphene. Our results in 2+1 dimensions have potential implications for graphene, second-

order superconducting phase transitions, etc. Finally, we comment on magnetic line operators

in 3+1 dimensions (’t Hooft lines) and argue that our results for the infrared dynamics of

electric and magnetic lines are consistent with non-Abelian electric-magnetic duality.
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1 Introduction and summary

Conformal Field Theory is by now a mature subject in some ways. A great deal is understood

about the space of local operators and their correlation functions, see [1] for a review.

Yet, relatively little is understood about extended operators. The simplest class of

extended operators are line operators. For a line operator that is stretching in the time

direction at a point x⃗ = 0 in space, we say that the line operator is conformal if it preserves an

SL(2,R) (1.1)

subgroup of the conformal group. The SL(2,R) subgroup acts at x⃗ = 0 by t → αt+β
γt+δ , with

αδ − βγ = 1. A conformal line operator admits local defect operators Ôi(t) transforming

under SL(2,R). The defect operators have scaling dimensions ∆̂i ≥ 0 and one can perform an

Operator Product Expansion (OPE) among them. Very importantly, bulk local operators can

be expanded as |x⃗| → 0 in terms of defect operators in the following schematic form

O(x, t) =
∑

ai x
−∆O+∆̂iÔi(t) . (1.2)

In particular, in the presence of a line operator, bulk operators can have a nonzero one-point

function due to the unit operator appearing on the right hand side of (1.2). The ai on the right

hand side of (1.2), along with the ∆̂i and also the defect OPE coefficients, are observables
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associated to conformal line defects. This whole structure is referred to as a Defect Conformal

Field Theory (DCFT), see [2] for a review. A special defect operator which always appears

in nontrivial DCFTs is the displacement operator [3, 4], whose scaling dimension is ∆̂ = 2.

Integrating this operator on the defect is equivalent to changing the shape of the defect.

When one defines line operators in a conformal field theory, it is not guaranteed that they

are conformal line operators preserving SL(2,R). While the bulk theory remains conformal,

there can be renormalization group flows between line operators, and one typically expects

the deep infrared limit of line operators to be a DCFT. The space of distinct DCFTs in a

given CFT is far from understood. Line operators are of great interest also in the context of

condensed matter, since they represent localized impurities/defects. The long distance limit

of various defects in condensed matter is a subject that goes back to the Kondo problem [5].

We would like to make three general remarks on the general theory of line defects in

CFTs:

• Renormalization group (RG) flows on line defects are constrained by the so-called

defect entropy [6]. For the connection between the defect entropy and entanglement

entropy see [7–9]. This allows one to make consistency checks on various proposals, and

sometimes to prove that a DCFT cannot be trivial (screened).

• Local bulk operators transform in a representation of the ordinary (0-form) symmetry

of the CFT, G. The interplay of line operators with the 0-form symmetry of the theory

is more complicated. First of all, it is possible for a conformal line operator to break

the symmetry G altogether. That means that the intersections of the line with the

co-dimension 1 G-surfaces are not topological. If we wrap the line operator with the

co-dimension 1 G-surfaces, we must obtain a new line operator in which the bulk VEVs of

G-charged operators change accordingly. For a continuous symmetry G this means that

there are tilt operators on the defect which have ∆̂ = 1 exactly. These are analogous to

the displacement operator. See [10, 11] for a review and some examples of tilt operators.

If the line operator preserves G,1 defect operators that appear on the right hand

side of (1.2) are in representations of G. However, defect-changing operators, and in

particular, end-point operators, do not have to be in representations of G. Physically,

line operators can be viewed as capturing the response of the CFT to heavy/external

objects. The full symmetry in the presence of the heavy objects could be an extension of

G. Some simple examples (without gauge fields) where the end-point operators indeed

only transform in projective representations of G were studied in [13–16] along with

many examples in 1+1 dimensions in the context of the Kondo defect (see [17] for a

review with an emphasis on the screening cloud, a theme we will discuss below in higher

dimensions). We will see examples of this phenomenon in gauge theories in this paper.

1This means that symmetry defects admit a topological intersection with the line operator. For invertible

symmetries, this also implies that the corresponding defect state is an eigenstate of the symmetry operator;

this is not necessarily true for non-invertible symmetries [12].
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If the end-point operators transform in a projective representation of G, this has

consequences for RG flows on such lines, since they cannot become trivial lines with no

degeneracy (i.e. the unit operator). Indeed, if they were completely trivial lines with

no degeneracy in the infrared, we would not be able to attach operators in projective

representations to them. This argument is presented in more detail in the body of the

paper.

• If the theory admits a one-form symmetry Γ then the line operators transform under

Γ [18]. For a line operator to furnish a nontrivial DCFT it is not necessary for it to

be charged under Γ. However, under additional assumptions that we will discuss later,

it is possible to prove that a line defect transforming under Γ must have a nonzero

displacement operator at long distances.

A special class of line operators, that exist in any gauge theory in any dimension, are

Wilson lines

WR(γ) = trR

(
P exp

(
i

∫
γ
Aµdx

µ

))
, (1.3)

labelled by a representation R of the gauge group and by a closed, or infinite, contour γ.

Historically, Wilson lines have been introduced to diagnose the confinement/deconfinement

transition in gapped theories. Then, the interesting Wilson lines are those charged under

the one-form symmetry Γ, since such Wilson lines serve as order parameters for the confine-

ment/deconfinement transition.

Here our interest is in conformal field theories. Then, as discussed above, Wilson lines are

interesting observables whether or not the Wilson line transforms nontrivially under Γ. In

fact, Wilson lines are interesting line operators even in theories with trivial Γ.

A peculiarity of (1.3) that makes them into intriguing line operators is that there is no

free continuous parameter in the definition (1.3). As we will see, that does not mean that no

RG flow takes place!

This paper is an extended version of [19]. The central goal of this paper is to determine

the long distance limit of (1.3) as a function of the representation R. We will investigate

this question in various examples of conformal gauge theories in four and three space-time

dimensions. There are two complementary ways to analyze this question.

• In the “bulk approach”, we view the insertion of the Wilson line (1.3) as setting a

boundary condition for the dynamical fields of the gauge theory at x⃗ = 0, which includes

an electric field emanating from there; as usual we need to regularize this by putting

the boundary and the boundary condition at some |x⃗| = r0, and asking what the theory

behaves like for |x⃗| ≫ r0. This corresponds to the infrared limit of the defect. The

simplest possible answer, is that the lowest energy state just involves the electric field

going as 1/|x⃗|2 (recall that in Abelian gauge theories the dimension of Fµν is always

∆ = 2). In other cases we will find that the dynamical fields react non-trivially to
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the Wilson line source, and screen it, either partially or completely. The infrared can

then be trivial or partially screened. Another important comment is that specifying

the electric field at |x⃗| = r0 is not sufficient. The boundary conditions (and possible

boundary interactions) of the charged bulk fields at the insertion should be specified

too, and this leads to new coupling constants that must be added to (1.3) to define the

problem properly. These coupling constants inevitably run and lead to much of the rich

dynamics that we will encounter here and review soon.

• In the “defect approach”, we view the insertion of the Wilson line (1.3) as modifying the

action of the gauge theory by some extra terms that are localized on a “defect” at x⃗ = 0.

One can then discuss a renormalization group flow of the conformal gauge theory in

the presence of these extra defect terms (with an ultraviolet cutoff µ, which is inversely

related to r0 discussed above); for simplicity we can assume that the bulk theory has

already flowed to its low-energy fixed point, and then the non-trivial flow involves only

the action of the defect. This approach is convenient since it utilizes the ideas behind the

renormalization group more directly. While the charge of the Wilson line is quantized

and does not flow under the renormalization group, we will see that in many cases other

couplings (localized on the defect) related to the additional fields in the theory do flow

non-trivially (and, as we remarked above, ignoring them is inconsistent), reproducing in

a different language the bulk physics discussed above.

In the rest of this section we briefly summarize our results.

1.1 Scalar and fermionic QED4

Scalar and Fermionic massless QED4 are not strictly conformal theories (due to the Landau

pole) and hence ideas of DCFT do not rigorously apply. However, at weak enough gauge

coupling the running coupling constant is an insignificant perturbation (and furthermore there

is a double scaling limit in which it is truly a subleading effect, as will be explained in what

follows), and there the physics of these models does lend itself to the language of DCFT. Also,

understanding these examples will be a valuable springboard towards more complicated 3+1

dimensional gauge theories which are truly conformal. Needless to say, understanding Wilson

lines in QED is of great interest in and of itself. It is perhaps surprising that there is much

new to say on this subject.

We will consider Wilson lines of charge q in either scalar or fermion QED4. These are

given by the “naive” expression:

Wq(γ) = exp

(
iq

∫
γ
Aµdx

µ

)
, (1.4)

and we take the contour γ to be localized at x⃗ = 0.

For concreteness let us start from scalar QED4 with a single complex charge 1 scalar

field ϕ. If one tries to interpret (1.4) as a conformal defect, one can compute the scaling
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dimension of the gauge-invariant bilinear ϕ†ϕ. In the bulk at sufficiently weak coupling the

scaling dimension is of course ∆ = 2. But we can also ask about the scaling dimension of ϕ†ϕ

as a defect operator. As we will show in section 2, one finds

∆̂ϕ†ϕ = 1 +

√
1− e4q2

4π2
. (1.5)

This formula is reliable as long as the fine structure constant is small enough (more precisely,

it is exact in the limit of e→ 0 and e2|q| fixed). A consistency check is that for q = 0 the bulk

and defect scaling dimensions coincide.

Interestingly, (1.5) implies that for e2|q|
2π = 1 the operator becomes marginal on the defect,

while for e2|q|
2π > 1 there is a disease with our defect. Since the operator is marginal at e2|q|

2π = 1

and slightly irrelevant as we approach e2|q|
2π = 1 from below, we learn that ignoring it in RG

flows is inconsistent, and hence we must study the more general line defect

Wq(γ) = exp

(
iq

∫
γ
Aµdx

µ − g

∫
ϕ†ϕ |dx|

)
. (1.6)

The parameter g has a nontrivial beta function with the following properties:

• For e2|q|
2π < 1 there are two fixed points. One corresponds to a stable DCFT (with no

relevant operators) and the other to an unstable DCFT (with one relevant operator,

ϕ†ϕ).

• For e2|q|
2π = 1 the two fixed points merge and the operator ϕ†ϕ is marginal.

• For e2|q|
2π > 1 the coupling g flows to −∞.

This behavior is reminiscent of how conformality is (presumably) lost in QCD (a.k.a. Miransky

scaling [20]). Here, conformality is lost at e2|q|
2π = 1 in the sense that no DCFTs with finite g

exist for e2|q|
2π > 1. However, the flow g → −∞ must still be analyzed to determine the infrared

behavior of Wilson lines with sufficiently large charge.

Again, analogously to QCD, one finds that an exponentially low energy scale is generated

when e2|q|
2π is slightly larger than 1 (dimensional transmutation). The dynamics is that of an

exponentially large cloud of bosons surrounding the Wilson line. We present the properties

of the cloud, which is essentially a new soliton, and argue that it screens the charge of the

Wilson line entirely. We find that the defects with e2|q|
2π > 1 are trivial DCFTs in the infrared

for a generic bulk scalar potential.

While we find two fixed points for e2|q|
2π < 1, we do not claim that our analysis of that

region is complete. Indeed, for sufficiently small e
2|q|
2π the quartic |ϕ|4 defect operator becomes

relevant in the unstable defect fixed point, and the dynamics must be re-analyzed. We leave

this for the future.

For fermionic QED4 the story, which we analyze in section 3, is conceptually similar,

except that the instability occurs at e2|q|
4π = 1, which in nature corresponds to |q| ∼ 137. The
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fact that nuclei with charge ∼ 137 lead to difficulties with the Dirac equation was observed

already decades ago [21]. Another difference from the scalar theory is that for e2|q|
4π > 1 we

find an exponentially large charged condensate of fermions that only screens the line down to
e2|q|
4π ≃ 1, and not to a trivial line.

In summary, unlike in pure Maxwell theory, in QED Wilson lines with sufficiently large

|q| are screened, i.e. do not lead to new interesting DCFTs. The transition between the two

regimes involves the annihilation of two fixed points and dimensional transmutation due to

the running coupling g on the Wilson line. Furthermore, for small |q|, there are multiple fixed

points, not all of which we have analyzed.

We also consider two interesting variations on the above themes. The first variation is

multi-flavor scalar QED. Our soliton that screens the Wilson line for e2|q|
2π > 1 then transforms

nontrivially under an internal symmetry and there is thus some sort of symmetry breaking – a

zero mode of the soliton. We show that this zero mode must be integrated over, and the true

screening cloud does not lead to symmetry breaking. The Wilson line leaves no measurable

trace of its existence at distances much larger than the cloud. It is therefore completely

transparent to all bulk observables. However, on the Wilson line itself, depending on its

charge, there is some degeneracy of states (a 0+1d TQFT stacked on the trivial, screened

line), which follows from symmetry considerations alone. This happens precisely because of a

fact we already mentioned above: the end-point operators in the multi-flavor model are in a

projective representation of the symmetry group, and this constrains the infrared limit of the

line defect.

The second variation on the above themes is to consider QED4 with a scalar of charge

qϕ > 1 but no scalars of charge 1. Now the theory has a Zqϕ electric one-form symmetry, and

hence Wilson lines of q ̸= 0 mod qϕ cannot flow to trivial DCFTs, no matter how large |q|
is. Similarly, in the N = 4 supersymmetric Yang-Mills (SYM) theory with, say, gauge group

SU(2), a Wilson line in a large half-integer spin representation cannot be completely screened

due to the Z2 one-form symmetry. The question of what precisely is the infrared limit in these

two cases goes beyond the leading order we analyze here. We speculate about the possible

infrared phases that are consistent with the one-form symmetry in both cases.

1.2 Non-Abelian gauge theories and N = 4 SYM

Much of what we have found for Abelian theories carries over to essentially all weakly coupled

conformal gauge theories in four dimensions. We discuss non-Abelian theories in section 4.

Let us consider for concreteness the Wilson lines in the N = 4 SYM theory with gauge group

SU(2).

There are multiple possible Wilson lines in this theory, including supersymmetric versions

of the Wilson line which include also scalar fields from the vector multiplet, and which

preserve some fraction of the supersymmetry. These Wilson lines were the subject of many

investigations in the last decades, see e.g. [22]. All the supersymmetric Wilson lines break

the SO(6)R global symmetry of N = 4 SYM to a subgroup. Here we are interested in the

SO(6)R-invariant Wilson line (1.3), which breaks all of the supersymmetry. As in the Abelian
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case, one must not ignore scalar bilinears, which turn out to be important defect operators.

We find again that for Wilson lines in the spin s representation of SU(2), when g2YMs ∼ 1

the Wilson line is screened (for large half-integral s the one-form symmetry prevents the

line from being completely screened). Therefore, as the coupling constant is increased, fewer

Wilson lines survive as nontrivial DCFTs with SO(6)R symmetry. Since the theory admits

electric-magnetic duality, this suggests that SO(6)R-invariant ’t Hooft lines have interesting

dynamics already at weak coupling. In other words, there should be very few nontrivial

SO(6)R-invariant ’t Hooft lines at weak coupling. We will see that this is indeed the case!

1.3 2+1 dimensional critical points

Wilson lines in conformal 2+1 dimensional theories, which we analyze in section 5, are

interesting both theoretically but also because they correspond to charged impurities in 2+1

dimensional second order quantum phase transitions, and hence the predictions we make may

be testable (in addition, there are recent numerical techniques which appear very promising [23]

as well as advances on bootstrapping defects, e.g. [24–29]). We analyze 2+1 dimensional scalar

and fermionic QED3, with and without a Chern-Simons term. In these theories again Wilson

lines of small enough charge flow to nontrivial DCFTs, while the others are screened.

We consider both the tricritical and the ordinary scalar QED3, which are related to second

order superconducting transitions. In the tricritical point, all the Wilson lines that survive

in the scaling limit we study are trivial (what that means precisely is that the number of

nontrivial Wilson lines is much smaller than Nf for large Nf ), while for the ordinary scalar

QED3 we expect the number of nontrivial Wilson lines to scale with Nf for large Nf (but we

do not determine the value of the critical charge in this theory). Extrapolating to small Nf

this has repercussions for charged impurities in the superconducting phase transition, and

there could also be implications for 3d dualities. For the fermionic QED3 we find that the

number of nontrivial Wilson lines scales as ∼ Nf and we determine in detail the precise bound

on the charge of conformal line operators. We do not analyze explicitly the fate of Wilson lines

with super-critical charge in any of these 2+1 dimensional examples, i.e. we do not compute

in detail the screening cloud solitons, and we leave it for future work as well.

Finally, we study the 2+1 dimensional theory of graphene. This has four 2+1 dimensional

fermions coupled non-relativistically to the electric field in 3+1 dimensions. Charged impurities

of relatively low charge are screened and a cloud develops [30]. For better analytic control, we

consider a generalization of graphene with 2Nf fermions, and compute the critical charge in

the limit of large Nf and compare with the experimental result [31]. Charged impurities with

charge smaller than the critical one admit conformal line phases and interesting RG flows that

have not been observed yet.
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1.4 Comments on ’t Hooft lines

We end this paper in section 6 with a few comments on ’t Hooft lines in Abelian and non-

Abelian gauge theories. We emphasize the properties of ’t Hooft lines as DCFTs. We compute

the anomalous dimension of ϕ†ϕ as a defect operator in scalar QED4. Unlike the situation

with Wilson lines, it always remains irrelevant, and in fact, picks up a large positive anomalous

dimension as the charge of the monopole or of the scalar field grows.

For fermionic QED4, it is well known that the lowest angular momentum modes of the

fermion can penetrate the centrifugal barrier and the fermions should then be treated carefully

in the background of a monopole. We reinterpret these statements in terms of the spectrum

of the defect. We show that there exists a marginal operator at tree level which is a fermion

bilinear. Therefore, at tree level there is a continuous conformal manifold of possible ’t Hooft

lines in fermionic QED4, corresponding to different boundary conditions for the fermions at

the defect. This manifold is lifted at one loop and only one fixed point remains (see [32] and

references therein).

We note that internal symmetries that participate in a nontrivial two-group structure

with the magnetic one-form symmetry are necessarily broken by the ’t Hooft loops. This leads

to tilt operators with ∆̂ = 1 exactly. (In gauge theories with
∑

i qi ̸= 0, but where
∑

i q
3
i ̸= 0,

no spherically symmetric stationary ’t Hooft loops exist. This can be interpreted as due to a

two-group involving the Lorentz symmetry.)

In the N = 4 SYM theory, we consider ’t Hooft loops which are SO(6)-invariant. These

are non-BPS ’t Hooft loops which we can study at weak coupling. We argue that with

gauge group SU(N), they are all screened – there is an instability towards condensing vector

bosons which presumably form a screening cloud, canceling the bare magnetic field at the core

altogether. With non-simple gauge groups, such as PSU(N) = SU(N)/ZN , we argue that

there exist nontrivial ’t Hooft line DCFTs, corresponding to anti-symmetric representations.

This is consistent with the ZN magnetic 1-form symmetry. This picture is nicely consistent

with S-duality which exchanges PSU(N) and SU(N) gauge groups [33]. We expect that

all Wilson lines are screened as we increase the coupling constant in the PSU(N) gauge

theory. Wilson lines in the SU(N) gauge theory cannot completely disappear though at strong

coupling due to the electric ZN one-form symmetry. The minimal conjecture, that only N

Wilson lines survive at strong coupling, is compatible with the fact that we have exactly N

nontrivial ’t Hooft lines at weak coupling in the PSU(N) gauge theory.
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2 Scalar QED4

2.1 Two DCFT fixed points

We first consider scalar QED4 in (mostly minus) Minkowski signature with a charge q Wilson

line extending in the time direction:

⟨WqO1 . . .⟩ =
∫
DϕDAµ exp

[
i

∫
d4x

(
L[A, ϕ]− q δ3(x⃗)A0(x)

)]
O1 . . . ,

L[A, ϕ] = − 1

4e2
F 2
µν + |Dµϕ|2 −

λ

2
|ϕ|4 .

(2.1)

The setup (2.1) defines a so-called defect QFT (DQFT). In the following we will study the

properties of such DQFTs as a function of the charge of the Wilson line q at weak coupling

e2 ∼ λ≪ 1. In most of the section we will assume that the scalar mass is tuned to zero, in

order to get interesting low-energy physics.

By rescaling ϕ = Φ/e, we can see that taking the scaling limit

e→ 0 , λ→ 0 , q → ∞ ,

λ

e2
= fixed , q e2 = fixed ,

(2.2)

leads to a problem that can be treated in the saddle point or semiclassical approximation,

i.e. by solving classical differential equations. The saddle point equations are

∂µF
µν + Jν = e2q δνt δ

3(x⃗) ,

DµD
µΦ+

λ

e2
|Φ|2Φ = 0 ,

(2.3)

where the expression of the current is Jµ = i
e(Φ

†∂µΦ − ∂µΦ
†Φ − 2ie|Φ|2). In this section

we look for interesting classical solutions of this system, which would be related to various

infrared phases of the line operator.

The first, obvious classical solution is

At =
e2q

4πr
, Φ = 0 . (2.4)

This is the intuitive solution corresponding to the Coulomb field of a point charge and vanishing

scalar field. This solution automatically obeys the SL(2,R) symmetry and hence leads to a

DCFT. However we will find that, depending on the parameters, the resulting DCFT may be

sick and hence a different classical solution would have to be identified.

To investigate the DCFT associated to the saddle point (2.4) we consider fluctuations

around the saddle point. We focus on scalar fluctuations, and we find that close to the Wilson
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loop they behave as

Φ(x) =
∑∫
ω,ℓ,m

Φωℓm(r) e
−iωτ Yℓm(Ω) ,

ΦA(r) = αA r
−νℓ−1/2

(
1 +

q ω r

νℓ − 1/2
+ . . .

)
+ βA r

νℓ−1/2

(
1− q ω r

νℓ + 1/2
+ . . .

)
,

νℓ ≡
√

1

4
+ ℓ(ℓ+ 1)− g2 , g ≡ e2q

4π
,

(2.5)

where A ≡ ωℓm is a superindex. To make the setup well-defined we have to choose boundary

conditions that will fix βA = F (αA); we have more to say on this below. As long as νℓ is

real, with appropriate boundary conditions, the respective modes lead to sensible creation

operators. However, as we increase g, starting from the ℓ = 0 mode, we encounter imaginary

νℓ. This leads to an instability as we will soon explain. The ℓ = 0 mode will be in our focus

in the following, and we repeat the expression for ν ≡ νℓ=0 here:

ν ≡
√

1

4
− g2 , g ≡ e2q

4π
. (2.6)

Before we plunge into the details let us summarize what we do below:

• For g2 < 1/4 we have ν > 0 and two different possible power law falloffs, as in (2.5). We

will find two conformal boundary conditions, and hence two different versions of the

DCFT with the one-point functions (2.4). These are two different conformal Wilson lines

between which there is an RG flow (one of the conformal Wilson lines is RG stable), and

we will analyze the spectrum of defect operators in both. We will also see that something

interesting happens for ν = 1/4 to the unstable conformal boundary conditions.

• We get a critical line for g2 = 1/4 for which the two power laws degenerate. The DCFT

has a marginally irrelevant operator at this point.

• For g2 > 1/4 we see that ν is purely imaginary and Φ fluctuations exhibit oscillations in

the radial direction. We will argue that this signals an instability, in part, because defect

operators cannot have imaginary scaling dimensions. In this regime the saddle point (2.4)

needs to be replaced by a different one. Importantly, we find a new saddle point which

we call the “scalar cloud”, and we show that it leads to a sensible physical picture for

g2 > 1/4, where very far away from the scalar cloud the initial charge is completely

screened. For λ = 0 the scalar operator admits a nontrivial one-point function at long

distances, while for a nontrivial bulk scalar potential all the one-point functions vanish.

For g2 slightly larger than 1/4 the scalar cloud is exponentially large and generates a

new scale in the system.
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It will be technically advantageous to exploit the fact that massless scalar QED4 is

classically conformally invariant, and perform the Weyl transformation2

ds2 = r2
[
−dt2 + dr2

r2
+ ds2S2

]
≡ r2ds̃2AdS2 × S2

(2.7)

which maps the flat space problem to a problem in AdS2 × S2, with the defect now at the

asymptotic boundary of AdS2. The scalar fluctuations in AdS are related to those in (2.5)

through ΦA = 1
r Φ̃A and the gauge field background from (2.4) is unchanged. Through

this mapping, we can readily borrow results from the AdS/CFT literature about boundary

conditions on scalar fields; we give a quick overview below, with the final result obtained in

(2.22) and figure 1. Specializing to the ℓ = 0 mode, the near-boundary behavior is:

Φ̃ω(r) = αω r
1/2−ν

(
1 +

q ω r

ν − 1/2
+ . . .

)
+ βω r

1/2+ν

(
1− q ω r

ν + 1/2
+ . . .

)
. (2.8)

We will drop the tilde from Φ from here onwards.

It will be useful for our purposes below to introduce a small radial cutoff at r = r0 and

never remove it throughout the computation. First, we return to the question of boundary

conditions. These are determined from the variation of the action and keeping track of

boundary terms. Varying the action Sbulk =
∫
AdS2 × S2

√
−gL[A, ϕ] from (2.1) and imposing

the bulk equations of motions gives the boundary term (for ν > 0)

δSbulk = r−2ν
0

1− 2ν

2

∫
dω
(
α†
ωδαω + c.c.

)
+ (subleading) . (2.9)

The subleading terms will be important at the next step, where we will write them out

explicitly. The leading term vanishes if

αω = α†
ω = 0 , (2.10)

whereas βω is a fluctuating degree of freedom. These boundary conditions are analogous to

the Dirichlet boundary conditions, since the more singular mode in (2.8) is set to zero. Since

the boundary terms have to vanish identically on the equations of motion, at finite r0 we need

to slightly correct the boundary conditions, or add additional boundary terms, to cancel the

subleading terms. We will only write out the most important such terms. The same comment

applies below.

We can read out the scaling dimension of the defect operators for the conformal boundary

condition (2.10). We see that the βω correspond to operators of dimension 1/2+ν. Remember

2Whether the theory is a DCFT at the classical level depends on the boundary conditions we choose.

However, even if the boundary conditions break (boundary) conformal invariance, we can perform the Weyl

transformation, since the bulk remains conformal.
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that we are studying a gauge theory and hence only gauge-invariant operators should be

considered, and thus the scaling dimension of the bilinear β†β is

∆̂(β†β) = 1 +
√

1− 4g2 . (2.11)

For g → 0 (i.e. the trivial defect q = 0) the scaling dimension becomes ∆̂ = 2, coinciding with

the dimension of the bulk operator Φ†Φ. Therefore the boundary condition (2.10) defines the

usual Wilson line operator, in the sense that if we set q = 0 this boundary condition means

that there is no defect at all.3

There is a twist in the story: the boundary condition (2.10) is not unique. We can add

boundary terms and they can change the boundary conditions and the boundary operator

spectrum [37–41]. Let us add the following boundary term:

S
(1)
bdy = −1− 2ν

2

∫
r=r0

dt
√
−ĝ |Φ|2 , dŝ2 =

−dt2

r20
, (2.12)

which is carefully tailored to cancel the leading term in the variation (2.9). Combined with

Sbulk we now have the variation:

δ
(
Sbulk + S

(1)
bdy

)
=

∫
dω
[
2ν
(
β†ωδαω + c.c.

)
+ 2ν r2ν0

(
β†ωδβω + c.c.

)
+
2q ω r1−2ν

0

2ν − 1

(
α†
ωδαω + c.c.

)
+ (subleading)

]
.

(2.13)

Since for g2 < 1/4 we have 0 < ν < 1/2, the first term is dominant and permits the choice of

boundary condition4

βω = β†ω = 0 . (2.14)

αω becomes a boundary degree of freedom with dimension 1/2− ν. Again, only bilinears are

gauge-invariant. In the AdS/CFT literature this is known as the ‘alternative quantization’ [37]

of the scalar Φ. The boundary condition (2.14) describes a new DCFT, with a different operator

spectrum from the usual Wilson line defined by (2.10). In particular, the lowest dimensional

gauge-invariant operator is the bilinear α†α, which has scaling dimension ∆̂ = 1− 2ν < 1 and

it is therefore relevant. This will be important below, as adding this operator to the action

leads to an RG flow.

A remark is in order. Our analysis of the linearized fluctuations suggests that alternative

quantization defines a unitary DCFT for arbitrary 0 < ν < 1/2, i.e. for arbitrary |q| <
3From the perspective of standard perturbation theory (where q is usually taken to be O(1)), the result

for ν in (2.5) re-sums the contribution of infinitely many Feynman diagrams to the anomalous dimensions of

defect operators of the form ∂#Φ†∂#Φ. This is analogous to what happens in other semiclassical limits, see e.g.

[14, 34–36] in a similar context. We checked explicitly the agreement of the semiclassical result (2.5) with a

one-loop diagrammatic calculation of the anomalous dimension of Φ†Φ on the defect.
4Note that the boundary condition in (2.10) remains viable. With that choice the boundary term we added

evaluates to 0 (to the order in r0 we are working).
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2π2/e2. This would mean that even low-charge Wilson lines have two different possible fixed

points. As we will explain in the next section, this conclusion is not entirely correct due to

nonlinear interactions between the fluctuations. Eventually, we will only claim that alternative

quantization defines a healthy DCFT in the window 0 < ν < 1/4, which means that there are

two fixed points for the Wilson line starting from charge |q| =
√
3π
e2

up to the unitarity bound

|q| = 2π
e2
.

In our problem we have 1/2 > ν > 0, which in the infrared fixed point (2.10) means that

the lowest lying bilinear operators cover the range from ∆̂ = 2 with no impurity to ∆̂ = 1 at

the bound ν = 0, while in the alternative quantization fixed point (2.14) we cover the range

from ∆̂ = 0 when there is no impurity to ∆̂ = 1 at the bound ν = 0. These are consistent

with the unitarity bound ∆ ≥ max
(
d−2
2 , 0

)
, which for d = 1 is ∆̂ ≥ 0.5

There is a way to interpolate between alternative and standard quantization: they are

connected by an RG flow (referred to as the double-trace flow in AdS/CFT) that is triggered

by adding the relevant operator |α|2 to the alternative quantization DCFT action. This is

implemented by the additional boundary term:

S
(2)
bdy = −f0

∫
r=r0

dt
√
−ĝ r2ν0 |Φ|2 . (2.15)

This term is chosen so that it reduces to |α|2 in the limit r0 → 0. Upon imposing

δ
(
Sbulk + S

(1)
bdy + S

(2)
bdy

)
= 0 and defining the dimensionless coupling constant f through

f0 = fr−2ν
0 , we obtain the boundary condition

βω
αω

=
f0

2ν − f0r2ν0

=
f

2ν − f
r−2ν
0 ,

(2.16)

where we took r0ω ≪ 1 and only kept the leading term.6 For ν > 0 in the limit r0 → 0 this is

the well known result for the double-trace deformation [38–41]. To extract the beta function

of f for arbitrary ν we demand that the boundary conditions (2.16) (and hence the physical

theory) are left invariant by a simultaneous rescaling of the cutoff and the coupling. This

Callan-Symanzik style argument [20] implies that r0
∂(βω/αω)

∂r0
− βf

∂(βω/αω)
∂f = 0, which leads to

the beta function

βf = −2νf + f2 . (2.17)

For real ν, we find two fixed points: f = 0 is the UV (alternative quantization) and f = 2ν the

IR (standard quantization) DCFT limit of the resulting RG flow. The RG flow corresponds

5The alternative quantization window commonly quoted in the literature is 0 < ν < 1. However, the range

1/2 < ν < 1 (which is not realized in our problem) clearly would give rise to a non-unitary alternatively

quantization DCFT since the scaling dimension would be negative. The scalar theory in AdS2 in this mass

range therefore develops a sickness with alternative boundary conditions earlier than in higher dimensions. See

[42] for related comments.
6While we may contemplate whether f0 needs to be a lot smaller than the cutoff scale r−2ν

0 , and hence f

needs to be infinitesimal, this result is trustworthy for f = O(1).
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to interpolating between the boundary conditions in (2.14) and (2.10). For f < 0 we have

βf > 0 leading to the runaway behavior f → −∞ in the IR. In other words, in the alternative

quantization fixed point, which exists for positive ν at f = 0, with positive sign for f the

deformation (2.15) leads to the standard Wilson line fixed point, while with a negative sign

for f , a long flow towards infinitely negative f ensues and the dynamics has to be understood.

We will provide a physical interpretation of this runaway in the next section.

Let us consider in some detail the special case when the coupling f is marginal, ν = 0,

and only exhibits logarithmic running. Then the two falloffs in (2.5) degenerate and we have

to implement the change of basis

αω =
1

2

(
−aω
ν

+ bω

)
rν0 and βω =

1

2

(
bω
ν

+ aω

)
r−ν0 , (2.18)

for some arbitrary cutoff radius r0. Then we can take the limit ν → 0:

Φ ∼ bω
√
r log(r/r0) + aω

√
r , ν = 0 . (2.19)

We can directly read off the evolution of the coupling constant f :

f∗ log(r/r∗) + 1 = f(r0) log(r/r0) + 1 =⇒ f(r0) =
f∗

1− f∗ log(r0/r∗)
, (2.20)

where r∗ is some reference scale, or equivalently

βf = f2 , ν = 0 . (2.21)

This agrees with [41] for ν = 0. Note that while for ν > 0 we could have taken the r0 → 0

limit from early in the calculation, it is essential to keep r0 finite to make sense of the marginal

case with ν = 0 that corresponds to the critical Wilson loop. The cutoff is also necessary to

study the supercritical case, where ν is imaginary and no real DCFT exists. We will study

the supercritical case below.

Since our theory is naturally equipped with a cutoff r0, the beta function (2.17) should

make sense also in the region g2 > 1/4, where the coupling f however cannot be thought as

a perturbation of a (unitary) DCFT. There is a trick to rewrite the beta function and the

coupling in a way that would make sense with real couplings for both g2 > 1/4 and g2 < 1/4.

To see this, note that in terms of the dimensionless coupling f = f0r
2ν
0 , the boundary action

with the double-trace deformation can be written as:

S
(1)
bdy + S

(2)
bdy = −1 + 2f̂

2

∫
r=r0

dt
√

−ĝ |Φ|2 , f̂ ≡ f − ν . (2.22)

We can make sense of this in the region where ν2 < 0 by choosing a complex f , so that the

coupling f̂ in (2.22) is real. In terms of f̂ the beta function (2.17) reads:

βf̂ = −ν2 + f̂2 . (2.23)
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Figure 1: An illustration of the β-function associated with the parameter f̂ in equation

(2.23).

This result holds both for ν2 ≥ 0 and ν2 < 0. Crucially, the coupling f̂ is real in both regions,

making sure that the theory stays unitary.

For ν2 < 0 the beta function (2.23) does not admit fixed points at finite coupling. Instead,

it is associated with a dimensional transmutation phenomenon usually referred to as “walking”

behavior [20, 43]. Suppose that the RG flow starts from a small initial value for the coupling

f̂(µUV ). The coupling constantly decreases along the RG, but the rate is slower near f̂ = 0

where the beta function is small. Eventually −f̂(µ) blows up at a scale µIR given by

µIR = µUV e
− π

|ν| . (2.24)

We see that the dynamically generated scale is exponentially separated from the UV one for

small ν2 < 0. There is therefore dimensional transmutation on the line defect. We will discuss

the physical implications of this RG flow in section 2.3.

In summary, we learn that there are two DCFT fixed points for subcritical Wilson

lines in scalar QED in the double scaling limit. They correspond to different boundary

conditions for the field ϕ and are connected by an RG flow. The flow is triggered by the

gauge-invariant relevant defect operator |ϕ|2 that has dimension 1 − 2ν in the UV DCFT

(alternative quantization) and that becomes irrelevant with dimension 1 + 2ν in the IR DCFT.

For ν = 0, corresponding to the critical Wilson line with q = 2π/e2 = 1/(2αQED), the two

fixed points merge. For q > 2π/e2 they annihilate and there is no DCFT. Instead there is a

runaway towards large negative f̂ .

The fixed point annihilation corresponds to the supercritical regime of Wilson lines, whose

physics we explore in section 2.3. This problem is closely related to another one we encountered

above: If we deform the subcritical UV DCFT (alternative quantization) with f < 0, we

encounter a runaway behavior. Finally, in the following we also analyze the stability of the

alternative quantization DCFT in the subcritical regime at the nonlinear level.
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2.2 Stability in the subcritical regime

The abstract DQFT viewpoint was very useful to interpret the f > 0 regime of the phase

diagram, where we found two DCFTs. In particular, standard quantization (with f = 2ν)

is stable for small deformations. From the beta function in (2.17) we also found a runaway

behavior for f < 0. It is not uncommon that such a behavior indicates instability. We will

show below that this is indeed the case. We will find that for ν > 1/4 this instability leads to

the formation of a classical soliton that we construct numerically. Perhaps more surprisingly,

we will find hints that for ν > 1/4 the alternative quantization fixed-point admits solitons with

arbitrary negative energy for any value of the deformation f . We will explain why ν = 1/4 is

special.

To perform the analysis, we view our setup as a problem in differential equations. By

changing f we are changing the boundary conditions for the equations of motion (EOM)

(2.3). Since these are nonlinear, it is possible that there is an interesting phase diagram as we

change f .

The profile Φ = 0, At = g/r is always a solution of the EOM. The RG analysis predicts

that for f > 0 this solution is stable. For f < 0 we will find that it becomes unstable, and a

new soliton solution takes over. The instability can be diagnosed in two different ways. First,

in appendix A.1 we compute the
〈
αωα

†
ω

〉
retarded two-point function and show that for f < 0

it has a tachyon pole in the upper half plane, the telltale sign of a dynamical instability. The

endpoint of the instability is the soliton that we construct below. Second, we show that the

soliton has lower energy than the Φ = 0, At = g/r solution, which is a “thermodynamical”

demonstration of instability.

A simple argument establishes that the soliton cannot end up partially screening the

Wilson line: the screening has to be complete.7 Let us assume that partial screening was

possible; in the IR we have At = g′/r. If Φ =const, the Maxwell equation (2.3) is not satisfied

due to the At|Φ|2 term in the gauge current. So we have to assume that Φ is small. We

know the possible small Φ behavior in a Coulomb background from (2.5), Φ ∼ r1/2±ν with

0 < ν < 1/2. Hence Φ is growing (instead of decaying), and it starts backreacting on At,

ruining the assumed Coulomb behavior. We have thus reached a contradiction, and the only

possible way out is to have complete screening (or Φ = 0 throughout the bulk). Next we

construct the explicit new soliton corresponding to screened Wilson loops.

To perform the computation, first, we forget about the boundary conditions at r = r0 and

construct solutions to the EOMs of Φ and At which are regular as r → ∞. Since the equations

are second order in derivatives and regularity provides two conditions, the resulting solution

depends on two constants. One is simply a length scale ξ, while the other is a dimensionless

parameter that we denote by c. These parametrize the asymptotic form of the solution as

r → ∞. Explicitly, the asymptotics are different depending on the value of λ̄ ≡ λ/e2, and are

given by (we have obtained a couple of more orders of the asymptotic expansions that we

7That is to leading order in the double scaling limit. Later we discuss situations in which total screening is

in tension with symmetry considerations at subleading order in e2.
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suppress here to avoid clutter):

λ = 0 :

Φ = c√
2
+ . . .

r eAt = (r/ξ)
− 1

2
−
√

1
4
+c2

+ . . .

λ̄ < 2 :

Φ = 1√
2λ̄ log(r/ξ)

+ . . .

r eAt = c [log(r/ξ)]−1/λ̄ + . . .

λ̄ > 2 :


Φ = 1

2
√

log(r/ξ)

[
1 + · · ·+ c [log(r/ξ)]1−

λ̄
2 + . . .

]
r eAt =

√
λ̄−2

2
√

log(r/ξ)

[
1 + · · ·+ 2c

λ̄−2
[log(r/ξ)]1−

λ̄
2 + . . .

]

(2.25)

Note that c denotes different things in the different cases and for λ̄ > 2 it is hiding at a

subleading order (as a noninteger power term). Also note that we set the AdS radius equal to

one, which makes up for the missing dimensions in the above equations.

Given a solution with the above asymptotics as r → ∞, we may integrate the EOMs

towards smaller r. We may then obtain the near-defect boundary conditions, namely the

charge of the Wilson line g and the value of the double-trace coefficient f , that correspond to

a given choice of the parameters ξ and c.

In practice, we can only solve the EOMs numerically. To this aim, we set ξ = 1 and use

the asymptotics as initial data for the numerical integration of the EOM starting at some

r = rc and integrating towards smaller r (up to some small r0). Let us denote the resulting

solution by {φ(c)(r), A(c)
t (r)}. We can reinstate ξ by a simple rescaling, thereby obtaining a

two-parameter family of solutions{
φ(c)(r/ξ),

A(c)
t (r/ξ)

ξ

}
. (2.26)

If we denote the near-defect asymptotic data corresponding to the solution {φ(c)(r), A(c)
t (r)}

by {α(c), β(c), g(c)}, as in (2.8):8

φ(c)(r) = α(c) r1/2−ν + β(c) r1/2+ν ,

A(c)
t =

g(c)

r
,

(2.27)

then the two-parameter family of solutions in (2.26) has asymptotic data{
α =

α(c)

ξ1/2−ν
, βsol(α) =

β(c)

ξ1/2+ν
, g(c)

}
, (2.28)

8The subleading behavior of the gauge field provides an additional boundary datum. We omit it below, as it

does not play a role in our discussion.

– 17 –



where by writing βsol(α) we emphasize that the family of solitons characterized by fixed c and

varying ξ gives a curve in the (α, β) plane.

From (2.28), we learn that we can use c as a proxy for q (or g). Then for fixed q (or

equivalently c) we can use ξ to tune the absolute value of the ratio of α/βsol(α). The sign of

the ratio β(c)/α(c) determines the sign of the coupling f corresponding to the so-constructed

soliton. More in detail, combining (2.16) with (2.28), for infinitesimal f we have

β(c)

α(c)
=

f

2ν
(ξ/r0)

2ν . (2.29)

Since without loss of generality we choose Φ to be positive near the boundary giving α > 0, it

is the sign of β(c) that correlates with that of f . Naively, one might expect all the solitons that

can be constructed in this way to correspond to a negative value of the double-trace coefficient

f (since this is the region where an instability exists for positive ν, while for positive f we

expect the dominant saddle point to be (2.4)). Rather surprisingly, we find the following

intriguing pattern of signs as a function of g = e2q/(4π) with blue negative and red positive:

0.20 0.25 0.30 0.35 0.40 0.45 0.50
g

Figure 2: Sign of f corresponding to the numerical soliton as a function of g.

We will explain this pattern below analytically, showing that the red regions are associated

with the existence of dangerous configurations whose energy seems unbounded from below.

These have a simple interpretation in terms of the renormalization group, as we will see.

From (2.28) we observe that from the combination

s(g) ≡ −βsol(α)

α
1/2+ν
1/2−ν

= − β(c(g))[
α(c(g))

] 1/2+ν
1/2−ν

(2.30)

ξ drops out, hence s(g) is a useful characterization of the nonlinear response of our system to

turning on Φ. The sign of s(g) is then anti-correlated with the sign of f that is required to

get a solitonic solution. A useful construction borrowed from the AdS/CFT literature is as

follows [44, 45]. To avoid clutter let us use the notation A =
√
α†α, B =

√
β†β and specify

the general non-linear boundary condition

B = W ′(A) . (2.31)

For example the interpolating flow between alternative and standard boundary conditions

corresponds to W(A) = fA2/2. We also define

W0(A) ≡
(
1

2
− ν

)
s(g)A

1
1/2−ν ,

V(A) ≡ 4ν [W(A) +W0(A)] ,

(2.32)
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where V(A) is the effective potential. That is, V(A) is genuinely the (leading order) quan-

tum effective potential, i.e. (minus) the 1PI effective action evaluated for constant ⟨A⟩; see
Appendix A.3 for a derivation similar to [44, 45]. One can verify that the solitonic solution

that satisfies the boundary condition (2.31) is a critical point of V(A); this is a consistency

check of the formalism. (Recall that W ′
0(A) = s(g)A

1/2+ν
1/2−ν = −Bsol(A), where we used (2.30).)

Since the value of the effective potential is zero for the naive saddle A = 0 and negative for

the soliton critical point, we conclude that it is the energetically favored configuration, hence

establishing thermodynamic stability.

Next we ask if we can provide an analytic understanding of the sign structure of s(g)

(previewed below (2.29)). We will first explain what happens to the bulk scalar profile at the

special points where the sign of s(g) flips, and then we interpret the values of g where the

sign flips take place from the point of view of the defect renormalization group.

The near boundary analysis of the equations (at ω = 0, but going beyond the terms

displayed in (2.5)) gives for Φ:

Φ =α r1/2−ν
[
1 + α2 1 + 2(1 + λ̄)ν

4ν(1− 2ν)(1− 4ν)
r1−2ν + . . .

]
+ β r1/2+ν [1 + . . .]

+ (cross terms between α and β) .

(2.33)

Note that the exponent in the α3 term coincides with that of the β term for ν = 1
4 . Exactly

at this point, the coefficient of the α3 term diverges. Using the relation between β and α from

(2.30), we see that the only way for us to get a regular scalar profile Φ (which we expect, since

nothing drastic happens in the bulk), is to have:

s(g) = − (3 + λ̄)/4

ν(g)− 1/4
+ . . . , (for ν → 1/4). (2.34)

Since ν = 1/4 corresponds to g =
√
3/4 = 0.43, we have successfully explained the first sign

change (counting from g = 1/2) of s(g) that we see on the diagram below (2.5), see also

figure 3. It turns out that all the sign changes are explained by an α2k+1 term colliding with

the β term, giving νk =
k

2(k+1) for the k’th sign change point.

From the defect point of view we have already mentioned that something special happens

at ν = 1/4, now we can explain why. At these points the operators
(
α†α

)k+1
become marginal.

On the other side of this transition point, we have a new relevant operator, which can be added

to the action (included in W) without spoiling the UV alternative quantization DCFT.9 This

can be understood straightforwardly also from (2.14), where we have found that in alternative

quantization the scaling dimension of the charged boson is (1− 2ν)/2, and hence, at ν = 1/4

the quartic operator becomes relevant in the alternative quantization fixed point.

Irrespective of what coefficients we choose for the relevant terms, the asymptotics of

the effective potential is always determined by the conformal term s(g)A
1

1/2−ν , hence when

9We also need new boundary terms for each new relevant operator that supplements (2.12). A worked out

example can be found in Appendix D of [45].
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Figure 3: Plot of s(g) for λ = 0 obtained from numerics. In the inset the numerical data are

plotted together with the analytic formula (2.34) (red dashed line) describing the behavior of

s(g) near the singularity at g =
√
3/4; we get perfect agreement.

s(g) < 0 the effective potential is unbounded from below.10 We speculate that in our case

this indicates an instability of the system, as it seems to allow for the construction of a

configuration with arbitrarily negative energy.11 However, we have not constructed such a

configuration explicitly and we have not found a defect QFT explanation for the potential

loss of stability of alternative quantization. One scenario is that since the quartic operator

becomes relevant, the alternative quantization fixed point is lost, due to the joint beta function

of the bilinear and quartic operator not having mutual zeroes. What we are sure about is

that alternative quantization is a healthy DCFT in the regime
√
3/4 < g < 1/2. We leave the

interesting problem of understanding the regime g <
√
3/4 for future work.

We end this subsection with three examples of soliton solutions in the regime
√
3/4 < g <

1/2 for the three cases of λ̄ = λ/e2 considered above, see figure 4. These are the lowest energy

states when f < 0 and the runaway behavior of the RG equation (2.17) leads to the physical

interpretation of complete screening of the Wilson line. For these plots, we determine the

value of r0 from the dimensionful coupling f0 as r0 = (f/f0)
1/(2ν). By (2.29), this equals12

r0 =

[
2ν

f

β(c)

α(c)

]1/(2ν)
ξ . (2.35)

We expect r0 to be the scale where nonlinearities operate, and the core of the screening cloud

should be localized on this scale. Indeed, the three examples shown in figure 4 confirm this

10In itself this does not in itself signal pathology as evidenced by the negative effective potential for the

Hubbard-Stratonovich field in the large N critical O(N) model [46], which is a perfectly healthy theory.
11A circumstantial evidence is that the analogous transition in holography from s > 0 to s < 0 is accompanied

by the loss of the positive energy theorem [44].
12That is, we set the dimensionless coupling f = −2ν/100, so that |f | ≪ 2ν and that f is negative.
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expectation. The core region is followed by an extended tail region, as explored in (2.25) from

the point of view of differential equations. A complementary IR DQFT perspective on these

tails is given in section 2.4, while in this section we provided a UV perspective on screening.
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Figure 4: Plots of the scalar profile (blue) and the electric field E = Ftr (orange) as functions

of the distance from the probe charge, all normalized to be dimensionless. The analysis was

carried out in the subcritical regime for e2q
2π = 0.9 corresponding to g = 0.45. The left plot

is for λ = 0, the middle is for λ̄ = λ/e2 = 1
2 , and the right one is for λ̄ = 8. These curves

were obtained numerically by solving the saddle point equations of motion (2.3) following the

three step procedure explained in the beginning of this section. Note that on the left plot

the scalar (multiplied by r) goes to a constant in the IR, in the middle one it decays slower

than the electric field (multiplied by r2), while in the right plot, their decay rate is the same

(∼ 1/
√
log(r)).

2.3 Screening in the supercritical regime

The bulk physics of the supercritical regime resembles that of the subcritical regime with the

boundary conditions triggering an instability to forming a screening scalar cloud. There are

two distinctions: the screening cloud forms for any boundary condition (i.e. for either sign of

f , as is evident from the beta function (2.23) which leads to negative infinite f regardless of

the initial conditions for imaginary ν) and the cloud slightly above criticality is generically

exponentially large, exp (π/|ν|). These differences originate from the near defect dynamics as

we explain below.

Let us recall from section 2.1 that in the supercritical regime there is no genuine DCFT

and we need to keep the cutoff r0 finite. It is natural to take the boundary condition at the

cutoff surface to be

0 =

(
f̂ +

1

2

)
Φ+ ∂nΦ

∣∣
r0
, (2.36)

where we take n to point towards the origin, we converted the boundary condition (2.16) into

one given in terms of Φ, and we look for a real scalar profile. We use the obvious boundary

conditions F0r|r0 = g/r20 for the gauge field. The profiles Φ = 0 and At = g/r will always be a

solution, but for any f̂ we will always find (infinitely many) scalar solitons. The reason for

the existence of an infinite family of solutions is that the solution of the linearized equations

has a discrete scale symmetry which can be used to generate new solutions from existing ones.

The same phenomenon was discussed in [20, 42, 47].
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In more detail, the solutions for the linearized equations are r1/2+i|ν|, so that we can write:

Φ = C
√
r cos

(
|ν| log

(
r

r0

)
− γ

)
, (2.37)

where C is fixed by bulk regularity of the full nonlinear problem and γ is fixed by the boundary

condition (2.36) to be:

γ = arctan
(
f̂/|ν|

)
. (2.38)

Under discrete scale transformations the profile (2.37) transforms by scaling and hence also

satisfies the boundary condition (2.36) and gives rise to a new soliton

r → Λn r , Φ(r) → (−1)nΛn/2Φ(r) , Λ ≡ exp

(
− π

|ν|

)
. (2.39)

Since the envelope of Φ in (2.37) grows, the solution eventually exits the linear regime and

stops oscillating. The discrete scale invariance is broken by nonlinear effects. Let C = C0

give rise to a regular solution of the equations with zero nodes of the Φ profile. Then by the

discrete scale invariance (2.39), the amplitude Cn ≈ C0 Λ
n/2 with n ∈ Z+ will also give rise to

a regular scalar profile with n nodes.13

From the infinitely many potential solitons characterized by Cn, we have to choose

the one that is physically realized: this can be done by comparing the energies of field

configurations or by dynamical stability analysis. In Appendix A.2 we determine the spectrum

of fluctuations around the Φ = 0 background and we find infinitely many tachyon modes

with sizes Rk ≃ Λ−k r0 with k ≥ 1. Since we can treat the nth soliton (with parameter Cn)

as consisting of a linearized oscillating region of size Rlin,n ≃ Λ−n r0 followed by a nonlinear

region, we can fit tachyons with k ≤ n (a total of n of them) into the linearized regions, and

we find that the all Cn>0 solitons are unstable. Hence we conclude that only the C0 soliton is

stable, since it lacks a large linearized region, where tachyons could reside.

As in the subcritical case discussed in section 2.2, there are three possible IR asymptotics

of the scalar soliton depending on the value of λ̄ = λ/e2 as listed in (2.25). Starting from

these and setting ξ = 1 we obtain a scalar soliton. We then reinstate ξ as in (2.26). We choose

ξ such that we satisfy the boundary condition (2.36) at r = r0. An illustrative example is

given in figure 5, where we chose ξ = ξ0 such that Dirichlet boundary conditions are obeyed.

Since the soliton is oscillating in the small Φ region as in (2.37), it is always possible to satisfy

any boundary conditions from the class (2.36). This is unlike the subcritical case, where the

sign of f decided if we have a soliton solution. In fact with the choice ξn = Λ−n ξ0 we again

obtain a soliton that obeys the same boundary conditions. The corresponding asymptotic

amplitude is Cn. This is clearly demonstrated in figure 5.

13We write approximately equal, since some nonlinear effects correct the profile (2.37). For increasing n these

corrections are decreasing in importance. We note that we may regard the Φ = 0 solution as corresponding to

C∞.
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Figure 5: Plot of the screening cloud for the supercritical case with g ∼ 2, λ = 0, and

Dirichlet boundary condition for the scalar. We cut off part of this solution with r < r0
thereby obtaining the physical profiles. If we set r0 = r(0) (rightmost gray line) we get the

stable scalar soliton with Dirichlet boundary condition. If we set r0 = r(n) (the (n + 1)th

gray line), we get the scalar soliton with n nodes (and n tachyons). A subtlety is that in the

oscillating region g changes slightly, so we have to make slight adjustments in parameter space

to keep g constant as we increase the number of nodes.

The most striking feature of supercritical clouds is that for small |ν| the core of the soliton
is huge, of order Rcloud ≃ r0

Λ = r0 exp (η/|ν|), where the constant η = O(1) is determined by

nonlinear physics. In contrast, in the subcritical case the soliton has a natural size, Rcloud ≃ r0,

with r0 fixed by the dimensionful coupling constant f0 ∼ r−2ν
0 as demonstrated in figure 4.

Since the tail of the cloud is identical to what we have already shown for the subcritical case

in figure 4, in figure 6 we only show a λ̄ = 1/2 cloud.
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Figure 6: Plot of the screening cloud for the supercritical case with g = 0.51. The striking

feature of this plot is the large cloud size for which the theoretical estimate Rcloud/r0 ≈ 4 · 1013

is consistent with the plotted numerical result. We have chosen λ̄ = 1/2 and the tail region

is identical to the (middle) λ̄ = 1/2 plot in figure 4. We chose Dirichlet boundary condition

Φ(r0) = 0 for the scalar field (corresponding to f̂ → ∞ in (2.36)). Different boundary

conditions for the scalar field lead to a qualitatively similar plot.

We conclude this section by providing an intuitive RG explanation of the Cn solitons
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that we constructed numerically. The exponential size for the cloud Rcloud ≃ r0 exp (π/|ν|)
associated with the ground state solution C0 is clearly a consequence of the “walking” behavior

discussed around (2.24). To understand the solutions with n ≥ 1 nodes, it is convenient to

re-express the boundary condition (2.36) in terms of the angle γ parametrizing the linear

solution (2.37):

eiγ =
|ν|+ if√
f2 + |ν|2

≡ z . (2.40)

In terms of the phase z, the solution to the beta-function (2.23) for ν2 < 0 reads

z(µ) = z(µ0)

(
µ

µ0

)i|ν|
, (2.41)

where µ is the running scale and µ0 some reference initial scale. (2.41) describes a cyclic RG

flow with period Λ−2. In practice, the beta-function (2.23) describes only the linear regime,

and the nonlinearities drive the RG flow away from the cyclic regime.

Similarly to the Efimov effect [48], the discrete scale invariance (2.39) is a consequence

of the approximate cyclic RG flow (2.41). The Cn solitons are then simply interpreted as

RG flows in which the fields linger in the linear regime for ∼ n/2 cycles before entering the

nonlinear regime and screening the Wilson line. We remark however that the ground state

solution always exits the linear regime before performing a full cycle.

2.4 Effective defect field theory for screened Wilson lines

Remarkably, the numerical analysis in the previous sections provides an exact solution for

the defect RG flow triggered by unstable Wilson lines, both in the case of negative double-

trace deformations and supercritical charges. In this section we complement that analysis by

interpreting the long distance tail of the screening cloud in terms of an effective defect field

theory description of the final stages of the flow.

Let us consider first the theory with no quartic coupling, λ = 0. In this case the long

distance limit of the screening cloud analyzed in the previous section admits a non-trivial

one-point function for the scalar field with conformal scaling:

⟨|Φ|2(r)⟩ = e4v2

2(4πr)2
, (2.42)

where v ∼ 1/e2 is a dimensionless number which depends upon the initial charge and the

boundary condition.

In the absence of gauge fields, conformal defects sourcing the scalar operator can be

constructed by straightforwardly integrating the fundamental field along the line contour, see

e.g. [49–52]. An equally explicit construction is not available in a gauge theory. Since all

gauge-invariant operators have engineering dimension larger or equal than 2, the effective

defect field theory corresponding to (2.42) cannot be obtained by deforming the trivial line

defect with a local operator. Rather, it should be understood in terms of boundary conditions
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for the scalar field at r → 0. To write the corresponding defect explicitly, we notice that (2.42)

is equivalent to a constant profile for the AdS2 rescaled field; in other words, (2.42) describes

a Higgs phase on AdS2. It is therefore natural to decompose the scalar field into a radial and

a Goldstone component

Φ(x) =
1√
2
h(x)eiπ(x) , Φ†(x) =

1√
2
h(x)e−iπ(x) , (2.43)

so that the action reads

S =
1

e2

∫
d4x

[
−1

4
F 2
µν +

1

2
(∂h)2 +

1

2
h2(∂µπ −Aµ)

2

]
. (2.44)

To obtain the profile (2.42) we then simply introduce a source in the Higgs equations of motion

−∂2h+A2
µh = −e2v δ3(x⊥) , ∂µF

µν + h2(∂νπ −Aν) = ∂µ
[
h2(∂µπ −Aµ)

]
= 0 , (2.45)

with the solution (up to gauge transformations)

Aµ = π = 0 , h =
e2v

4πr
≡ hs(r) . (2.46)

The source in (2.45) can be formally represented with a term localized at r = 0

SD = v

∫
r=0

dt h = v

∫
r=0

dt
√

2|Φ|2 . (2.47)

We stress that, despite its formal representation (2.47), this defect cannot be understood as

a perturbation of the trivial defect by a local operator, but it is rather thought as setting a

boundary condition for the scalar field, somewhat similarly to a ’t Hooft line. As in that case,

the corresponding defect is perfectly local. To appreciate this point further, one could imagine

obtaining such a line operator by starting from an interface separating the theory (2.44) from

a deformed model with a bulk potential V (|Φ|2) which Higgses the gauge group. The defect

(2.47) is then obtained upon deforming the interface into a cylinder of radius r0 along the

time direction, and taking the limit r0 → 0 while simultaneously scaling the coefficients of the

potential V (|Φ|2) with inverse powers of r0 according to their dimension.

In practice, to concretely study the model given by (2.47) and (2.44) we simply need to

expand the fields around the saddle-point (2.46). We consider a gauge-fixing inspired by the

usual Feynman - ’t Hooft choice

Sg.f. = − 1

2e2

∫
d4x

(
∂µA

µ + h2sπ
)2
. (2.48)

Upon rescaling fluctuations with a factor of e, the quadratic action reads

S + Sg.f. ≃
∫
d4x

{
−1

2
(∂µAν)

2 +
1

2
h2sA

2
µ +

1

2
(∂δh)2 + h2s

[
1

2
(∂π)2 − 1

2
h2sπ

2

]}
, (2.49)
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where δh = h− hs. Clearly δh behaves as a free field in the absence of a defect. By studying

the propagators of Aµ and π, we find that the lowest dimensional operator in the bulk-to-defect

OPE of the U(1) current jµ ≃ h2s(∂µπ −Aµ) has dimension

δ =
1

2
+

√
1

4
+

e4v2

(4π)2
. (2.50)

In particular, there is a (defect) scalar operator with dimension δ corresponding to the r → 0

limit of j0. The corresponding deformation of the defect action (2.47) can be written as

δSD = −q̃
∫
r=0

dt(A0 − π̇) . (2.51)

Note that because of the nontrivial profile of the Higgs field h ∼ 1/r we can write gauge-

invariant defect operators using both the gauge field and the Goldstone mode. The corre-

sponding coupling q̃ in (2.51) is thus not quantized, and it is in fact irrelevant since δ > 1.

Analyzing perturbatively the deformation (2.51), we find the following one-point function for

the gauge field14

⟨F0i⟩ ∝ xi
e2q̃

4πr2+δ
. (2.52)

(2.52) agrees with the functional form for the screening tail of the gauge field previously

derived from the equations of motion in (2.25) (setting c = e2v
4π in (2.25)). Further subleading

corrections to the screening cloud are reproduced by other irrelevant deformations of the defect

(2.47).

Let us now discuss the theory with a quartic coupling

S =
1

e2

∫
d4x

[
−1

4
F 2
µν +

1

2
(∂h)2 − λ

8e2
h4 +

1

2
h2(∂µπ −Aµ)

2

]
. (2.53)

Inspired by the previous analysis, we consider the following defect deformation

SD =

∫
r=0

dt [v h− q̃(A0 − π̇)] . (2.54)

We focus on the double-scaling limit

e2 ∼ λ→ 0 , v ∼ q̃ → ∞ with e2v ∼ e2q̃ = fixed . (2.55)

In this limit the Goldstone mode can be neglected. Including the gauge-fixing (2.48) we thus

consider

S + Sg.f. + SD =
1

e2

∫
d4x

[
−1

2
(∂µAν)

2 +
1

2
h2A2

µ +
1

2
(∂h)2 − λ

8e2
h4
]
+

∫
r=0

dt (v h− q̃ A0) .

(2.56)

14This is derived from the propagator of A0, whose zero-mode, with the chosen gauge-fixing, behaves

analogously to an AdS2 scalar field with dimension δ.
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(a)

(b)

Figure 7: Diagrams contributing to the scalar and gauge field one-point functions. Dashed

lines denote scalar fields while wiggly lines stand for gauge fields. The solid line represents the

defect and dots stand for bulk couplings. .

In what follows, we self-consistently focus on the regime e2v ∼ e2q̃ ≪ 1. In this regime

the one-point functions for the scalar and gauge field admit the following expansion

⟨h(r)⟩ = e2v

4πr

[
F0

(
q̃

v
,
λ

e2
, r

)
+

e4v2

(4π)2
F1

(
q̃

v
,
λ

e2
, r

)
+O

(
e8v4

(4π)4

)]
, (2.57)

⟨A0(r)⟩ =
e2v

4πr

[
G0

(
q̃

v
,
λ

e2
, r

)
+

e4v2

(4π)2
G1

(
q̃

v
,
λ

e2
, r

)
+O

(
e8v4

(4π)4

)]
. (2.58)

The leading order terms F0 and G0 are determined from the linearized equations of motion

∂2h = e2vδ3(x⊥) , ∂2Aµ = e2q̃δ3(x⊥) , (2.59)

from which we obtain

F0

(
q̃

v
,
λ

e2
, r

)
= 1 , G0

(
q̃

v
,
λ

e2
, r

)
=
q̃

v
. (2.60)

Diagrammatically, the leading order result is associated with a single insertion of the defect

couplings and no insertion of the bulk vertices, as in figure 7a.

The subleading contributions arise from the diagrams in figure 7b. The resulting integrals

are divergent; as usual in QFT, this signals a nontrivial RG flow for the defect couplings v

and q̃. To extract the corresponding beta-functions, we evaluate the divergent parts of F1 and

G1 in dimensional regularization:

F1

(
q̃

v
,
λ

e2
, r

)
=

(
q̃2

v2
− λ

2e2

)
× 1

2ε
+ finite ,

G1

(
q̃

v
,
λ

e2
, r

)
= − q̃

v
× 1

2ε
+ finite ,

(2.61)
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where ε = 4− d. For the physical one-point functions (2.57) and (2.58) to be finite, we need

to rewrite the defect couplings in terms of bare ones. Working in the minimal subtraction

scheme, we find

v → v0 = vM ε/2

[
1 +

e4v2

(4π)2

(
λ

2e2
− q̃2

v2

)
1

2ε
+ . . .

]
,

q̃ → q̃0 = q̃M ε/2

[
1 +

e4v2

(4π)2
1

2ε
+ . . .

]
,

(2.62)

where M is the sliding scale. Demanding that the bare couplings v0 and q̃0 be independent of

M , with textbook manipulations [53] we obtain the beta-functions for the physical couplings

v and q̃:

βv =
∂v

∂ log(M)
= v

[(
λe2v2

2
− e4q̃2

)
+O

(
e8v4

)]
,

βq̃ =
∂q̃

∂ log(M)
= q̃

[
e4v2 +O

(
e8v4

)]
.

(2.63)

The equations (2.63) imply that both v and q̃ run logarithmically to zero in the IR

(M → 0). We therefore conclude that the defect (2.54), describing a fully screened Wilson

line, flows to a trivial defect in the IR.15 Hence the description (2.54) of screened Wilson lines

as a scalar line is useful as an intermediate energy description. In the following we show how

to reproduce the tail of the screening cloud previously derived from the classical equations of

motions.

We consider the one-point functions for the scalar and the gauge field in the long distance

limit

⟨h(r)⟩ r→∞
=

e2v(1/r)

4πr
, ⟨A0(r)⟩

r→∞
=

e2q̃(1/r)

4πr
, (2.64)

where the couplings are expressed at the scale 1/r. For sufficiently large r, the coupling can

be written using the asymptotic solution to (2.63) for t = − log(M/M0) ≫ 1/(e2v), where

M0 is the scale at which the initial conditions for the couplings are specified; physically, M0

represents the cut-off of the effective description (2.54). The explicit result depends on the

ratio λ/e2 ≡ λ̄. For λ̄ < 2, we find

e2v(M0e
−t)

t→∞
=

t−1/2

√
λ̄

+ b2
√
λ̄

2(λ̄− 1)
t1/2−2/λ̄ + . . . ,

e2q̃(M0e
−t)

t→∞
= b t−1/λ̄ + . . . ,

(2.65)

while for λ̄ > 2 the asymptotic solution reads

e2v(M0e
−t)

t→∞
=

t−1/2

√
2

+ b
λ̄− 2

2
√
2
t1/2−λ̄/2 + . . . ,

e2q̃(M0e
−t)

t→∞
=

√
λ̄− 2

2
t−1/2 + b

√
λ̄− 2

2
t1/2−λ̄/2 . . . .

(2.66)

15For q̃ = 0, the model effectively reduces to the pinning field defect in d = 4, which was studied in [49, 50]

and also flows to a trivial defect.
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The parameter b in (2.65) and (2.66) depends upon the initial condition for the coupling

constants.16 Unsurprisingly, using (2.65) and (2.66) in the one-point functions (2.64) we

recover the form for the tail of the screening cloud (2.25) previously derived in section 2.2.

2.5 Constraints from 0-Form symmetry and multi-flavor scalar QED4

In this section we briefly discuss the generalization of our results to multi-flavor QED4. We

consider the action

S =
1

e2

∫
d4x

[
|DµΦa|2 −

λ

2e2
(|Φa|2)2 −

1

4
F 2
µν

]
− q

∫
dtA0 , (2.67)

where a = 1, 2, . . . , N . The theory is invariant under the action of the internal symmetry

group PSU(N) = SU(N)/ZN which rotates among the scalars.17 Consider inserting a Wilson

line of charge q. This represents the wordline of a massive external particle of charge q. If we

represent the external particle by a heavy massive field Ψ with no PSU(N) quantum numbers,

then the total global symmetry of the system is now (U(1) × SU(N))/ZN where the U(1)

factor is particle number, normalized such that Ψ carries charge 1, and ZN is generated by a

rotation of Ψ by angle q/N accompanied by a transformation in SU(N) given by the matrix

diag(exp(2πi/N), ..., exp(2πi/N)). The identification by ZN means that in a sector with one

Ψ particle the SU(N) representation must have q mod N boxes in the Young diagram. This

means that the state in the presence of a Wilson line of charge q must transform under a

representation with q mod N boxes, i.e. the Wilson line can only end on operators transforming

in a projective representation of PSU(N). (To make this precise, we can insert the Wilson

loop as a localized charge on the sphere.) This does not mean that the infrared cannot be

completely screened for q ̸= 0 mod N . It is possible that the infrared theory has a decoupled

representation on the line and all the bulk Green functions coincide with those without a

defect. In this situation the infrared g function is the dimension of the representation. The

line operator is simply the trivial line defect stacked with a quantum mechanical system with

vacuum degeneracy. Similar comments apply whenever we are dealing with symmetric defects

in a system whose global symmetry G can be nontrivially centrally extended (i.e. whenever

H2(G,U(1)) is nontrivial). In some situations this can lead to interesting constraints related

to the g theorem, since the infrared g function is given by the dimension of the representation

if the line is otherwise screened.

Let us now analyze in detail the Wilson line in the theory (2.67).

For 0 < |q| ≤ 2π
e2

each of the ℓ = 0 modes of the scalars Φa admit either standard or

alternate boundary conditions on the defect. This leads overall to 2N fixed points, many

of which partially break the internal symmetry group. To analyze the defect RG flows in

16An additional free parameter shows up in the asymptotic solutions (2.65) and (2.66) in the subleading

orders; we did not report additional corrections to (2.65) and (2.66) since these depend upon the higher order

terms neglected in the beta functions (2.63).
17The symmetry group is PSU(N) and not SU(N) because all gauge-invariant operators transform in

representations whose Young diagram consists of p = 0 mod N boxes.
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this setup, consider the fixed points where all fields are in alternate quantization. As in the

discussion around (2.15), this is achieved by supplementing the action (2.67) with the following

defect term

S
(1)
bdry = −1− 2ν

2

∫
r=r0

dt
√
ĝ|Φa|2 . (2.68)

We now deform this theory with a relevant double-trace deformation as in section 2.1. The

most general bilinear is parametrized by a Hermitian matrix fab0 = (f ba0 )∗:

S
(2)
bdry = −

∫
r=r0

dt
√
ĝr2ν0

∑
a,b

Φ̄af
ab
0 Φb . (2.69)

(2.69) imposes the following mixed boundary conditions among the modes

βa = Cabαb, C = f0 ·
[
2ν1− f0r

2ν
0

]−1
. (2.70)

Proceeding as in the single flavor case, we obtain the beta function of the dimensionless

coupling fab = r2ν0 f
ab
0 by applying the Callan-Symanzik equation to the expression (2.70).

The result is formally identical to (2.23):

βabf = µ
∂fab

∂µ
= −2νfab + (f2)ab , (2.71)

where (f2)ab =
∑

c f
acf cb.

To illustrate the result consider N = 2. We call σ4 = 1 and denote the Pauli matrices

with σi, i = 1, 2, 3. It is then convenient to decompose the coupling as (in matrix notation):

f =

4∑
a=1

αaσ
a , =⇒ αa =

1

2
Tr [σaf ] . (2.72)

The result (2.71) can be written in terms of the beta functions of the components βa =
1
2Tr [σ

aβf ]:

βi = −2ναi + 2α4αi , β4 = −2να4 +

4∑
a=1

αaαa . (2.73)

(2.71) admits the following fixed points:

1. α4 = αi = 0: this an unstable fixed point corresponding to alternate boundary conditions

for all the fields:

2. α4 = 2ν and αi = 0: this is a stable fixed point corresponding to standard boundary

conditions for all the fields.

3. α4 = ν and α2
i = ν: this is a manifold of unstable fixed points corresponding to standard

boundary conditions in one field direction, and alternate in the orthogonal one. In this

fixed point the internal symmetry group SU(2) is broken to U(1).
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In the first two cases the line preserves PSU(N), while in the last case it is explicitly broken

and therefore there are protected tilt operators.

We end this section with some comments on the case with e2|q| > 2π where the Wilson

lines are supercritical and expected to be screened. At a classical level, the analysis proceeds

along the lines of section 2.3; in particular the classical scalar profile spontaneously breaks the

internal symmetry. However, quantum-mechanically we have to integrate over the zero modes

of the screening saddle-point.18 Therefore only flavor singlets acquire an expectation value in

the screening cloud, e.g.

⟨Φ∗
aΦb(r)⟩ ∝ δab . (2.74)

Considering the equivalent theory on AdS2 × S2, the long distance limit of the screened line is

well approximated by a defect setting Dirichlet boundary conditions for the (AdS2 rescaled)

radial mode, as in section 2.4, with Neumann boundary conditions imposed on the Goldstone

modes.

This shows that sufficiently far from the line, i.e. much farther than the screening cloud,

the bulk expectation values and Green functions are those of the theory without the defect,

i.e. there is screening in this sense. However, as we argued above, the symmetries of the

system force the line defect to carry a representation with q mod N boxes under SU(N). In

the language of defect QFT, this implies that supercritical Wilson lines with charge q ̸= 0

mod N do not furnish simple line defects, and they are completely screened in the bulk. In

particular, supercritical Wilson lines with q ̸= 0 mod N admit a nontrivial g-function in the

deep infrared. We will see another example in 5.2.2.

2.6 Constraints from 1-form symmetry and QED4 with charge qϕ particles

In the previous section we discussed the dynamics of line defects when there are interesting

constraints from 0-form symmetry, i.e. when the infrared symmetry can be extended by the

external (heavy) particles. Here we discuss the constraints imposed by 1-form symmetry. To

motivate the discussion consider a charge q Wilson line in a theory of a charge qϕ > 1 scalar

field:

S =
1

e2

∫
d4x

[
|DµΦ|2 −

λ

2e2
(|Φ|2)2 − 1

4
F 2
µν

]
− q

∫
dtA0 , (2.75)

with D = ∂ − iqϕA.

One might expect that in such a theory Wilson lines with charge q mod qϕ ̸= 0 cannot

be fully screened by the scalar particles. Let us make this precise. Wilson lines with charge

q mod qϕ ̸= 0 are charged under the electric Zqϕ one-form symmetry of the theory. We are

therefore led to the following question: what can be inferred about line defects charged under

a one-form symmetry? This question is very general and arises in several different contexts;

we will encounter it again in section 6 in the analysis of ’t Hooft lines. In the following we

18In more detail, it was recently argued, under general assumptions, that a line defect that spontaneously

breaks a continuous internal symmetry can only flow to a decoupled one-dimensional sector on the line, tensored

with a DCFT which does not break the symmetry [54]. Therefore at large distances only singlet operators are

allowed to acquire a VEV.
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Figure 8: A line defect charged under a one-form symmetry in 2+1 dimensions.

thus discuss this problem in full generality. At the end of this subsection we will discuss the

implications of our findings for charge qϕ scalar QED.

It is useful to introduce some terminology that we will use below:

• A line defect is a nontrivial DCFT if and only if the displacement operator is nonzero:

D⊥ ̸= 0.

• A line defect is said to be topological if the displacement operator vanishes D⊥ = 0, i.e.

it is trivial as a DCFT, but the line defect can braid nontrivially with co-dimension 2

surfaces.

• A line defect L is said to be completely trivial if none of the two definitions above apply,

i.e. if it is completely transparent (that is trivial as a DCFT and also transparent to

co-dimension 2 surfaces).

In this language, the lines which are stacked with a 0+1 dimensional TQFT that we have

encountered in the previous subsection are completely trivial (but not simple).

We will now argue that with some additional conditions the existence of a one-form

symmetry implies that the charged Wilson line must necessarily define a nontrivial DCFT.

A line L is charged under a one-form symmetry if and only if it braids nontrivially with a

topological co-dimension 2 operator. Figure 8 represents a line defect that is charged under

a one-form symmetry in 2+1 dimensions. In the figure L is a line defect, A is a one-form

symmetry charge and ω ̸= 1 is a root of unity. Note that this immediately implies that the

line L cannot be completely trivial. The interesting question, that we address below, is under

which conditions the one-form symmetry forces the displacement operator to be nontrivial.

Note that if there is an intertwining operator between the lines L1 and L2, such as in

figure 9, then the two lines carry the same charge under the one-form symmetry. In particular,

if a line can end (meaning that either of L1 or L2 is trivial), then the line is not charged under

the one-form symmetry. Importantly, this does not mean that the line furnishes a trivial
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DCFT in general. The example of line defects in 2+1 dimensional TQFT (which are trivial,

topological, but not transparent) that cannot end demonstrates that just because a line cannot

end, it is not necessary a nontrivial DCFT.

Figure 9: An intertwining operator O12 between the lines L1 and L2.

Let us assume that the 1-form symmetry charge A can be cut open. This means that

the one-form symmetry charge can be terminated on codimension 3 (twist) operators, as

illustrated in figure 10 in 2+1 dimensions. The end points of A are not topological in general.

In this case, it is evident that L cannot be topological. This is because if we move L

through A we get a phase ω, but if we move L to the same final location without crossing

A then we do not get a phase. Therefore we have shown that if the one-form symmetry

charge can be cut open, the Wilson lines charged under it must have a nontrivial displacement

operator D⊥ ̸= 0.

Figure 10: A one-form symmetry generator cut open in 2+1 dimensions.

In summary, if the one-form symmetry charge A can be terminated on codimension 3

operators, then charged lines cannot furnish a trivial DCFT. The central question is therefore

when can the one-form symmetry charges be cut open. Here we will make two comments

about it.
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In d = 3 both the one-form symmetry surface and the Wilson line are 1 dimensional

defects. If the one-form symmetry has an anomaly then the one-form symmetry lines certainly

cannot be cut open because they are charged under themselves. One can find many conformal

gauge theories with vanishing one-form symmetry anomaly. For instance, this is the case in

ABJM theory.

In 4d gauge theories, the electric 1-form symmetry surfaces can in many cases terminate

on improperly quantized ’t Hooft lines. Hence Wilson lines charged under the 1-form symmetry

cannot be topological, and must furnish a nontrivial DCFT in such theories. This certainly

applies in pure Yang-Mills theory with gauge group SU(N), QED with charge qϕ particles,

and in N = 4 SYM theory with gauge group SU(N).

Let us now return to (2.75) where lines with charge q mod qϕ ̸= 0 are charged under the

one-form symmetry and should flow to nontrivial DCFTs at large distances. Note that this

argument does not specify which properties this DCFT should have; in particular it does not

imply that the electric field should be non-zero at large distances. All the argument says is

that there should be some remaining response to displacing the line defect.

It is instructive to discuss this prediction within the formalism of section 2.4, where we

described the effective defect field theory describing the long distance limit of a screened

Wilson line.19 In that setup we can model a Wilson of charge q mod qϕ = δq ̸= 0 as a

small perturbation of a neutral (under the one-form symmetry) line of charge q − δq (for

δq ∼ qϕ ∼ O(1) ≪ q). To this aim we simply add to the EFT defect action (2.54) the following

perturbation

δSD = −δq
∫
r=0

dtA0 = −δq
∫
r=0

dt(A0 − π̇/qϕ)−
δq

qϕ

∫
r=0

dt π̇ . (2.76)

The rest of the analysis proceeds as in the case qϕ = 1. In particular in perturbation theory

we can neglect the total derivative in (2.76) and proceed similarly to what we did below (2.51)

and (2.54), where we showed that the operator A0 − π̇/qϕ is irrelevant (both for λ = 0 and

λ > 0). Note however that the Goldstone field is 2π-periodic and thus for δq ̸= 0 the last term

in (2.76), while it has no effect in perturbation theory, implies a nontrivial braiding between

the defect and the one-form symmetry surface operator, as expected.

We may contrast these findings with the argument above, namely that Wilson lines of

charge δq ̸= 0 cannot furnish trivial DCFTs. For zero quartic coupling, λ = 0, the scalar admits

a nontrivial conformal one-point function (2.46) and the line defines thus a nontrivial DCFT.

It is perhaps still surprising that we do not measure any Coulomb field at large distances.

Physically, this is because in a massless theory the Φ-particles may have arbitrarily delocalized

wave-function; it is therefore possible to store fractional units of charge at r → ∞.20

19Note that in this model all lines with charge q > 2π/(qϕe
2) are unstable.

20This is similar to the fate of Wilson lines in the Schwinger model (QED2) with fermions of charge qψ > 1.

As in our setup, there the electric flux of Wilson lines with charge q ̸= 0 mod qψ is not fully screened by

massive fermions, while it is in the massless limit [55]. A similar behavior appears also in QCD2 with massless

adjoint fermions, where fundamental Wilson lines are screened. In all cases, the IR limit of charged line defects
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To substantiate this interpretation, in appendix A.4 we study the screening cloud for

a scalar of small mass squared m2 > 0, such that m−1 ≫ Rcloud, where Rcloud is the scale

over which the massless soliton we have found is localized. In that case, due to the mass

term, the scalar profile decays exponentially at distances of order of the Compton wavelength

r ∼ m−1. We find that Wilson lines charged under the electric one-form symmetry retain an

O(1) amount of charge. Namely, we show that the flux of the electric field r2Ftr decreases

until it reaches a minimum at distances r ∼ 1/m. After that the flux increases again and

eventually settles into a constant O(1) value. Therefore the Wilson line is nontrivial and, even

at distances such that the scalar profile has decayed completely, r ≫ 1/m, there is an O(1)

remnant Coulomb field.

For a small negative mass m2 < 0 instead the bulk theory flows to a Higgs phase, described

by a Zqϕ gauge theory. In Zqϕ gauge theory the one-form symmetry surface operator cannot

be cut-open because of the emergent two-form symmetry, and thus there is no obstruction

for a charged line to be topological in the IR; this is obviously the fate of Wilson lines with

charge δq ̸= 0.21

The situation is more puzzling for the massless theory with a nonzero quartic coupling

λ > 0. Indeed, the beta functions (2.63) imply that the defect approaches logarithmically a

trivial DCFT in the infrared, irrespectively of the charge of the scalar field. This is tension

with the conclusion that Wilson lines charged under the electric one-form symmetry should

furnish nontrivial DCFTs. The resolution of this apparent paradox might require analyzing

the fate of Wilson lines beyond the double-scaling limit (2.55) in which we worked so far. We

leave the investigation of this fascinating issue for future work.

We conclude this section by noticing that in scalar QED there is a U(1) magnetic one-form

symmetry, whose topological charge can be terminated on improperly quantized Wilson lines.

This implies that all ’t Hooft lines, which are charged under the magnetic one form symmetry,

furnish nontrivial DCFTs. Physically, this is because there are no monopoles to screen them.

We will analyze ’t Hooft lines in greater detail in section 6.

remains nontrivial and it is given by a topological line. Indeed, with massless fermions, the infrared theory has

multiple vacua and the Wilson line flows to the defect interpolating between these degenerate vacua. This also

means that far away from the Wilson line there is no electric field but there is a scalar VEV due to an order

parameter distinguishing these vacua. Note that the IR limit being topological does not contradict the general

theorem, since the one-form symmetry charge is a local operator in a 2d QFT and thus cannot be cut open.

It would be interesting to study 1 + 1d theories with charged massless scalars, to see if these can also screen

fractional charges.
21This may be seen e.g. from the comments below (2.76) and the fact that the scalar field one-point function

(2.46) is modified so that it decays exponentially to a constant value for r ≫ |m|−1.

– 35 –



3 Fermionic QED4

In this section we consider fermionic QED in d = 4 dimensions in the presence of a Wilson

line of charge q > 0, extending in the time direction. The action is given by:

S = Sψ,A − q

∫
dtA0 ,

Sψ,A =
1

e2

∫
d4x

[
−1

4
F 2
µν + iΨ̄D /DΨD

]
,

(3.1)

where ΨD is a massless Dirac spinor in four dimensions that carries a charge 1 under the U(1)

gauge group, Fµν is the electromagnetic field tensor, /D ≡ ΓµDµ where Dµ = ∂µ− iAµ denotes

the gauge covariant derivative, and Γµ are the Dirac Gamma matrices in d = 4, satisfying

{Γµ,Γν} = 2ηµν .

As in the previous section, we tune the fermion mass to zero and work in the semiclassical

limit specified by the following double-scaling limit :

e→ 0, q → ∞,

e2q = fixed.
(3.2)

In this limit the generated mass scale associated with QED becomes infinite and thus we can

ignore any RG flow in the bulk. In this limit we expand the fields around the classical saddle

point A0 = e2q
4πr ≡ g

r , ψD = 0. In the rest of this section we analyze the fluctuations of the

Dirac field in the Coulomb background profile.

3.1 Dirac fermion on AdS2 × Sd−2

When studying scalar QED in section 2.1, it was convenient to map the theory to AdS2 × S2

and perform a Kaluza-Klein (KK) decomposition over the sphere. We shall adopt a similar

strategy for the model (3.1). In this section we thus describe the general KK decomposition for

a Dirac field. For future purposes we consider aribtrary spacetime dimensions d, specializing

to d = 4 later.

We consider a d-dimensional Dirac fermion, which consists of 2⌊d/2⌋ complex components,

coupled to an external gauge field. The action is:

S =

∫
ddx iΨ̄D

(
/∂ − i /A

)
ΨD . (3.3)

Just like in (2.7), we can map the theory from Rd to AdS2 × Sd−2 via a Weyl rescaling

ds2 = r2
[
dt2 − dr2

r2
− dΩ2

d−2

]
= r2ds̃2AdS2×Sd−2 . (3.4)

In a factorized geometry of the form M2×Sd−2, such as that in (3.4), there exists a convenient

decomposition of the Dirac field and the associated Clifford algebra [56]. The fermionic field

is written in terms of the following expansion:

ΨD =
1

r
d−1
2

∑
ℓ,s

∑
δ=+,−

ψ
(δ)
ℓs (t, r)⊗ χ

(δ)
ℓs (n̂) , (3.5)
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where ψ
(δ)
ℓs (t, r) are AdS2 Dirac spinors with two complex components, while the χ

(δ)
ℓs (n̂) are

the spinor harmonics on Sd−2 with 2⌊d/2⌋−1 components. The summation over ℓ runs over

the non-negative integers, ℓ = 0, 1, 2, ...; for every ℓ the χℓs form a representation of spin

j = |ℓ|+ 1/2 of the Spin(d− 1) group, with the index s running over the components.22 The

spinor harmonics χ
(δ)
ℓ s (n̂) satisfy the following equation [56, 57]:

/∇Sd−2χ
(±)
ℓs (n̂) = ±i

(
ℓ+

d− 2

2

)
χ
(±)
ℓs (n̂) , (3.6)

where /∇Sd−2 is the Dirac operator on Sd−2, as well as the orthogonality relation:∫
dΩd−2 χ

† (δ)
ℓs (n̂)χ

(δ′)
ℓ′s′ (n̂) = δℓℓ′δss′δ

δδ′ . (3.7)

We can similarly decompose the d-dimensional gamma matrices Γ. We denote by γ0 and γ1

the two-dimensional gamma matrices in Lorentzian signature, satisfying {γa, γb} = 2ηab =

2diag(1,−1) (a, b = 0, 1). We additionally introduce a 2⌊(d−2)/2⌋×2⌊(d−2)/2⌋ dimensional repre-

sentation of the Euclidean Clifford algebra γ̂iE , i = 1, 2, . . . , d−2, which satisfies {γ̂iE , γ̂
j
E} = 2δij .

Then we have the following decomposition:

Γ0 = γ0 ⊗ 1̂,
Γ1 = γ1 ⊗ 1̂,
Γ2 = iγ3 ⊗ γ̂1E ,

Γ3 = iγ3 ⊗ γ̂2E ,

...

Γd−1 = iγ3 ⊗ γ̂d−2
E ,

(3.8)

where γ3 is the 2× 2 AdS2 chirality matrix defined by

γ3 = γ0γ1, (3.9)

and 1̂ is the identity matrix of dimension 2⌊(d−2)/2⌋ × 2⌊(d−2)/2⌋.23

Using (3.5) and (3.8) we can write the action (3.3) as a sum over the AdS2 spinors:

S =
∑
ℓ,s

∑
δ=+,−

∫
AdS2

d2x
√
g ψ̄

(δ)
ℓs

[
i
(
/∇AdS2 − i /A

)
− δiγ3mℓ

]
ψ
(δ)
ℓs , (3.10)

where ψ̄
(δ)
ℓs = (ψ

(δ)
ℓs )

†γ0 and the masses mℓ are given by

mℓ = ℓ+
d− 2

2
. (3.11)

22For general ℓ and d the multiplicity of s is given by 2
⌊ d−2

2
⌋
(d−3+ℓ)!

ℓ!(d−3)!
[57].

23Note that in d = 3 under the decomposition on AdS2 × S1, γ̂1
E = 1̂ = 1 are just numbers.
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In (3.10), /∇AdS2 = γaeµa∇µ is the AdS2 Dirac operator, with eµa the vielbeins (which we take

to be in the diagonal convention), and ∇µ the covariant derivative; similarly /A = γaeµaAµ.

We may bring the action (3.10) to a more symmetric form by performing the following axial

transformation:24

ψ
(±)
ℓs → e∓i

π
4
γ3ψ

(±)
ℓs ,

ψ̄
(±)
ℓs → (ψ

(±)
ℓs )†e±i

π
4
γ3γ0.

(3.12)

In this basis, the action (3.10) takes a simple form:

S =
∑
ℓ,s

∑
δ=+,−

∫
AdS2

d2x
√
g ψ̄

(δ)
ℓs

[
i
(
/∇AdS2 − i /A

)
−mℓ

]
ψ
(δ)
ℓs . (3.13)

The action (3.10), in addition to the internal Spin(d− 1) symmetry and the U(1) gauge

transformations, is clearly invariant under SO(2) rotations acting on {ψ(+)
ℓs , ψ

(−)
ℓs }, i.e.

ψ
(±)
ℓs → cos(θ)ψ

(±)
ℓs ∓ sin(θ)ψ

(∓)
ℓs . (3.14)

In even dimensions, this global symmetry is the AdS2 avatar of the axial symmetry of the

massless Dirac action. To see this in d = 4, we recall the standard definition of Γ5:

Γ5 = iΓ0Γ1Γ2Γ3. (3.15)

The axial transformation of the Dirac spinor in flat space reads:

ΨD → eiΓ
5θΨD, Ψ̄D → Ψ̄De

iΓ5θ, (3.16)

which is a symmetry of the theory (3.1) (at a classical level). Using the decompositions (3.5),

(3.8), and recalling the field redefinitions (3.12), (3.16) is easily seen to be equivalent to (3.14).

The action (3.1) for the Dirac field in flat d = 4 space is also invariant under the following

discrete parity transformation

ΨD(t, r, θ, ϕ) → Γ5Γ2ΨD(t, r, π − θ, ϕ+ π),

Ψ̄D(t, r, θ, ϕ) → Ψ̄D(t, r, π − θ, ϕ+ π)Γ5Γ2,
(3.17)

where θ and ϕ are the azimuthal angles in spherical coordinate system. The above translates

(up to an overall real factor) into the following transformation for the reduced fields on AdS2:

ψ
(±)
ℓs → ±ψ(±)

ℓs , ψ̄
(±)
ℓs → ±ψ̄(±)

ℓs , (3.18)

which clearly leaves the action (3.10) invariant. Note that the transformations (3.14) and (3.18)

form an O(2) group. The transformation rule (3.14) of the fermions under axial symmetry as

well as the discrete symmetry (3.18) will be useful to classify defect operators made of fermion

bilinears in section 3.2.2.

24Note that this transformation is not anomalous since we rotate the fields ψ
(+)
ℓs and ψ

(−)
ℓs by opposite angles.
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In conclusion, the action for a d-dimensional massless Dirac field in the presence of an

Abelian gauge field can be decomposed into a sum over KK modes with angular momentum

j = |ℓ| + 1/2 = 1/2, 3/2, . . ., each corresponding to a Dirac field in AdS2. The result is

compactly given in (3.13). For what follows it is important to note that the ℓ = 0 modes

in the decomposition (3.5) have the lowest mass, see (3.11). Their degeneracy is 2× 2⌊
d−2
2

⌋,

where the first factor of 2 arises from the index δ = +,−, while the second factor is related to

the spin degeneracy associated with s.

3.2 Conformal Wilson lines: old and new fixed points

3.2.1 Dirac fermion in AdS2 and boundary RG flows

Motivated by the decomposition that led to (3.13), in this section we study a single Dirac

fermion in AdS2 in the presence of a Coulomb field A0 = g/r. The action is:25

S =

∫
AdS2

d2x
√
g ψ̄

[
i

(↔
/∇AdS2 − i /A

)
−m

]
ψ . (3.19)

By restoring the proper indices ψ → ψ
(δ)
ℓs and setting the mass m→ mℓ as in (3.11), we recover

(3.13). In the following we consider arbitrary m > 0 and g > 0. We choose the following

representation for the gamma matrices

γ0 = σ1 =

(
0 1

1 0

)
, γ1 = iσ3 =

(
i 0

0 −i

)
. (3.20)

Following the analysis in section 2.1, we can extract the scaling dimension of defect

fermionic operators by studying the equations of motion of the Dirac field for r → 0. Neglecting

the time dependence, the equations of motion associated with the action (3.19) for the Dirac

fermion on AdS2 coupled to a Coulomb field A0 = g/r are given by:[
i

(
rγ1∂r −

1

2
γ1 − igγ0

)
−m

]
ψ = 0 . (3.21)

We decompose the field explicitly in its components as

ψ ≡

(
χ

ξ

)
, (3.22)

where χ and ξ are single-component complex Grassmannian fields, in terms of which (3.21)

reads: (
r∂r −

1

2
+m

)
χ− gξ = 0 ,(

r∂r −
1

2
−m

)
ξ + gχ = 0 .

(3.23)

25Here we used ψ̄
↔
/∇ψ = 1

2
ψ̄γa∇aψ − 1

2

(
∇aψ̄

)
γaψ, which ensures that the action is exactly Hermitian (and

not just up to boundary terms).
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To leading order near the line defect, the dependence of the modes in the radial coordinate

r is of the form ∼ r∆, for both χ and ξ. Substituting such a dependence into the equations

above yields a quadratic equation for the scaling dimension ∆ of the (non-gauge-invariant)

boundary operators associated with ψ. This results in the following:

• For m2 > g2: there are two real solutions to the quadratic equation for the scaling

dimensions, given by ∆± = 1
2 ±

√
m2 − g2. They correspond to the two possible

conformal boundary conditions for the fermionic modes, as will be detailed below.

• For m2 < g2 there are no real solutions for the scaling dimensions ∆.

Thus when m2 = g2, the parameter g (which is related to the charge q > 0 of the Wilson

line) is at a critical value gc. For g < gc there are two unitary conformal boundary conditions,

while for g > gc there are no real solutions for the scaling dimension of the fermionic mode.

We will see that this implies an instability of the vacuum for g > gc. Both boundary conditions

are normalizable in the window 0 <
√
m2 − g2 < 1/2, where the upper limit arises from the

unitarity bound ∆ > 0. This behavior is analogous to the one which was observed for scalar

QED in the previous section. In d = 4, the mass of the lowest ℓ = 0 mode is m = 1 and

criticality is achieved for g = gc = 1. Using g = e2q
4π we obtain the critical value qc = 4π/e2,

in agreement with classic results in the literature [21]. Note that this value of qc differs by a

factor 1/2 from the one obtained for a scalar. In d = 3, m = 1
2 , and criticality implies gc =

1
2 ,

in agreement with the previously known results (see e.g. [58] and references therein).

Using the real world value for the electromagnetic coupling, the previous analysis gives a

critical charge for point-like nuclei qc ≈ 137. In practice to estimate the real value of the critical

charge one needs to account for both the size of the nucleus r0 and the mass of the electron

me, and the critical charge is much larger, qc ≈ 173 [21, 59]. The huge discrepancy between

the real world instability and the massless result might be surprising given the smallness of

the dimensionless product r0me ≈ 10−3. As we will explain in section 3.4, this discrepancy

is naturally expained as a consequence of dimensional transmutation, and is similar to the

explanation of the proton mass in QCD.

In the rest of this section we analyze the subcritical regime m2 > g2, postponing a

discussion of the supercritical instability to section 3.4. In particular we will show that,

analogously to what we found in scalar QED, the two conformal boundary conditions are

related by RG flow (when both are allowed).

It is convenient to define the following dimensionless parameter:

ν ≡
√
m2 − g2. (3.24)

In the subcritical regime, the parameter ν is real and positive, and when it is also within the

range ν < 1
2 , both boundary conditions discussed above result in normalizable modes for the
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fermion.26 The leading order physical solution near the boundary at r → 0 explicitly reads:

χ = αr
1
2
−ν +

g

m+ ν
β r

1
2
+ν ,

ξ = βr
1
2
+ν +

g

m+ ν
α r

1
2
−ν ,

(3.25)

where α and β are two independent Grassmann modes that depend only on the line coordinate

t and where we have omitted subleading terms whose coefficients are fixed by α, β; see (2.8)

for such terms in the scalar case. The mode expansion (3.25) formally describes also the

critical case m2 = g2 by setting

α =

(
a

4
− bg

2ν

)
rν0 , β =

(
a

4
+
bg

2ν

)
r−ν0 , (3.26)

where a and b are complex Grassmann fields, and r0 is an arbitrary cutoff radius. In the

critical limit ν → 0 the fermionic components read:

χ→
√
r

2
(a− b) + g

√
r b log

(
r

r0

)
,

ξ →
√
r

2
(a+ b) + g

√
r b log

(
r

r0

)
.

(3.27)

We now continue the discussion in the spirit of the analysis presented in subsection 2.1.

In particular we want to construct the appropriate boundary terms corresponding to the two

possible conformal boundary conditions in the window 0 < ν < 1/2, for which both modes in

(3.25) are normalizable.

Note first that, unlike the scalar case, the on-shell action vanishes for arbitrary boundary

conditions, since it is linear in derivatives. The variation of the action (3.19) for configurations

which satisfy the bulk equations of motion is written purely in terms of the boundary modes

as follows

δS = − i

2

∫
r=r0

dt
√
ggrr

(
ψ̄γ1δψ − δψ̄γ1ψ

)
=

1

2

∫
r=r0

dt
√
ggrr

(
ξ†δχ− χ†δξ + δχ†ξ − δξ†χ

)
=

ν

m+ ν

∫
r=r0

dt
(
β̄δα− ᾱδβ + δᾱβ − δβ̄α

)
,

(3.28)

where we use ᾱ, β̄ to denote α†, β†, respectively, and r0 is a small cutoff radius. As in

subsection 2.1, we do not impose Dirichlet boundary conditions, but leave boundary modes

free to fluctuate. Thus we are faced again with the question of adding boundary terms such

that the variation of the action vanishes for either α = 0 or β = 0, while leaving the other

mode free to fluctuate.

At this stage, it is technically convenient to notice that we can use an arbitrary linear

combination of the following four bilinears: ψ̄ψ, ψ̄γ0ψ, iψ̄γ1ψ and iψ̄γ3ψ. For infinitesimal r0,

26Of course, for g = 0 this regime corresponds to the usual double quantization window in AdS, see e.g. [60].
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such that we can neglect subleading terms in (3.25), this is equivalent to considering the most

general linear combination of bilinears in the boundary modes: β̄βr2ν0 , β̄α, ᾱβ and ᾱαr−2ν
0 .

In the following it will be simpler to write operators directly in terms of the boundary modes.

One possible choice of a boundary term S
(1)
bdy would be:

S
(1)
bdy =

ν

m+ ν

∫
r=r0

dt
(
β̄α+ ᾱβ + 2β̄βr2ν0

)
. (3.29)

This term is chosen so that it admits a smooth limit for ν → 0, for which it reduces to

S
(1)
bdy =

g
4m

(
āb+ b̄a

)
using (3.27). The total variation δS + δS

(1)
bdy then reads:

δS + δS
(1)
bdy =

2ν

m+ ν

∫
r=r0

dt
[
β̄δα+ δᾱβ +

(
δβ̄β + β̄δβ

)
r2ν0
]
, (3.30)

which vanishes for β = β̄ = 0, and corresponds to alternate quantization, where the most

singular falloff in (3.25) is allowed to fluctuate; in the limit ν → 0 (3.30) reduces to δS+δS
(1)
bdy =

g
4m

(
δāb+ b̄δa

)
, and thus sets the logarithmic mode to zero, b̄ = b = 0 in (3.27).

The other fixed point is obtained considering the following boundary term:

S
(2)
bdy = − ν

m+ ν

∫
r=r0

dt
(
β̄α+ ᾱβ + 2ᾱαr−2ν

0

)
. (3.31)

It can be checked that the total variation δS + δS
(2)
bdy vanishes for ᾱ = α = 0 and thus

corresponds to standard quantization, in which the less singular term in (3.25) is allowed

to fluctuate. We also note that the boundary term (3.31) coincides with (3.29) in the limit

ν → 0.

The two fixed points are related by RG flow. As in the scalar case, this is triggered by

a double-trace relevant perturbation ᾱα of the alternate quantization boundary fixed point.

In practice, it is convenient to keep the cutoff radius r0 finite and consider the following

deformation of the theory specified by (3.29)

SDTDbdy = −2f0

∫
r=r0

dt r2ν0
(
β̄βr2ν0 + β̄α+ ᾱβ + ᾱαr−2ν

0

)
(3.32)

where f0 is a dimensionful (bare) coupling. The deformation (3.32) is in general fully equivalent

to a standard double-trace ∼ ᾱα when considered as a perturbation of the UV DCFT

corresponding to β = β̄ = 0. In the limit r0 → 0 it reduces explicitly to −2f0ᾱα. However the

combination in (3.32) is chosen so that in the ν → 0 limit it becomes −f0āa/2, which is the

appropriate double-trace deformation for the logarithmic case (see e.g. [41]).

We now require that the total variation of the action and boundary terms vanishes:

δS + δS
(1)
bdy + δSDTDbdy = 0. The boundary condition fixes the ratio between the modes:

β = c α , c =
f0(m+ ν)

ν − (m+ ν) f0r2ν0
. (3.33)
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Note that the limit r0 → 0 simply yields β = (f0(m+ ν)/ν)α, while in the limit ν → 0+ with

finite r0, plugging β = c α into the modes expansion (3.25) yields b = f0 a in terms of the

modes in (3.27).

From (3.33) we can compute the beta function associated with the perturbation (3.32).

To this aim we denote by f the dimensionless coupling, f = f0r
2ν
0 . From the Callan-Symanzik

equation, one finds the following beta function

βf = −2νf + 2 (m+ ν) f2. (3.34)

The beta function (3.34) is the main result of this section. It has the same physical

significance as in the scalar case discussed in section 2.1. It admits two fixed points: an

unstable one at f = 0, corresponding to alternate boundary conditions β = 0, and a stable

one at f = ν/(m+ ν), corresponding to standard boundary conditions α = 0. For f > 0 and

ν > 0 (3.34) thus describes the RG flow from alternate to standard boundary conditions. At

ν = 0 the two fixed points merge into a unique one at f = 0.

For f < 0 the coupling has a runaway behavior toward f = −∞. Analogously to the

scalar case, this is associated with an instability of the vacuum. We will analyze this instability

in section 3.3, where we will argue that as a consequence of the Pauli exclusion principle it

leads to the screening of a single unit of charge.

In the limit g → 0 the beta function (3.34) describes the well-known double-trace RG

flow in AdS2 from alternative to standard quantization.27 In particular the beta function

(3.34) vanishes for m = g = 0, since then ν = 0. This can be understood considering the

solution (3.27) in the limit ν → 0. Indeed from (3.27) we see that the logarithmic falloffs are

proportional to g. Taking the limit g → 0 in (3.27) we thus find two independent complex

modes proportional to
√
r. This implies that for ν = g = 0 there is a marginal operator

which rotates between the possible conformal boundary conditions. Correspondingly, the

beta function (3.34) vanishes for m = ν = 0. In practice this regime is not relevant for our

discussion of Wilson lines, since m0 =
d−2
2 > 0 for d > 2.

As a final comment, we note that, irrespectively of the value of ν, the alternate fixed point

does not admit relevant perturbations other than the one we considered, ᾱα. Indeed higher

trace deformations of the form (ᾱα)n vanish for n > 1 since the modes are Grassmanian, and

all other defect operators involve derivatives and are thus irrelevant. This is to be contrasted

with the scalar setup, where higher trace deformations could become relevant at the alternate

fixed point, as discussed in section 2.2.

27It can be checked that (3.34) indeed holds for arbitrary spacetime dimensions d and agrees with the previous

result in [61] up to coupling redefinitions.
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3.2.2 Defect fixed points in four dimensions

We now apply the analysis of the previous section to the case of a Dirac fermion in d = 4. We

thus consider the action (3.13) and focus on the ℓ = 0 modes of the decomposition (3.5), as

these have the lowest mass in AdS2. As explained in section 3.1, there are four ℓ = 0 modes.

We denote them simply by ψ
(δ)
s , where δ = +,− and s = +1

2 ,−
1
2 such that ψ

(+)
s , and ψ

(−)
s

transform both as doublets under the rotation group SU(2). The vector {ψ(+)
s , ψ

(−)
s } rotates

under the action of the O(2) group associated with the axial transformations and parity.

To extend the analysis of subsection 3.2.1 to d = 4 we thus promote ψ → ψ
(δ)
s , χ→ χ

(δ)
s

and ξ → ξ
(δ)
s , such that as in (3.22):

ψ(δ)
s ≡

(
χ
(δ)
s

ξ
(δ)
s

)
. (3.35)

As a result, the modes α and β in (3.25) are promoted to α
(δ)
s , β

(δ)
s respectively. We introduce

the notation:

β(δ) =

β(δ)+ 1
2

β
(δ)

− 1
2

 , α(δ) =

α(δ)

+ 1
2

α
(δ)

− 1
2

 , β̄(δ) =

(
β
† (δ)
1
2

, β
† (δ)
− 1

2

)
, ᾱ(δ) =

(
α
† (δ)
1
2

, α
† (δ)
− 1

2

)
,

(3.36)

to conveniently denote the SU(2) doublets.

In d = 4, m = m0 = 1 and g = e2q
4π , where q > 0 is the charge of the Wilson line.

According to the discussion below equation (3.23), the fields ψ
(δ)
s admit both standard and

alternate boundary conditions for 0 <
√
1− e4q2/(4π)2 < 1/2. Differently than in the case of

scalar QED4 described in subsection 2.1, this condition provides both a lower and a upper

bound on q:28 √
3

2
<
e2q

4π
< 1 . (3.37)

In this window, for each of the modes ψ
(δ)
s there are two conformal boundary conditions,

leading to 24 = 16 defect fixed points overall. We will focus on this window in what follows,

and study the corresponding RG flows.

Consider the fixed point where β
(δ)
s = 0 for all modes. This is specified by a defect

term of the form (3.29) (promoting β → β
(δ)
s etc., as discussed above). We are interested in

deformations of this fixed point by fermion bilinear operators on the Wilson line. It is natural

to classify the possible bilinears according to their SU(2)×SO(2) charges, associated with the

symmetries discussed in subsection 3.1. For convenience, we use the notation σK ≡
(
1, σi

)
,

where K = 0, · · · , 3, the matrix 1 is the 2× 2 dimensional identity matrix and σi, i = 1, 2, 3

are the Pauli matrices. Then, in the notation (3.36), the most general gauge-invariant bilinear

defect operator without derivatives can be written as a linear combination of the following

28Using the physical value of the QED coupling, in natural units this condition reads 119 < q < 137.
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Bilinears SU(2) SO(2) P #

f00
(
Φ++0 +Φ−−0

)
✓ ✓ ✓ 1

ik00
(
Φ+−0 − Φ−+0

)
✓ ✓ × 1

f i0
(
Φ++i +Φ−−i) × ✓ ✓ 3

iki0
(
Φ+−i − Φ−+i

)
× ✓ × 3

h00
(
Φ+−0 +Φ−+0

)
✓ × × 1

q00
(
Φ++0 − Φ−−0

)
✓ × ✓ 1

hi0
(
Φ+−i +Φ−+i

)
× × × 3

qi0
(
Φ++i − Φ−−i) × × ✓ 3

Table 1: A classification of the gauge-invariant fermion bilinear line operators. The last

column represents the number of independent bilinears of the specified type. fK0 , kK0 , hK0 and

qK0 denote the (real) bare coupling constants.

terms:

Φ(δγ)K ≡ r2ν0

(
β̄(δ)σKβ(γ)r2ν0 + β̄(δ)σKα(γ) + ᾱ(δ)σKβ(γ) + r−2ν

0 ᾱ(δ)σKα(γ)
)
. (3.38)

There are 16 independent real bilinears that are invariant under the gauge symmetry: eight

preserve the global SO(2), among which two preserve the SU(2) while the other six break it,

and eight that break the global SO(2), among which two are invariant under SU(2) while

the remaining six break it. In addition, eight of the bilinears are invariant under parity P

while the other eight break it. There is a single bilinear invariant under all symmetries. The

classification is summarized in table 1.

We may now calculate the beta-functions associated with the fermion bilinears introduced

in table 1. The derivation is analogous to the one discussed in subsection 2.5 for multi-flavor

scalar QED4. We perturb the DCFT by adding the most general relevant perturbation on the

line. This can be written as:

SDTD = −2

∫
dt r2ν0

(
β̄F0βr

2ν
0 + β̄F0α+ ᾱF0β + r−2ν

0 ᾱF0α
)
, (3.39)

where F0 is a 4× 4 symmetric matrix, which collectively denote all the bare coupling constants

associated with the double-trace deformations (3.38). α, β in the above carry four-components

each in accordance with all the possible combinations of (δ) and s. Explicitly, the coupling

constants in table 1 are related to the matrix F0 via

λA =
1

4
Tr
(
ΣAF0

)
, (3.40)
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with λA = f00 , f
i
0, k

0
0, k

i
0, h

0
0, h

i
0, q

0
0, q

i
0, and the matrices ΣA are 4× 4 matrices given by:

Σf
0
=

(
σ0 0

0 σ0

)
, Σf

i
=

(
σi 0

0 σi

)
, Σk

0
=

(
0 iσ0

−iσ0 0

)
, Σk

i
=

(
0 iσi

−iσi 0

)
,

Σh
0
=

(
0 σ0

σ0 0

)
, Σh

i
=

(
0 σi

σi 0

)
, Σq

0
=

(
σ0 0

0 −σ0

)
, Σq

i
=

(
σi 0

0 −σi

)
.

(3.41)

Similarly to the analysis around (3.33), by requiring that the total variation of the action

and boundary terms vanish we find the following ratios between the modes:

β = Cα, C = (m+ ν)F0 ·
[
ν1− (m+ ν)F0r

2ν
0

]−1
, (3.42)

where 1 is the 4× 4 identity matrix. Defining the dimensionless coupling as F = F0r
2ν
0 , from

the Callan-Symanzik equation we find the beta-function:

βF = −2νF + 2(m+ ν)F · F . (3.43)

It follows that the beta-functions for each of the couplings in table 1 is given by:

βλA =
1

4
Tr
(
ΣAβf

)
, (3.44)

where βF is the 4× 4 matrix whose terms are given by (3.43).

As an illustration, we write explicitly the system of beta functions for the SU(2) preserving

couplings (i.e. setting f i = ki = hi = qi = 0):

β(f0) = −2νf0 + 2(m+ ν)
[
(f0)2 + (k0)2 + (h0)2 + (q0)2

]
,

β(k0) = −2νk0 + 4(m+ ν)k0f0 ,

β(h0) = −2νh0 + 4(m+ ν)h0f0 ,

β(q0) = −2νq0 + 4(m+ ν)q0f0 .

(3.45)

The fixed points are classified similarly to the analysis in subsection 2.5, according to:

•
(
f0, k0, h0, q0

)
= (0, 0, 0, 0): an unstable fixed point which corresponds to alternate

boundary conditions to all modes. The anomalous dimensions read:
(
γf0 , γk0 , γh0 , γq0

)
=

(−2ν,−2ν,−2ν,−2ν).

•
(
f0, k0, h0, q0

)
=
(

ν
m+ν , 0, 0, 0

)
: a stable fixed point that corresponds to standard

boundary conditions for all modes. The anomalous dimensions read:
(
γf0 , γk0 , γh0 , γq0

)
=

(2ν, 2ν, 2ν, 2ν).

• f0 = ν
2(m+ν) while (k0)2 + (h0)2 + (q0)2 = ν2

4(m+ν)2
: a family of unstable fixed points

corresponding to mixed boundary conditions. For example, there are two SO(2) preserv-

ing fixed points with q0 = h0 = 0 and
(
f0, k0

)
=
(

ν
2(m+ν) ,∓

ν
2(m+ν)

)
, with anomalous

dimensions
(
γf0 , γk0 , γh0 , γq0

)
= (∓2ν,±2ν, 0, 0).

– 46 –



It is worth mentioning that similarly to the analysis of the fixed points structure in the

SU(2) preserving case discussed above, one can consider perturbing the UV DCFT with SU(2)

breaking deformations as described in table 1, and straightforwardly find fixed points that

correspond to DCFTs (invariant under SL(2,R)) that break spatial rotation symmetry.

Finally, let us remark that, differently than in the case of a single AdS2 Dirac fermion

analyzed in subsection 3.2.1, as we lower the charge below criticality there are additional

operators that become relevant or marginal on the line at the alternate quantization fixed

point. In fermionic QED4, 4-fermion operators become relevant when e2q
4π <

√
15
4 . Because of

the fermionic statistics, there is only a finite number of marginal or relevant operators. The

term that contains a polynomial of the highest number of fields is an 8-fermion term and it

becomes marginal when e2q
4π <

√
55
8 .29

3.3 Partial charge screening from double-trace perturbation

Consider the model (3.19) tuned to alternate boundary conditions. In this section we study

the effect of a double-trace deformation of the form (3.32) with negative coefficient, i.e. we

study the model

S = Salternate − f

∫
r=0

dt ᾱα , f < 0 , (3.46)

where Salternate schematically denotes the action for the UV defect fixed point. In the following

we always assume ν > 0.

As remarked in section 3.2.1, the beta function (3.34) shows that a negative double-trace

coupling flows to infinitely large values. In the scalar case, we found that this kind of RG

flow is associated with the existence of an instability of the vacuum. Somewhat similarly, we

will argue that a negative double-trace deformation leads to a change in the structure of the

vacuum also in the fermionic case. However, the fate and the signature of this instability

are different than in the scalar case as a consequence of fermionic statistics. In particular a

negative double-trace deformation for a single AdS2 Dirac fermion leads to the screening of a

single unit of charge.

In this section we will also introduce some tools that will be relevant in section 3.4, where

we will discuss the supercritical Coulomb potential. Our discussion in this section will largely

be inspired by classic results about QED in strong electromagnetic fields [59]. Several technical

details are given in appendix B.

When we analyzed scalar QED4 with a negative double-trace deformation in section 2.2,

we found that the retarded Green’s function of the defect mode displayed a tachyon pole in

the upper half plane. This is not the case for the fermion defect propagator. In appendix B.1

we compute the propagator Gα(ω) for the mode α(ω) in the theory (3.46) and verify explicitly

29Using the physical value for the fine structure constant, 4-fermion defect operators become relevant for

q < 132, and 8-fermion ones for q < 127.
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that no tachyon pole exists.30 Instead, the Green’s function takes qualitatively the same form

for both signs of f .

To understand the physical implication of the double-trace deformation with f < 0, it

is simplest to momentarily consider a massive theory. Consider the 4d model (3.3) with a

mass term δS = −
∫
d4xMΨ̄DΨD. Upon performing the KK decomposition on AdS2 × S2

explained in section 3.1, we find that this amounts to modifying the action (3.13) by a term

δSM =
∑
ℓ,s

∑
δ=±

iδ

∫
AdS2

d2x
√
g rMψ̄

(δ)
ℓs γ

3ψ
(δ)
ℓs , (3.47)

where the overall factor of δ = ± arises from the redefinition in (3.12). Note that the mass

term breaks explicitly both the axial symmetry (3.14) that rotates the (±) fields, as it should,

and part of the AdS2 isometries. We are thus led to consider the model (3.46) deformed by

the term

δS
(±)
M = ±i

∫
AdS2

d2x
√
g rMψ̄γ3ψ , (3.48)

where M > 0 and we will consider both a positive and a negative prefactor for generality.

Note the deformation (3.48) vanishes for r → 0 and thus does not modify the near defect

behavior of the field (3.25). Therefore the boundary conditions read

β/α =
m+ ν

ν
f = sgn(f)µ2ν , (3.49)

where we defined for convenience µ ≡
(
m+ν
ν |f |

)1/(2ν)
as the mass scale introduced by the

deformation, and momentarily considered both signs for f . The massless limit is recovered for

M/µ→ 0.

As well known, in the presence of a mass gap the spectrum for the Dirac equation

in an external potential organizes itself into an infinite number of discrete (bound) states

with frequency −M < ω < M (with an accumulation point for ω → M), a positive energy

continuum for ω ≥M and a negative energy continuum with ω ≤ −M . In appendix B.2, we

study the discrete part of the spectrum and find the quantization condition on the frequencies

ωn of the discrete bound states at f = 0 and f → +∞, the latter case coinciding with the

well known relativistic Hydrogen atom spectrum [59]. As we increase µ/M while keeping

f positive, all the bound states at f = 0 increase their energy and smoothly approach the

standard quantization energies ωn (corresponding to f → +∞). For negative f instead, as

we increase µ while keeping M fixed we find that the lowest energy bound state decreases its

energy ω0. Eventually, µ reaches a critical value given by

µ(±)
c ≡ gM

[
π 22ν(m± ν)

g sin (2πν) Γ(2ν)Γ(1 + 2ν)

] 1
2ν

, (3.50)

30The absence of a tachyon pole is in fact expected as a consequence of the Fermi statistics as opposed to

Bose statistics [40].
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where the (±) distinguishes the two signs in (3.48); in the following we will drop this supscript

for notational simplicity. At µ = µc we find ω0 = −M , and the bound state becomes completely

delocalized; for larger values of µ the state joins the negative energy continuum and the bound

state ceases to exist. We will prove at the end of this section that for µ ≳ µc this state still

manifests itself as a resonant pole in the second sheet of the retarded Green’s function.31 This

phenomenon is referred to as the dive of a bound state into the negative energy continuum

[59]. All other bound states smoothly approach the standard quantization (corresponding to

f → +∞) energies as f → −∞.

The dive of a bound state implies that the vacuum of the theory acquires one unit of

(negative) charge. To see this, we need to properly define the vacuum. While many choices

are ultimately equivalent in the M → 0 limit, a natural one is to define the vacuum as the

state which minimizes the following modified Hamiltonian [59]:

ĤM = Ĥ −MQ̂ , (3.51)

where Ĥ is the Dirac-Coulomb Hamiltonian and Q̂ the gauge charge (normalized so that the

field has negative unit charge). In old-fashioned language, this means that we consider as

filled holes all states with energy less than −M , while states with energy larger than −M
are particle excitations on top of the vacuum. The definition (3.51) is natural if we imagine

turning on the potential adiabatically starting from the usual vacuum. The term MQ̂ is a

chemical potential, which accounts for the fact that, by charge conservation, the transition

to the new ground state can only happen by creation of an electron-positron pair, with a

positron that escapes far away from the Wilson line.

According to the Hamiltonian (3.51), the dive of the bound state into the low energy

continuum at ω < −M for µ > µc is thus interpreted as a change in the nature of the state

from a particle energy level to a hole in the Dirac sea. Since all holes must be filled in

the ground state, this leads to the screening of one unit of charge. The same remains true

in the massless limit. We can understand this phenomenon physically by interpreting the

double-trace deformation in (3.46) as an attractive potential localized on the defect. For

sufficiently large µ, the potential traps an electron energy level close to the defect, similarly to

the creation of a bound state by a Dirac delta function potential in quantum mechanics.

We finally discuss how to compute the charge cloud created by this process around the

Wilson line. Note that in the double-scaling limit (3.2) we can safely neglect the change in

the electromagnetic field induced by this process, differently than in the case of scalar QED4

analyzed in section 2.2, where we needed to account for the backreaction of the large-charge

scalar cloud that formed.
31To avoid the mention of resonances one can introduce an IR cutoff rfar ≫ 1/M, 1/µ, so that the full

spectrum is discrete, and a resonance simply corresponds to a single state mixing with many nearby (quasi-

continuum) states (see e.g. the discussion in section 2.2 of [62]). The picture of a diving bound state then

simply follows by continuity of the spectrum and the fact that discrete states cannot disappear as we change

continuously the potential. Similar arguments are at the heart of two related well known classical results:

Levinson’s theorem in quantum mechanics [63, 64] and the Friedel sum rule in condensed matter physics

[65, 66].
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Consider the mode decomposition of the Dirac field in terms of the two continuum modes

and the discrete states,

ψ(t, r) =

∫ ∞

M

dω

2π
e−iωtψω(r)bω +

∑
−M<ωn<M

e−iωntψn(r)bn +

∫ −M

−∞

dω

2π
e−iωtψω(r)d

†
ω . (3.52)

Different wave functions are orthogonal and we normalized them as∫
dr
√
ggrrψ†

ω(r)ψω′(r) = (2π)δ(ω − ω′) ,

∫
dr
√
ggrrψ†

n(r)ψk(r) = δnk . (3.53)

The canonical commutation relation {ψ†(t, r), ψ(t, r′)} = δ(r − r′)/
√
ggrr implies

{bω, b†ω′} = {dω, d†ω′} = (2π)δ(ω − ω′) , {bn, b†k} = δnk . (3.54)

According to the discussion around (3.51), the vacuum satisfies

bω|0⟩ = bn|0⟩ = dω|0⟩ = 0 . (3.55)

Note that all these equations are true for arbitrary values of µ/M .

We can use (3.52) to give an explicit formula for the charge polarization of the vacuum [59]32

⟨j0(r)⟩ = − lim
x→x′

1

2
⟨[ψ̄(x′)γ0, ψ(x)]⟩

=
1

2

[∫ ∞

M

dω

2π
ψ†
ω(r)ψω(r) +

∑
M>ωn>−M

ψ†
n(r)ψn(r)−

∫ −M

−∞

dω

2π
ψ†
ω(r)ψω(r)

]
,

(3.56)

which has the obvious physical interpretation of the particle contribution minus the hole

contribution. Note the factor 1/2 upfront. It is sometimes convenient to express (3.56) in

terms of the retarded Green’s function iSR(x;x
′) = θ(t− t′)⟨

{
ψ(x), ψ̄(x′)

}
⟩ as33

⟨j0(r)⟩ = −
∫ ∞

−M

dω

2π
Im(Tr[γ0SR(ω; r, r)]) +

∫ −M

−∞

dω

2π
Im(Tr[γ0SR(ω; r, r)]) , (3.57)

where

SR(t, r; t
′, r′) =

∫
dω

2π
e−iω(t−t

′)SR(ω; r, r
′) . (3.58)

(3.57) simply follows from evaluating the imaginary part of the Green’s function using the

Källén-Lehman representation. Note that (3.56) and (3.57) hold also in the massless case (in

which case the contribution of bound states is absent). Obviously we recover the total amount

of screened charge via

Qscreen =

∫
dr
√
ggrr⟨j0(r)⟩ . (3.59)

32We are cavalier about short distance divergences; these can be taken care of by subtracting the charge

density in a reference state, such as the usual vacuum.
33Analogous formulas can be written using the advanced and Feynman propagators.
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We could now use (3.56) and (3.57) to compute the charge density profile. It is however

obvious on dimensional grounds that for µ≫M the charge is localized at distances r ∼ 1/µ

from the defect, and in the massless limit the IR defect simply corresponds to a Wilson line

with charge q − 1 and standard boundary conditions. We instead conclude this section by

showing how (3.57) implies a discontinuity for the screened charge as µ changes from below to

above the critical value µc for fixed M . Our analysis will also elucidate the aforementioned

relation between diving bound states and resonances.

Consider the difference between the charge density for µ = µc + δµ and µ = µc − δµ for

a positive δµ/M ≪ 1. From (3.56) and (3.57) we see that the only significant contribution

to the charge density in this limit arises from the lowest bound state ψ0(r) and the negative

energy continuum:

⟨j0(r)⟩µ=µc+δµ − ⟨j0(r)⟩µ=µc−δµ = −1

2
ψ†
0(r)ψ0(r)

+

∫ −M

−∞

dω

2π

{
Im(Tr[γ0SR(ω; r, r)]µ=µc+δµ)− Im(Tr[γ0SR(ω; r, r)]µ=µc−δµ)

}
+O(δµ/M) .

(3.60)

Standard arguments about mixing of isolated states with a continuum let us express the

difference in the second line in terms of the wave-function ψ0(r) of the diving state just below

criticality [59, 67]:

Im(Tr[γ0SR(ω; r, r)]µ=µc+δµ)− Im(Tr[γ0SR(ω; r, r)]µ=µc−δµ)

= − ψ†
0(r)ψ0(r)Γres/2

(ω − Eres)2 + Γ2
res/4

+O

(
δµ

M

)
, (3.61)

where Eres +M = O(δµ) (with Eres < −M) while Γres = O(δµ2/M). In other words, the

diving bound state became a resonance in the negative energy continuum.34 In practice (3.61)

only applies locally for r ≲ 1/M , since the analytic continuation of the wave-function ψ0

changes its behavior at infinity when ω0 becomes complex. Using (3.61) in (3.60) we conclude

⟨j0(r)⟩µ=µc+δµ − ⟨j0(r)⟩µ=µc−δµ = −ψ†
0(r)ψ0(r) +O(δµ/M) . (3.62)

(3.62) implies a discontinuity of the Green’s function at µ = µc. Integrating (3.62) we recover

the expected discontinuity for the screening charge:

Qscreen|µ=µc+δµ −Qscreen|µ=µc−δµ = −1 . (3.63)

As explained in section 3.1, in d = 4 there are 4 independent ℓ = 0 modes. Thus, negative

double-trace deformations of the UV fixed point may lead to up to 4 units of charge screening.

Intriguingly, this remains true also for massive Dirac fields. It would be interesting to analyze

further possible implications of this analysis for real world nuclei (note that the window (3.37)

implies q > 119 for our world, corresponding to theoretically predicted super-heavy elements).

34It may be argued that the width Γres is associated with the inverse decay time of the wrong vacuum, where

the hole is not filled [59].
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3.4 Supercritical Wilson lines

In this section we address the fate of Wilson lines with supercritical charge, q > qc. Differently

from the scalar setup, we will argue that the charge of the Wilson line is screened only down to

q = ⌊qc⌋, as a consequence of the Pauli exclusion principle. We will be particularly interested

in the nearly supercritical regime, where we will show that dimensional transmutation leads

to an exponentially large matter cloud screening the Wilson line.

While our main focus is on 4d massless QED, whenever possible we keep the notation

general. Indeed our analysis applies almost verbatim to setups where the matter fields live in

d = 3; we discuss some of these in section 5. In particular, our analysis is largely inspired by

previous works on charged impurities in two-dimensional graphene sheets [30, 68, 69].

We consider the model (3.1) in the presence of a Wilson line of charge 4π/e2 < q < 8π/e2

so that m0 < g < m1 (in the notation of (3.11)). The trivial saddle-point ΨD = 0, A0 = g/r

corresponds to the supercritical regime for the ℓ = 0 modes of the decomposition (3.5),

according to the discussion in section 3.2.1. In this case, the solution of the equations of

motion (3.23) for r → 0 is written as35

χ =
g

m+ iν̃
βr

1
2
+iν̃ + αr

1
2
−iν̃ ,

ξ = βr
1
2
+iν̃ +

g

m+ iν̃
αr

1
2
−iν̃

(3.64)

where we let m = m0 and we defined

ν̃ =
√
g2 −m2 . (3.65)

The nearly supercritical regime we will be interested in corresponds to ν̃ ≪ 1. (3.64) shows

that there are no unitary conformal boundary conditions for the Dirac field as r → 0.

We are thus forced to choose non conformal boundary conditions on the defect. While

our results are ultimately independent of this choice, for the sake of definiteness, we follow

[21] and imagine that the charge of the Wilson line is localized inside a small cutoff surface

at r = r0 (modelling the nucleus as a uniformly charged ball). Thus the Wilson line in (3.1)

becomes

−q
∫
dtA0 → − q

4π

∫
r=r0

dt dΩ2A0 . (3.66)

This implies that for ΨD = 0 the saddle-point profile for the gauge field reads

A0 =


g

r0
for r < r0

g

r
for r ≥ r0 ,

(3.67)

35In this section we will omit the subscript s and the supscript (δ) from the fields, since they are inessential

for our analysis (besides introducing a degeneracy).
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so that there is no electric field for r < r0. The ℓ = 0 AdS2 Dirac fields now satisfy standard

boundary conditions for r/r0 → 0,

ψ ∼

(
0

r
1
2
+m

2

)
for r → 0 , (3.68)

as well as being continuous at r = r0.

We now show that in the presence of a supercritical field (3.67), the trivial saddle-point

ΨD = 0 admits infinitely many diving states in the massless limit. In the spirit of section 3.3,

we momentarily consider a field with mass M > 0. In appendix B.3, we find that for ν̃ ≪ 1

the condition for having a bound state with energy ω = −M is36

ν̃ log(2Mgr0) = ν̃η − πn , n = 1, 2, . . . , (3.69)

where η is an O(1) number (which depends on the sign in (3.48) and which we determine in

appendix B.3). (3.69) admits infinitely many solutions given by

Mn =M0 Λ
n , M0 =

eη

2gr0
, Λ = e−π/ν̃ , (3.70)

where Λ is the same small number we encountered in the discussion of scalar tachyons in

subsection 2.3. Note also that just like in the scalar case there are multiple solutions and they

(3.70) are log-periodic log(Mn/Mn+1) = π/ν̃. We comment more on this below.

Imagine now lowering Mr0 for a single AdS2 Dirac fermion. When M > M1, all bound

states have energy ω > −M . For M1 > M ≥M2 there is one diving state, then as we lower

to M2 > M ≥M3 we have two diving states, etc.. In general, for Mn > M ≥Mn+1, n states

have dived into the negative energy continuum. Somewhat pathologically, in the massless limit

Mr0 → 0 infinitely many states have joined the negative energy continuum. Physically this

implies that the trivial saddle-point with gauge field (3.67) is not a good approximation to the

true ground state. This is reminiscent of the discussion around (3.61): in appendix B.4 we

show that the diving states are reflected in the existence of infinitely many resonances in the

negative energy continuum,37 whose (complex) frequencies satisfy a logarithmic periodicity

property analogous to (3.70); this fact was formerly pointed out in [30].

The result (3.69) in d = 4 was originally derived by Pomeranchuk and Smorodinsky [21],

who used it to argue that the critical charge qc for real world nuclei is in fact mach larger

36A solution with M ∼ 1/r0, schematically corresponding to n = 0 in (3.69), may exist for different boundary

conditions. Such an n = 0 diving state is somewhat analogous to the one created by a negative double-trace

deformation discussed in section 3.3 and does not play any essential role for us.
37Somewhat improperly, we call resonances complex poles of the retarded Green’s function analytically

continued to the second sheet. These are in one-to-one correspondence with solutions of the Dirac-Coulomb

equation satisfying outgoing boundary conditions: ψn ∼ e−iωnteiωnr with Reωn < 0 and Imωn < 0. Hence the

ψn’s decay in time and grow exponentially for r → ∞. We remark however that the corresponding frequencies

have comparable real and imaginary part Reωn ∼ Imωn, signifying that these cannot be understood as usual

resonances, which arise due to a weak mixing between a discrete and a continuum spectrum as in the discussion

which led to (3.61).
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than 137, the value that is obtained in the massless theory. In fact, for realistic values of r0
and M , we get qc ≈ 173÷ 175 [59]. This is because M1 ≪ 1/r0 for small ν̃, as (3.70) shows.

In light of the connection with the walking behavior associated with the fixed-point merger,

as we discussed in section 2.1 for scalar QED, the discrepancy between the massless result

and the real world is understood as a consequence of dimensional transmutation. Indeed, the

mass of the first diving state M1 coincides parametrically with the scale µIR at which the

double-trace coupling blows up, cf. (2.24), given a UV scale µUV ∼ 1/r0. This is analogous to

dimensional transmutation in QCD, where the proton mass parametrically coincides with the

strong coupling scale of the one-loop beta function of the gauge coupling.

Another important remark is the following. The log-periodic structure of the solution

(3.70) reflects an approximately cyclic RG, as for the scalar tachyons discussed in section

2.3. Such an RG structure implies that the mass scale Mn at which the nth state dives is

exponentially larger than Mn+1 for ν̃ ≪ 1.38 Note that this is also true for the first diving

state, since M1 is exponentially smaller than the cutoff scale 1/r0 as we commented above. A

finite small mass M provides an IR cutoff to this periodic flow after ∼ ν̃
π log(M1/M) cycles.

In the massless limit, the periodic flow does not persist at arbitrary long distances once we

account for the screening cloud created by the matter field and the corresponding backreaction

of the gauge field. In particular, after q − qc units of charge have been screened, the Coulomb

field becomes subcritical. According to the analysis in the previous sections, no further

instability can occur beyond this point (up to the one discussed in section 3.3, which may

only change the final charge by an O(1) amount) and the RG flow terminates at the standard

quantization fixed point. Nonetheless, the approximate cyclic flow plays an important role at

intermediate scales; we will momentarily use this observation to our advantage to estimate the

size of the screening cloud for ν̃ ≪ 1. Note that this is different from scalar QED, for which,

as we discussed in section 2.3, all the screening solitons corresponding to more than one RG

cycle are unstable.

To this aim, let us consider the formula (3.56) expressing the charge density in terms of

the single-particle (AdS2) wave-functions:

⟨j0(r)⟩Rd =
κ0/2

Ωd−1rd−1

∫ ∞

0

dω

2π

[
ψ†
ω(r)ψω(r)− ψ†

−ω(r)ψ−ω(r)
]
, (3.71)

where the prefactor arises due to rescaling to flat space and κ0 = 2⌊
d
2
⌋(= 4 in d = 4) is the

degeneracy of the ℓ = 0 modes; note the result is spherically symmetric since we are summing

over all the spinor harmonics of the degenerate modes. In appendix B.4 we show that the

wave-functions satisfy the following property

ψω(Λ
n r) ≃ Λn/2 ψΛnω (r) , n ∈ Z , (3.72)

which holds as long as ωr0 ≪ 1 and Λnωr0 ≪ 1. The property (3.72) implies that in the

absence of backreaction the charge density at distances r ≫ r0 satisfies a log-periodicity

38This is completely analogous to the phenomenon of Efimov bound states [20, 48].
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property similar to (3.70):

rd−1⟨j0(r)⟩Rd ≃ (Λ−n r)d−1⟨j0(Λ−n r)⟩Rd for n ∈ Z . (3.73)

This property (3.73) was formerly noticed in [69]. It reflects the aforementioned cyclic RG

flow. In particular, there are nκ0 units of screening charge between some r ≫ r0 and Λ−n r,

for every n.39

Let us now define r1 to be the radius of the region inside which κ0 units of screening charge

are contained; while its precise value depends on the boundary condition, we generically expect

r1 ∼ r0/Λ. According to the aforementioned periodicity property, it is not until exponentially

larger distances r2 ≃ r1/Λ that an additional κ0 units of charge get screened. In between we

may thus safely assume that the Coulomb potential is well approximated by

A0 ≃
e2(q − κ0)

4πr
for r1 ≪ r ≪ r2 . (3.74)

This implies that in computing the radius r2 ≃ r1e
π/ν̃ we should use the value of ν̃ corresponding

to the backreacted gauge field (3.74). This is a small correction to r2 itself in the double-scaling

limit (3.2). We can now repeat this process self-consistently for r3, r4, etc., where rn denotes

the size of the region where nκ0 units of charge have been screened. In general, defining

ν̃(n) =

√
e4(q − nκ0)2

(4π)2
−m2 , (3.75)

this leads to the following the equation

log(rn/rn−1) =
π

ν̃(n)
. (3.76)

For a sufficiently supercritical charge (but still such that ν̃ ≪ 1) we may treat n as a continuous

variable and approximate (3.76) with a differential equation

dn

d log(r)
≃ ν̃(n)

π
=

1

π

√
e4(q − nκ0)2

(4π)2
−m2 , (3.77)

where −κ0n(r) is the amount of screened charged at distance r. We obtain the ratio rn/r0 by

integrating this equation:

log(rn)− log(r0) ≃
∫ n

0
dx

π√
e4(q−κ0x)2

(4π)2
−m2

=
4π2

e2κ0

[
cosh−1

(
q

qc

)
− cosh−1

(
(q − κ0n)

qc

)]
,

(3.78)

39To see this, consider introducing a mass M such that Mn+1 ≪M ≪Mn, for which thus nκ0 states dived

into the negative energy continuum. Such a deformation provides an IR cutoff to the radius of the screening

cloud at distances R ∼ 1/M with 1/Mn ≪ R ≪ 1/Mn+1. Consistency demands that there are exactly nκ0

units of screening charge for r ≲ R. By iteration of this argument for different n, we conclude that there must

be κ0 units of screening charge localized at distances R ∼ Λ−n r0 for every n.
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where we wrote the last line using the value for the critical charge qc = 4πm/e2. In particular

we obtain an estimate for the total radius of the screening cloud by setting q − κ0n = qc:

Rcloud ≃ r0 exp

[
4π2

e2κ0
cosh−1

(
q

qc

)]
≃ r0 exp

[
8π2

e2κ0

√
q − qc
2qc

]
, (3.79)

where we expanded for q/qc−1 ≪ 1. (3.77)-(3.79) were formerly derived in [68] via different, less

direct means. (3.79) predicts an exponentially large cloud in the limit where e is infinitesimal

and ν̃ = m
√
q2/q2c − 1 is fixed (and small). Note that the exponent in (3.79) is larger by

a factor of 2 than the naive estimate that does not account for backreaction R
(naive)
cloud ≃

exp
[
q−qc
κ0

π
ν̃(0)

]
≃ exp

[
4π2

e2κ0

√
q−qc
2qc

]
.

The extrapolation of the first equation of (3.79) to q ≫ qc predicts a power law increase

for the radius of the cloud Rcloud ∼ r0(2q/qc)
4π2/(e2κ0). In the future it would be interesting to

compare this behavior with a more accurate analysis of the screened line, beyond the regime

ν̃ ≪ 1. The numerical methods previously developed to study Fermi surfaces in AdS/CFT

[70–72] might prove useful in this context.

We finally comment on the generalization to fermions with charge qψ > 1. In this case

Wilson lines are screened to the largest possible value qIR ≤ qc, which is compatibe with the

condition that the charge difference q − qIR has to be quantized in units of qψ. In particular,

the IR limit of a supercritical Wilson line is always a non-trivial (as well as a non-topological)

defect, in agreement with the general constraints discussed in section 2.6.

4 Non-Abelian gauge theory

4.1 Non-Abelian saddle point

In this section we discuss the generalization of our analysis to weakly coupled non-Abelian

conformal gauge theories in 4d,40 focusing on the illustrative case of an SU(2) gauge group.

Schematically, the action of the models of interest is given by:

Lbulk = − 1

4g2YM
F aµνF

µν
a +

θ

32π2
F aµνF̃

µν
a +matter , (4.1)

where a = 1, 2, 3 and F aµν = ∂µA
a
ν − ∂νA

a
µ + εabcAbµA

c
ν . Relevant examples of such theories

include N = 4 SYM and the N = 2 SCFT with Nf = 4 hypermulitplets in the fundamental.

Our former analysis of the DCFT fixed points associated with a Wilson line in QED

crucially relied on expanding the gauge field around a “Coulomb”-like fixed point. To do the

same in the non-Abelian gauge theory we introduce a convenient representation of the line

operator. Consider a Wilson line in the (2s+ 1)-dimensional representation of SU(2)

Ws = Tr
[
Pei

∫
dxµAaµT

a
]
, (4.2)

40Former discussions of instabilities for Wilson lines in non-Abelian gauge theories can be found in [73–76].
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where T a form a spin-s representation of the SU(2) algebra. An equivalent representation

of the defect (4.2) can be given in terms of a bosonic SU(2) doublet z = {z1, z2} on the line,

subject to the constraint z̄z = 2s. In this formulation, the total action (bulk and defect) of

the defect quantum field theory (DQFT) reads

S = Sbulk +

∫
dτ

[
iz̄ż + z̄

σa

2
z Aaµẋ

µ

]
, z̄z = 2s , (4.3)

where σa are Pauli matrices and xµ(τ) is an affine parametrization of the line contour. The

action (4.3) is invariant under SU(2) gauge transformations, and thanks to the constraint it

is also invariant under the U(1) gauge transformations z → eiα(τ)z. We refer the reader to

[14, 77] for details on the equivalence between (4.2) and (4.3). In the representation (4.3), the

color matrices are given by the following bilinear operator:41

T a(τ) = z̄(τ)
σa

2
z(τ). (4.4)

Physically, the variable z is a quantum-mechanical representation of the color degrees of

freedom of the heavy probe modeled by the Wilson line.

The representation (4.3) makes it straightforward to generalize the analysis of the previous

sections to the non-Abelian case. Rescaling z →
√
sz we recast (4.3) as

S =
1

g2YM
Ŝbulk + s

∫
dt

[
iz̄ż + z̄

σa

2
z Aa0

]
, (4.5)

with z̄z = 2, where we pulled out explicitly the coupling in front of the bulk action Sbulk =

Ŝbulk/g
2
YM and we assumed a straight line at r = 0. It is then clear that we can work in the

double-scaling limit

g2YM → 0 , s→ ∞ with g2YMs = fixed . (4.6)

The saddle-point profile (assuming trivial values for the matter fields) takes the form

z = z0 = const. , Aa0 =
g2YMs

4πr
z̄0
σa

2
z0 . (4.7)

There is a S2 manifold of saddle-points: this is accounted for by the integration over the zero

modes which rotate the solution as z0 → Uz0, where U is an arbitrary element of SU(2),

modulo the U(1) gauge transformations. The integration over the zero modes has a trivial

effect on (gauge-invariant) correlation functions. If we take only the first component of z0 to

be non-zero we obtain A3
0 = g2YMs/(4πr), as in the Abelian case for charge q = s.

On the saddle-point (4.7) we may then effectively decompose the matter fields according

to their charge under the unbroken U(1) generated by the direction T a ∝ z̄0
σa

2 z0. For instance,

a field in the fundamental decomposes into components of charge −1 and charge 1, a field

in the adjoint has a neutral component and charge ±2 components, etc.42 The rest of the

analysis thus proceeds as in the Abelian case. In particular we find that

41More precisely, (4.4) involves a point splitting procedure T a = limη→0+ z̄(τ + η)σ
a

2
z(τ), see [14]. This

subtlety will not play a role in our analysis.
42We work in conventions such that U(1) charges are quantized in integer units.
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• A scalar in the 2S + 1 representation of SU(2) becomes tachyonic when
∣∣∣g2YMsS2π

∣∣∣ > 1;

• A fermion in the 2S + 1 representation of SU(2) leads to an instability for
∣∣∣g2YMsS4π

∣∣∣ > 1;

• The charged components of the vector bosons also become tachyonic when
∣∣∣g2YMs6π

∣∣∣ > 1

(see appendix C for the derivation).

Additionally, depending on the flavor group and the charge s of the line defect, several fixed

points may exist; these are connected by RG flows analogous to the ones discussed in the

Abelian case (including the one corresponding to screening).

The generalization to arbitrary gauge groups G is straightforward (still working in the

semi-classical large-representation limit as above). In some cases, like symmetric and anti-

symmetric representations of SU(N), there is a simple worldline action for the Wilson line as

in (4.3), while in other cases writing down a worldline action is more complicated (see, for

instance, [78, 79]). If the Wilson line is in a representation R, and ρ⃗R is the highest weight

vector of this representation, then without loss of generality we choose the Wilson line to

generate an electric field in the Cartan subalgebra going as A⃗0 = g2YM ρ⃗R/4πr (and we will

have zero modes that will rotate this inside the group as in the discussion above). Here we

normalized the roots to square to one, to agree with the SU(2) case discussed above. If we

have in the bulk a scalar field in a representation r with weights µ⃗r, then it obtains an effective

mass on AdS2 proportional to g2YM |ρ⃗R · µ⃗r|, and we have an instability whenever for some

component of this field this becomes larger than 2π. The analysis for fermions and gauge

bosons is similar with instabilities at 4π and 6π, respectively, as above.

For example, if we consider the SU(N) N = 4 SYM theory, where all fields are in the

adjoint representation, the first instability arises from the adjoint scalars, and specifically for

the scalar with µ⃗ = α⃗1 + · · ·+ α⃗N−1.
43 If we write the highest weight vector of the Wilson line

as ρ⃗R =
∑N−1

k=1 λkµ⃗k, where λk are non-negative integers and µ⃗k are the fundamental weights

of SU(N) (satisfying µ⃗k · α⃗j = δjk), then the instability arises when g2YM
∑N−1

k=1 λk = 4π. For

any fixed non-zero value of g2YM , only a finite number of Wilson line representations lead to

stable DCFTs.

The extrapolation44 of our results to the ’t Hooft large N limit with fixed g2YMN suggests

that we must consider representations with weights of order N in order to obtain instabilities.

We will discuss the holographic interpretation of this below.

43This is the generic case. For special weight vectors of the Wilson line, some other scalars will also become

unstable at the same time, but not before.
44Strictly speaking, the semiclassical saddle-point described in this section is only guaranteed to apply to

the large representation limit at small coupling g2YM with fixed N [34]. We nonetheless expect the qualitative

features of our results to survive in the ’t Hooft large N limit.
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4.2 Example: N = 4 SYM

Let us discuss in more detail the concrete example of the N = 4 SYM theory with gauge group

SU(2). As well known, the theory consists of 6 scalars Φi in the 6 of the SO(6) ≃ SU(4)

R-symmetry group, 4 Dirac fermions in the 4 of SU(4), and the non-Abelian gauge field

(which is not charged under the R-symmetry). All matter fields are in the adjoint of the gauge

group SU(2).

The N = 4 SYM theory has famous half-supersymmetric Wilson lines which involve a

coupling to the scalar fields that breaks the SU(4) R-symmetry; these always flow to stable

DCFTs, and we will discuss them more below. Here we consider Wilson lines that preserve

the SU(4) R-symmetry. This does not allow any coupling to single scalar fields on top of

(4.2), but scalar and fermion bi-linears are allowed.

Let us consider the (non-supersymmetric) Wilson line (4.2). According to the previous

discussion, all matter fields are stable around the saddle-point (4.7) as long as g2YM |s| ≤ 2π,

above which value the scalars develop an instability. It is instructive to analyze explicitly

defect operators in this setup. For concreteness, we will focus on scalar bilinears and consider

the case where standard boundary conditions are imposed on all fields. We denote the scalars

as Φai , where a is the SU(2) index and i is an SO(6) index. In the formalism of (4.3), we can

construct SU(2) invariants by contracting the SU(2) indices with the line color matrix T a,

and the most general gauge-invariant defect operators made from two scalars take the form:

O(1)
ij =

1

s2
ΦaiΦ

b
jT

aT b = O(1)
ji , (4.8)

O(2)
ij = ΦaiΦ

a
j −

1

s2
ΦaiΦ

b
jT

aT b = O(2)
ji , (4.9)

O(3)
ij =

1

s
εabcΦ

a
iΦ

b
jT

c = −O(3)
ji . (4.10)

Without loss of generality we can consider a saddle point such that T a = sδa3 , since the

zero-modes’ integration does not affect gauge-invariant correlators. Adapting to the U(1)

unbroken by the saddle-point (4.7), Φia can be written in terms of a neutral component

ϕ3i ≡ Φ3
i and a charge 1 complex field ϕ±i ≡ 1√

2

(
Φ1
i ± iΦ2

i

)
. In terms of this decomposition

the quadratic expansion of the operators in (4.8) is:

O(1)
ij = ϕ3iϕ

3
j + . . . , (4.11)

O(2)
ij =

(
ϕ+i ϕ

−
j + ϕ+j ϕ

−
i

)
+ . . . , (4.12)

O(3)
ij = i

(
ϕ+i ϕ

−
j − ϕ+j ϕ

−
i

)
+ . . . . (4.13)

From the analysis of the previous section we thus conclude that to leading order in the

double-scaling limit (4.6) the dimension of the defect operators is

∆
(
O(1)
ij

)
= 2 , ∆

(
O(2)
ij

)
= ∆

(
O(3)
ij

)
= 1 +

√
1−

g4YMs
2

4π2
. (4.14)
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We can also consider more general fixed points where some operators are instead relevant and

the SO(6) group is broken to a subgroup, analogously to the discussion in section 2.5.

Thus, as in the previous subsection, SO(6) preserving Wilson lines become unstable

to scalar condensation for g2YM |s| > 2π. The screening mechanism is completely analogous

to the one discussed for scalar QED with no quartic coupling; note in particular that the

screening cloud naturally aligns on a flat direction, such that the potential trivializes V ∼
Tr{[Φi,Φj ]2} = 0. Therefore the IR DCFT admits a nontrivial one-point function for the

scalar field, with a coefficient that depends on the initial charge and the boundary condition.

Such a coefficient therefore represents a marginal parameter in the double-scaling limit. We

expect that quantum corrections will lift this marginal direction. At a quantum level, the

R-symmetry group is preserved by the scalar cloud according to the discussion in subsection

2.5.

The generalization of our discussion to SU(N) gauge group is straightforward, with (4.2)

deformed by Φai T
aΦbjT

b and all the other possible billinears; the only difference is that for

N > 2 there are more than three independent bilinear operators.

We close this section with some comments on a well studied generalization of the standard

Wilson line (4.2), which also includes a coupling to the adjoint scalar:

WBPS
s = Tr2s+1

[
P exp

(∫
C
dt(iẋµAaµ + ζ|ẋ|Φa1)T a

)]
. (4.15)

The coupling to the scalar (conventionally chosen in the “1” direction) breaks the R symmetry

group to SO(5). For ζ = 1 the line (4.15) additionally preserves half of the supersymmetry

charges, and many exact results are available about this case [7, 78, 80–95].45 The coupling

ζ has a nontrivial beta function to one-loop order in perturbation theory, and there is a

nontrivial RG flow from the standard fixed point at ζ = 0 to the superconformal one at ζ = 1

[99] (see also [34, 79, 100, 101]).

Let us consider the operator (4.15) in the double-scaling limit (4.6). The main difference

with respect to the previous case is that the saddle-point (4.7) now also includes a nontrivial

scalar profile proportional to ζ:

Φai =
ζg2YMs

4πr
z̄0
σa

2
z0 . (4.16)

It is now straightforward to repeat the analysis in section 2.1 and compute the scaling

dimensions of the defect operators (4.8). Since to leading order in the double-scaling limit

the running of the scalar coupling in (4.15) is negligible, we can write the result for arbitrary

values of ζ. For
g4YMs

2

4π2

(
1− ζ2

)
< 1 the corresponding DCFT is unitary and the possible

values of the scaling dimensions are given by

∆
(
O(1)
ij

)
= 2 , ∆

(
O(2)
ij

)
= ∆

(
O(3)
ij

)
= 1±

√
1−

g4YMs
2

4π2
(1− ζ2) , (4.17)

45For a general approach to supersymmetric line defects in diverse dimensions see [96–98].
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where the sign in front of the square root for each operator depends on the boundary conditions

as before. Importantly, for ζ = 1 no value of s leads to an instability: this is a consequence of

the supersymmetry preserved by the line, which as well known ensures that the ground state

has zero energy. Additionally, for ζ = 1 there is always a unique Wilson line.

The final remark concerns the RG flow from ζ = 0 to ζ = 1 initially studied in [99]. Our

analysis shows that the starting point of such an RG flow is ill-defined for s > 2π/g2YM . The

running of ζ can nonetheless be analyzed for smaller values of s in the double-scaling limit

(4.6). This in general requires the analysis of one-loop corrections around the saddle-point

profile; see [34] for recent progress in this direction.

4.3 Holographic description

The SU(N) N = 4 SYM theory is famously dual to type IIB string theory on AdS5 × S5,

with a fixed weakly coupled string theory background appearing in the ’t Hooft limit of large

N with fixed g2YMN . Supersymmetric Wilson lines have been extensively discussed in this

context, but for the non-supersymmetric Wilson lines (4.2) the discussion has mostly been

limited to the fundamental representation. For that representation, as discussed in [102], the

Wilson line (4.2) maps to a string ending on the appropriate contour on the boundary of

AdS5, with Neumann boundary conditions for the S5 position of the string.46 This string is

stable under SO(6)-preserving deformations, consistent with our discussion above.

Our discussion suggests that instabilities should occur for non-supersymetric Wilson lines

with weights of order N . (The stability of Wilson lines in small representations follows simply

from the large N factorization of correlation functions.) Supersymmetric WLs with weights of

that order may be described by D-branes [78, 103, 104]; for instance, the supersymmetric WL

in the k’th anti-symmetric representation is described by a D5-brane wrapping an S4 ∈ S5

(and carrying some electric field that gives it the appropriate fundamental string charge). It

seems natural to conjecture that non-supersymmetric Wilson lines in representations with

weights of order N would be described by non-BPS D-branes wrapping the S5; for instance, the

straight anti-symmetric representation Wilson line may be described by a non-BPS D6-brane

on AdS2×S5 (with an appropriate electric field on AdS2). At large ’t Hooft coupling where the

S5 is weakly curved, any such non-BPS D-brane has a tachyonic instability, and it is tempting

to identify this with the instability discussed above; note that for large ’t Hooft coupling any

WL with weights of order N is expected to be unstable. Condensation of the tachyon in a

non-uniform fashion that breaks SO(6) to SO(5) can describe the flow to the supersymmetric

WLs, while the end-point of an SO(6)-preserving tachyon condensation is less clear. It would

be interesting to study further the holographic description of non-supersymmetric WLs in

various representations and their instabilities.

46As opposed to the supersymmetric Wilson loop that obeys Dirichlet boundary conditions.
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5 2+1 dimensional CFTs

In this section we analyze Wilson lines in 2 + 1 dimensional CFTs, focusing on Abelian gauge

theories. The main difference with respect to four-dimensional theories is that the standard

kinetic term F 2
µν for the gauge field is not conformal. Nonetheless, Abelian gauge fields lead

to interesting conformal fixed points in Chern-Simons theories or when they interact with

matter fields in certain strongly coupled models, some of which may be analyzed perturbatively

in a large Nf expansion. Additionally, it is possible to couple Abelian gauge fields in four

dimensions to matter fields confined on a three-dimensional interface, a setup that for instance

describes the long wavelength limit of graphene. We discuss several examples below.

5.1 Chern-Simons theories with and without matter

Here we review some of the properties of Chern-Simons theories with gauge group U(1) coupled

to a fermion or a scalar, and then study the Wilson line operators of these theories.

The Chern-Simons term at level k is given by

kSCS =
k

4π

∫
d3xϵµνρAµ∂νAρ . (5.1)

Without additional matter fields it describes a topological theory. Wilson lines with electric

charge q harbor magnetic flux −2πq/k. The magnetic flux is localized to the worldline. This

familiar fact can be reproduced by solving the equations of motion in the presence of the line

operator eiq
∫
dtA0 , leading to

k

2π
Fxy = qδ2(x⊥) , (5.2)

where x⊥ stands for the coordinates on the plane (x, y). In other words, we have a holonomy

in polar coordinates:

Aθ =
q

k
. (5.3)

Since there are no charged matter fields in this theory, Wilson lines with arbitrary q do not lead

to instabilities. Note that for q = nk, with n ∈ Z the Wilson line harbors an integer multiple

of the 2π flux unit, which is why such a line is transparent in the language of topological field

theory. Such a Wilson line is equivalent to a shift of the gauge field by an integral holonomy

Aθ → Aθ + n. Even in the presence of dynamical matter fields Φa (of any spin) an integral

holonomy Aθ = n does not have any physical consequence, as it can be eliminated via a field

redefinition of the form Φa → e−inθΦa. (Note that this redefinition preserves the boundary

conditions around the defect only for n ∈ Z.) More generally this implies that Wilson lines

with different charges in Chern-Simons matter theories are identified modulo k: q ∼ q + k.

This observation will be important in section 5.2.3.

Adding matter fields to (5.1) famously leads to a very rich set of nontrivial conformal

field theories in 2+1 dimensions. These theories can be analyzed perturbatively for k ≫ 1.

Let us consider adding Nf scalar fields Φi of charge 1 under the gauge symmetry and Nf
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Dirac fermions ψi of charge 1. There are four independent SU(Nf )-invariant marginal terms

in the bulk:

ψ̄iψ
iΦ†

kΦ
k , ψ̄iψ

jΦ†
jΦ

i , (ψ̄iψ̄jΦ
iΦj + ψiψjΦ†

iΦ
†
j) , (Φ

†
iΦ

i)3 . (5.4)

The system of beta functions was written in [105]. At large k and fixed Nf , there are

perturbative fixed points where all the couplings with fermions scale like 1/k while the sextic

coupling scales like 1/k2. Curiously, without fermions, no perturbative fixed points exist. In

the following we will not need to know the precise value of the couplings at which the fixed

points appear. The action reads

S = kSCS +

∫
d3x

[
|DΦi|2 + iψ̄i /Dψ

i +
α

k
ψ̄iψ

iΦ†
kΦ

k +
β

k
ψ̄iψ

jΦ†
jΦ

i

+
γ

4k
(ψ̄iψ̄jΦ

iΦj + ψiψiΦ†
iΦ

†
j)−

h

6k2
(Φ†

iΦ
i)3
]
,

(5.5)

where we normalized the couplings so that the coefficients α, β, γ and h are all O(1) at the

fixed points of interest.

Here we would like to make some observations about Wilson lines in these theories. Let us

consider a Wilson line of a charge q particle. This amounts to again deforming the action (5.5)

by −q
∫
A0δ

2(x⊥). It is convenient to normalize the fields Φ →
√
kΦ and ψ →

√
kψ. Then all

four vertices (5.4) become of order O(k) and hence the action admits a double scaling limit

for large k and fixed q/k:

S = k

{
SCS +

∫
d3x

[
|DΦ|2 + iψ̄ /Dψ + αψ̄iψ

iΦ†
kΦ

k + βψ̄iψ
jΦ†

jΦ
i

+
1

4
γ(ψ̄iψ̄jΦ

iΦj + ψiψiΦ†
iΦ

†
j)−

h

6
(Φ†

iΦ
i)3
]
− q

k

∫
d3xA0δ

2(x⊥)

}
.

(5.6)

The parameters α, β, γ, h are all O(1) in this normalization.

The classical solution we will be expanding about has Φ = 0, fermions in their ground

state, and the gauge field given by (5.3). The fluctuations around this background can be

analyzed by writing dropping nonlinear terms in the action as in section 2.1. Consider first

the scalar field. We decompose the field in components with different angular momenta as

Φ =

∞∑
ℓ=−∞

eiℓθ√
r
Rℓ(t, r) , (5.7)

where we can interpret the {Rℓ(t, r)} as the KK modes of the scalar for the theory on AdS2×S1.

Going to frequency space Rℓ(t, r) = e−iωtRℓ(r), the linearized equations of motion read

−∂2rRℓ +
−1

4 +
(
ℓ− q

k

)2
r2

Rℓ = ω2Rℓ . (5.8)
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The coefficient of the 1/r2 term in (5.8) corresponds to the AdS2 mass of the ℓ’th KK mode.

Since this coefficient is always greater than the BF bound, −1/4, for every ℓ and q/k, we

find there is no perturbative instability for the Wilson line. Note however that for q = 0 the

mass of the ℓ = 0 KK mode sits exactly at the BF bound, and thus may be destabilized by

arbitrary small perturbations. This observation will be important for the theories that we

analyze in the next subsections.

There is still more to say since the mode Rℓ admits two possible conformal boundary

conditions if |ℓ− q
k | < 1. Let us focus first on standard boundary conditions. Proceeding as

in the previous sections, from (5.8) we find the following scaling dimensions for (non-gauge-

invariant) defect operators:

∆(Dℓ
zΦ) =

1

2
+
∣∣∣ℓ− q

k

∣∣∣ , ∆(Dℓ
z̄Φ) =

1

2
+
∣∣∣−ℓ− q

k

∣∣∣ , (5.9)

where we denoted the transverse complex coordinate by z = x− iy (and z̄ = x+ iy). Note

that for small q/k (5.9) indeed corresponds to small corrections to the classical dimension
1
2 + |ℓ|.

Consider now deforming the action by quadratic terms corresponding to operators with

0 < |ℓ − q
k | < 1/2 . Since ℓ is integral, there is at most one ℓ satisfying |ℓ − q

k | < 1/2; we

denote it by ℓ0 and assume ℓ0 > 0 for simplicity. We can then deform the line operator by

δS ∝
∫
dtDℓ0

z ΦDℓ0
z̄ Φ†. This deformation is irrelevant, but formally it leads to a UV fixed point,

at which the scaling dimension is flipped for ℓ = ℓ0, i.e. ∆(Dℓ0
z Φ) = 1

2 − |ℓ0 − q
k |, while the

scaling dimension of the operators with ℓ ≠ ℓ0 remain the same as in the infrared fixed point.

The dimension of the bilinear Dℓ0
z ΦDℓ0

z̄ Φ† in the UV fixed point is 1− 2|ℓ0 − q
k | < 1, which is

positive only for |ℓ0 − q
k | < 1/2. Note however that as we change |q/k| quartic operators may

become relevant, and the fate of the ultraviolet fixed point has to be re-considered similarly

to section 2.2.

As in the analysis of 4d QED, we can ask what happens when we deform the ultraviolet

defect fixed point by a negative coupling double-trace deformation. Let us focus on the case

where | qk | < 1/2, so that the operator with flipped scaling dimension at the UV fixed point is

Φ†Φ. The perturbation we consider is given by (in Minkowski signature)

SDCFTUV → SDCFTUV + f1−∆
Φ†Φ

∫
r=0
dtΦ†Φ , (5.10)

where f > 0 and ∆Φ†Φ = 1− 2| qk |. As in four dimensions, this deformation leads to a classical

instability of the vacuum, and the new ground state is provided by a nontrivial solitonic

profile. This profile can be interpreted as an RG flow to a different, screened, defect. Unlike in

scalar QED4, here we do not solve for the RG flow numerically, and we content ourselves with

providing the endpoint of this flow, focusing on the theory with a single scalar and nonzero

sextic coupling h
6

(
Φ†Φ

)3
. In this case, a straightforward asymptotic analysis of the equations

of motion shows that at large distances from the defect both the electric and magnetic field

decay faster than 1/r2, where r is the distance from the defect, hence the gauge field is fully
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screened. Instead, the scalar decays according to a conformal scaling law with a coefficient

which does not depend on q:

⟨Φ†Φ(r)⟩ = h−1/2/2

r
for r ≫ f−1 . (5.11)

(5.11) represents a nontrivial one-point function for the scalar field, which Higgses the gauge

field close to the defect. Note that the coefficient is fixed in terms of the bulk coupling.47 The

subleading falloff of the scalar and the gauge field depend on the ratio h/(q/k) and we will

not discuss them here.

An analogous discussion concerns the fluctuations of the Dirac field. We find that no value

of q/k leads to an instability. In terms of the decomposition discussed in section 3.1, we see

that the holonomy (5.3) simply shifts the AdS2 mass of the (±, ℓ) mode as m
(±)
ℓ → m

(±)
ℓ ±q/k,

where m
(±)
ℓ = 1

2 + ℓ = |j| in terms of the angular momentum j ∈ 1
2 + Z. We conclude that

the scaling dimensions of defect operators corresponding to KK modes with different spin are

given by

∆j =
1

2
+
∣∣∣j + q

k

∣∣∣ , (5.13)

which for small q/k is a small perturbation of the free theory result. As in the scalar case,

when
∣∣j + q

k

∣∣ < 1/2 for some j = j0 there exists a UV fixed point on the Wilson line, which

flows to the infrared one via a double-trace deformation.

5.2 Large Nf critical points

5.2.1 QED3 with 2Nf fermions

Abelian gauge fields coupled to matter fields are expected to lead to several interesting

conformal fixed points. Perhaps the most interesting and well studied example is given by

QED3 with 2Nf charge 1 Dirac fields (complex fermions with two components):

L = i

2Nf∑
a=1

Ψ̄a

(
/∂ − i /A

)
Ψa , (5.14)

where we omitted the kinetic term for the gauge field, since it is irrelevant in the sense

of RG. The theory (5.14) enjoys a SU(2Nf ) internal symmetry and it is parity invariant;

Chern-Simons terms are therefore disallowed.

47Interestingly, we can represent the boundary conditions leading to (5.11) in terms of the following defect:

D = exp

[
iπ

∫
r=0

dtΦ†Φ

]
. (5.12)

To prove that the defect (5.12) indeed leads to (5.11) it is enough to take the variation of the scalar action

including the defect term (5.12). Upon regularizing the defect by introducing an infinitesimal thickness r0, to

be taken to zero at the end of the calculation, it is easily seen that the variations of both the boundary term

and the bulk action vanish on a solution of the form (5.11).

– 65 –



The model (5.14) is believed to flow to an interacting CFT, at least for sufficiently large

Nf . The theory (5.14) can be studied perturbatively in the ε-expansion [106] and in the large

Nf limit [107]. We will focus on the latter limit in what follows.

To leading order in Nf the fermions behave as free fields. The gauge field has a more

interesting large Nf limit instead. To see this, it is convenient to integrate out the fermions in

(5.14) and write a nonlocal action for the gauge field. In Euclidean signature this reads:

Seff [A] ≡ −2NfTr
[
log
(
/∂ − i /A

)]
= const. +

Nf

16

∫
d3k

(2π)3
Aµ(k)|k|

(
δµν − kµkν

k2

)
Aν(−k) + . . . ,

(5.15)

where in the second line we expanded around Aµ = 0 and computed the loop integral with

a gauge-invariant regulator. Therefore, to leading order in 1/Nf , the gauge field two-point

function is given by:

⟨Aµ(k)Aν(−k)⟩ = Nf
8

|k|

(
δµν −

kµkν
k2

)
+ gauge dependent terms . (5.16)

Equivalently, the result (5.16) can be seen as the resummation of infinitely many bubble

diagrams with fermion loops.

We now consider the theory (5.14) in the presence of a Wilson line. Upon integrating out

the fermions, the Euclidean action reads:

Sq[A] = −2NfTr
[
log
(
/∂ − i /A

)]
+ iq

∫
dτA0 , (5.17)

where the factor of i in front of q is due to the Euclidean signature of the metric and we

assume q ∼ Nf . The gauge field sourced by the Wilson line is determined by the following

nonlocal equation:
δTr

[
log
(
/∂ − i /A

)]
δAµ(x)

= iδµ0
q

2Nf
δ2(x⊥) . (5.18)

Because of conformal invariance, the field which solves (5.18) is Coulomb-like

Fτi = iE
xi

r3
, (5.19)

where E is a nontrivial function of q/Nf . For q/Nf ≪ 1, we can linearize the fluctuation

determinant using (5.15) and solve for E:

E =
4q

πNf
+O

(
q2

N2
f

)
. (5.20)

According to the general analysis in section 3.2.1, in the presence of the electric field

(5.19), the scaling dimensions of the single-trace defect operators with spin j = ±1
2 is given by

∆ =
1

2
+

√
1

4
− E2 . (5.21)
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Figure 11: Plot of the value of E (in blue) in (5.19) as a function of q/Nf (for q > 0) as

determined from (5.18). The red line corresponds to the linearized result in (5.20); as expected,

the two curves perfectly agree for small q/Nf .

When the electric field becomes as large as |E| = 1/2 the j = ±1/2 modes of the Dirac field

develop an instability. In the following we would like to determine the critical value of q/Nf

for which |E| = 1/2. Clearly, the linearized approximation (5.20) is not enough and we need

to solve the saddle-point equation (5.18) in the nonlinear regime.

To this aim, we have to compute the fluctuation determinant in (5.15) for arbitrary values

of E. This can be conveniently done by exploiting Weyl invariance to map the theory to

AdS2 × S1. We provide details on the calculation in appendix D. The result for E = E(q/Nf )

is shown in blue in figure 11, where we also compare with the linearization (5.20) (in red).

We find that the critical value for the instability is found at:∣∣∣∣E ( qc
Nf

)∣∣∣∣ = 1

2
=⇒ |qc|

Nf
≃ 0.56 . (5.22)

We also comment that the functional determinant develops an imaginary part for E > 1/2, in

agreement with the existence of an instability.

Note that the result for the critical charge in (5.22) is larger than the one obtained by

naively extrapolating the linear approximation (5.20). In particular, there are more than

Nf independent stable lines (counting both positive and negative values of q). An intuitive

justification for this fact is as follows. Imagine adding a mass term to the model (5.14) in a

maximally parity breaking form. As well known, integrating out all the fermions in this setup

results in a U(1)Nf Chern-Simons theory in the IR. The latter is a topological theory which

admits Nf independent Wilson lines. Therefore it is natural to expect that the number of

independent stable lines in the UV theory should also be at least Nf . Interestingly, the linear
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extrapolation (5.20) would give less than Nf stable lines (as easily read from the red line on

figure 11), which would lead to a tension with the above RG argument.

The most physically interesting value of Nf for the model at hand is Nf = 2 [108, 109].

In this case the result (5.22) suggests the existence of two nontrivial Wilson lines. It would be

interesting to analyze the effect of subleading corrections in 1/Nf for this prediction.

Finally, we comment that for 0 < |E| < 1/2 the j = ±1/2 modes admit alternate boundary

conditions on the line, and lead to several ultraviolet fixed points on the defect. Since the

fluctuation determinant in (5.18) implicitly depends on the boundary conditions of the Dirac

field at the defect, the relation between the electric field and q/Nf at these fixed points is

different than the one at the infrared fixed point shown in figure 11. It would be interesting

to determine the new curve, which is constrained to have the same endpoint at E = 1/2 as

the one in figure 11.

5.2.2 Comments on scalar QED3

We now consider theories with Nf ≫ 1 charged scalars Φa coupled to an Abelian gauge field:

L =

Nf∑
a=1

|DµΦa|2 − V (|Φa|2) , (5.23)

where Dµ = ∂µ − iAµ and we omitted again the kinetic term for the gauge field. The

theory (5.23) admits several multicritical fixed points in the large Nf limit depending on the

potential V (|Φa|2), which may break the SU(Nf ) symmetry, see e.g. [110]. Parity forbids a

Chern-Simons term as in (5.14).

As before, to leading order in Nf the dynamics of the gauge field follows from integrating

out the scalar fields in (5.23), leading to a propagator for the gauge field proportional to (5.16).

Below we briefly comment about the fate of Wilson lines in this class of theories.

Let us consider first the tricritical theory, which is defined by V (|Φa|2) = 0 at large Nf

[110]. It is easy to see that all Wilson lines are unstable in the double-scaling limit q → ∞,

Nf → ∞ with q/Nf = fixed. By conformal invariance, inserting a Wilson line results in a

Coulomb field of the form (5.19). For q = 0 the singlet scalar bilinear
∑

a |Φa|2 has dimension

∆ = 1 and provides a marginal deformation of the trivial line defect. Therefore the AdS2 mass

of the ℓ = 0 mode of the scalar sits exactly at the BF bound for q = 0, and for any value of

q ̸= 0 the electric field leads to an instability.48

The instability does not imply necessarily that Wilson lines are trivial in the infrared.

Indeed, as in subsection 2.5, for q ̸= 0 mod Nf the endpoint operators transform in a nontrivial

projective representation of PSU(Nf ). Therefore, even if the electric and scalar fields were

fully screened, there must be a 0+1 dimensional system on the line furnishing a representation

of SU(Nf ) with q mod Nf boxes. Since the operator in the adjoint of SU(Nf ) ΦaΦ
†
b−

1
Nf
δba|Φ|2

has scaling dimension 1 in the large Nf limit, it can couple to the 0+1 dimensional system

48Equivalently, this means that the one-loop determinant of the scalar fields is complex for arbitrary (real)

values of E [111].
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via a marginal coupling and one is required to consider 1/Nf corrections to understand the

true infrared limit, and whether there is a fixed point akin to the spin impurity fixed points

discussed in [14, 34, 112].

The situation is different in the presence of a non trivial potential. Consider in par-

ticular the critical theory which is obtained including a SU(Nf ) invariant deformation

V = λ(
∑

a |Φa|2)2. Via a standard Hubbard-Stratonovich transformation, the singlet scalar

bilinear
∑

a |Φa|2 is seen to have dimension ∆ = 2 for Nf → ∞ at the IR fixed point. For small

|q|/Nf the dimension of the singlet bilinear defect operator can be obtained perturbatively, i.e.

∆ = 2+O(q2/N2
f ), and no instability is expected until a critical value |q| = qc ∼ Nf . We thus

expect ∼ Nf stable Wilson lines at the critical fixed point.

As in the tricritical theory, for q ̸= 0 mod Nf we have a projective representation of

PSU(Nf ) living on the line, and again (around the trivial saddle-point Φ = Aµ = 0) there is a

marginal coupling due to the adjoint bilinear, which might be important to take into account

at the next order in 1/Nf .

In the future it would be interesting to compute the value of qc/Nf similarly to the

previous section in the critical theory with V = λ(
∑

a |Φa|2)2.49 This analysis might provide

hints about the fate of Wilson lines in the Nf = 1 theory, i.e. the Abelian-Higgs model.

Because of particle-vortex duality, Wilson lines in the critical Abelian-Higgs model should

correspond to defects in the O(2) model. Some implications of the duality for Wilson lines

were discussed in [113].

5.2.3 U(1)k with 2Nf fermions

As a final example, we consider the theory that we obtain upon adding a level k Chern-Simons

term to the action (5.14). In the presence of a charge q Wilson line the action reads

Sq =

∫
d3x

i 2Nf∑
a=1

Ψ̄a

(
/∂ − i /A

)
Ψa +

k

4π
εµνρAµ∂νAρ

− q

∫
dtA0 . (5.24)

The theory (5.24) admits a natural triple scaling limit for Nf ∼ k ≫ 1 with q/k (and hence

q/Nf ) fixed. We would like to determine for which values of q there is an instability of the

matter fields in this limit. To this aim we analyze below the response of the gauge field to the

Wilson line.

Despite the similarity with the action (5.14), the Chern-Simons term has a remarkable

consequence as explained in section 5.1: Wilson lines with different charges are identified

modulo k. We therefore need to analyze only Wilson lines with charges − |k|
2 < q ≤ |k|

2 .

Proceeding as in the previous section, the equation of motion for the gauge field in

Euclidean signature can be written as

2
δTr

[
log
(
/∂ − i /A

)]
δAµ(x)

− i
k

4πNf
εµνρFνρ = iδµ0

q

Nf
δ2(x⊥) . (5.25)

49To this aim, one would also need to compute the one-point function of the Hubbard-Stratonovich field

σ ∼
∑
a |Φa|

2 for q ̸= 0, since this contributes to the AdS2 mass of the fundamental fields similarly to [50].
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The most general solution consistent with conformal invariance is given by a Coulomb field

with a holonomy in the angular direction (which is allowed since the Chern-Simons term

breaks parity):

Fτr = i
E

r2
and Aθ = b = const. , (5.26)

where both E and b are functions of k/Nf and q/Nf . Note that the fluctuation determinant

Tr
[
log
(
/∂ − i /A

)]
is a periodic function of b according to the former discussion.

In the presence of the electromagnetic field (5.26), the scaling dimension of the defect

operator corresponding to the spin j KK mode of the fermion is given by

∆j =
1

2
+

√
(j + b)2 − E2 , j ∈ 1

2
+Z . (5.27)

The theory develops an instability towards charge screening when (j + b)2 −E2 < 0 for some

value of j.

When |q| ≪ |k|, Nf we can linearize the fluctuation determinant and find explicitly the

values of E and b which solve (5.25):

E ≃
4πNfq

16k2 + π2N2
f

, b ≃ 16kq

16k2 + π2N2
f

. (5.28)

It is less trivial to solve (5.25) for general values of q. In practice, rather than solving (5.25)

for fixed values of kR ≡ k/Nf and qR ≡ q/Nf , it is easier to do the opposite. Namely, given

a certain value of E and b for which (j + b)2 − E2 > 0 for all j ∈ Z + 1
2 , we determine the

values of k and q that solve (5.25). Since, as we explained before, an integral holonomy is

unphysical, it is enough to determine the region R in the (k, q) plane where b ∈ (−1/2, 1/2)

and |E| < 1/2− |b|, so that no mode is tachyonic.

In appendix D we compute numerically the functional determinant and determine the

region R. The result is perhaps surprising. We find that the region R spanned by the possible

values of (kR, qR) strictly includes the one specified by the inequality −|k|/2 ≤ q ≤ |k|/2,
which sets the number of independent Wilson lines. This implies that there exists at least

one real stable saddle-point solution to (5.25) for all Wilson lines (remember that q ∼ q + k).

Additionally, the region R includes points where |q| > |k|/2. Since the region R is obtained

by restricting the value of the holonomy to |b| < 1/2, via shifts of the form b → b ± n and

q → q ∓ kn, with n ∈ N, the points in R for which |q| > |k|/2 correspond to additional

saddle-points in the physical region |q| ≤ |k|/2. In other words, for certain values of q and k

there are multiple saddle-point solutions for the gauge field.

Our results are summarized in figure 12, where we separate the physical region |q| ≤ |k|/2
into smaller subregions according to the number of saddle-points found. Note that the number

of solutions corresponding to a given charge q increases as we lower |k|/Nf . We did not analyze

the question of stability of these saddle-points; we expect that the only stable saddle-points

at a nonperturbative level are those with the minimal absolute value for the holonomy b

(when restricting to −|k|/2 ≤ q ≤ |k|/2). It would be interesting to confirm or disprove this

expectation.
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Figure 12: In this plot we separate the (k/Nf , q/k) plane into different regions according to

the number of saddle-points; the legend on the right associates the color to the number of

solutions. The plot is restricted to the physical regions |q| ≤ |k|/2, and to 1/6 < k/Nf < 2.5;

a specular plot can be drawn for negative k.

In conclusion, in the theory (5.24) Wilson lines with different charges are identified modulo

k, because of the Chern-Simons term. We find that all Wilson lines are stable.

Wilson lines in various other Chern-Simons-Matter theories are of great interest as well

(e.g. due to the their connection with boson-fermion duality, holography etc). We do not

study them here. For some recent results see [114–117].

5.3 Graphene

It is well known that in a layer of graphene, due to its peculiar lattice structure, the quasi-

particles at the Fermi energy are described in terms of an effective Lorentz-invariant theory

consisting of four three-dimensional Dirac fermions moving at an effective speed vf ≈ 1/300

[118], in the usual relativistic units where the speed of light is set to one. Since vf ≪ 1, these

quasiparticles experience an enhanced coupling to the 3 + 1-dimensional Coulomb field [118]:

e2eff =
e2

vf
≫ e2 . (5.29)

Naively using the modified coupling in the formula for the Coulomb potential sourced by

a Wilson line, A0 =
e2eff q

4πr , the general analysis in section 3 implies that there should be an

instability towards charge screening for |q| ≥ |qc| = 2π/e2eff ≃ 0.2. This observation motivated

several works in the condensed matter literature, see [118] for a review. Of particular relevance

– 71 –



for us is the analysis of the screening cloud and the related resonances in [30, 68, 69], which

largely inspired our analysis in section 3.4. Remarkably, this instability and the corresponding

screening cloud were experimentally observed in [31] by introducing an external ion close to

the material layer.

In practice, the formula (5.29) neglects important polarization effects that arise because

of the strong interaction. To model these effects in a controlled setup it was proposed in [119]

to study a model of 2Nf ≫ 1 Dirac fields living on an interface coupled to the Coulomb field

A0:

S = − 1

e2

∫
dzd3x

1

4
(∂iA0)

2 + i

2Nf∑
a=1

∫
z=0

d3xΨ̄a

[
1

vf
γ0 (∂0 − iA0) + γi∂i

]
Ψa , (5.30)

where Ψa are Dirac fields as in section 5.2.1. The coupling to A0 is fixed by gauge-invariance

and breaks the emergent Lorentz-invariance on the interface. Note that the model (5.30)

neglects the spatial components Ai of the gauge-field since their interaction with the Dirac

quasiparticles is not enhanced by vf . For Nf = 2 (5.30) describes the low energy limit

of graphene, but following [119] we allowed for an arbitrary number of fermions. See also

[120, 121] for discussions of related models.

In the model (5.30) the bulk coupling e2 is given by the QED value and cannot be

renormalized by interactions with the fields on the interface. Due to the lack of Lorentz

invariance, the value of vf may instead be renormalized by interactions. It was shown in

[119] that the velocity vf , and thus the effective strength of the coupling (5.29), undergo a

nontrivial RG flow at order 1/Nf . The RG admits an IR relativistic fixed-point at vf → ∞
and a UV quantum critical point (corresponding to vf = 0) with Lifshitz scaling. Due to the

smallness of the measured value of vf , this suggests that the physical theory might display

approximate Lifshitz scaling.

In the following we will study the model (5.30) in the presence of a Wilson line of charge

q at x = y = z = 0. We will work in the triple-scaling limit defined by

Nf ∼ 1

e2eff
∼ q → ∞ with e2effNf ∼ e2effq = fixed . (5.31)

In this limit the running of the velocity vf can be neglected. We will use below the technology

that we developed in the analysis of QED3 in the large Nf limit to compute the critical charge

in this approximation.50

Wick rotating to Euclidean signature, we integrate out the fermions as in section 5.2.1 to

obtain the effective action for the gauge field

S[A] =
1

e2effv
2
f

∫
dzd3x

1

2
(∂iA0)

2 − 2NfTr
[
log
(
/̃∂ − i /A/vf

)]
+ iq

∫
dτA0 , (5.32)

50A former analysis of the Coulomb impurity problem in this model appeared in [122]; that work however

focused on charges q ≪ Nf ∼ 1/e2eff , in which case the fluctuation determinant in (5.34) can be linearized.

This is not possible for nearly critical electric fields, as figure 11 shows.
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where we defined ∂̃µ = {∂0/vf , ∂i}. The gauge field sourced by the line takes the form

A0 = vf Ā0 , Ā0 =
iE√
x2⊥ + z2

, (5.33)

which becomes critical for |E| = 1/2. The value of E is determined by the saddle-point

equation

∂2i Ā0 + 2e2effNf

δTr
[
log
(
/̃∂ − i /̄A

)]
δĀ0(x)

= i e2effq δ
2(x⊥)δ(z) . (5.34)

Since the rescaling t → t/vf leaves invariant the fermion one-loop determinant, we can use

the result(5.22) to find the critical value for the charge

|qc| =
1

2

4π

e2eff
+ 0.56Nf . (5.35)

The (unjustified) extrapolation of the result (5.35) to the physical theory, for which Nf = 2

and e2eff/(4π) = αEM/vf ≃ 2.2, gives |qc| ≃ 1.35, which is not too far from the experimentally

observed |qc| ≈ 2÷ 3 [31].

We finally mention that it is possible to consider other instances of charged matter fields

on a 3d interface or boundary coupled to a four-dimensional Abelian gauge field. This setup

often gives rise to a continuous family of BCFTs, parametrized by the gauge coupling e and

the θ angle of the theory [123]. We leave the analysis of Wilson lines in these theories for

future work.

6 ’t Hooft line operators

6.1 ’t Hooft lines in Abelian gauge theories

We discuss the case of 4 space-time dimensions, and take the gauge group to be U(1), with

matter fields that are some massless fermions and scalars with U(1) charges that we will

specify later. Such a theory admits a magnetic U(1) one-form symmetry, since the current

(⋆F )µν is conserved due to the Bianchi identity dF = 0. Furthermore, the one-form symmetry

operator e
iα

∫
Σ2

F
can be cut open in a straightforward fashion, by just allowing Σ2 to have a

boundary ∂Σ2. The non-genuine line operator on ∂Σ2 can be viewed as a Wilson line with

fractional charge.

Therefore, our considerations in subsection 2.6 imply that ’t Hooft lines in such theories

cannot be trivial, or topological. This is simply because the magnetic field cannot be screened.

Let us therefore make some remarks about the defect conformal theories arising from ’t Hooft

lines.

Inserting a ’t Hooft line representing the worldline of a monopole of magnetic charge n

leads to a boundary condition for the gauge field on a small S2 surrounding the ’t Hooft line,
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which can be written (up to gauge transformations) as:51

A =
n

2
(1− cos(θ))dϕ. (6.1)

In fact, setting all the matter fields to vanish and adopting (6.1) everywhere in space leads to

a solution of the equations of motion, and as before, we can now investigate the fluctuations

around this background.

We start from a scalar field Φ of charge q and we consider it in the background (6.1). We

separate the variables as usual Φ = eiωtY (θ, ϕ)1rR(r), and find that the function Y (θ, ϕ) has

to be a monopole spherical harmonic [124–126]:[
∆S2 −

qn/2

cos2(θ/2)

(
i∂ϕ +

qn

2

)]
Yqn/2,ℓm = −ℓ(ℓ+ 1)Yqn/2,ℓm . (6.2)

The Yqn/2,ℓm transform in the spin ℓ representation of so(3). Most importantly,

ℓ ∈ |qn/2|+ Z+ , (6.3)

which famously leads to ground state degeneracy in the presence of a monopole as it removes

the s-wave modes for nonzero qn. We can now turn to the radial equation, assuming the

angular part of the wave function is in a state with spin ℓ = |qn/2|. We obtain the radial wave

equation:

−∂2rR+
|qn|
2r2

R = ω2R . (6.4)

The potential is effectively always repulsive and there is no instability for any qn. The

dimension of the defect operator Φ†Φ is inferred from the behavior of R(r) near the origin, as

before

∆ = 1 + 2

√
|qn|
2

+
1

4
. (6.5)

We see that the already for the minimal ’t Hooft line with qn = 1 the dimension of the defect

operator is 1 +
√
3 which is larger than the bulk scaling dimension of Φ†Φ, which is 2. The

charged bosons therefore never furnish relevant or marginal operators on the ’t Hooft line,

unlike the case of the Wilson lines. (6.5) is a good approximation as long as e2, λ≪ 1, where

λ is the scalar quartic coupling. Note that unlike for Wilson lines, here no double scaling limit

is necessary.

The analysis of fermions around a ’t Hooft line is analogous. The Dirac equation for a 4

component fermion in spherical coordinates can be written as[
γ0
∂

∂t
+ γr

∂

∂r
+

1

r
γθ

∂

∂θ
+

1

r sin(θ)
γϕ(

∂

∂ϕ
− iqAϕ)

]
Ψ = 0 , (6.6)

51To see that n is an integer we consider the region near the south pole, where we have A ∼ ndϕ, which can

be interpreted as being due to a transparent solenoid if n is an integer. We adopted spherical coordinates

ds2 = dt2 −
[
dr2 + r2

(
dθ2 + r2 sin2(θ)dϕ2

)]
.
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acting on a four-component spinor with the following matrices:

γ0 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 , γr =


0 0 cos(θ) sin(θ)e−iϕ

0 0 sin(θ)eiϕ − cos(θ)

− cos(θ) − sin(θ)e−iϕ 0 0

− sin(θ)eiϕ cos(θ) 0 0

 ,

γθ =


0 0 − sin(θ) cos(θ)e−iϕ

0 0 cos(θ)eiϕ sin(θ)

sin(θ) − cos(θ)e−iϕ 0 0

− cos(θ)eiϕ − sin(θ) 0 0

 , γϕ =


0 0 0 −ie−iϕ

0 0 ieiϕ 0

0 ie−iϕ 0 0

−ieiϕ 0 0 0

 .

(6.7)

An important novelty compared to the boson, is that now there are modes with total angular

momentum |qn|/2 − 1/2 if |qn| > 0. This is the minimal achievable angular momentum.

These modes are often called “spinor spherical harmonics of the third type” and the explicit

formula in terms of the ordinary monopole harmonics with azimuthal angular momentum m

is (denoting µ = |qn|/2):

Ω
(3)
µ,µ−1/2,m =

−
√

µ−m+1/2
2µ+1 Yµ,µ,m−1/2√

µ+m+1/2
2µ+1 Yµ,µ,m+1/2

 . (6.8)

See [126] for an exposition to this subject. An ansatz for the solution of the Dirac equation is

Ψ = e−iEt 1r

(
F (r)Ω

(3)
µ,µ−1/2,m

iG(r)Ω
(3)
µ,µ−1/2,m

)
. The Dirac equation then reduces to dG

dr = EF , dFdr = −EG.

There are two independent solutions here, F = eiEr, G = −ieiEr and F = e−iEr, G = ie−iEr.

The doublet

(
F

G

)
is acted upon by the Hamiltonian H =

(
0 d

dr

− d
dr 0

)
. Since r = 0 plays the

role of a boundary, one needs to impose a boundary condition for the existence of a well-defined

variational problem (equivalently, the existence of a Hermitian Hamiltonian). Therefore we

require that 〈(F
G

)
,

(
0 d

dr

− d
dr 0

)(
F

G

)〉
=
〈( 0 d

dr

− d
dr 0

)(
F

G

)
,

(
F

G

)〉
(6.9)

The Hamiltonian is Hermitian if F ∗(0)G(0) is purely real. The most general admissible

solution is thus

F = AeiEr +Be−iEr , G = −iAeiEr + iBe−iEr , B = eiθ+iπ/2A , (6.10)

where θ is the θ-angle (not to be confused with the azimuthal coordinate). (The π/2 shift is a

convention.) For instance, assuming θ = 0 we get F ∼ cos(Er − π/4) and G ∼ sin(Er − π/4).

The falloff of the wave function near the origin allows us to read the dimensions of defect
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operators as usual. We can therefore interpret the coefficient A (or B) as an operator of

dimension 1/2.52

The conclusion is that for any non-zero n and q we have an operator of dimension 1/2 on

the defect and hence gauge-invariant marginal bilinears of dimension 1. In particular there is

a marginal bilinear of spin 0, which has a clear interpretation – it allows to change the θ angle

appearing in the boundary condition for the fermion in (6.10). The appearance of a θ angle

for monopoles in an Abelian gauge theory was noted already in [127]. We will soon see that

this angle has a very simple interpretation following from the symmetries of the theory.

Before discussing in more detail the θ angle and the corresponding marginal operator, we

would like to generalize our discussion of the boundary conditions corresponding to a ’t Hooft

line to arbitrary U(1) gauge theories.

In the background of a monopole with n units of magnetic field, a charge q left moving

4d Weyl fermion reduces (in its lowest angular momentum mode on S2) to nq left moving 2d

fermions if nq > 0 and −nq right moving fermions for nq < 0. Either way, they transform

in the spin (|nq|/2− 1/2) representation of SU(2), which indeed has |nq| components. (For

nq = 0 the special representations of spin (|nq|/2−1/2) do not exist.) These massless fermions

live on a half-infinite line r ≥ 0. We must therefore choose boundary conditions at r = 0.

It is useful to quickly review some facts about boundary conditions in 2d. For a recent

discussion of the connections between anomalies and boundary conditions see [128, 129].

Unless cL = cR no boundary condition which is time-translation-invariant exists. Similarly,

the Tr[U(1)]2 anomaly precludes the existence of a U(1)-preserving boundary condition and

the Tr[U(1)AU(1)B] anomaly precludes the existence of a boundary condition preserving both

U(1)A and U(1)B.

Since the ’t Hooft line has to be gauge-invariant, we must insist that a U(1)-preserving

boundary condition exists. The |nq| left moving fermions contribute to the Tr[U(1)]2 anomaly

nq × q2 = nq3 for q > 0, and the |nq| right moving fermions give −|nq3| for q < 0. Summing

them all up we have a condition equivalent to
∑
q3 = 0 over all Weyl fermions. Therefore,

as long as the original 4d gauge theory is consistent (free of gauge anomalies) we have no

obstruction to picking a gauge-invariant boundary condition at the ’t Hooft line.

For there to exist time-translational-invariant boundary conditions a necessary condition

is that the number of left and right moving fermions coincides, so that a 2d gravitational

anomaly is absent. This gives ∑
qi>0

|qi| −
∑
qi<0

|qi| = 0 . (6.11)

This is realized if the four dimensional theory has no anomaly of the form

∂jgauge ∼ (
∑

weyl fermions

qi)R ∧R . (6.12)

52For qn = 0, i.e. the trivial defect, the wave functions behave as sin(Er)/r for small r and the corresponding

defect operator has dimension 3/2, which is nothing but the original bulk fermion on the trivial defect.
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Traditionally, the 4d anomaly (6.12), which was first described in [130], is interpreted as

an obstruction to gauge invariance in curved space. Here we see that upon introducing a

’t Hooft line, it leads to an imbalance of left- and right-moving fermions and consequently,

obstructs the existence of time-translationally and rotationally invariant ’t Hooft lines. In

modern parlance the anomaly (6.12) should be described by a two-group symmetry involving

the magnetic one-form symmetry and Lorentz symmetry [131]. We conclude that it is not

possible to construct ’t Hooft lines that preserve rotational invariance and time translational

invariance in such theories with a two-group symmetry. (The calculation of the SU(2) rotation

symmetry anomalies is in section 5 of [32]. The conclusion is that if the theory is free of a

gauge anomaly and the two-group symmetry involving the magnetic one-form symmetry and

Lorentz symmetry is trivial, then there is no obstruction to choosing a boundary condition at

the monopole which is rotationally invariant.)

Next let us consider a global U(1)Q symmetry with charges Qi such that
∑
Qiq

2
i = 0, i.e.

it suffers from no ABJ anomaly (and thus it is a true continuous symmetry), but such that∑
Q2
i qi ≠ 0, namely, the global symmetry and the magnetic one-form symmetry furnish a

two-group [131]. It is easy to see that the 2d modes in the lowest angular momentum sector

have an anomaly Tr[U(1)Q]
2 ̸= 0 and hence no ’t Hooft lines can preserve U(1)Q. Any line

operator that violates a global symmetry leads to an exactly marginal “tilt” operator and

hence there would be exactly marginal tilt operators corresponding to such U(1)Q global

symmetries.

Let us now comment on the axial symmetry with charges QAi , for which there is an ABJ

anomaly in 4d
∑
QAi q

2
i ̸= 0. This anomaly removes the continuous symmetry in 4d. Depending

on the monopole charge, a discrete subgroup can be preserved by the monopole boundary

conditions. Furthermore, the θ angle in (6.10) couples to an operator that is marginal at tree

level, but already at the next order in e2 it becomes marginally irrelevant [32] (and references

therein). Indeed, since there is no continuous axial symmetry in 4d, there is no reason to

expect a tilt operator.

Let us summarize the main highlights about ’t Hooft lines in Abelian gauge theories:

• The axial symmetry leads to a marginal operator at tree level, but this operator and the

corresponding θ angle are irrelevant in the full theory.

• Unless
∑

i qi = 0, no ’t Hooft lines which are time independent and rotationally symmetric

exist.

• Bosons generally receive positive anomalous dimensions and do not lead to low-lying

operators on the defect.

• Exactly marginal defect operators arise from global U(1) symmetries which participate

in a nontrivial two-group with the magnetic one-form symmetry.
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6.2 ’t Hooft lines in non-Abelian gauge theories and S-duality

In weakly coupled non-Abelian gauge theories, to specify a ’t Hooft line, we can simply fix the

magnetic fluxes for the gauge fields in the Cartan sub-algebra [132, 133]. Then, expanding

around this classical solution with all the other fields vanishing, the main novelty that we

encounter compared to the Abelian theory is that we also have spin 1 massless charged fields

(the off-diagonal W-bosons).

Let us therefore generalize the discussion in the previous subsection to the problem of

charge q, spin s particles, with magnetic g-factor gm. We need to determine the centrifugal

barrier for these particles. The total angular momentum is made out of the angular momentum

ℓ and the internal spin s. The range of ℓ is like for the bosonic wave functions in the presence

of the unit monopole: ℓ = |nq|/2, |nq|/2 + 1, ....

The general result for the centrifugal barrier matrix is given by [126]

V =
ℓ(ℓ+ 1)− n2q2/4− 1

2nqgmr̂
aSa

r2
, (6.13)

where Sa are spin s representation matrices and r̂ is the unit vector. The eigenvalues of r̂aSa

in principle can be between −s,−s+ 1, .., s. However for the short representations with total

angular momentum j = ℓ − s which are possible for ℓ ≥ s, only a subset of these values is

realized, see for instance [134]: r̂S has to be +s for positive nq and −s for negative nq.

Without loss of generality, taking positive nq we find the centrifugal barrier for represen-

tations with spin |nq|/2− s is

V =
1

2
nq

1− gms

r2
. (6.14)

For scalars we have a repulsive centrifugal force exactly consistent with (6.4). For fermions

with the standard magnetic moment gm = 2 the numerator vanishes and we have no centrifugal

barrier, as we have seen in the previous subsection.

Now let us discuss charged vector bosons. If these vector bosons are approximately

fundamental particles, as they are in weakly coupled gauge theories, then we have gm = 2.

The discussion for vector bosons has to be split between the case of nq ≥ 2 and nq = 0, 1. In

the latter cases the special representation with spin nq/2− 1 which gives rise to (6.14) does

not exist and there are no relevant defect operators associated to the vector bosons. In the

case that nq ≥ 2 the formula (6.14) is valid, and we clearly see that the potential is attractive

with coefficient −1
2nq

1
r2
, which for nq ≥ 2 always leads to an instability of the vector bosons –

the bilinear operators associated to the vector bosons do not have a real scaling dimension,

similarly to the super-critical Wilson lines. This means that we have to condense vector bosons

with nq ≥ 2 and the infrared limit of such ’t Hooft lines remains to be determined.

Let us now consider some examples – for instance, the N = 4 SYM theory with gauge

group SU(2) and the N = 4 SYM theory with gauge group SO(3). Those theories have

supersymmetric ’t Hooft lines which are stable, but we discuss here the non-supersymmetric

SO(6)R-invariant ’t Hooft lines which couple only to the gauge field. For SU(2) the minimal

monopole has n = 1 and the vector boson charge is q = 2 (in units of the minimal charge).
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Therefore, even the minimal ’t Hooft line is unstable to W-boson condensation at weak

coupling, and deep in the infrared it presumably becomes trivial. (The cloud of W-bosons

that forms remains to be computed.) In the latter case, with gauge group SO(3), the charge

of the W-boson is 1 and hence in the background of the minimal ’t Hooft line n = 1 we have

no such instability and the minimal ’t Hooft line should furnish a healthy conformal defect.

Higher ’t Hooft lines are all unstable to W-boson condensation, though.53

These results are consistent with one-form symmetry. The SO(3) theory has a magnetic

Z2 one-form symmetry protecting the minimal ’t Hooft line while the SU(2) theory does not

have such a magnetic one-form symmetry and hence the ’t Hooft lines are unprotected.

Let us now make some comments about S-duality for the SO(6) R-symmetry invariant lines.

Let us start from the SU(2) theory. As we crank up the coupling constant on the conformal

manifold, we have seen that fewer and fewer Wilson lines remain as nontrivial infrared DCFTs.

Presumably at strong coupling only the unique Wilson line in the fundamental representation

remains, as it is protected by the electric Z2 one-form symmetry. By S-duality this should

map to ’t Hooft lines in weakly coupled SO(3) gauge theory. Indeed, we have just argued that

at weak coupling no ’t Hooft lines other than the minimal one exist. For the SO(3) gauge

theory, Wilson lines again gradually disappear as the coupling is cranked up, presumably

leaving none at strong coupling, consistently with the absence of any conformal ’t Hooft lines

in weakly coupled SU(2) gauge theory. Therefore, our results for the non-supersymmetric line

operators in N = 4 SYM theory are consistent with S-duality.
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A Details on scalar QED4

A.1 Defect propagator and double-trace deformation for subcritical charge

In this section we consider a charged field in AdS2, with Euclidean action:

Sbulk =

∫
AdS2

d2x
√
g
[
|DµΦ|2 +m2|Φ|2

]
, (A.1)

where Dµ = ∂µ − iAµ and Aµ = −iδ0µg/r is a subcritical Coulomb potential, i.e. such that

1 + 4m2 − 4g2 > 0. We assume g > 0 with no loss of generality. For such a model the near

boundary (r → 0) expansion of the operator Φ reads:

Φ ∼ αr1/2−ν + βr1/2+ν , (A.2)

where ν =
√
1/4 +m2 − g2 > 0. We will compute the propagator for the mode α at the

alternate quantization fixed point β = 0. We will then use this result to obtain the exact

propagator in the presence of a double-trace defect deformation of the form ∼ fᾱα. We

will finally argue that such a propagator displays a tachyon pole when the coefficient of the

deformation is negative. This signals an instability of the trivial vacuum Φ = 0, whose end

point we analyze in section 2.2.

We start by computing the propagator at the alternate quantization fixed-point. We

use the generating function approach, which is typically employed for AdS/CFT calculations

[135]. To this aim, differently from in the main text, we consider the theory with the following

Dirichlet boundary conditions in terms of the modes (A.2)

β(τ) =
1

ν
J(τ) , β†(τ) =

1

ν
J̄(τ) , (A.3)

where J is a complex fixed function that we will soon interpret as an external source. For

the action to be stationary with boundary conditions of the form (A.3) we add the following

boundary term:

Sbdry = lim
r0→0

∫
r=r0

dτ

[(
Φ†∂rΦ+ c.c.

)
− 1− 2ν

2r0
Φ†Φ

]
. (A.4)

The sum of the bulk action (A.1) and the boundary term (A.4) is finite on-shell and can be

written as

Sbulk + Sbdry|on−shell = ν

∫
dτ
[
β†(τ)α(τ) + α†(τ)β(τ)

]
=

∫
dτ
[
J̄(τ)α(τ) + α†(τ)J(τ)

]
,

(A.5)

where in the last step we used the Dirichlet conditions (A.3).
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We now follow the GKPW prescription and interpret the theory with Dirichlet boundary

conditions (A.3) as the deformation of the alternate fixed point by a complex source J for α

[136, 137]. It follows by Wick’s theorem that the propagator for the boundary field α at the

alternate quantization fixed point is

⟨α(ω)α†(ω′)⟩f=0 = 2πδ(ω − ω′)G(0)
α (ω) , G(0)

α (ω) = −
[
α(ω)

J(ω)
+
α†(ω)

J̄(ω)

]
, (A.6)

where α in G
(0)
α is obtained from the boundary limit of a regular solution of the bulk equations

of motion with boundary condition (A.3) for r → 0. The Fourier transform is defined according

to

α(τ) =

∫
dω

2π
e−iωτα(ω) , α†(τ) =

∫
dω

2π
eiωτα†(ω) , (A.7)

and similarly for J(τ), J̄(τ).

All that is left to do is to solve the Euclidean Klein-Gordon equation in a Coulomb

potential:

−r2(∂0 − iA0)
2Φ− r2∂2rΦ+m2Φ = 0 . (A.8)

Using A0 = −ig/r and setting Φ(τ, r) = e−iωτΦ(r), we find

−r2∂2rΦ+
[
m2 − (g + irω)2

]
Φ = 0 . (A.9)

The most general solution of (A.9) can be written as a linear combination of Whittaker’s W

functions:

Φ(r) = c1Wig,−ν(2rω) + c2W−ig,ν(−2rω) . (A.10)

In the following we focus on ω > 0. From Wx,y(z)
z→∞∝ e−z/2, we infer that regularity at

r → ∞ implies that we need to set c2 = 0 in (A.10). We then extract α and β from the

comparison of (A.2) with the expansion of the Whittaker’s function

Wx,y(z)
z→0∼ z

1
2
−y Γ(2y)

Γ
(
1
2 − x+ y

) + z
1
2
+y Γ(−2y)

Γ
(
1
2 − x− y

) . (A.11)

Similarly solving the equation for Φ†, we conclude

α(ω)

β(ω)
=
α†(ω)

β†(ω)
= (2ω)−2ν Γ(2ν)Γ

(
1
2 − ν − ig

)
Γ(−2ν)Γ

(
1
2 + ν − ig

) , ω > 0 . (A.12)

Note that α, β are not complex conjugates of α†, β† on the solution. The propagator then

follows from (A.6):

G(0)
α (ω) = (2ω)−2ν 4Γ(2ν)Γ

(
1
2 − ν − ig

)
Γ(1− 2ν)Γ

(
1
2 + ν − ig

) , ω > 0 . (A.13)

An important remark follows. Consider the Euclidean propagator (A.13) analytically

continued to complex values of ω = |ω|eiλ. We find that for g > 0 and 0 < ν < 1/2, the

imaginary part of the propagator vanishes for a value λ = λ∗ between 0 and π/2:

Im
[
G(0)
α (|ω|eiλ∗)

]
= 0 for 0 ≤ λ∗ < π/2 . (A.14)
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Additionally, such a zero is unique for −π/2 ≤ λ ≤ π/2. The property (A.14) follows by

noticing that the equation Im
[
G

(0)
α (|ω|eiλ∗)

]
= 0 is equivalent to

e4πg sin (2 (π − 2λ∗) ν)− 2e2πg sin (4λ∗ν)− sin (2 (π + 2λ∗) ν) = 0 . (A.15)

(A.15) is obtained by writing the ratio G
(0)
α /

[
G

(0)
α

]∗
using the identity Γ(1/2+x)Γ(1/2−x) =

π/ cos(πx) to simplify the Gamma functions. The unique solution of (A.15) for −π/2 ≤ λ ≤
π/2 can be written in a simple form in the limits g → 0 and g → ∞:

λ∗ =


0 +

π sin(πν)

2ν cos(πν)
g +O

(
g3
)

for g → 0

π

2
− sin(2πν)

2ν
e−2πg +O

(
e−4πg

)
for g → ∞ .

(A.16)

It can be checked that λ∗ monotonically grows from 0 to π/2 as g increases (with 0 < ν <

1/2). Note that the propagator (A.13) is real on the Euclidean axis for g = 0: G
(0)
α (ω) =

ω−2ν 22ν+1Γ(ν)
Γ(1−ν) > 0. We also find that the real part of the propagator is positive when the

imaginary part vanishes, Re
[
G

(0)
α (|ω|eiλ∗)

]
> 0.

We finally consider a double-trace defect deformation of the form

δS = f

∫
dτα†α . (A.17)

This deformation is relevant for ν < 1/2. The exact Euclidean propagator in this case can be

obtained from (A.6) by resumming the perturbative series in f , leading to the well known

result (see e.g. [39, 138]):

⟨α(ω)α†(ω′)⟩ = 2πδ(ω − ω′)Gα(ω) , Gα(ω) =
G

(0)
α (ω)

1 + fG
(0)
α (ω)

. (A.18)

The retarded propagator Gα,R is obtained by analytically continuing the Euclidean expression

from ω > 0 as

Gα,R(ωL) =

{
Gα(|ωL|e−i

π
2 ) for ωL > 0

Gα(|ωL|ei
π
2 ) for ωL < 0 .

(A.19)

The property (A.14) implies that, for f < 0, the retarded propagator analytically continued

to the upper half plane has a tachyon pole for Im(ωL) > 0 and Re(ωL) < 0. Such a pole

corresponds to a solution of the classical equations of motion with purely outgoing boundary

conditions which grows in time. Therefore it signals an instability of the vacuum. No such

pathology occurs for f > 0, in which case we can safely expand the result at small frequencies

ω/|f |
1
2ν ≪ 1 and find a result corresponding to an operator of scaling dimension ∆ = 1

2 + ν

(up to a contact term).

– 82 –



A.2 Tachyons for a supercritical Coulomb potential

In this section we study the Klein-Gordon equation for a charged field in AdS2 in an external

potential,

r2(∂0 − iA0)
2Φ− r2∂2rΦ+m2Φ = 0 , (A.20)

where we work in Lorentzian signature, such that A0 = g/r with g2 > 1/4+m2, corresponding

to a supercritical Coulomb potential. We will be particularly interested in the regime

ν̃ =
√
g2 −m2 − 1/4 ≪ 1. We introduce a cutoff at a small radius r = r0, and impose

the most general linear boundary condition on Φ as in (2.36):[
r∂rΦ−

(
1

2
+ f̂

)
Φ

]
r=r0

= 0 . (A.21)

In the following we show that the problem specified by (A.20) and (A.21) admits infinitely

many tachyonic solutions with negative real part of the frequency.

We consider the following solution to (A.20):

Φ ∝ e−iωtWig,iν̃(−2irω) . (A.22)

(A.22) behaves as Φ ∝ e−iωteiωr for r → ∞, and thus corresponds to purely outgoing boundary

conditions for Re(ω) < 0. The expansion for r ≪ ω−1 of the solution (A.22) takes the general

form

Φ ∼ αr1/2−iν̃ + βr1/2+iν̃ , (A.23)

where the ratio between the modes reads

α

β
= (−2iω)−2iν̃ Γ (2iν̃) Γ

(
1
2 − ig − iν̃

)
Γ (−2iν̃) Γ

(
1
2 − ig + iν̃

) . (A.24)

Focusing on ω ≪ 1/r0, we can express the boundary condition (A.21) in terms of the modes

(A.23). Using (A.24) and working at leading order in ν̃ ≪ 1, we find the condition:(
−2 c ω r0 e

iγ̃
)−2iν̃

= 1 , (A.25)

where we defined

γ̃ =
π

e2πg + 1
, (A.26)

and c is an O(1) positive number given by

c = exp

[
1

2
ψ

(
1

2
+ ig

)
+

1

2
ψ

(
1

2
− ig

)
− 1

f̂
+ 2γE

]
, (A.27)

with γE is the Euler-Mascheroni constant. (A.25) has infinitely many solutions given by

ωn = − 1

2cr0
e−iγ̃−nπ/ν̃ , n ∈ Z+ , (A.28)
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where we excluded n ≤ 0 since our approximations break down for ω ≳ 1/r0. Noticing that

0 < γ̃ < π/2 for g > 0 (as we assumed throughout this section), we see that the frequencies

(A.28) have Re(ωn) < 0 and Im(ωn) > 0. The corresponding solutions (A.22) thus grow in

time and signal an instability of the Φ = 0 saddle-point. For the physical case of the ℓ = 0

mode of a 4d scalar we have m = 0, thus (from the condition of small ν̃) g ≃ 1/2 and we find

Im(ωn) ≃ −0.13Re(ωn) for g = 1/2 . (A.29)

A.3 The effective potential from the soliton solution

In a semiclassical theory the connected generating functional W [J ] and one point function

Ā[J ] are:

W [J ] =

(
S +

∫
dt JA

) ∣∣∣
A saddle

,

Ā[J ] =
δW [J ]

δJ
,

(A.30)

where in the first line we used the saddle point approximation and set W(A) = 0 for simplicity,

cf. (2.32). (We will restore it later.) The Legendre transform of W [J ] is the 1PI effective

action:

Γ[Ā] =W [J [Ā]]−
∫
dt J [Ā] Ā , J [Ā] = −δΓ[Ā]

δĀ
. (A.31)

Now we specialize to constant Ā (and hence constant source J) and integrate the above

equation to get:54

Γ(Ā) ≡ T V(Ā) = −T
∫ Ā

0
dĀ′ J(Ā′) . (A.33)

Now let us determine J in terms of the quantities we know. The saddle point condition from

the first line of (A.30) is

0 =
δS

δA
+ J =⇒ J = −4νB(A) , (A.34)

where we used (2.13) combined with the fact that the phase of the scalar Φ is constant for the

soliton solution. Plugging this result back into (A.33) our final formula is:

V(Ā) = −4ν

∫ Ā

0
dĀ′B(Ā′)

= 4ν

∫ Ā

0
dĀ′ s(g)

(
Ā′) 1/2+ν

1/2−ν

= 4ν

(
1

2
− ν

)
s(g)

(
Ā
) 1

1/2−ν ,

(A.35)

54We can also obtain that

W (J) = T

∫ Ā(J)

0

dĀ′ (J − J(Ā′)
)
; (A.32)

we can verify that this equation solves the second line of (A.30) by taking the J derivative.
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which agrees with (2.32) with W(A) = 0. We can restore W(A) dependence by adding 4νW(A)

to S in (A.30) and the first line of (A.34), which then shifts J by 4νW ′(A), which upon

integrating over A as in (A.33) simply adds 4νW(A) to the result in (A.35) as stated in the

main text in (2.32).

A.4 Quantization of the screening cloud for a light massive scalar

In section 2.6 we proved that a line charged under a one-form symmetry cannot flow to a

topological line in the IR, if the topological operator implementing the one-form symmetry

can be cut-open. In this appendix we explore an application of this result to Wilson lines in

QED4 in the Coulomb phase with a charge qϕ > 1 massive scalar. Because of the one-form

symmetry, supercritical Wilson lines with charge q ̸= 0 mod qϕ cannot become topological

in the IR. We show how this expectation is borne out by explicitly quantizing the screening

soliton. We find that, for sufficiently small mass, the endpoint of the defect RG flow is a

Wilson line of charge qIR ̸= 0.

The action of the model we consider reads:

S =
1

e2

∫
d4x

[
|∂µΦ− iqϕAµΦ|2 −m2|Φ|2 − 1

4
F 2
µν

]
, (A.36)

where we take qϕ > 1 (integer), m2 > 0 and we neglected the quartic scalar vertex for

simplicity; this will not affect our considerations.

We now consider a Wilson line of charge q ≫ 1. As in section 2.3, we regulate this

insertion by cutting off space at a surface r = r0. As we will focus on distances r ≫ r0, the

detailed form of the boundary conditions at r = r0 will not be important for us.

In the massless limit, the trivial saddle-point A0 = e2q
4πr is unstable when the Wilson

line is supercritical for q > 2π/(qϕe
2) or when deforming the alternate quantization fixed

point by a double-trace operator with negative coefficient f . In both cases we schematically

denote Rcloud the radius of the screening cloud. For supercritical lines with ν̃ ≪ 1 this

scales as Rcloud ∼ r0e
π/ν̃ , where ν̃ =

√
e4q2ϕq

2/(4π2)− 1. For double-trace deformations it is

parametrically set by the coupling, Rcloud ∼ |f |1/(2ν̂), where ν̂ =
√
1− e4q2ϕq

2/(4π2).

A sufficiently large mass term m ≳ R−1
cloud sets an IR cutoff for the screening cloud. The

scalar therefore does not fully screen the Wilson line anymore, leaving a remnant Coulomb

field at distances r ≳ m−1 irrespective of the value of q mod qϕ. A quantitative analysis for

qϕ = 1 can be found in [59]. Quantum effects do not qualitatively change the IR limit of the

Wilson line (though they might change the value of the charge of the endpoint by an O(1)

amount for qϕ > 1).

In what follows we focus on the regime m≪ R−1
cloud. In this case, a naive extrapolation of

the analysis of the massless setup in sections 2.2 and 2.3 suggests that the Coulomb field of

unstable Wilson line is fully screened for every value of q and qϕ. We will see below that this

is not the case and that for distances larger than the Compton wavelength there is a nontrivial

electric flux, in agreement with the one-form symmetry charge.
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Consider first the theory in the presence of a charge q Wilson line, such that q/qϕ ∈ N.

In this case we do not expect any subtlety and we can describe the IR limit of the line defect

at distances r ≳ Rcloud via the effective description (2.47). As discussed in section 2.4, this

amounts to expanding the scalar field around a non-trivial solution of the equations of motion

in the presence of a source (2.45). In the massive case, up to gauge transformations, the profile

takes the following form

⟨Φ(r)⟩ = ⟨Φ̄(r)⟩ = hs(r)√
2
, hs(r) =

e2v

4π

e−mr

r
. (A.37)

We now quantize the zero modes of the theory in the background (A.37). We work in the

gauge Ar = 0. This completely specifies the gauge up to r-independent gauge transformations.

We define fluctuations as follows:

Φ =
hs(r)√

2
+ e

δϕ+ iδψ√
2

, A0 = 0 + e a0 , (A.38)

where δϕ and δψ are real and we neglected the angular components of the gauge field as these

will not play a role in what follows. The quadratic action then reads:

S ≃
∫
d4x

[
1

2
(∂µδϕ)

2 +
1

2

(
∂µδψ − qϕhs(r)a0δ

0
µ

)2 − m2

2

(
δϕ2 + δψ2

)
+

1

2
(∇a0)2

]
+ . . . .

(A.39)

The linearized scalar U(1) charge density is given by:

j0 = −iqϕ
∂L
∂Φ̇†

Φ+ c.c =
qϕ
e
hs(r)

(
δψ̇ − qϕhs(r)a0

)
+ . . . , (A.40)

which is normalized so that Q =
∫
j0 ∈ qϕZ, as we will see. (A.40) measures the charge density

at distance r ≳ Rcloud, since we are working in the effective intermediate energy description of

the line, where only the tail of the screening cloud is visible.

From (A.39) we derive the equations of motion for δψ and a0:

−∂2δψ + qϕȧ0hs(r)−m2δψ = 0 ,

∇2a0 + qϕhs(r)(δψ̇ − qϕhs(r)a0) = 0 .
(A.41)

In what follows we will need three nontrivial solutions of the equations (A.41). The first is

given by:

δψ ∝ hs(r) , a0 = 0 . (A.42)

This solution clearly corresponds to an infinitesimal U(1) rotation of the scalar profile (A.38).

To find the other, we set δψ = ȧ0 = 0 and consider the radial equation for a0:

1

r2
∂r
(
r2∂ra0

)
= q2ϕh

2
s(r)a0 . (A.43)

This equation can be solved numerically. It admits two solutions, which can be distinguished

by their behavior for r ≪ m−1:

a
(1)
0 (r)

mr→0∼ 1

rδ
, a

(2)
0 (r)

mr→0∼ 1

r1−δ
, (A.44)

– 86 –



where

δ =
1

2
+

1

2

√
1 + q2ϕ

e4v2

4π2
> 1 , (A.45)

so that a
(1)
0 is singular and a

(2)
0 is regular for r → 0. The solutions in (A.44) are exact in the

massless limit. For rm ≫ 1, both solutions take the asymptotic form a(i)(r) ∼ c
(i)
1 + c

(i)
2 /r,

where c
(i)
1 and c

(i)
2 are constants.55 We will not need the explicit expressions for a

(1)
0 (r) and

a
(2)
0 (r) in what follows.

For our purposes it is more convenient to consider the two nontrivial solutions of (A.43)

in terms of two linear combinations of the modes a
(1)
0 (r) and a

(2)
0 (r) in (A.44). The first linear

combination is such that the gauge field has no electric flux on the cutoff surface R0 ≳ Rcloud
for the effective defect field theory description. (R0 is not to be confused with the UV cutoff

r0.) We call this the normalizable solution. This is formally written as

a
(nor)
0 (r) = α1R

δ−1
0 a

(1)
0 (r) + α2R

−δ
0 a

(2)
0 (r) such that 4πr2∂ra

(nor)
0 (r)|r=R0 = 0 , (A.46)

where α1/α2 = (δ − 1)/δ for R0m≪ 1. Without loss of generality, we normalize α1 and α2 in

(A.46) so that

lim
r→∞

4πr2∂ra
(nor)
0 (r) = −1 , (A.47)

which because of Gauss’s law (A.43) implies

4πq2ϕ

∫ ∞

R0

dr r2h2s(r)a
(nor)
0 (r) = −1 . (A.48)

Importantly for what follows, when we take the massless limit m→ 0 at fixed r/R0, we have

α2 ∝ α1 → 0 for the integral in (A.48) to converge.

For future purposes we also define another linear combination ã0(r) of the solutions (A.44)

which has the same flux at r = R0 and at infinity:

4πr2∂rã0(r)|r=R0 = lim
r→∞

4πr2∂rã0(r) = −1 , (A.49)

that, because of Gauss’s law (A.43), imply

4πq2ϕ

∫ ∞

R0

dr r2h2s(r)ã0(r) = 0 . (A.50)

Explicitly this solution reads

ã0(r) = β1R
δ−1
0 a

(1)
0 (r) + β2R

−δ
0 a

(2)
0 (r) , (A.51)

where for R0m≪ 1 we have β1 = α1 + 1/(4δπ) and β2 = α2. Therefore in the massless limit

ã0(r) ∝ a(1)(r), which is regular at infinity.

We plot the schematic form of the dimensionless electric flux r2Ftr associated with

the solutions above in figures 13a and 13b. In the normalizable solution a(nor)(r), the flux

55Note that c
(i)
1 can be removed by a large gauge transformation involving δψ.
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Figure 13: The electric flux r2E = r2Ftr associated with the solutions a
(nor)
0 (r) (figure 13a)

and ã(r) (figure 13b) for different values of the mass m (in units of the cutoff R0). These

plots were obtained by setting
qϕe

2v
4π = 1.

continuously increases until distances r ∼ 1/m, at which it becomes constant. For the solution

ã(r) instead the electric flux first decreases, reaching a minimum, and then it starts rising and

asymptotically approaches a constant value. It is important to stress that the distance at which

the electric flux reaches its minimum increases as we make the mass smaller, rmin ∼ 1/m, and

it drifts to infinity in the massless limit.

When quantizing the theory, the two solutions (A.42) and (A.46) provide the zero-modes

inside the decomposition of the fields δψ and a0

δψ(t, x) = hs(r) x̂+wave-modes ,

a0(t, x) = eqϕ a
(nor)
0 (r) p̂+wave-modes .

(A.52)

To bypass the full quantization of the system (which would require solving also for the wave

modes) and directly find the commutation relation between x̂ and p̂, we impose the charge

action on Φ:

[Q,Φ] = qϕΦ =⇒ [δψ,Q] = iqϕhs(r) , (A.53)

where we linearized around the solution (A.37). From (A.40) and (A.48) we read the charge

operator

Q = −
4πq2ϕ
e

∫ ∞

R0

dr r2h2s(r)a0(t, r) = qϕp̂ . (A.54)

We conclude that at quantum level the operators x̂ and p̂ form a canonical pair

[x̂, p̂] = i. (A.55)

Remarkably, the decomposition (A.52) and the commutation relation (A.55) are all we

need to construct solitonic states with the properly quantized charge. Explicitly, we notice

that the phase of Φ is a compact field. When linearizing around the background (A.37), this
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implies that x̂ is defined only modulo 2π in (A.52). Therefore, calling |0⟩ the state such that

p̂|0⟩ = 0, we can construct the following quantum states

|n⟩ = einx̂|0⟩ for n ∈ N . (A.56)

(A.55) implies that

p̂|n⟩ = n|n⟩ , (A.57)

and therefore, using (A.54) we conclude that the states |n⟩ have quantized values for the gauge

charge in units of qϕ
Q|n⟩ = nqϕ|n⟩ . (A.58)

(A.58) implies that the screeneing cloud for the state |n⟩ has an extra qϕn units of charge with

respect to the ground state, which fully screens the Wilson line. The expectation value of the

gauge field and the charge density are similarly computed from (A.40) and (A.52). Note that

to linear order there is no difference in the expectation value of the scalar field profile between

a state |n⟩ and |0⟩; this is no longer true at higher orders.

We are finally ready to address the issue of screening of Wilson lines with charge /∈ qϕN.

To this aim, consider a Wilson line with charge q+δq, with q/qϕ ∈ N and δq an O(1) correction,

δq ≪ q. We model this setup by perturbing the scalar IR defect previously analyzed via the

following term

δSD = −δq
∫
dtA0 . (A.59)

This term induces a classical profile for the gauge field in addition to the quantized part. Thus

(A.52) is modified to:

δψ(t, x) = hs(r) x̂+wave-modes ,

a0(t, x) = eqϕa
(nor)
0 (r) p̂+ e δq ã0(r) + wave-modes .

(A.60)

where ã0(r) is the solution (A.49) which has the same flux at r = R0 and r → ∞ (cf. (A.49)

and figure 13b); by Gauss’s law thus, ã0(r) does not contribute to the total charge of the cloud.

It does however contribute to the electric flux, which for r ≫ m−1 on a state |n⟩ is given by

lim
r→∞

4πr2∂ra0(r)|n⟩ = −e (qϕn+ δq) |n⟩ . (A.61)

From (A.61) we conclude that when δq = 0 mod qϕ, the flux is fully screened on the

state | − δq/qϕ⟩. This state is obviously the energetically favored one. The expectation value

of the gauge field on this state reads

⟨a0(r)⟩ = δq e
[
ã0(r)− a

(nor)
0 (r)

]
=
e δq

4πδ
Rδ−1

0 a
(1)
0 (r) , (A.62)

where a
(1)
0 (r) is the mode which is singular for rm≪ 1 in (A.44). In figure 14 we show the

behavior of the resulting electric field (normalized by r to be dimensionless); as expected
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Figure 14: A log-log plot of the electric flux E = r2Ftr associated with the solution ã0(r)−
a
(nor)
0 (r) which describes the screened electric field for δq mod qϕ = 0. The plot corresponds

to
qϕe

2v
4π = 1.

the field vanishes at large distances. For rm ≪ 1 the flux decays as a power law according

to (A.44).

For δq ̸= 0 mod qϕ, instead, (A.61) implies that the electric flux cannot be fully screened

by the scalar field, in agreement with our expectation. In this case we expect the ground state

to be given by the state in which the maximal possible amount of charge has been screened at

infinity, 56 at least for sufficiently small m. The expectation value of the gauge field on this

state is a linear combinations of the two modes a
(1)
0 (r) and a

(2)
0 (r) in (A.44):

⟨a0(r)⟩ = e (δq − nqϕ) ã0(r) + nqϕ

[
ã0(r)− a

(nor)
0 (r)

]
= e

[
δq

4πδ
+ α1(δq − nqϕ)

]
Rδ−1

0 a
(1)
0 (r) + e α2(δq − nqϕ)R

−δ
0 a

(2)
0 (r) .

(A.63)

As evident from the plot 13b, the term e (δq − nqϕ) ã0(r) leads to a nontrivial electric field

which can be measured at large distances r ≫ 1/m.

We close this section with some comments on the massless limit, taken as m → 0 for

fixed r/R0. For a line such that q = 0 mod qϕ, this limit is smooth. Indeed in this case the

expectation value of the gauge field is given by (A.62), which for m = 0 reduces exactly to

the expression in (A.44), in agreement with the discussion in sections 2.3 and 2.4. For q ̸= 0

mod qϕ the gauge field (A.63) admits also a contribution proportional to a
(2)
0 (r). However,

according to the discussion below (A.46), the coefficients α1 and α2 become infinitesimal in the

massless limit. Thus from (A.62) and (A.63) we conclude that the electric flux, and more in

general the screening cloud, do not depend on the value of q mod qϕ for r ≪ m−1. Indeed, as

already commented, figure 13b shows that the electric flux constantly decreases for r ≪ 1/m.

Physically this behavior is due to the fact that the scalar wave-function is delocalized over

56For instance, we expect a Wilson line of supercritical odd charge q > 0 interacting with a charge 2 scalar

field to flow to a (positive) charge 1 Wilson line at distances r ≫ 1/m.
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distances of the order of the Compton wavelength. It is thus necessary to make measurements

at r ≳ m−1 to see the effects of the quantization of the U(1) charge of the matter field. In

the massless limit, the wave-function can be spread over arbitrary distances and it is possible

to store fractional units of charge at r → ∞.57 This is not in contradiction with the general

theorem proven in section 2.6, since the defect remains nontrivial at all scales also in the

massless limit due to the conformal one-point function for the scalar field (A.37).

The same general discussion remains true upon including a quartic coupling, which only

modifies the expressions for the solutions in (A.44). In particular analogous conclusions are

found for massive scalars, and Wilson lines charged under the one-form symmetry lead a

remnant Coulomb field at large distances. In the massless limit, one finds again the screening

cloud does not depend on the value of q mod qϕ. As remarked in section 2.6, this raises a

small puzzle, since the analysis in section 2.4 shows that all Wilson lines flow logarithmically

to a trivial one in the double-scaling limit. We plan to analyze this issue further in future

work.

B Details on fermionic QED4

B.1 Defect propagator and double-trace deformation for subcritical charge

In this section we compute the propagator of the defect operator α for the theory (3.19) at the

alternate quantization fixed point. We then use this result to compute the exact propagator

in the presence of a double-trace deformation as in (3.46). We argue that such a propagator

does not have a tachyon pole.

We start by computing the propagator at f = 0. We consider the action in Euclidean

signature

S =

∫
AdS2

d2x
√
g ψ̄

(↔
/∇AdS2 − gγ0 +m

)
ψ , (B.1)

where the Euclidean gamma matrices are given by γ0 = σ1 and γ1 = σ3.

To extract the propagator we pursue the generating function approach as in appendix

A.1. We consider the theory with Dirichlet boundary conditions in terms of the modes (3.26),

β(τ) =
m+ ν

ν
J(τ) , β̄(τ) =

m+ ν

ν
J̄(τ) , (B.2)

where J is an external Grassmanian function, which is interpreted as an external source.

The action is stationary with Dirichlet boundary conditions of the form (B.2) if we add the

following boundary term:58

Sbdry =
ν

m+ ν

∫
dτ
[
ᾱ(τ)β(τ) + β̄(τ)α(τ)

]
=

∫
dτ
[
ᾱ(τ)J(τ) + J̄(τ)α(τ)

]
, (B.3)

57This is the physical meaning of (A.63) in the massless limit, since α2 is infinitesimal while the solution

a(2)(r) ∼ rδ grows with the distance.
58This is just the Euclidean version of the term (3.31) in the limit r0 → 0; note however that its interpretation

is now different, as we are imposing Dirichlet conditions, rather than minimizing the action for arbitrary values

of the fluctuations.
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where in the last step we used the Dirichlet conditions (B.2).

Importantly, the fact that the bulk action is linear in derivatives implies that the on-shell

action coincides with the boundary term (B.3). We may thus follow the GKPW prescription

as in appendix A.1 and interpret the theory with Dirichlet boundary conditions (B.2) as the

deformation of the alternate fixed point by a complex source J for α [136, 137]. Then the

propagator for the boundary field α at the alternate quantization fixed point is59

⟨α(ω)ᾱ(ω′)⟩f=0 = 2πδ(ω − ω′)G(0)
α (ω) , G(0)

α (ω) = −
[
∂α(ω)

∂J(ω)
+
∂ᾱ(ω)

∂J̄(ω)

]
, (B.4)

where similarly to (A.6), α is obtained from the boundary limit (cf. (3.25)) of a regular

solution of the bulk equations of motion with boundary condition (B.2) for r → 0. The Fourier

transform is defined according to

α(τ) =

∫
dω

2π
e−iωτα(ω) , ᾱ(τ) =

∫
dω

2π
eiωτ ᾱ(ω) , (B.5)

and similarly for J(τ), J̄(τ).

To find the value of α(ω) to be used in (B.4) we thus need to solve the Euclidean

Dirac-Coulomb equation for ψ(τ, r) = e−iωτψ(r):[
(−iωr − g) γ0 +

(
r∂r −

1

2

)
γ1 +m

]
ψ = 0 . (B.6)

We set

ψ =


1

2
(ψ1 + ψ2)

i

2
(ψ1 − ψ2)

 , (B.7)

so that (B.6) reduces to

r∂rψ1 +

(
rω − ig − 1

2

)
ψ1 +mψ2 = 0 , (B.8)

r∂rψ2 +mψ1 +

(
ig − rω − 1

2

)
ψ2 = 0 . (B.9)

Using (B.9) to solve for ψ1 in terms of ψ2 and ∂rψ2, we find

ψ1 =
1

2m
[(1 + 2rω − 2ig)ψ2 − 2r∂rψ2] , (B.10)

and (B.8) reduces to

−r2∂2rψ2 +

[
m2 − (g + irω)2 + rω − 1

4

]
ψ2 = 0 . (B.11)

59G
(0)
α (ω) is the sum of α(ω) with J(ω) stripped off, and similarly for ᾱ(ω), just like in the scalar case

(A.6). Here we have to write the expression a bit differently from the scalar case, since we are dealing with

Grassmannian quantities.
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The most general solution to this equation is a linear combination of Whittaker W functions

ψ2 = c1Wig− 1
2
,ν(2rω) + c2W 1

2
−ig,ν(−2rω) . (B.12)

In the following we focus on ω > 0. From Wx,y(z)
z→∞∝ e−z/2, we infer that regularity implies

that we need to set c2 = 0 in (B.12). Comparing (B.7) with (3.25), we find that the r → 0

limit of ψ2 can be written as

ψ2
r→0∼ 2(g + iν)

ν +m− ig
βr

1
2
+ν +

2m

ν +m− ig
αr

1
2
−ν . (B.13)

We thus extract α and β by comparing with the expansion of the Whittaker’s function (A.11).

Performing the same steps also for ψ̄, we eventually find

α(ω)

β(ω)
=
ᾱ(ω)

β̄(ω)
= iω−2ν Γ(2ν)Γ (1− ig − ν)

m22νΓ(−2ν)Γ (−ig + ν)
, ω > 0 . (B.14)

Note that ᾱ/β̄ ̸= α†/β† on the solution. The propagator then follows from (B.4):60

G(0)
α (ω) = −2iω−2ν ν/m

m+ ν

Γ(2ν)Γ (1− ig − ν)

22νΓ(−2ν)Γ (−ig + ν)
, ω > 0 . (B.15)

For future purposes, we study the imaginary part of (B.15) for g > 0 and 0 < ν < 1/2.

First note that for g = 0, we find G
(0)
α (ω) = iω−2ν |c| where |c| > 0 is a constant. More

generally, we find that for g > 0 and 0 < ν < 1/2 the propagator (B.15) always has a positive

imaginary part for Re(ω) > 0:

Im(
[
G(0)
α (|ω|eiλ)

]
) > 0 for − π

2
≤ λ ≤ π

2
. (B.16)

We now consider a double-trace defect deformation as in (3.46). The exact Euclidean

propagator in this case can be obtained from (B.15) by resumming the perturbative series in

f as in (A.18):

⟨α(ω)ᾱ(ω′)⟩ = 2πδ(ω − ω′)Gα(ω) , Gα(ω) =
G

(0)
α (ω)

1 + fG
(0)
α (ω)

. (B.17)

The retarded propagator Gα,R is obtained by analytically continuing the Euclidean expression

from ω > 0 as in (A.19). Then the property (B.16) implies that the retarded propagator

analytically continued on the upper half plane Im(ω) > 0 has no singularities irrespectively

of the sign of f . In particular, there is no tachyon pole, differently than in the scalar setup

analyzed in appendix A.1. The expansion of (B.17) for ω/|f |
1
2ν ≪ 1 takes qualitatively the

same form for both signs of f , corresponding (up to a contact term) to an operator of scaling

60Note that the result (B.15) cannot be straightforwardly continued to ω < 0, since the fermion propagator

is discontinuous at ω = 0.
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dimension ∆ = 1
2 + ν.61 In conclusion, the defect fermionic propagator does not display any

pathology.

We also comment that, by numerically studying G
(0)
α (ω) for m = 1 and m = 1/2, and g

such that 0 < ν < 1/2, we found that the imaginary part Im(
[
G

(0)
α (|ω|eiλ)

]
) admits zeroes

for λ = π
2 + δm,g where δm,g > 0 is a numerically small number. For instance for m = 1 and

g = 0.9 we find δm,g ≃ 0.0016, while for g ≪ 1 and arbitrary m we find δm,g ≃ g2π. Such a

zero of the imaginary part implies a pole in the second sheet for the double-trace deformed

propagator (B.17) at f < 0, for Re(ω) < 0 and Im(ω) < 0. As commented in footnote 34, we

expect the imaginary value of ω on this pole to be associated with the lifetime of the unstable

vacuum after a negative double-trace defect deformation is suddenly turned on. It would be

interesting to investigate this connection further.

B.2 Massive Dirac-Coulomb equation for subcritical charge

In this section we study the AdS2 Dirac-Coulomb equation for the model (3.19) in the presence

of the deformation (3.48):[
i
(
/∂ − i /A

)
−m± i rγ3M

]
ψ(±)(t, r) = 0 , (B.18)

where m > 0, M > 0, A0 = g/r with g > 0 and we work in Lorentzian signature with the

gamma matrices given by (3.20) and (3.9). Note that the mass term M does not modify the

near-boundary behavior (3.25).

We are interested in finding bound states, i.e. solutions of (B.18) with energy ω such that

M2 > ω2. To this aim we follow [59] and set

ψ(±)(t, r) =
√
re−iωt

 e−
ρ
2

√
M ∓ ω

(
Φ
(±)
2 (ρ)± Φ

(±)
1 (ρ)

)
e−

ρ
2

√
M ± ω

(
Φ
(±)
1 (ρ)∓ Φ

(±)
2 (ρ)

)
 , (B.19)

where we defined

ρ = 2λr , λ ≡
√
M2 − ω2 . (B.20)

Using (B.19), (B.18) reduces to

∂ρΦ
(±)
1 +

(
gω

ρ
√
M2 − ω2

− 1

)
Φ
(±)
1 +

(
gM

λ
±m

)
Φ
(±)
2 = 0 , (B.21)

∂ρΦ
(±)
2 −

(
gM

λ
∓m

)
Φ
(±)
1 − gω

ρλ
Φ
(±)
2 = 0 . (B.22)

Solving (B.22) for Φ
(±)
1 as

Φ
(±)
1 =

λρ∂ρΦ
(±)
2 − gΦ

(±)
2 ω

gM ∓mλ
, (B.23)

61Note however that the propagator differs by a sign in both cases, hinting at a change in nature between

creation and annihilation operators and thus at a screening mechanism; we analyze this mechanism in section 3.3.
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we recast (B.21) in the form

ρ∂2ρΦ
(±)
2 + (1− ρ)∂ρΦ

(±)
2 +

(
gω

λ
− ν

ρ

)
Φ
(±)
2 = 0 , (B.24)

where ν =
√
m2 − g2. The solution of (B.24) that is regular for ρ→ ∞ (with ρ > 0) is written

in terms of a confluent hypergeometric function

Φ
(±)
2 (ρ) ∝ ρνU

(
ν − gω

λ
, 1 + 2ν; ρ

)
. (B.25)

We want to find the quantization condition on ω for the most general linear boundary

condition on the modes (3.25):

β/α =
m+ ν

ν
f = sgn(f)µ2ν , (B.26)

where we defined µ =
(
m+ν
ν |f |

)1/(2ν)
> 0 as the mass scale associated with the double-trace

perturbation. We are particularly interested in the consequences of a negative f in (B.26),

but we will study both signs for generality.

To proceed, we compare the solution (B.19) and (B.26) to rewrite the small ρ expansion

of Φ
(±)
2 in terms of α and β

Φ
(±)
2

ρ→0∼ β

(
ρ

2
√
M2 − ω2

)ν [ g

2(m+ ν)
√
M ± ω

∓ 1

2
√
M ∓ ω

]
+α

(
ρ

2
√
M2 − ω2

)−ν [ 1

2
√
M ± ω

∓ g

2 (m+ ν)
√
M ∓ ω

]
.

(B.27)

Using the expansion of the confluent hypergeometric function,

U(x, 1 + y; z)
z→0∼ z−y

Γ(y)

Γ(x)
+

Γ(−y)
Γ(x− y)

, (B.28)

we extract the ratio α/β from the comparison of (B.25) and (B.27):

β(±)

α(±)
=

4νλ2ν(M ∓ ω)[g(M ± ω)∓ λ(ν +m)]Γ(−2ν)Γ
(
1 + ν − gω

λ

)
Γ(2ν)Γ

(
−ν − gω

λ

)
[(νm+ ν2)M2 ±M (g2ω − νgλ)−mω(νω + gλ)−m2ω2]

.

(B.29)

Using (B.29), the boundary condition (B.26) provides a condition on ω from which we

infer the energies ωn of the bound states. Let us state the results for f = 0 and f → +∞:

• f → +∞: this sets α = 0, corresponding to standard quantization. We find

ωn =
M√

1 + g2

(n+ν)2

, (B.30)

where n = 1, 2, . . . for (δ) = + and n = 0, 1, 2, . . . for (δ) = −. (B.30) agrees with the

well known result for the relativistic Hydrogen atom [59].
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• f = 0: this sets β = 0, corresponding to alternate quantization. We find

ωn =
M(n− ν)√
(n− ν)2 + g2

, (B.31)

where again n = 1, 2, . . . for (δ) = + and n = 0, 1, 2, . . . for (δ) = −. Note that

ω0 = − ν
mM is negative. (B.31) is a new result to the best of our knowledge.

Increasing the coupling f from 0 to ∞ smoothly transforms the spectrum (B.31) into (B.30).

For a sufficiently negative f < 0 we instead encounter an interesting phenomenon: as we

increase µ in (B.26) the lowest bound state eventually reaches ω = −M and then dives into the

continuum part of the spectrum. To see this, we look for a solution of (B.26) with ω ≃ −M .

We expand the ratio (B.29) as:

β(±)

α(±)
= (gM)2ν

[
−c(±)

1 + c
(±)
2

ω +M

Mg2
+O

(
(ω +M)2

M2g4

)]
, (B.32)

where we defined the following coefficients

c
(±)
1 =

π 22ν(m± ν)

g sin (2πν) Γ(2ν)Γ(1 + 2ν)
, (B.33)

c
(±)
2 = c

(±)
1

ν

3

(
1− 4ν2 + 6m2 ∓ 3m

)
. (B.34)

Importantly, they are both positive for 0 < ν < 1/2:62 c
(±)
1 > 0 and c

(±)
2 > 0. Note also that

c
(+)
1 > c

(−)
1 . We define the critical value for µ as:

µ(±)
c ≡ gM

[
c
(±)
1

] 1
2ν
. (B.35)

For f < 0 and µ = µ
(±)
c − δµ with 0 < δµ≪ gM we can use the expansion (B.32) to solve for

the energy of the lowest bound state:

ω ≃ −M

{
1− 2δµ

M

ν g

c
(±)
2

[
c
(±)
1

]1− 1
2ν

}
. (B.36)

(B.36) clearly shows that as we lower δµ to 0 the energy eventually becomes −M , at which

point we have a completely delocalized bound state solution. This solution is sometimes

referred to as a diving state [59]. As we discuss in subsection 3.3, this phenomenon implies

that one unit of charge is screened in the vacuum for µ > µc. Note that µ
(+)
c > µ

(−)
c , as it

could have been intuitively expected since the lowest energy mode, n = 0, is absent from

(B.31) for (δ) = +; therefore it takes a stronger perturbation for (δ) = + than for (δ) = − to

make the lowest bound state join the negative continuum part of the spectrum.

62To see this one needs to use ν =
√
m2 − g2 and remember that we assumed m > 0 and g > 0 everywhere.

– 96 –



B.3 Massive Dirac-Coulomb equation for supercritical charge

In this section we solve for the diving states of the massive Dirac-Coulomb equation (B.18) in

the presence of the gauge field

A0 =


g

r0
for r < r0

g

r
for r ≥ r0 ,

(B.37)

where g > m > 0. We will be interested in the limit 1/r0 ≫M and ν̃ =
√
g2 −m2 ≪ 1.

The equation for ψ(±)(t, r) = e−iωtψ
(±)
< (r) for r < r0 reads[

r

(
ω +

g

r0

)
γ0 + i

(
r∂r −

1

2

)
γ1 −m± irγ3M

]
ψ
(±)
< (r) = 0 . (B.38)

In the limit of interest −ω ≃M ≪ g/r0, the above reduces to[
i

(
r∂r −

1

2

)
γ1 −m+ r

g

r0
γ0
]
ψ
(±)
< (r) ≃ 0 , (B.39)

whose solutions satisfying standard boundary conditions (3.68) for r → 0 are

ψ
(±)
< (r) ∝

 rJm+ 1
2

(
gr

r0

)
rJm− 1

2

(
gr

r0

)
 . (B.40)

The important conclusion for us is that the ratio between the two components at r = r0 is

independent of ω and M (cf. (3.22) for the notation):

χ
(±)
< (r)

ξ
(±)
< (r)

≃
Jm+ 1

2
(g)

Jm− 1
2
(g)

≡ Rg . (B.41)

A different potential for r < r0 might change the value of Rg, which would however remain

approximately independent of ω and M . For m = 1 we have Rg = 1/g − cot(g).

The solution ψ(±)(t, r) = e−iωtψ
(±)
> (r) for r > r0 is obtained as in appendix B.2 and can

be found by replacing ν → iν̃ in (B.23) and (B.25). The boundary condition arises from the

requirement of continuity at r = r0, which leads to

χ
(±)
> (r0)

ξ
(±)
> (r0)

=
χ
(±)
< (r0)

ξ
(±)
< (r0)

≃ Rg . (B.42)

For63 ωg ≪ 1/r0, we can express the outer solutions χ
(±)
> (r0) and ξ

(±)
> (r0) using the small r

mode expansion (3.64) and write the boundary condition (B.42) as

β

α
=

gRg −m− iν̃

g −mRg − iν̃Rg
r−i2ν̃0 , (B.43)

63This requirement arises since the expansion (3.64) holds for ωr ≪ 1.
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which in particular implies |α| = |β|. Proceeding as in the previous section, we find that the

ratio β(±)/α(±) for the solution ψ
(±)
> (r) at ω = −M reads

β(±)

α(±)
=

(m± iν̃) Γ(−2iν̃)

gΓ(2iν̃)
(2Mg)2iν̃ . (B.44)

We conclude that the condition to have a bound state with energy ω = −M reads

(2Mgr0)
2iν̃ = e2iν̃η

(±)
, (B.45)

where we defined the following real quantity for convenience

η(±) =
1

2iν̃
log

[
g (m− gRg + iν̃) Γ(2iν̃)

(m± iν̃) (g −mRg − iν̃Rg) Γ(−2iν̃)

]

=
Rg + 1

2m(Rg − 1)
∓ 1

2m
− 2γE +O

(
ν̃2
)
,

(B.46)

where γE is the Euler-Mascheroni constant. For us it is only relevant that η(±) does not

depend on ν̃ for ν̃ ≪ 1/2. The condition (B.45) can be conveniently written as

ν̃ log(2Mgr0) = ν̃η(±) − πn , n = 1, 2, . . . . (B.47)

where we excluded n ≤ 0 since the approximations leading to (B.43) break down for Mr0 ≳
O(1).64 The result (B.47) agrees with the classic analysis by Pomeranchuk and Smorodinsky

[21].

B.4 Massless Dirac equation for supercritical charge

In this appendix we study the massless Dirac equation in the presence of a supercritical

Coulomb potential (B.37): [
i
(
/∂ − i /A

)
−m

]
ψ(t, r) = 0 , (B.48)

where ψ(t, r) = e−iωtψ(r). The solution for r < r0 coincides with (B.40) (at small frequencies).

For r > r0 the equation in Fourier space coincides with the Euclidean equation (B.6) up to

the replacement ω → −iω. Therefore, writing the spinor as in (B.7), we obtain the following

equation for ψ2:

r2∂2rψ2 +

[
1

4
−m2 + irω + (g + rω)

]
ψ2 = 0 , (B.49)

while ψ1 is given by

ψ1 =
1

2m
[(1− 2ig − 2irω)ψ2 − 2r∂rψ2] . (B.50)

64In practice, an additional solution for M ≃ 1/r0, intuitively corresponding to n = 0 in (B.47), may exist

for different potentials at r < r0, somewhat similarly to the negative double-trace deformation discussed in

section 3.3.
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We first show that (B.48) admits infinitely many resonances in the negative energy

continuum. To this aim, we use the fact that the solution with purely outgoing boundary

conditions for Re(ω) < 0 reads

ψ(t, r) ∝ e−iωt

(
1
2mW 1

2
+ig,iν̃(−2irω) + 1

2W− 1
2
+ig,iν̃(−2irω)

i
2mW 1

2
+ig,iν̃(−2irω)− i

2W− 1
2
+ig,iν̃(−2irω)

)
for r > r0 , (B.51)

which behaves as ψ ∼ e−iωt+iωr for |rω| ≫ 1. From the expansion (A.11), we find that the

ratio between the small ωr modes (3.64) corresponding to the solution (B.51) is given by

β

α
= (−2iω)2iν̃

iΓ (−2iν̃) Γ (1− ig + iν̃)

mΓ (2iν̃) Γ (−ig − iν̃)
. (B.52)

Using this expression in the boundary condition (B.43) and working at leading order in ν̃ ≪ 1,

we obtain the following condition on the frequency ω:(
−2c ωr0e

−iγ̃)2iν̃ = 1 , (B.53)

where we defined

γ̃ =
π

e2πm − 1
, (B.54)

and c is an O(1) positive number given by

c = exp

[
1 +Rg

2m(Rg − 1)
+
ψ(1 + im) + ψ(1− im)

2
+ 2γE

]
. (B.55)

For m > log(2)
2π ≈ 0.11,65 we have 0 < γ̃ < π and (B.53) admits the following infinite family of

solutions with Re(ω) < 0:

ωn = − 1

2cr0
eiγ̃−πn/ν̃ , n = 1, 2, . . . , (B.56)

where the restriction on n arises from the requirement |ωnr0| ≪ 1, which is needed in order

to be able to use the expansion (3.64) at r = r0. The solutions (B.56) are resonances with

Re(ωn) ∼ Im(ωn) = − exp (−πn/ν̃) /r0 and correspond to poles of the retarded Green’s

function analytically continued to the second sheet. Note that by increasing m the imaginary

part becomes smaller. For m = 1/2 and m = 1, as appropriate for the ℓ = 0 modes in d = 3

and d = 4, we find a numerically small imaginary part

Im(ωn) ≃ Re(ωn)×

{
0.14 for m = 1

2

0.006 for m = 1 .
(B.57)

The result (B.56) was previously obtained in [30].

65This restriction applies in all the physical cases, since m0 ≥ 1/2 for d ≥ 3.
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We now find the scattering wave-functions. The most general solution of (B.49) is

ψ2 = β
2i (g − ν̃)

g + im− ν̃
(−2iω)−

1
2
−iν̃M− 1

2
+ig,iν̃(−2irω)

+ α
2im

g + im− ν̃
(2iω)−

1
2
+iν̃M 1

2
−ig,−iν̃(2irω) ,

(B.58)

where Mx,y(z) is the Whittaker M function and ψ1 is found from (B.50):

ψ1 = β
2m

g + im− ν̃
(−2iω)−

1
2
−iν̃M 1

2
+ig,iν̃(−2irω)

+ α
2g − 2ν̃

g + im− ν̃
(2iω)−

1
2
+iν̃M− 1

2
−ig,−iν̃(2irω) .

(B.59)

The coefficients α and β are chosen such that they precisely coincide with those in (3.64), as

can be seen using

Mx,y(z)
z→0∼ z

1
2
+y . (B.60)

The ratio β/α is thus determined by the boundary condition (B.43). In the following we

determine the absolute value |α| = |β| as well by demanding the orthonormality condition∫
dr
√
ggrrψ†

ω(r)ψω′(r) = (2π)δ(ω − ω′) , (B.61)

where ψω denotes the wave-function at frequency ω.

To compute the integral (B.61), we use that the Dirac equation (B.48) implies

(ω − ω′)ψ†
ω(r)ψω′(r) =

i√
ggrr

∂r
[√
ggrr ψ̄ω(r)γ

1ψω′(r)
]
. (B.62)

(B.62) and the continuity of the wave-functions let us express the integral (B.61) as a boundary

term ∫
dr
√
ggrrψ†

ω(r)ψω′(r) = i lim
r→∞

ψ̄ω(r)γ
1ψω′(r)

r(ω − ω′)

= lim
r→∞

ψ†
1(r)ψ

′
1(r)− ψ†

2(r)ψ
′
2(r)

2ir(ω′ − ω)
,

(B.63)

where we used (B.7) and we have to use ω′ in the primed spinors. To evaluate the limit, we

use the following expansion of the Whittaker function

Mx,y(z)
z→∞∼ ez/2z−xΓ(2y + 1)

Γ (1/2− x+ y)

[
1 +O

(
1

z

)]
+
e−

z
2 (−1)x−y+

3
2 zxΓ(2y + 1)

Γ (1/2 + x+ y)

[
1 +O

(
1

z

)]
,

(B.64)

from which we obtain

ψ1(r)
r→∞∼ α r1/2+igeirω(2iω)ig−iν̃A(ω)

[
1 +O

(
1

r

)]
, (B.65)

ψ2(r)
r→∞∼ iβ r1/2−ige−irω(−2iω)−ig+iν̃B(ω)

[
1 +O

(
1

r

)]
, (B.66)
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where

A(ω) =
β

α

2mΓ (1 + 2iν̃)

Γ (1 + ig + iν̃) (g + im− ν̃)
− i

2(2iω)2iν̃Γ (1− 2iν̃)

Γ (ig − iν̃) (g + im− ν̃)
,

B(ω) =
α

β

2mΓ (1− 2iν̃)

Γ (1− ig − iν̃) (g + im− ν̃)
+ i

2(−2iω)−2iν̃Γ (1 + 2iν̃)

Γ (iν̃ − ig) (g + im− ν̃)
.

(B.67)

Recall that the ratio β/α is an ω-independent phase given by (B.43). We notice that A(ω)

and B(ω) are log-periodic functions of ω

A(ω) = A(ωe±π/ν̃) , B(ω) = B(ωe±π/ν̃) , (B.68)

and that |A(ω)|2 = |B(ω)|2. We therefore find

lim
r→∞

ψ†
1(r)ψ

′
1(r)− ψ†

2(r)ψ
′
2(r)

2ir(ω′ − ω)

= lim
r→∞

esgn(ω)π(ν̃−g)
|A(ω)|2|α|2eir(ω′−ω) − |B(ω)|2|β|2e−ir(ω′−ω)

2i(ω′ − ω)
, (B.69)

where we kept only the leading terms in the expansion for ω → ω′, as the limit clearly vanishes

(in the distributional sense) when ω ̸= ω′. Finally, using |A(ω)|2 = |B(ω)|2 and |α|2 = |β|2,
we get

lim
r→∞

ψ†
1(r)ψ

′
1(r)− ψ†

2(r)ψ
′
2(r)

2ir(ω′ − ω)
= esgn(ω)π(ν̃−g)|A(ω)|2|β|2 lim

r→∞

sin [r(ω′ − ω)]

(ω′ − ω)

= esgn(ω)π(ν̃−g)|A(ω)|2|β|2πδ(ω − ω′) ,

(B.70)

and, from (B.63),∫
dr
√
ggrrψ†

ω(r)ψω′(r) = πesgn(ω)π(ν̃−g)|A(ω)|2|β|2δ(ω − ω′) . (B.71)

The normalization condition (B.61) is thus satisfied by setting

|β|2 = 2e−sgn(ω)π(ν̃−g)

|A(ω)|2
. (B.72)

Our result has an important consequence. Plugging (B.72) into the solutions (B.58) and

(B.59) and recalling the property (B.68), we infer

ψω(re
−πn/ν̃) ≃ e−πn/(2ν̃)ψωe−πn/ν̃ (r) , n ∈ Z . (B.73)

In practice, in our calculations we assumed ωr0 ≪ 1, and thus (B.73) holds only as long as

ωr0, ωe
−πn/ν̃r0 ≪ 1. As we explain in section 3.4, (B.73) has important implications for the

screening of supercritical lines when ν̃ ≪ 1.
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C Vector boson instability

In this section, we study perturbative instabilities for the vector bosons in a SU(2) gauge

theory, in the presence of a Wilson-line in a (2s+ 1)-dimensional representation. The result

was originally derived in [73, 74].

According to the discussion in section 4, we study the fluctuations for the gauge field in

the presence a background Coulomb potential in the third direction:

A3
0 =

g2YMs

4πr
. (C.1)

The equations of motion deriving from the action (4.1) are

∇µF aµν + εabcA
b
µg

µσF cσν = 0 , (C.2)

where as in sections 2 and 3 we work on AdS2 × S2, with metric

ds2 =
dt2 − dr2

r2
− dΩ2

2 . (C.3)

We are interested in the equation for the fluctuations A1
µ and A2

µ. It is convenient to define a

charged W -boson as

Wµ = A1
µ + iA2

µ . (C.4)

The linearization of the equation of motion (C.2) reads

Dµ (DµWν −DνWµ)− iWµFµν = 0 , (C.5)

where we defined an Abelian covariant derivative as

DµWν = (∇µ + iA3
µ)Wν , DµDνWρ = (∇µ + iA3

µ)DνWρ , (C.6)

and Fµν = ∂µA
3
ν − ∂νA

3
µ is the Abelian field strength associated with the Coulomb potential

(C.1). (C.5) is invariant under the linearized gauge transformations66

δWµ = Dµλ− λ3Wµ , δA3
µ = −∂µλ3 , (C.7)

where λ = λ1+ iλ2 and λ3 are infinitesimal parameters. λ carries the same charge as W , while

λ3 is neutral.

To proceed, we decompose Wµ = (Wa,Wi), where a, b, c, . . . denote AdS2 indices and

i, j, k, . . . the S2 indices. (C.5) then explicitly reads

DaD
aW i +∇k∇kW i −Ri

jW
j −∇i

(
DaW

a +∇jW
j
)
= 0 , (C.8)

Db(D
bW a −DaW b) +∇i∇iW a − iW bFb

a −Da∇iW
i = 0 , (C.9)

66To check this, one needs to use ∇µF
µν = 0.

– 102 –



where Rµ
ν is the Ricci tensor. In the following we choose the gauge

∇iW
i = 0 , (C.10)

which leaves a residual gauge freedom δWa = Daλ with ∇iλ = 0. Using (C.10) in (C.8) we

obtain ∇i(DaW
a) = 0. We thus can use the residual freedom to further impose

DaW
a = 0 . (C.11)

The conditions (C.10) and (C.11) ensure that (C.8) and (C.9) decouple. Note that (C.11) still

leaves a residual gauge freedom of the form

δWa = Daλ for λ such that DaD
aλ = 0 . (C.12)

This will be important in what follows.

The analysis of the first equation (C.8) is straightforward. The condition (C.10) is

compatible with setting

Wi =
√
gS2 εij∇jW T , (C.13)

where W T is a scalar. Then the W T equation reduces to the Klein-Gordon equation in a

Coulomb field

(DaD
a +∇i∇i)W T = 0 . (C.14)

The analysis of section 2.1 lets us conclude that the defect scaling dimensions are given by

∆ℓ =
1

2
± 1

2

√
1 + 4ℓ(ℓ+ 1)−

g4YMs
2

4π2
for ℓ = 1, 2, . . . , (C.15)

where the ℓ = 0 mode is excluded since it does not contribute to (C.13).

To analyze (C.9) we set Wa(t, r) = e−iωtwa(r) and solve the condition (C.11) in terms of

the components wa = (w0, wr)

w0 = i
wr

ω −A3
0

. (C.16)

Decomposing Wr into spherical harmonics

wr = e−iωt
∑
ℓ,m

Yℓ,m(n̂)wℓ,m(r) , (C.17)

we obtain

r2∂2rwℓ,m +
2A3

0

A3
0 − ω

r∂rwℓ,m +
[
r2
(
ω −A3

0

)2 − ℓ(ℓ+ 1)
]
wℓ,m = 0 . (C.18)

Looking for solutions in the form wℓ,m ∼ r∆ℓ−1, we again find the same ∆ℓ as in (C.15). In

this polarization (in the AdS2 directions) the ℓ = 0 mode solution is excluded because it is

equivalent to a shift of the form (C.12).

From the result (C.15) we conclude that the first instability is found for the ℓ = 1 modes

at

s =
6π

g2YM
. (C.19)
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D Details on Wilson lines in large Nf QED3

D.1 The saddle-point equations

In this section we provide details on the calculation of the gauge field sourced by a Wilson

line in large Nf QED3, with and without a Chern-Simons term. For the sake of generality we

consider right away the action with a Chern-Simons term (5.24). We thus want to extremize

the following Euclidean effective action for the gauge field

Sq[A] = −2NfTr
[
log
(
/∂ − i /A

)]
− i

k

4π

∫
d3xεµνρAµ∂νAρ + iq

∫
dτA0 . (D.1)

To proceed we consider the ansatz

Fτr = i
E

r2
and Aθ = b = const. . (D.2)

The ansatz (D.2) is dictated by conformal invariance; for k = 0 parity demands b = 0. It is

further convenient to exploit Weyl invariance to map the theory to AdS2 × S1. The one-loop

fermion determinant naturally decomposes into a sum over the contributions of the AdS2 KK

modes, labeled by the angular momentum j ∈ 1
2 +Z, as in section 3.1:

Tr
[
log
(
/∂ − i /A

)]
AdS2×S1 = Vol(AdS2)

∑
j∈ 1

2
+Z

Σj(E, b) . (D.3)

We defined Σj to be proportional to the one-loop determinant for the AdS2 Dirac operator in

a constant electric field

Vol(AdS2)Σj(E, b) = Tr
[
log
(
/∂ − i /A+ m̃j

)]
AdS2

, (D.4)

where the KK masses receive a contribution from the holonomy

m̃j = j + b . (D.5)

We factored out explicitly the AdS2 volume in (D.3) for future convenience. We will discuss

how to explicitly evaluate Σℓ and the infinite sum in (D.3) in the next section.

To conveniently write the last two terms in (D.1) we parametrize AdS2 using global

coordinates

ds2AdS2 = dσ2 + sinh2 σdϕ2 , (D.6)

and we choose the following gauge for the AdS2 gauge field

Aσ = 0 , Aϕ = i(coshσ − 1)E =⇒ Fσϕ = iE sinhσ . (D.7)

It can be checked that (D.7) is indeed equivalent to the electric field in (D.2). Then using

(D.7) we obtain

−i k
4π

∫
d3xεµνρAµ∂νAρ + iq

∫
dxµAµ = −i k

2π

∫
AdS2×S1

d3xFσϕb+ iq

∫
∂AdS2

dϕAϕ

= (kbE − qE)Vol(AdS2) .

(D.8)
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We used that the AdS2 volume in global coordinates is given by

Vol(AdS2) = 2π

∫ σc

0
sinhσ = 2π

[
eσc

2
− 1 +O

(
e−σc

)]
, (D.9)

where we introduced a (large) radial cutoff σc. As explained in [50], since Vol(∂AdS2) =

πeσc + O (e−σc), the terms proportional to eσc in the action can be absorbed into a defect

cosmological constant counterterm and thus we can replace Vol(AdS2) with its well known

regulated expression Vol(AdS2)|reg = −2π [139, 140].

Overall, from (D.3) and (D.8) we obtain

Sq[A]

Vol(AdS2)
= −2Nf

∑
j∈ 1

2
+Z

Σj(E, b) + k bE − q E , (D.10)

from which we obtain the saddle-point equations

2
∑

j∈ 1
2
+Z

∂Σj(E, b)

∂E
=

k

Nf
b− q

Nf
, (D.11)

2
∑

j∈ 1
2
+Z

∂Σj(E, b)

∂b
=

k

Nf
E . (D.12)

D.2 The fluctuation determinant via zeta function regularization

In this appendix we explain how to evaluate the fluctuation determinant (D.4), as well as its

derivatives in (D.11) and (D.12).

We start by commenting on two important properties of the sum in (D.11) as a function

of the holonomy b. From the definitions (D.4) and (D.5) it follows that

Σj(E, b± n) = Σj±n(E, b) for n ∈ Z . (D.13)

This implies that the sum ∑
j∈ 1

2
+Z

Σj(E, b) , (D.14)

is a periodic function of b with unit period, in agreement with the discussion on integral

holonomies in section 5. Additionally, we will soon see that Σ(E, b) is an even function of

both E and b. This implies in particular∑
j∈ 1

2
+Z

∂Σj(E, b)

∂b

∣∣∣∣
b=0

=
∑

j∈ 1
2
+Z

∂Σj(E, b)

∂E

∣∣∣∣
E=0

= 0 . (D.15)

This ensures that (D.12) is solved by b = 0 for k = 0, as expected from parity invariance. In

general, given a solution (E, b) of (D.11) and (D.12) for certain values (k, q), this implies that

(−E, b) is a solution for (−k,−q), (E,−b) is a solution for (−k, q) and (−E,−b) solves the
equations for (k,−q).
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To proceed, we express the determinant of the Dirac operator in a constant electric field

[111, 141] as an integral,

Σj(E, b) =

∫ ∞

−∞
dν µE(ν) log

(
ν2 − E2 + m̃2

j

)
, (D.16)

where µE(ν) is the appropriate hyperbolic spectral density67

µE(ν) = P

(
ν sinh(2πν)

4π [cosh(2πν)− cosh(2πE)]

)
; (D.17)

the prefix P specifies that the pole at ν = E in the spectral density should be integrated

according to the principal value prescription. (D.16) makes it clear that the effective action

develops an imaginary part for supercritical electric fields, i.e. when E2 > m̃2
j for some j.

Below we will focus on subcritical fields, for which (D.16) is real.

Even upon taking derivatives of (D.16) with respect to E and b, both the integration

over ν and the sums in (D.11) and (D.12) do not converge. We therefore need to regulate the

calculation. We decided to use zeta function regularization. This amounts to rewriting the

fluctuation determinant in (D.3) as

Tr
[(
/∂ − i /A

)]
AdS2×S1

Vol(AdS2)
= − lim

s→0

d

ds

∑
j∈ 1

2
+Z

Σ
(s)
j (E, b) , (D.18)

where

Σ
(s)
j (E, b) =

∫ ∞

−∞
dν

µE(ν)(
ν2 − E2 + m̃2

j

)s . (D.19)

The idea then is to compute the sum on the right hand-side of (D.18) for sufficiently large s,

so that both the integration and the sum converge, and then analytically continue the result.

In practice (D.18) and its derivatives can only be evaluated numerically. We sketch

below the strategy to evaluate the fluctuation determinant itself; the derivatives are computed

analogously.

First, we deal with the integral over ν. To this aim, we notice that the spectral density in

(D.17) admits the following asymptotic expansion for large ν

µE(ν) ∼
|ν|
4π

+O
(
e−2π|ν|

)
for |ν| → ∞ . (D.20)

We therefore define a subtracted spectral density

µ̃E(ν) = µE(ν)−
|ν|
4π

, (D.21)

67In [141] the determinant is given for an Euclidean electric field, in which case the spectral density receives

an additional discrete contribution; it can be checked that upon Wick rotating the electric field to be real in

Lorentzian signature, as in (D.2), the only effect of the discrete contribution is to introduce the principal value

prescription in (D.17).
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which decays exponentially for ν → ∞. We then separate (D.19) into two contributions

Σ
(s)
j (E, b) = Σ

(s,1)
j (E, b) + Σ

(s,2)
j (E, b) , (D.22)

where

Σ
(s,1)
j (E, b) = 2

∫ ∞

0
dν

ν

4π
(
ν2 − E2 + m̃2

j

)s = −

(
m̃2
j − E2

)1−s
4π(1− s)

, (D.23)

Σ
(s,2)
j (E, b) = 2

∫ ∞

0
dν

µ̃E(ν)(
ν2 − E2 + m̃2

j

)s . (D.24)

We evaluated the integral in (D.23) by analytically continuing the result for s > 1. Even

though we were not able to perform the integration in (D.24) in closed form, the integral

converges for arbitrary s since µ̃E(ν) = O(e−2π|ν|) for ν → ∞.

Next we isolate the divergent contributions to the sum from Σ
(s,1)
j (E, b) and Σ

(s,2)
j (E, b).

Grouping terms with opposite spin we have[
Σ
(s,1)
j (E, b) + Σ

(s,1)
−j (E, b)

]
div

= j−2s

[
j2

2π(s− 1)
+

−(1− 2s)b2 − E2

2π

]
,[

Σ
(s,2)
j (E, b) + Σ

(s,2)
−j (E, b)

]
div

=
4

j2s

∫ ∞

0
dν µ̃E(ν) ,

(D.25)

where the last integral can be evaluated numerically for arbitrary values of E. All we have to

do then is to write the sum we are interested in as∑
j∈ 1

2
+Z

Σ
(s)
j (E, b) =

∑
j>0

{[
Σ
(s,1)
j (E, b) + Σ

(s,1)
−j (E, b)

]
div

+
[
Σ
(s,2)
j (E, b) + Σ

(s,2)
−j (E, b)

]
div

}
+
∑
j>0

{
Σ
(s,1)
j (E, b) + Σ

(s,1)
−j (E, b)−

[
Σ
(s,1)
j (E, b) + Σ

(s,1)
−j (E, b)

]
div

}
+
∑
j>0

{
Σ
(s,2)
j (E, b) + Σ

(s,2)
−j (E, b)−

[
Σ
(s,2)
j (E, b) + Σ

(s,2)
−j (E, b)

]
div

}
.

(D.26)

The sum in the first line can be evaluated analytically in terms of generalized zeta functions.

The sums in the last two lines instead converge for s→ 0. Therefore their contributions to

(D.18) can be straightforwardly evaluated numerically. We do not report further details.

Finally we comment that for k = b = 0 it is also simple to compute (numerically)

the determinant of the Dirac-Coulomb operator (D.3) in dimensional regularization. As

a crosscheck, we verified that the results of zeta function regularization and dimensional

regularization agree in the overlapping regime. We also checked that the numerical result is

periodic as a function of b and satisfies (D.15).
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(a) (b)

Figure 15: In figure 15a we plot the curve C−(x) for x = 0.4, 0.3, 0.2, 0.1, 0.05, 0.01, while

in figure 15b we show both the curves C−(x) and C+(x) for x = 0.4, 0.2, 0.01.

D.3 Solving the saddle-point equations

We proved in the previous section that (D.12) is always satisfied for k = b = 0. In this case,

by computing numerically the left-hand side of (D.11) for 0 < E < 1/2, we obtain the curve

q(E)/Nf ; figure 11 is obtained plotting {E, q(E)/Nf}. By studying the limit of q(E) for

E → 1/2 from below we find the result (5.22).

For nonzero k it is harder to solve (D.11) and (D.12). We instead compute the sums on

the left-hand side of (D.11) and (D.12) as a function of E and b and use the result to read off

the corresponding values of k and q. Note that different values of E and b may correspond to

the same pair (k, q), i.e. multiple saddle-points may exist for the same value of the charge and

the Chern-Simons level. This is indeed what we find.

As explained in section 5.2.3, in order to decide what the stable Wilson lines are in the

theory at hand, we carve out the region R of solutions (kR, qR) to the equations (D.11) and

(D.12) for

−1/2 < b < 1/2 ∩ |E| < 1/2− |b| , (D.27)

where the latter condition comes from the requirement of stability. By symmetry, it is enough

to focus on E > 0. To determine the boundary of the region it turns out to be convenient to

span the (E, b) plane using the curves defined by

c±(x) =
{
(E, b) such that (±1/2 + b)2 − E2 = x2 ∩ ∓b > 0

}
. (D.28)

In some sense, the curve c±(x) specifies all points in the (E, b) plane which are equidistant

from an instability of the j = ±1/2 mode. The restriction on the sign of b ensures that the

two curves do not intersect.

Let us call C±(x) the set of solutions (k, q) to (D.11) and (D.12) for the values of (E, b)

which lie on the curve c±(x). The C±(x) are thus curves on the (k, q) plane. Examples of the

curve C−(x) for different values of x are shown in figure 15a. The symmetry properties of the

equations imply that C+(x) is obtained by mirroring C−(x) around the k axis. Interestingly for
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(a) (b)

Figure 16: In figure 16a we plot the curve C−(x) as x approaches 0. In figure 16b we compare

the curve C−(x) to the line q/Nf = 1
2 |k|/Nf +

1
2 for x→ 0 and k/Nf > 0.

x sufficiently small the curve C−(x) intersects the k = 0 axis at two different points. For x→ 0

the first intersection point approaches (k/Nf , q/Nf ) = (0, 1/2),68 while the second intersection

point approaches the critical value determined in (5.22), namely (k/Nf , q/Nf ) ≃ (0, 0.56). We

also notice that the curves C−(x) and C+(x) intersect each other at two other points, see

figure 15b.

It can be seen by changing x from 1/2 to 0 that the curves C±(x) cover the full region

below the curve specified by the union of limx→0C−(x) and limx→0C+(x). As figure 16a

shows, as x→ 0, the curve C−(x) approaches a limit that is composed of two parts: a generic-

looking curve that starts at (k/Nf , q/Nf ) ≃ (0, 0.56) and ends at the point (k∗/Nf , q
∗/Nf ) ≃

(1/π, 0.34), and a second part that is a straight line that we conjecture to be q/Nf = 1
2 |k|/Nf+

1
2 ,

see plot 16b.

By considering the union of the two curves discussed above we obtain the region R in

figure 17. Note that the region R strictly includes the one specified by |q| ≤ |k|/2 and marked

by red on the plot. Hence all physical Wilson lines correspond to at least one perturbatively

stable saddle-point.

As explained in the main text, the points in R for which |q| > |k|/2 correspond to

additional saddle-points in the physical region |q| ≤ |k|/2. To determine the value of q to

which a saddle-point (q∗, k) with |q∗| > |k|/2 corresponds to, we simply need to perform a

shift q∗ → q∗ − kn ≡ q (which is accompanied by the shift b∗ → b∗ + n), with n ∈ Z, such
that |q| < |k|/2. Note that for each point (q∗, k) in R there is a single value of n ∈ Z such

that |q∗ − kn| < |k|/2 is in the physical region.

In practice, we consider the upper and lower boundary curves q±(k) of the region R. We

then draw the shifted curves q±(k)∓k, q±(k)∓ 2k, q±(k)∓ 3k; the intersection of these curves

separates the physical region |q| < |k|/2 of the (q, k) plane into subregions according to the

number of saddle-points. The result of this geometrical procedure is shown in the main text

in figure 12.

68We determined the value of the intersection point analytically by studying the fluctuation determinant for

b→ ±1/2.
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Figure 17: Plot of the region R specified by the solutions (kR, qR) of (5.25) for b ∈ (−1/2, 1/2)

and E < 1/2− |b|; the plot is restricted to q > 0 since the region is symmetric for q ↔ −q.
For |k|/Nf ≳ 0.061 the boundary of R is a straight line q/Nf = 1

2 |k|/Nf + 1
2 , while for

|k|/Nf ≲ 0.061 the boundary is curved (despite appearances). In red we plot the line

q = |k|/2.
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[2] M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04

(2016) 091 [1601.02883].

[3] D. M. McAvity and H. Osborn, Energy momentum tensor in conformal field theories near a

boundary, Nucl. Phys. B 406 (1993) 655 [hep-th/9302068].

[4] K. Jensen and A. O’Bannon, Constraint on Defect and Boundary Renormalization Group Flows,

Phys. Rev. Lett. 116 (2016) 091601 [1509.02160].

[5] I. Affleck, Conformal field theory approach to the Kondo effect, Acta Phys. Polon. B 26 (1995)

1869 [cond-mat/9512099].

[6] G. Cuomo, Z. Komargodski and A. Raviv-Moshe, Renormalization Group Flows on Line

Defects, Phys. Rev. Lett. 128 (2022) 021603 [2108.01117].

[7] A. Lewkowycz and J. Maldacena, Exact results for the entanglement entropy and the energy

radiated by a quark, JHEP 05 (2014) 025 [1312.5682].

[8] H. Casini, I. Salazar Landea and G. Torroba, Entropic g Theorem in General Spacetime

Dimensions, Phys. Rev. Lett. 130 (2023) 111603 [2212.10575].

– 110 –

https://doi.org/10.1103/RevModPhys.91.015002
https://arxiv.org/abs/1805.04405
https://doi.org/10.1007/JHEP04(2016)091
https://doi.org/10.1007/JHEP04(2016)091
https://arxiv.org/abs/1601.02883
https://doi.org/10.1016/0550-3213(93)90005-A
https://arxiv.org/abs/hep-th/9302068
https://doi.org/10.1103/PhysRevLett.116.091601
https://arxiv.org/abs/1509.02160
https://arxiv.org/abs/cond-mat/9512099
https://doi.org/10.1103/PhysRevLett.128.021603
https://arxiv.org/abs/2108.01117
https://doi.org/10.1007/JHEP05(2014)025
https://arxiv.org/abs/1312.5682
https://doi.org/10.1103/PhysRevLett.130.111603
https://arxiv.org/abs/2212.10575


[9] H. Casini, I. Salazar Landea and G. Torroba, Irreversibility, QNEC, and defects, JHEP 07

(2023) 004 [2303.16935].

[10] G. Cuomo, M. Mezei and A. Raviv-Moshe, Boundary conformal field theory at large charge,

JHEP 10 (2021) 143 [2108.06579].

[11] N. Drukker, Z. Kong and G. Sakkas, Broken Global Symmetries and Defect Conformal

Manifolds, Phys. Rev. Lett. 129 (2022) 201603 [2203.17157].

[12] Y. Choi, B. C. Rayhaun, Y. Sanghavi and S.-H. Shao, Comments on Boundaries, Anomalies,

and Non-Invertible Symmetries, 2305.09713.

[13] S. Liu, H. Shapourian, A. Vishwanath and M. A. Metlitski, Magnetic impurities at quantum

critical points: Large-N expansion and connections to symmetry-protected topological states,

Phys. Rev. B 104 (2021) 104201 [2104.15026].

[14] G. Cuomo, Z. Komargodski, M. Mezei and A. Raviv-Moshe, Spin impurities, Wilson lines and

semiclassics, JHEP 06 (2022) 112 [2202.00040].

[15] A. Nahum, Fixed point annihilation for a spin in a fluctuating field, Phys. Rev. B 106 (2022)

L081109 [2202.08431].

[16] M. Weber and M. Vojta, SU(2)-Symmetric Spin-Boson Model: Quantum Criticality,

Fixed-Point Annihilation, and Duality, Phys. Rev. Lett. 130 (2023) 186701 [2203.02518].

[17] I. Affleck, The Kondo screening cloud: what it is and how to observe it, arXiv e-prints (2009)

arXiv:0911.2209 [0911.2209].

[18] D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP 02

(2015) 172 [1412.5148].

[19] O. Aharony, G. Cuomo, Z. Komargodski, M. Mezei and A. Raviv-Moshe, Phases of Wilson

Lines in Conformal Field Theories, Phys. Rev. Lett. 130 (2023) 151601 [2211.11775].

[20] D. B. Kaplan, J.-W. Lee, D. T. Son and M. A. Stephanov, Conformality Lost, Phys. Rev. D 80

(2009) 125005 [0905.4752].

[21] I. Pomeranchuk and Y. Smorodinsky, On the energy levels of systems with z > 137, J. Phys.

Ussr 9 (1945) 97.

[22] N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S**3,

JHEP 05 (2008) 017 [0711.3226].

[23] L. Hu, Y.-C. He and W. Zhu, Solving Conformal Defects in 3D Conformal Field Theory using

Fuzzy Sphere Regularization, 2308.01903.

[24] S. Collier, D. Mazac and Y. Wang, Bootstrapping boundaries and branes, JHEP 02 (2023) 019

[2112.00750].

[25] A. Gimenez Grau, Topics in the Superconformal and Defect Conformal Bootstrap, Ph.D. thesis,

University of Hamburg, Hamburg U., 2022. 10.3204/PUBDB-2022-02613.

[26] J. Barrat, A. Gimenez-Grau and P. Liendo, A dispersion relation for defect CFT, JHEP 02

(2023) 255 [2205.09765].

[27] A. Gimenez-Grau, E. Lauria, P. Liendo and P. van Vliet, Bootstrapping line defects with O(2)

global symmetry, JHEP 11 (2022) 018 [2208.11715].

– 111 –

https://doi.org/10.1007/JHEP07(2023)004
https://doi.org/10.1007/JHEP07(2023)004
https://arxiv.org/abs/2303.16935
https://doi.org/10.1007/JHEP10(2021)143
https://arxiv.org/abs/2108.06579
https://doi.org/10.1103/PhysRevLett.129.201603
https://arxiv.org/abs/2203.17157
https://arxiv.org/abs/2305.09713
https://doi.org/10.1103/PhysRevB.104.104201
https://arxiv.org/abs/2104.15026
https://doi.org/10.1007/JHEP06(2022)112
https://arxiv.org/abs/2202.00040
https://doi.org/10.1103/PhysRevB.106.L081109
https://doi.org/10.1103/PhysRevB.106.L081109
https://arxiv.org/abs/2202.08431
https://doi.org/10.1103/PhysRevLett.130.186701
https://arxiv.org/abs/2203.02518
https://doi.org/10.48550/arXiv.0911.2209
https://doi.org/10.48550/arXiv.0911.2209
https://arxiv.org/abs/0911.2209
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://arxiv.org/abs/1412.5148
https://doi.org/10.1103/PhysRevLett.130.151601
https://arxiv.org/abs/2211.11775
https://doi.org/10.1103/PhysRevD.80.125005
https://doi.org/10.1103/PhysRevD.80.125005
https://arxiv.org/abs/0905.4752
https://doi.org/10.1088/1126-6708/2008/05/017
https://arxiv.org/abs/0711.3226
https://arxiv.org/abs/2308.01903
https://doi.org/10.1007/JHEP02(2023)019
https://arxiv.org/abs/2112.00750
https://doi.org/10.1007/JHEP02(2023)255
https://doi.org/10.1007/JHEP02(2023)255
https://arxiv.org/abs/2205.09765
https://doi.org/10.1007/JHEP11(2022)018
https://arxiv.org/abs/2208.11715


[28] L. Bianchi, D. Bonomi and E. de Sabbata, Analytic bootstrap for the localized magnetic field,

JHEP 04 (2023) 069 [2212.02524].

[29] K. Ghosh, A. Kaviraj and M. F. Paulos, Polyakov blocks for the 1D CFT mixed correlator

bootstrap, 2307.01257.

[30] A. V. Shytov, M. I. Katsnelson and L. S. Levitov, Atomic Collapse and Quasi Rydberg States in

Graphene, Physical Review Letters 99 (2007) 246802 [0708.0837].

[31] Y. Wang, D. Wong, A. V. Shytov, V. W. Brar, S. Choi, Q. Wu et al., Observing Atomic

Collapse Resonances in Artificial Nuclei on Graphene, Science 340 (2013) 734 [1510.02890].

[32] M. van Beest, P. Boyle Smith, D. Delmastro, Z. Komargodski and D. Tong, Monopoles,

Scattering, and Generalized Symmetries, 2306.07318.

[33] O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge

theories, JHEP 08 (2013) 115 [1305.0318].

[34] M. Beccaria, S. Giombi and A. A. Tseytlin, Wilson loop in general representation and RG flow

in 1D defect QFT, J. Phys. A 55 (2022) 255401 [2202.00028].

[35] D. Rodriguez-Gomez, A scaling limit for line and surface defects, JHEP 06 (2022) 071

[2202.03471].

[36] D. Rodriguez-Gomez and J. G. Russo, Wilson loops in large symmetric representations through

a double-scaling limit, JHEP 08 (2022) 253 [2206.09935].

[37] I. R. Klebanov and E. Witten, AdS / CFT correspondence and symmetry breaking, Nucl. Phys.

B 556 (1999) 89 [hep-th/9905104].

[38] E. Witten, Multitrace operators, boundary conditions, and AdS / CFT correspondence,

hep-th/0112258.

[39] S. S. Gubser and I. R. Klebanov, A Universal result on central charges in the presence of double

trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138].

[40] T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces,

and AdS(2), Phys. Rev. D 83 (2011) 125002 [0907.2694].

[41] O. Aharony, G. Gur-Ari and N. Klinghoffer, The Holographic Dictionary for Beta Functions of

Multi-trace Coupling Constants, JHEP 05 (2015) 031 [1501.06664].

[42] N. Iqbal, H. Liu and M. Mezei, Quantum phase transitions in semilocal quantum liquids, Phys.

Rev. D 91 (2015) 025024 [1108.0425].

[43] V. Gorbenko, S. Rychkov and B. Zan, Walking, Weak first-order transitions, and Complex

CFTs, JHEP 10 (2018) 108 [1807.11512].

[44] T. Faulkner, G. T. Horowitz and M. M. Roberts, New stability results for Einstein scalar

gravity, Class. Quant. Grav. 27 (2010) 205007 [1006.2387].

[45] T. Faulkner, G. T. Horowitz and M. M. Roberts, Holographic quantum criticality from

multi-trace deformations, JHEP 04 (2011) 051 [1008.1581].

[46] S. R. Coleman, R. Jackiw and H. D. Politzer, Spontaneous Symmetry Breaking in the O(N)

Model for Large N*, Phys. Rev. D 10 (1974) 2491.

– 112 –

https://doi.org/10.1007/JHEP04(2023)069
https://arxiv.org/abs/2212.02524
https://arxiv.org/abs/2307.01257
https://doi.org/10.1103/PhysRevLett.99.246802
https://arxiv.org/abs/0708.0837
https://doi.org/10.1126/science.1234320
https://arxiv.org/abs/1510.02890
https://arxiv.org/abs/2306.07318
https://doi.org/10.1007/JHEP08(2013)115
https://arxiv.org/abs/1305.0318
https://doi.org/10.1088/1751-8121/ac7018
https://arxiv.org/abs/2202.00028
https://doi.org/10.1007/JHEP06(2022)071
https://arxiv.org/abs/2202.03471
https://doi.org/10.1007/JHEP08(2022)253
https://arxiv.org/abs/2206.09935
https://doi.org/10.1016/S0550-3213(99)00387-9
https://doi.org/10.1016/S0550-3213(99)00387-9
https://arxiv.org/abs/hep-th/9905104
https://arxiv.org/abs/hep-th/0112258
https://doi.org/10.1016/S0550-3213(03)00056-7
https://arxiv.org/abs/hep-th/0212138
https://doi.org/10.1103/PhysRevD.83.125002
https://arxiv.org/abs/0907.2694
https://doi.org/10.1007/JHEP05(2015)031
https://arxiv.org/abs/1501.06664
https://doi.org/10.1103/PhysRevD.91.025024
https://doi.org/10.1103/PhysRevD.91.025024
https://arxiv.org/abs/1108.0425
https://doi.org/10.1007/JHEP10(2018)108
https://arxiv.org/abs/1807.11512
https://doi.org/10.1088/0264-9381/27/20/205007
https://arxiv.org/abs/1006.2387
https://doi.org/10.1007/JHEP04(2011)051
https://arxiv.org/abs/1008.1581
https://doi.org/10.1103/PhysRevD.10.2491


[47] N. Iqbal, H. Liu, M. Mezei and Q. Si, Quantum phase transitions in holographic models of

magnetism and superconductors, Phys. Rev. D 82 (2010) 045002 [1003.0010].

[48] V. Efimov, Energy levels arising form the resonant two-body forces in a three-body system, Phys.

Lett. B 33 (1970) 563.

[49] A. Allais and S. Sachdev, Spectral function of a localized fermion coupled to the Wilson-Fisher

conformal field theory, Phys. Rev. B 90 (2014) 035131 [1406.3022].

[50] G. Cuomo, Z. Komargodski and M. Mezei, Localized magnetic field in the O(N) model, JHEP

02 (2022) 134 [2112.10634].

[51] F. K. Popov and Y. Wang, Non-perturbative defects in tensor models from melonic trees, JHEP

11 (2022) 057 [2206.14206].

[52] W. H. Pannell and A. Stergiou, Line defect RG flows in the ε expansion, JHEP 06 (2023) 186

[2302.14069].

[53] S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications. Cambridge University

Press, 8, 2013.

[54] G. Cuomo and S. Zhang, Spontaneous symmetry breaking on surface defects, 2306.00085.

[55] D. J. Gross, I. R. Klebanov, A. V. Matytsin and A. V. Smilga, Screening versus confinement in

(1+1)-dimensions, Nucl. Phys. B 461 (1996) 109 [hep-th/9511104].

[56] A. Lopez-Ortega, The Dirac equation in D-dimensional spherically symmetric spacetimes,

0906.2754.

[57] R. Camporesi and A. Higuchi, On the Eigen functions of the Dirac operator on spheres and real

hyperbolic spaces, J. Geom. Phys. 20 (1996) 1 [gr-qc/9505009].

[58] V. M. Pereira, J. Nilsson and A. H. C. Neto, Coulomb impurity problem in graphene, Physical

Review Letters 99 (2007) .

[59] W. Greiner, B. Muller and J. Rafelski, Quantum Electrodynamics Of Strong Fields. 1985.

[60] N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys.

57 (2009) 367 [0903.2596].

[61] J. N. Laia and D. Tong, Flowing Between Fermionic Fixed Points, JHEP 11 (2011) 131

[1108.2216].

[62] G. F. Giudice, R. Rattazzi and J. D. Wells, Graviscalars from higher dimensional metrics and

curvature Higgs mixing, Nucl. Phys. B 595 (2001) 250 [hep-ph/0002178].

[63] N. Levinson, On the uniqueness of the potential in a schrodinger equation for a given asymptotic

phase, Kgl. Danske Videnskab Selskab. Mat. Fys. Medd. 25 (1949) .

[64] B. Zwiebach, “Mit quantum physics course video lectures.”

[65] J. Friedel, Xiv. the distribution of electrons round impurities in monovalent metals, The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science 43 (1952) 153

[https://doi.org/10.1080/14786440208561086].
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