
Computing critical angles between two convex cones

Welington de Oliveira∗ Valentina Sessa∗ David Sossa†

October 3, 2023

Abstract.

This paper addresses the numerical computation of critical angles between two convex
cones in finite-dimensional Euclidean spaces. We present a novel approach to computing
these critical angles by reducing the problem to finding stationary points of a fractional
programming problem. To efficiently compute these stationary points, we introduce a par-
tial linearization-like algorithm that offers significant computational advantages. Solving a
sequence of strictly convex subproblems with straightforward solutions in several settings
gives the proposed algorithm high computational efficiency while delivering reliable results:
our theoretical analysis demonstrates that the proposed algorithm asymptotically computes
critical angles. Numerical experiments validate the efficiency of our approach, even when
dealing with problems of relatively large dimensions: only a few seconds are necessary to
compute critical angles between different types of cones in spaces of dimension 1000.
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1 Introduction

In this work, we are concerned with the problem of computing critical (principal) angles be-
tween two closed convex cones P ̸= ∅ and Q ̸= ∅ in Euclidean spaces. This class of problems,
investigated from the theoretical point of view in [32] and [33], finds applications in image
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classifications and other domains [37]. In the more straightforward case where P and Q are
linear subspaces, the concept of critical angles has applications in statistics and numerical
linear algebra. Such a concept has been abundantly studied in the literature, both from a
theoretical and computational point of view [23]. However, to the best of our knowledge, no
numerical procedure exists to compute critical angles when P and Q are not linear subspaces
but convex cones in medium or high dimensional spaces. This work contributes to fill the gap
by proposing an implementable algorithm for computing critical angles between two convex
cones. Furthermore, our framework is general enough to cover several classes of cones, such as
polyhedral, ellipsoidal, Loewnerian cones, and others. Indeed, our methodology applies to the
vast family of LISC cones, which are closed convex cones that can be expressed as linear images
of the symmetric cones of certain Euclidean Jordan algebras, plus some mild assumptions (see
Definition 4 below).

By definition, the maximal angle between P and Q, in a Euclidean space V equipped with
an inner product ⟨·, ·⟩, is the maximum value of arccos ⟨u, v⟩ on (P ∩SV)× (Q∩SV), where SV
denotes the unit sphere of V. Critical angles between P and Q are angles formed by vectors
u ∈ P and v ∈ Q satisfying some complementarity conditions (see Definition 1), which are
necessary conditions for u and v to achieve the maximal angle between P and Q.

The study of critical angles for the case P = Q was first carried out by Iusem and Seeger
[19–22]. Later, Seeger and Sossa expanded this study to two different cones [32,33]. See also the
recent contributions of Orlitzky [24] and Bauschke et al. [3]. Concerning the computation of
critical angles, some methods were given in [33] for specially structured cones such as revolution
cones, ellipsoidal, and cones of matrices. These methods are either applicable to specific
instances of cones or limited to problems on spaces of small dimensions. In [32], an exhaustive
method was developed for computing all critical angles between polyhedral cones. Basically,
one must select subsets of generators of the cones, and solve a generalized eigenvalue problem
for each selection. This has a combinatorial nature and its numerical implementation is only
possible for polyhedral cones with few generators.

In this work, we show that computing critical angles between two convex cones reduces to
the problem of finding stationary points of a fractional programming (FP) problem, that is, the
optimization of the ratio of two continuous functions over a nonempty, closed convex set [13]
(see (5) for the precise definition). When specialized to the family of LISC cones, the feasible
set of our FP is the Cartesian product of spectraplexes (sets analogous to the standard simplex)
of the involved Euclidean Jordan algebras. Thus, from the numerical point of view, our FP
is easier to handle than the original maximal angle problem formulation, whose feasible set
has spherical conditions. Notably, most of the theoretical and algorithmic works in fractional
programming are applied to the convex case, i.e., convex numerator and concave denominator.
Dinkelbach’s method [9, 36] is the classical approach used to solve convex fractional problems
by tackling a parametric reformulation of the original FP problem. Several iterative schemes
based on Dinkelbach’s idea are proposed for special cases of convex FP [4,5,10,35,38]. In the
recent paper [6], an extrapolated proximal subgradient algorithm is applied to nonconvex and
nonsmooth FPs. A disadvantage of that algorithm is that a nonconvex subproblem must be
globally solved at every iteration, restricting thus the approach to a few particular FP cases.
In theory, that algorithm could be applied to our FP formulation, but the structure of our
problem is not (computationally) favorable to that approach.

This study addresses the challenges posed by our FP, a nonconvex FP problem that does
not conform to the requirements of existing practical methodologies. Inspired by the recent
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paper [14], we introduce a Sequential Regularized Partial Linearization algorithm to compute
a stationary point of our FP formulation, thus a critical angle. Our algorithm, that features
the main contribution of this work, solves a sequence of two independent convex subproblems,
which are projections onto well-structured sets. The essential advantage of our approach lies
in the fact that solving these subproblems requires minimal computational efforts as they
have straightforward solutions in several settings of practical interest. To demonstrate the
effectiveness of our approach, we provide numerical results that focus on computing critical
angles between LISC cones. These angles are commonly examined in the relevant literature,
but a thorough numerical treatment of these problems has not been previously investigated.

This work is organized as follows. Section 2 presents the main definitions and preliminary
results. The concept of LISC cones and relevant properties are presented in Section 3. Section 4
clarifies the connection between critical angles and stationary points of the FP formulation.
The proposed algorithm is presented in Section 5 along with a converge analysis. Numerical
experiments are reported in Section 6. Finally, some conclusions are given in Section 7.

2 Main definitions and prerequisites

Let V, X and Y be Euclidean spaces. We denote by C(V) the set of all nontrivial closed convex
cones in V, that is,

C(V) = {K closed convex cone in V : K ̸= {0}, K ̸= V}. (1)

The dual cone of K ∈ C(V) is denoted by K∗:

K∗ := {ζ ∈ V : ⟨ζ, u⟩ ≥ 0, ∀ u ∈ K}.

Throughout this work, ⟨·, ·⟩ refers to the inner product of each Euclidean space that we are
considering. The corresponding inner product to its space will be clear from the context. In
particular, whenever we consider the Euclidean space Rn, we assume that its inner product is
⟨x, y⟩ = x⊤y, for all x, y ∈ Rn. The norm ∥ · ∥ refers to the Euclidean norm induced by ⟨·, ·⟩.

Given two cones P,Q ∈ C(V), by definition, the maximal angle between P and Q is given
by

Θ(P,Q) :=


max arccos ⟨u, v⟩
s.t. u ∈ P, ∥u∥ = 1

v ∈ Q, ∥v∥ = 1.
(2)

As in data analysis, the cosinus similarity of two vectors u, v is defined as the cosinus of the
angle θ between them, i.e., cos(θ) = ⟨u,v⟩

∥u∥∥v∥ . Recall that two proportional vectors have a

cosinus similarity of 1, two orthogonal vectors have a similarity of 0, and two opposite vectors
have a similarity of -1. Hence, the cosinus of the maximal angle between P and Q can be
computed by solving the following (nonconvex) optimization problem:

min ⟨u, v⟩
s.t. u ∈ P, ∥u∥ = 1,

v ∈ Q, ∥v∥ = 1.
(3)

The following definition is crucial for the remainder of this work.

Definition 1. (Maximal and critical angles between two cones).

3



1. A pair (u, v) ∈ V×V solving problem (3) is called an antipodal pair of (P,Q). The angle
between an antipodal pair is called the maximal angle between the cones P and Q.

2. A pair (u, v) is called a critical pair of (P,Q) if it satisfies the following conditions:
u ∈ P, ∥u∥ = 1,

v ∈ Q, ∥v∥ = 1,

v − ⟨u, v⟩u ∈ P ∗,

u− ⟨u, v⟩v ∈ Q∗,

(4)

where P ∗ and Q∗ are the dual cones of P and Q, respectively. The angle between a
critical pair is called a critical angle between the cones P and Q.

As we will see in Section 3, in many important cases the cones P and Q are images of
linear mappings applied to more structured/simpler cones KX and KY, i.e., P = G(KX) and
Q = H(KY), with G and H linear applications of appropriated dimensions. In these cases, it
is computationally advantageous to work with the more structured cones KX and KY. As we
will see in Section 4, problem (2) can be reformulated as

cos[Θ(P,Q)] =


min Φ(x, y) :=

⟨Gx,Hy⟩
∥Gx∥ ∥Hy∥

s.t. x ∈ KX, ⟨eX, x⟩ = 1
y ∈ KY, ⟨eY, y⟩ = 1.

(5)

In this case, KX and KY are the symmetric cones of certain Euclidean Jordan algebras X and
Y, and eX and eY denote the unit elements of X and Y, respectively.

Observe that the optimization problems (3) and (5) share a common structure. Indeed,
they fit into the following more general class of problems:

min Ψ(x, y)
s.t. x ∈ KX, ϕ1(x) = 0

y ∈ KY, ϕ2(y) = 0,
(6)

where Ψ : X×Y → R, ϕ1 : X → R, and ϕ2 : X → R are differentiable functions over the feasible
set of (6).

Definition 2. We say that (x̄, ȳ) is a stationary point of (6) if there exist γ1, γ2 ∈ R such
that 

KX ∋ x̄ ⊥ (∇xΨ(x̄, ȳ) + γ1∇ϕ1(x̄)) ∈ K∗
X,

KY ∋ ȳ ⊥ (∇yΨ(x̄, ȳ) + γ2∇ϕ2(ȳ)) ∈ K∗
Y,

ϕ1(x̄) = 0, ϕ2(ȳ) = 0,
(7)

where the notation ⊥ means orthogonality.

We now show that our concept of stationarity coincides with that of classic stationarity for
the nonlinear optimization problem (6).

Theorem 1. Let KX ∈ C(X), KY ∈ C(Y) and suppose that Ψ, ϕ1 and ϕ2 are differentiable over
the feasible set of problem (6). Then the definition of stationarity given in (7) coincides with
that of stationarity for the nonlinear programming problem (6).
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Proof. We can rewrite problem (6) with the help of the indicator function of the convex sets
C1 := KX × Y and C2 := X×KY as follows:{

min Ψ(x, y) + iC1(x, y) + iC2(x, y)
s.t. ϕ1(x) = 0, ϕ2(y) = 0.

If the above problem has Lagrange multipliers γ1, γ2 ∈ R (e.g., if (∇ϕ1(x̄),∇ϕ2(ȳ)) ̸= (0, 0) –
satisfying thus the LICQ constraint qualification), then all of its (local) solutions must satisfy
the KKT system (see for instance [29, §10])

0 ∈ ∂C(x,y)L(x̄, ȳ, γ)

x̄ ∈ KX, ϕ1(x̄) = 0
ȳ ∈ KY, ϕ2(ȳ) = 0,

where the Lagrangian function is given by

L(x, y, γ) := Ψ(x, y) + iC1(x, y) + iC2(x, y) + γ1ϕ(x) + γ2ϕ2(y),

and ∂Cf denotes the Clarke subdifferential of a locally Lipschitz function f . Observe that

∂C(x,y)L(x, y, γ) =

(
∇xΨ(x, y)
∇yΨ(x, y)

)
+ ∂C[iC1(x, y) + iC2(x, y)] +

(
γ1∇ϕ1(x)
γ2∇ϕ2(y)

)
,

and being iC1(x, y) + iC2(x, y) a convex function, its Clarke subdifferential coincides with
that of the Convex Analysis. Thus, ∂C[iC1(x, y) + iC2(x, y)] = ∂[iC1(x, y) + iC2(x, y)] =
∂iC2(x, y) + ∂iC2(x, y) provided ri dom(iC1) ∩ ri dom(iC2) ̸= ∅ (see [30, Thm 23.8]). Fur-
thermore, ri dom(iC1) = riKX × Y and ri dom(iC2) = X × riKY. As KX ̸= {0} and
KY ̸= {0} (c.f. (1)) then riKX ̸= ∅ and riKY ̸= ∅. Recall that C1 is a convex set, and
thus ∂iC1(x, y) = NC1(x, y) = NKX(x)× 0. Analogously, ∂iC2(x, y) = 0×NKY(y). Hence, the
above KKT system becomes

0 ∈
(
∇xΨ(x̄, ȳ)
∇yΨ(x̄, ȳ)

)
+

(
NKX(x̄)
NKY(ȳ)

)
+

(
γ1∇ϕ1(x̄)
γ2∇ϕ2(ȳ)

)
x̄ ∈ KX, ϕ1(x̄) = 0
ȳ ∈ KY, ϕ2(ȳ) = 0.

(8)

Then, by using the well-known results in [11, Prop. 1.1.3], we can see that the above system is
nothing but the one given in (7).

It is not surprising that (4) is a particular case of (7), as the following corollary shows.

Corollary 1. Under the setting of Theorem 1, suppose that KX = P , KY = Q, Ψ(x, y) = ⟨x, y⟩,
ϕ1(x) = ∥x∥−1, and ϕ1(y) = ∥y∥−1, i.e., problem (6) coincides with (3). Furthermore, suppose
that (x̄, ȳ) is a stationary point of problem (6). Then, the Lagrange multipliers γ1, γ2 ∈ R in (7)
are given by γ1 = γ2 = −⟨x̄, ȳ⟩.
Proof. In this setting, the Lagrange multipliers always exist due to the fact that (∇ϕ1(x̄),∇ϕ2(ȳ)) =
(x̄/∥x̄∥, ȳ/∥ȳ∥) ̸= (0, 0), i.e., the problem satisfies the LICQ constraint qualification. Further-
more, system (8) becomes 

0 ∈
(
ȳ
x̄

)
+

(
NP (x̄)
NQ(ȳ)

)
+

(
γ1x̄/∥x̄∥
γ2ȳ/∥ȳ∥

)
x̄ ∈ P, ∥x̄∥ = 1
ȳ ∈ Q, ∥ȳ∥ = 1.
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Let ζ ∈ NP (x̄) such that 0 = ȳ+ ζ + γ1x̄/∥x̄∥. By multiplying this equality by x̄ and recalling
that ∥x̄∥ = 1, we get 0 = ⟨x̄, ȳ⟩ + ⟨x̄, ζ⟩ + γ1. As ⟨x̄, ζ⟩ = 0, we have that γ1 = −⟨x̄, ȳ⟩.
Analogously, γ2 = −⟨x̄, ȳ⟩.

It is straightforward to see that, in the setting of the above corollary, the conditions in (7)
boils down to (4).

3 LISC cones

This section presents the concept of LISC cones which are sets obtained as Linear Image of
Symmetric Cones. Recall that a symmetric cone in a Euclidean space is a cone that is self-dual
and homogeneous, see [12, Section I.1]. The symmetric cones possess a reach structure and they
are central objects in many optimization problems such as linear programming, second-order
cone programming, and semidefinite programming [1, 28, 39]. For those programs, the theory
and the numerical resolution are well-developed and nowadays there are many solvers available
to deal with them. It turns out that many convex cones arise as the linear image of symmetric
ones. As we shall see in the next sections, the computation of critical angles for these cones
can be performed by solving a sequence of (convex) symmetric cone programs.

3.1 Main definitions and some examples

It is known that every symmetric cone is obtained as the cone of square elements of a certain
Euclidean Jordan Algebra (EJA), see [12, Theorem III.3.1]. Thus, to present our results we
shall use the machinery of EJAs. We refer the reader to the book of Faraut and Korányi [12]
for an exposition of the definitions and main results of this algebra.

Let X be an EJA of rank r with unit element e, and equipped with an inner product ⟨·, ·⟩
and a Jordan product ◦. We need to recall some ingredients from EJA concerning the spectral
decomposition [12, Theorem III.1.2]. An element c ∈ X is called idempotent if c ◦ c = c. An
idempotent element c is called primitive if it is non-zero and cannot be written as the sum of
two non-zero idempotents. A collection of primitive idempotent elements {c1, . . . , cr} is called
Jordan frame if ci ◦ cj = 0 for all i ̸= j and

∑r
i=1 ci = e. Any element x in X admits a

spectral decomposition. That is, there exist scalars λ1, . . . , λr (called the eigenvalues of x) and
a Jordan frame {c1, . . . , cr} such that x =

∑r
i=1 λici. The trace of x =

∑r
i=1 λici is defined as

tr(x) = λ1 + · · ·+ λr.

Definition 3 (Symmetric cone in X). We denote by KX the symmetric cone in X, which
corresponds to the cone of square elements of X, that is, KX = {x ◦ x : x ∈ X}.

Observe that x =
∑r

i=1 λici ∈ KX if and only if λi ≥ 0 for all i = 1, . . . , r. Below, we
provide some examples of EJAs and corresponding symmetric cones.

Example 1 (EJAs and corresponding symmetric cones).

(a) The space Rn is an EJA of rank n with unit element 1n = (1, . . . , 1)⊤, ⟨x, y⟩ = x⊤y, and
x ◦ y = (x1y1, . . . , xnyn)

⊤. Its associated symmetric cone is the nonnegative orthant Rn
+.

(b) Alternatively, Rn = Rn−1×R is an EJA (Jordan spin algebra) of rank 2 with unit element
given by e = (0, . . . , 0, 1)⊤. For x = (ξ, t), y = (η, s) ∈ Rn−1 × R, the inner product is
⟨x, y⟩ = x⊤y and x ◦ y = (sξ+ tη, x⊤y). Its corresponding symmetric cone is the Lorentz
cone, which is given by Ln

+ := {(ξ, t) ∈ Rn : ∥ξ∥ ≤ t}.
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(c) The space Sn of the symmetric matrices of order n is an EJA of rank n with unit
element I (the identity matrix of order n), equipped with the Frobenius (or trace) inner
product ⟨X,Y ⟩ = Tr(XY ) and the Jordan product X◦Y = (XY +Y X)/2. Its associated
symmetric cone is the positive semidefinite (SDP) cone which is defined as follows, Pn :=
{X ∈ Sn : u⊤Xu ≥ 0,∀u ∈ Rn}.

A cone P in a Euclidean space V is a LISC cone if it can be written as the linear image of
some symmetric cone satisfying some mild assumptions. More precisely:

Definition 4. Let P be a closed convex cone in a Euclidean space V. We say that P is a
LISC cone if there exist a Euclidean Jordan algebra X and a linear map G : X → V such that
G(KX) = P , satisfying the following assumptions:

G(c) ̸= 0 for every primitive idempotent element c ∈ X. (A1)

P is pointed (i.e. P ∩ (−P ) = {0}). (A2)

Observe that in the above definition, we are assuming that P = G(KX) is closed in advance.
This is because in general, the linear image of KX may fail to be closed (cf. [26]).

There are vast classes of convex cones that are LISC cones. We now list some of them.

Example 2 (LISC cones).

(a) Polyhedral cones [17]. A cone P in Rn is polyhedral if there exist vectors g1, . . . , gp ∈ Rn

(generators of P ) such that

P = cone{g1, . . . , gp} := {α1g1 + · · ·+ αpgp : αi ≥ 0,∀i = 1, . . . , p}.

Then, by taking G := [g1 · · · gp] as the n× p matrix formed by the generators of P , we
have that P = G(Rp

+). It is usual to assume that the generators of P are positive linear
independent (i.e., if

∑p
i=1 αigi = 0 and αi ≥ 0 for all i, then αi = 0 for all i). This

property implies (A1) and (A2). Indeed, the primitive idempotent elements of Rp are
e1, . . . , ep which are the elements of the canonical basis of Rp. Observe thatG(ei) = gi ̸= 0
for every i. Then, (A1) holds. On the other hand, suppose that (A2) is not satisfied.
That is, suppose that P is not pointed. Then, there exists u ̸= 0 such that u =

∑p
i=1 αigi

and −u =
∑p

i=1 βigi for some αi, βi ≥ 0 for all i. Then,
∑p

i=1(αi + βi)gi = 0. Since
we assume that the generators of P are positive linear independents, we conclude that
αi = βi = 0 for all i. It means u = 0 which is a contradiction. Hence, P is a LISC cone
with the positive orthant Rp

+ as its associated symmetric cone.

(b) Ellipsoidal cones [20, 33, 34]. A cone P in Rn is ellipsoidal if there exists a symmetric
positive definite matrix A of order n− 1 such that

P = {(ξ, t) ∈ Rn−1 × R :
√
⟨ξ, Aξ⟩ ≤ t}.

By taking the linear map G : Rn → Rn given by G(ξ, t) = (A−1/2ξ, t), we have that
P = G(Ln

+). Since G is invertible and Ln
+ is pointed, we have that (A1) and (A2) are

satisfied. Thus, P is a LISC cone with the Lorentz cone Ln
+ as its associated symmetric

cone.
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(c) Loewnerian cones [31]. By definition, a cone P in Sn is Loewnerian if there exists an
invertible linear map G : Sn → Sn such that P = G(Pn). Assumptions (A1) and (A2)
hold because G is invertible and Pn pointed. Then, P is a LISC cone with the SDP cone
Pn as its associated symmetric cone.

As we will shortly see, our technique to find critical angles between a pair of LISC cones
consists of reformulating problem (2) as a minimization problem over a convex set. More
precisely, for a pair of LISC cones P = G(KX) and Q = H(KY), the (bilinear) minimization
problem (3) with nonconvex feasible set

SP,Q := {(u, v) ∈ P ×Q : ∥u∥ = 1, ∥v∥ = 1}

will be reformulated as a (fractional) minimization problem (5) with convex set

∆X,Y := {(x, y) ∈ KX ×KY : ⟨eX, x⟩ = 1, ⟨eY, y⟩ = 1},

where eX and eY are the unit elements of the EJAs X and Y, respectively. Observe that
SP,Q = SP × SQ, where

SP := {u ∈ P : ∥u∥ = 1} and SQ := {v ∈ Q : ∥v∥ = 1}.

Analogously, ∆X,Y = ∆X ×∆Y, where

∆X := {x ∈ KX : ⟨eX, x⟩ = 1} and ∆Y := {y ∈ KY : ⟨eY, y⟩ = 1}.

Here, ∆X and ∆Y are called the spectraplexes of X and Y, respectively. A key fact to formulate
the maximal angle problem as the minimization problem (3) is that each nonzero u ∈ P can
be written as a positive multiple of an element of SP ; indeed, u = ∥u∥ u

∥u∥ and u
∥u∥ ∈ SP (an

analogous property is for a nonzero v ∈ Q). In the same way, we must ensure that each nonzero
x ∈ KX can be written as a positive multiple of an element of ∆X (an analogous property for
a nonzero y ∈ KY). This is proved in the following lemma.

Lemma 1. Let X be an EJA of rank r with unit element eX. Let KX be the symmetric cone
of X. Then, the following statements are satisfied:

1. ⟨eX, x⟩ > 0 for all x ∈ KX \ {0}.

2. {αx : x ∈ ∆X, α > 0} = KX \ {0}.

Proof. Let x =
∑r

i=1 λici be a nonzero element in KX. Then, λi ≥ 0 for all i = 1, . . . , r, and
not all of them are zero. Thus,

⟨eX, x⟩ =

〈
r∑

i=1

ci,

r∑
i=1

λici

〉
=

n∑
i=1

λi∥ci∥2 ≥ 0.

Then, if ⟨eX, x⟩ = 0 we have that λi∥ci∥2 = 0 for every i = 1, . . . , r. Since any primitive
element is nonzero, we deduce that λi = 0 for all i = 1, . . . , r which contradicts the fact that
x is nonzero. We conclude ⟨eX, x⟩ > 0.

Let us prove the second part. Since ∆X is contained in KX \ {0} and because of the cone
structure of KX \ {0}, we have that {αx : x ∈ ∆X, α > 0} ⊆ KX \ {0}. Let u ∈ KX \ {0}.
From the previous part, we have that ⟨eX, u⟩ > 0. Then, u = αx with α := ⟨eX, u⟩ > 0 and
x := u/⟨eX, u⟩ ∈ ∆X. The proof is complete.
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Now, to pass from problem (2) (which is equivalent to (3)) to the fractional one (5), we
must ensure that Gx ̸= 0 for every x ∈ KX \ {0} because we shall need to normalize Gx (an
analogous observation is for Hy). The next lemma shows that assumptions (A1) and (A2)
help us to achieve that property. But before, observe that a general LISC cone can also be
described by a sort of conic combination of a (possibly uncountable) set of vectors, similar to
the polyhedral case. Indeed, let OX denote the set of (ordered) Jordan frames of X. That
is, (c1, . . . , cr) ∈ OX if and only if {c1, . . . , cr} is a Jordan frame of X. From the spectral
decomposition property, it is not difficult to see that KX can be written as

KX =

{
r∑

i=1

αici : α1, . . . , αr ≥ 0, (c1, . . . , cr) ∈ OX

}
=

⋃
(c1,...,cr)∈OX

cone{c1, . . . , cr}.

Then, the LISC cone P = G(KX) can be written as

P =
⋃

(c1,...,cr)∈OX

cone{G(c1), . . . , G(cr)}. (9)

Observe that in the polyhedral case, the representation (9) coincides with the conic combination
of its generators since the only Jordan frame of Rr is its canonical basis.

Lemma 2. Let P = G(KX) be a LISC cone in V with X being an EJA of rank r. Then,
Gx ̸= 0 for every x ∈ KX \ {0}.

Proof. Reasoning by contradiction, suppose that there is x =
∑r

i=1 λici in KX \ {0} such that
G(x) = 0. Then,

∑r
i=1 λiG(ci) = 0. Since x is nonzero, we may assume that λ1 ̸= 0. Thus,

−G(c1) =
r∑

i=2

(
λi

λ1

)
G(ci).

Because of x ∈ KX, we have that λi ≥ 0 for every i. Then, from representation (9) we deduce
that −G(c1) ∈ P . On the other hand, it is clear, also for the representation (9), that G(c1) ∈ P .
Because of the assumption (A1), we have that G(c1) ̸= 0. We have proved that P ∩ (−P ) has
a nonzero element which contradicts assumption (A2).

As a last ingredient of EJA, we now explain how to compute the orthogonal projection of
b ∈ X onto the spectraplex ∆X = {x ∈ KX : ⟨eX, x⟩ = 1}. This result will be used in our
algorithmic approach as we shall see in the next sections.

3.2 Projection onto spectraplexes

An EJA is said to be scalarizable if there exists κ > 0 such that ⟨x, y⟩ = κtr(x ◦ y) for every
x, y ∈ X. The number κ is called the scaling factor of the EJA. The EJAs in Example 1 are
scalarizable: the scaling factors of Rn, Rn−1 × R and Sn are 1, 1/2 and 1, respectively. From
now on, we assume that all the EJAs considered in this work are scalarizable. For x ∈ X, λ(x)
denotes the vector in Rr whose components are the eigenvalues of x arranged in nonincreasing
order, i.e., λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x) are the eigenvalues of x. A set Ω ⊆ X is called spectral
set if there exists a permutation invariant set Q ⊆ Rr such that Ω = λ−1(Q). Observe that
∆X is a spectral set whose associated permutation invariant set is

∆κ
r :=

{
λ ∈ Rr : λ ≥ 0, ⟨1r, λ⟩ =

1

κ

}
.

9



Indeed, x ∈ ∆X if and only if λi(x) ≥ 0 for all i, and

1 = ⟨eX, x⟩ = κtr(eX ◦ x) = κtr(x) = κ(λ1(x) + · · ·+ λr(x)).

It means λ(x) ≥ 0 and ⟨1r, λ(x)⟩ = 1
κ . Thus, ∆X = λ−1(∆κ

r ). Observe that when κ = 1, which
is the case for the algebras Rn and Sn, ∆κ

r coincides with the standard simplex

∆r := {x ∈ Rr : x ≥ 0, ⟨1r, x⟩ = 1}.

Incidentally, we observe that ∆X is compact. Indeed, it is clear that ∆κ
r is compact in Rr.

Then, the compactness of ∆κ
r is transferred to its associated spectral set ∆X [2, Theorem27].

This result will be used later, so we state it as a proposition.

Proposition 1. The spectraplex ∆X is compact in X.

The next proposition shows that the computation of the orthogonal projection onto ∆X is
reduced to the computation of the orthogonal projection onto ∆κ

r which is easier to handle.

Proposition 2. Let X be a scalarizable EJA with rank r and scaling factor κ. Let b ∈ X with
spectral decomposition b =

∑r
i=1 λi(b)ci. Then, x̄ =

∑r
i=1 ξ̄ici is the solution of

min
1

2
∥x− b∥2

s.t. x ∈ ∆X,
(10)

where ξ̄ := (ξ̄1, . . . , ξ̄r)
⊤ is the solution of

min
1

2
∥ξ − λ(b)∥2

s.t. ξ ∈ ∆κ
r .

(11)

Proof. The proof is analogous to the proof of [27, Proposition 10] where the main tool is the
commutation principle in EJA developed in [27].

Example 3 (Projections).

(a) For the EJA Rn, problems (10) and (11) are the same. Then, the projection of b ∈ Rn

onto the spectraplex of Rn is nothing but the projection of b onto the standard simplex
∆n. That is, the solution to the problem:

min
1

2
∥x− b∥2

s.t. x ≥ 0, ⟨1n, x⟩ = 1.
(12)

The solution x̄ of (12) can be characterized as x̄i = max{0, bi + µ} for all i = 1, . . . , n,
where µ ∈ R is a solution of

∑n
i=1max{0, bi + µ} = 1. As shown in [7], the point x̄ can

be computed efficiently and exactly by specialized algorithms.

(b) For the Jordan spin algebra Rn−1 ×R, (11) is formulated in R2 (because the rank of the
algebra is 2) and the solution can be calculated as follows: for b = (b̃, b0) ∈ Rn−1 × R,
the solution of (11) is

(ξ̄, t̄) =

(
b̃

max{1, ∥b̃∥}
, 1

)
. (13)
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As a remark for this case, if we work directly (10), we can deduce that (ξ̄, t̄) is the solution
of (10) if and only if t̄ = 1 and ξ̄ is the orthogonal projection of b̃ onto the unit ball of
Rn−1. That is, ξ̄ is the solution of

min 1
2∥ξ − b̃∥2

s.t. ∥ξ∥2 ≤ 1.

Thus, (ξ̄, t̄) coincides with (13).

(c) For the EJA Sn, we have that for B ∈ Sn, problem (10) becomes

min
1

2
∥X −B∥2

s.t. X ∈ Pn,
Tr(X) = 1.

(14)

From Proposition 2, if B has the spectral decomposition B =
∑n

i=1 λi(B)uiu
T
i , where

{u1, . . . , un} is an orthonormal basis of Rn of eigenvectors of B, then X̄ =
∑n

i=1 ξ̄iuiu
T
i

is the solution of (14), where ξ̄ is the solution of (12) when b = λ(B).

4 Critical angles between LISC cones

Let P,Q ∈ C(V) be LISC cones represented by P = G(KX) and Q = H(KY), respectively.
With these representations, the cosinus of the maximal angle between P and Q, formulated in
(3), becomes 

min ⟨Gx,Hy⟩
s.t. x ∈ KX, ∥Gx∥ = 1,

y ∈ KY, ∥Hy∥ = 1.
(15)

Lemma 3. The pair (x̄, ȳ) is a stationary point of (15) if and only if
KX ∋ x̄ ⊥

(
G⊤Hȳ − ⟨Gx̄,Hȳ⟩G⊤Gx̄

)
∈ KX,

KY ∋ ȳ ⊥
(
H⊤Gx̄− ⟨Gx̄,Hȳ⟩H⊤Hȳ

)
∈ KY,

∥Gx̄∥ = 1, ∥Hȳ∥ = 1.

(16)

Proof. Observe that for all (x, y) feasible to problem (15), the gradients of Ψ(x, y) = ⟨Gx,Hy⟩,
ϕ1(x) := ∥Gx∥ − 1 and ϕ2(y) := ∥Hy∥ − 1 are all well defined and given by

∇Ψ(x, y) =
(
G⊤Hy,H⊤Gx

)
, ∇ϕ1(x) =

G⊤Gx

∥Gx∥
and ∇ϕ2(y) =

H⊤Hy

∥Hy∥
.

It follows from (7) that

0 = ⟨x̄,∇xΨ(x̄, ȳ)⟩+ γ1⟨x̄,∇ϕ2(x̄)⟩ = ⟨Gx̄,Hȳ⟩+ γ1∥Gx̄∥ = ⟨Gx̄,Hȳ⟩+ γ1

0 = ⟨ȳ,∇yΨ(x̄, ȳ)⟩+ γ2⟨ȳ,∇ϕ2(ȳ)⟩ = ⟨Gx̄,Hȳ⟩+ γ2∥Hȳ∥ = ⟨Gx̄,Hȳ⟩+ γ2

i.e., γ1 = γ2 = −⟨Gx̄,Hȳ⟩. The result then follows from (7) by recalling that KX and KY are
self-dual, then K∗

X = KX and K∗
Y = KY.
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Proposition 3. If (x̄, ȳ) is a stationary point (resp., solution) of (15), then (Gx̄,Hȳ) is a
critical (resp., antipodal) pair of (P,Q). Conversely, if (u, v) is a critical (resp., antipodal) pair
of (P,Q), then there exists a stationary point (resp., solution) (x̄, ȳ) of (15) such that u = Gx̄
and v = Hȳ.

Proof. Let (x̄, ȳ) be a stationary point of (15), and set u = Gx̄ and v = Hȳ. It follows
from (16), and the fact that K∗

X = KX and K∗
Y = KY, that

KX ∋ x̄ ⊥ G⊤ (v − ⟨u, v⟩u) ∈ K∗
X,

KY ∋ ȳ ⊥ H⊤ (u− ⟨u, v⟩v) ∈ K∗
Y,

∥u∥ = 1, ∥v∥ = 1.

By definition of P and Q, the conditions x̄ ∈ KX and ȳ ∈ KY imply that u = Gx̄ ∈ P and
v = Hȳ ∈ Q, respectively. These facts and the last line of the above system mean that the
first two lines of the definition (4) of critical angles of (P,Q) are satisfied. Moreover, note that
(i) x̄ ⊥ G⊤ (v − ⟨u, v⟩u) is equivalent to Gx̄ ⊥ v − ⟨u, v⟩u, and (ii)

G⊤ (v − ⟨u, v⟩u) ∈ K∗
X ⇔ ⟨G⊤ (v − ⟨u, v⟩u) , x⟩ ≥ 0 ∀x ∈ KX,

⇔ ⟨v − ⟨u, v⟩u,Gx⟩ ≥ 0 ∀x ∈ KX,

⇔ ⟨v − ⟨u, v⟩u, p⟩ ≥ 0 ∀p ∈ P,

⇔ v − ⟨u, v⟩u ∈ P ∗.

Therefore, items (i) and (ii) assert that the first line in the above system is equivalent to
P ∋ u ⊥ v − ⟨u, v⟩u ∈ P ∗. Analogously, the second line in the system reads as Q ∋ v ⊥
u− ⟨u, v⟩v ∈ Q∗. Hence, (u, v) satisfies (4) which means that (u, v) is a critical pair of (P,Q).

Conversely, let (u, v) be a critical pair of (P,Q). Then, u ∈ P = G(KX) and v ∈ Q = H(KX)
which mean that there exist x̄ ∈ KX and ȳ ∈ KX such that u = Gx̄ and v = Hȳ. By replacing
(u, v) = (Gx̄,Hȳ) in (4) and by using items (i) and (ii), described above, we deduce that (x̄, ȳ)
satisfies (16). Thus, (x̄, ȳ) is a stationary point of (15).

Now, let C1 × C2 be the feasible set of (15) where C1 := {x : x ∈ KX, ∥Gx∥ = 1} and
C2 := {y : y ∈ KY, ∥Hy∥ = 1}. It is straightforward to see that the feasible sets of (3) and
(15) are related by

{(Gx,Hy) : (x, y) ∈ C1 × C2} = {(u, v) : u ∈ P, ∥u∥ = 1, v ∈ Q, ∥v∥ = 1}. (17)

Hence, if (x̄, ȳ) is a solution of (15) then ⟨Gx̄,Hȳ⟩ ≤ ⟨Gx,Hy⟩ for all (x, y) ∈ C1 × C2. From
(17) we deduce that (ū, v̄) := (Gx̄,Hȳ) is a solution of (3). Then, (ū, v̄) is an antipodal pair of
(P,Q). Conversely, if (ū, v̄) is an antipodal pair of (P,Q) then there exist (x̄, ȳ) ∈ C1×C2 such
that (Gx̄,Hȳ) = (ū, v̄) satisfying ⟨Gx̄,Hȳ⟩ ≤ ⟨u, v⟩ for all feasible point (u, v) of (3). From
(17) we conclude that (x̄, ȳ) is a solution of (15).

The numerical resolution of problem (15) is not an easy task since it has as feasible set

{x ∈ KX : ∥Gx∥ = 1} × {y ∈ KY : ∥Hy∥ = 1},

which is not convex due to its spherical conditions. Thus, we need to reformulate (15) in such
a way that its feasible set can be more conveniently manipulable. Our reformulation will be
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a minimization problem with feasible set ∆X,Y = ∆X × ∆Y. Recall that ∆X and ∆Y are the
spectraplexes of X and Y which are given respectively by

∆X = {x ∈ KX : ⟨eX, x⟩ = 1} and ∆Y = {y ∈ KY : ⟨eY, y⟩ = 1}.

The set ∆X,Y turns out to be convex since we have hyperplanes instead of spheres. As Gx ̸= 0
and Hy ̸= 0 for all (x, y) ∈ ∆X,Y, due to Lemma 2, Proposition 3 asserts that problem (15)
can be reformulated as (5), fitting thus into the structure of (6). We have that Φ (in (5)) is
differentiable in ∆X,Y. Its gradient is given ∇Φ(x, y) = (∇xΦ(x, y),∇yΦ(x, y)), where

∇xΦ(x, y) =
G⊤Hy

∥Gx∥∥Hy∥
− ⟨Gx,Hy⟩

∥Gx∥ ∥Hy∥
G⊤Gx

∥Gx∥2
, (18a)

∇yΦ(x, y) =
H⊤Gx

∥Gx∥∥Hy∥
− ⟨Gx,Hy⟩

∥Gx∥ ∥Hy∥
H⊤Hy

∥Hy∥2
. (18b)

Lemma 4. The pair (x̄, ȳ) is a stationary point of (5) if and only if

KX ∋ x̄ ⊥
(
G⊤Hȳ

∥Hȳ∥
− ⟨Gx̄,Hȳ⟩

∥Gx̄∥∥Hȳ∥
G⊤Gx̄

∥Gx̄∥

)
∈ KX,

KY ∋ ȳ ⊥
(
H⊤Gx̄

∥Gx̄∥
− ⟨Gx̄,Hȳ⟩

∥Gx̄∥∥Hȳ∥
H⊤Hȳ

∥Hȳ∥

)
∈ KY,

⟨eX, x̄⟩ = 1, ⟨eY, ȳ⟩ = 1.

(19)

Proof. It follows from Definition 2 and the equations in (18) that (x̄, ȳ) is a stationary point
of (5) if, and only if, there exist γ1, γ2 ∈ R such that

KX ∋ x̄ ⊥
(

G⊤Hȳ

∥Gx̄∥∥Hȳ∥
− ⟨Gx̄,Hȳ⟩

∥Gx̄∥∥Hȳ∥
G⊤Gx̄

∥Gx̄∥2
+ γ1eX

)
∈ K∗

X, (20)

KY ∋ ȳ ⊥
(

H⊤Gx̄

∥Gx̄∥∥Hȳ∥
− ⟨Gx̄,Hȳ⟩

∥Gx̄∥∥Hȳ∥
H⊤Hȳ

∥Hȳ∥2
+ γ2eY

)
∈ K∗

Y, (21)

⟨eX, x̄⟩ = 1, ⟨eY, ȳ⟩ = 1. (22)

Next we show that γ1 = γ2 = 0. From the orthogonality conditions (20) and (21) we have that
γ1⟨eX, x̄⟩ = 0 and γ2⟨eY, ȳ⟩ = 0, respectively. Thus, because of (22) we deduce γ1 = γ2 = 0.
Finally, the system (20)-(22) becomes (19) by recalling that KX and KY are self-dual, and by
removing w.l.o.g. 1/∥Gx̄∥ from equation (20) and 1/∥Hȳ∥ from equation (21).

Theorem 2. If (x̄, ȳ) is a stationary point (resp., solution) of the problem (15), then (x̃, ỹ) :=(
x̄

⟨eX,x̄⟩ ,
ȳ

⟨eY,ȳ⟩

)
is a stationary point (resp., solution) of (5). Conversely, if (x̃, ỹ) is a stationary

point (resp., solution) of (5), then (x̄, ȳ) :=
(

x̃
∥Gx̃∥ ,

ỹ
∥Hỹ∥

)
is a stationary point (resp., solution)

of (15).

Proof. Let (x̄, ȳ) be a stationary point of (15). Then (16) holds. From Lemma 1 we have that

⟨eX, x̄⟩ > 0 and ⟨eY, ȳ⟩ > 0. Thus, the pair (x̃, ỹ) :=
(

x̄
⟨eX,x̄⟩ ,

ȳ
⟨eY,ȳ⟩

)
is well-defined. Observe that

because of the unit norm conditions in (16) we get ∥Gx̃∥ = ⟨eX, x̄⟩−1 and ∥Hỹ∥ = ⟨eY, ȳ⟩−1.
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Then, x̄ = x̃
∥Gx̃∥ and ȳ = ỹ

∥Hỹ∥ . By replacing these values in (16) we deduce that (x̃, ỹ) satisfies

(19). Therefore, (x̃, ỹ) is a stationary point of (5). The converse is proved analogously. In this
case, when (x̃, ỹ) is a stationary point of (5), Gx̃ ̸= 0 and Hỹ ̸= 0 thanks to Lemma2. Then,

(x̄, ȳ) :=
(

x̃
∥Gx̃∥ ,

ỹ
∥Hỹ∥

)
is well-defined, and it turns out to be a stationary point of (15). The

details are omitted.
Now, suppose that (x̄, ȳ) is a solution of (15). Let (x, y) be any feasible point of (5). Then,(
x

∥Gx∥ ,
y

∥Hy∥

)
is well-defined and it is a feasible point of (15). Therefore,

⟨Gx̄,Hȳ⟩ ≤ Φ(x, y),

for all feasible points (x, y) of (5). In particular, (x̃, ỹ) :=
(

x̄
⟨eX,x̄⟩ ,

ȳ
⟨eY,ȳ⟩

)
is a feasible point of

(5) and it attains the equality in the above displayed inequality. Thus (x̃, ỹ) is a solution of
(5). The converse is analogous.

The connection between (15) and the problem of computing a critical angle between the
cones P = G(KX) and Q = H(KY) are made explicit in the following corollary.

Corollary 2. If (x̃, ỹ) is a stationary point (resp., solution) of (5), then (u, v) :=
(

Gx̃
∥Gx̃∥ ,

Hỹ
∥Hỹ∥

)
is a critical (resp., antipodal) pair of (P,Q). Conversely, if (u, v) is a critical (resp., antipodal)
pair of (P,Q), then there exists a stationary point (x̃, ỹ) of (5) such that (u, v) is given as
above.

Proof. Combine Theorem 2 with Proposition 3.

Hence, computing a critical angle between two cones P = G(KX) and Q = H(KY) amounts
to computing a stationary point of the fractional programming problem (5). The next section
is dedicated to this task.

5 A sequential regularized partial linearization algorithm

In this section, we develop a numerical method to compute critical angles between a pair
of LISC cones by computing stationary points of the fractional program (5). By using the
well-known approach introduced by Dinkelbach in [9], we consider the following parametric
program, for δ ∈ R:

BCPδ :


min fδ(x, y) := ⟨Gx,Hy⟩ − δ ∥Gx∥ ∥Hy∥
s.t. x ∈ KX, ⟨eX, x⟩ = 1,

y ∈ KY, ⟨eY, y⟩ = 1.

(23)

Remark 1. We use the notation BCPδ since that program is constituted by biconvex functions
(see [16] for definitions and properties of biconvexity). Indeed, B(x, y) := ⟨Gx,Hy⟩ is biconvex
because it is bilinear. Furthermore, D(x, y) := ∥Gx∥ ∥Hy∥ is biconvex because its function at
each variable is a multiple of the composition of the cartesian norm with a linear map which
is a convex function.
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Observe that fδ is differentiable at any (x, y) such that Gx ̸= 0 and Hy ̸= 0. As dis-
cussed in the previous section, those conditions hold for every (x, y) ∈ ∆X,Y. Thus, fδ
is differentiable over the set ∆X,Y of feasible points of BCPδ, and the gradient is given by
∇fδ(x, y) = (∇xfδ(x, y),∇yfδ(x, y)), where

∇xfδ(x, y) = G⊤Hy − δ∥Gx∥−1∥Hy∥G⊤Gx, (24a)

∇yfδ(x, y) = H⊤Gx− δ∥Hy∥−1∥Gx∥H⊤Hy. (24b)

The next theorem states that a stationary point of (5) can be computed as a stationary
point of BCPδ where fδ vanishes.

Theorem 3. The pair (x̄, ȳ) is a stationary point (resp., solution) of BCPδ (23) with parameter

δ := ⟨Gx̄,Hȳ⟩
∥Gx̄∥∥Hȳ∥ if and only if (x̄, ȳ) is a stationary point (resp., solution) of FP (5).

Proof. Let (x̄, ȳ) be a stationary point of BCPδ (23). From Definition 2 and because KX and
KY are self-dual, we get

KX ∋ x̄ ⊥
(
G⊤Hȳ − δ∥Gx̄∥−1∥Hȳ∥G⊤Gx̄+ γ1eX

)
∈ KX,

KY ∋ ȳ ⊥
(
H⊤Gx̄− δ∥Hȳ∥−1∥Gx̄∥H⊤Hȳ + γ1eY

)
∈ KY,

⟨eX, x̄⟩ = 1, ⟨eY, ȳ⟩ = 1.

From the orthogonality conditions above we deduce that 0 = ⟨Gx̄,Hȳ⟩− δ∥Hȳ∥∥Gx̄∥+γ1 and
0 = ⟨Gx̄,Hȳ⟩ − δ∥Hȳ∥∥Gx̄∥ + γ2. The definition of δ then implies that γ1 = γ2 = 0. The

above system then becomes (with δ = ⟨Gx̄,Hȳ⟩
∥Gx̄∥∥Hȳ∥)

KX ∋ x̄ ⊥
(
G⊤Hȳ − ⟨Gx̄,Hȳ⟩

∥Gx̄∥2 G⊤Gx̄
)
∈ KX,

KY ∋ ȳ ⊥
(
H⊤Gx̄− ⟨Gx̄,Hȳ⟩

∥Hȳ∥2 H⊤Hȳ
)
∈ KY,

⟨eX, x̄⟩ = 1, ⟨eY, ȳ⟩ = 1.

As x̄ ⊥
(
G⊤Hȳ − ⟨Gx̄,Hȳ⟩

∥Gx̄∥2 G⊤Gx̄
)
∈ KX , it is equivalent to

x̄ ⊥ 1

∥Hȳ∥

(
G⊤Hȳ − ⟨Gx̄,Hȳ⟩

∥Gx̄∥2
G⊤Gx̄

)
∈ KX.

Analogously, we have ȳ ⊥ 1

∥Gx̄∥
(
H⊤Gx̄− ⟨Gx̄,Hȳ⟩

∥Hȳ∥2 H⊤Hȳ
)

∈ KY. Then, we can deduce

that (x̄, ȳ) is a stationary point of BCPδ (23) with δ = ⟨Gx̄,Hȳ⟩
∥Gx̄∥∥Hȳ∥ if and only if (x̄, ȳ) satisfies

(19). Thus, the equivalence follows. Suppose that (x̄, ȳ) is a solution of BCPδ (23) with

δ = ⟨Gx̄,Hȳ⟩
∥Gx̄∥∥Hȳ∥ . Then, fδ(x̄, ȳ) = 0. Furthermore, for any feasible point (x, y) of BCPδ (23) we

get fδ(x, y) ≥ 0, which means
Φ(x̄, ȳ) = δ ≤ Φ(x, y). (25)

Then, since problems BCPδ (23) and FP (5) have the same feasible sets, we conclude from (25)
that (x̄, ȳ) is a solution of FP (5). The converse follows the same steps but in reverse order.
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Corollary 3. If (x̄, ȳ) is a stationary point (resp., solution) of BCPδ (23) with parameter δ :=
⟨Gx̄,Hȳ⟩

∥Gx̄∥∥Hȳ∥ , then (u, v) :=
(
∥Gx̄∥−1Gx̄, ∥Hȳ∥−1Hȳ

)
is a critical (resp., antipodal) pair of (P,Q).

Conversely, if (u, v) is a critical (resp., antipodal) pair of (P,Q), then there exists a stationary

point (x̄, ȳ) of BCPδ (23) with δ := ⟨Gx̄,Hȳ⟩
∥Gx̄∥∥Hȳ∥ and such that (u, v) =

(
∥Gx̄∥−1Gx̄, ∥Hȳ∥−1Hȳ

)
.

Proof. It follows directly from Theorem 3 and Corollary 2.

Next, we formulate our algorithm to compute critical angles between a pair of LISC cones
(P,Q) = (G(KX), H(KY)).

Algorithm 1 Sequential Regularized Partial Linearization

▷ Step 0
1: Choose (x0, y0) ∈ ∆X,Y, β > 0, 0 < α < 1, 0 < ρ < 1, and prox-parameters µ1, µ2 ≥ 0.
2: Set k := 0.

▷ Step 1
3: Set

δk :=
⟨Gxk, Hyk⟩
∥Gxk∥∥Hyk∥

.

▷ Step 2
4: Let Lk

1(x) :=
〈
Gx,Hyk − δk∥Gxk∥−1∥Hyk∥Gxk

〉
.

Compute a solution x̃k to the convex program

min Lk
1(x) +

µ1

2 ∥x− xk∥2
s.t. x ∈ KX, ⟨eX, x⟩ = 1.

(26)

5: Let Lk
2(y) :=

〈
Hy,Gxk − δk∥Gxk∥∥Hyk∥−1Hyk

〉
.

Compute a solution ỹk to the convex program

min Lk
2(y) +

µ2

2 ∥y − yk∥2
s.t. y ∈ KY, ⟨eY, y⟩ = 1.

(27)

6: Let dk1 := x̃k − xk and dk2 := ỹk − yk.

▷ Step 3
7: If Lk

1(d
k
1) = 0 and Lk

2(d
k
2) = 0, terminate.

Otherwise, let tk := βρℓk , where ℓk is the smallest nonnegative integer ℓ such that

Φ(xk + tkdk1, y
k + tkdk2) ≤ Φ(xk, yk) + αtk

Lk
1(d

k
1) + Lk

2(d
k
2)

∥Gxk∥∥Hyk∥

Set
(
xk+1, yk+1

)
:= (xk, yk) + tk(d

k
1, d

k
2). Go to Step 1.

Some comments on Algorithm 1 are in order.

i) The prox-parameters µ1 and µ2 can take arbitrary non-negative values. The choice
µ1 = µ2 = 0 is covered by the convergence analysis given below because ∆X,Y of (5)
is compact (see Proposition 1). However, our numerical experiments suggest that

16



choosing the prox-parameters to be strictly positive is advantageous: it regularizes
the iterative process in the sense that the algorithm performs fewer iterations to
compute a stationary point within a given tolerance.

ii) We highlight that Step 2 can be performed in parallel as the two subproblems are
independent of each other.

iii) For LISC cones, the interest of dealing with (5) instead of (3) is now evident: the
cones KX and KY are in general more structured, permitting (26) and (27) to have
straightforward solutions in many settings of interest (c.f. Subsection 3.2). If the
considered cones are not LISC, then G and H are the identities operators in the
corresponding spaces X and Y, and thus P = KX and Q = KY. Algorithm 1 is still
applicable: for applications in which the subproblems do not have explicit solutions,
we can use of off-the-shelf (linear, quadratic, conic, etc.) solvers to compute x̃k and
ỹk.

iv) In Step 3, we perform the standard Armijo line search rule. Indeed, the term
Lk
1(d

k
1)+Lk

2(d
k
2)

∥Gxk∥∥Hyk∥ coincides with
〈
∇Φ(xk, yk), dk

〉
. As we show in Proposition 4 below,

dk is a descend direction for Φ at (xk, yk).

Lemma 5. We have that

Lk
1(d

k
1) ≤ −µ1

2
∥dk1∥2 and Lk

2(d
k
2) ≤ −µ2

2
∥dk2∥2. (28)

Furthermore, if xk is not a solution to (26) or yk is not a solution to (27), then

Lk
1(d

k
1) + Lk

2(d
k
2) < 0. (29)

Proof. Since x̃k solves (26) and xk is feasible, we have that Lk
1

(
x̃k
)
+ µ1

2 ∥x̃k − xk∥2 ≤ Lk
1

(
xk
)
,

with strict inequality if xk is not a solution to (26). As Lk
1

(
dk1
)
= Lk

1

(
x̃k
)
− Lk

1

(
xk
)
, we

conclude that Lk
1

(
dk1
)
≤ −µ1

2 ∥dk1∥2. Analogously, we get Lk
2(d

k
2) ≤ −µ2

2 ∥dk2∥2. Suppose that xk
is not a solution to (26) or yk is not a solution to (27). Then, one of the inequalities in (28)
holds strictly. It implies, Lk

1(d
k
1) + Lk

2(d
k
2) < −µ1

2 ∥dk1∥2 −
µ2

2 ∥dk2∥2 ≤ 0.

Proposition 4. Suppose that xk is not a solution to (26) or yk is not a solution to (27).
Then, the vector

(
dk1, d

k
2

)
is a descent direction for the fractional function Φ (given in (5)) at

(xk, yk).

Proof. We must prove that

⟨∇Φ(xk, yk), (dk1, d
k
2)⟩ = ⟨∇xΦ(x

k, yk), dk1⟩+ ⟨∇yΦ(x
k, yk), dk2⟩ < 0. (30)

From (18), we obtain,

∇xΦ(x
k, yk) =

G⊤Hyk

∥Gxk∥∥Hyk∥
− δk

G⊤Gxk

∥Gxk∥2
,

∇yΦ(x
k, yk) =

H⊤Gxk

∥Gxk∥∥Hyk∥
− δk

H⊤Hyk

∥Hyk∥2

17



Then,

⟨∇xΦ(x
k, yk), dk1⟩ = ∥Gxk∥−1∥Hyk∥−1Lk

1(d
k
1),

⟨∇yΦ(x
k, yk), dk2⟩ = ∥Gxk∥−1∥Hyk∥−1Lk

2(d
k
2).

Since xk is not a solution to (26) or yk is not a solution to (27), we can use (29) to conclude
(30).

The following proposition explains why the stop criterium of Algorithm1 allow us to find
solutions for (26) and (27).

Proposition 5. If Lk
1(d

k
1) = 0, then xk solves (26). Moreover, If Lk

2(d
k
2) = 0, then yk solves

(27).

Proof. Suppose that Lk
1(d

k
1) = 0. Then, Lk

1(x̃
k) − Lk

1(x
k) = 0. If µ1 = 0, the regularization

term in (26) vanishes. Hence, because of Lk
1(x̃

k) = Lk
1(x

k) we conclude that xk solves (26). If
µ1 > 0, from (28) we deduce that dk1 = x̃k − xk = 0. Then, xk = x̃k which implies that xk

solves (26). The proof of the second part is analogous.

Now, the following two results show that Algorithm1 find stationary points of problem (5).

Proposition 6. Let (x̄, ȳ) ∈ ∆X,Y and set δ̄ := ⟨Gx̄,Hȳ⟩
∥Gx̄∥∥Hȳ∥ . Then, (x̄, ȳ) is a stationary point of

(5) if, and only if, x̄ and ȳ are solutions of the respective programs:

min
〈
Gx,Hȳ − δ̄∥Gx̄∥−1∥Hȳ∥Gx̄

〉
+ µ1

2 ∥x− x̄∥2
s.t. x ∈ KX, ⟨eX, x⟩ = 1,

(31)

and
min

〈
Hy,Gx̄− δ̄∥Gx̄∥∥Hȳ∥−1Hȳ

〉
+ µ2

2 ∥y − ȳ∥2
s.t. y ∈ KY, ⟨eY, y⟩ = 1.

(32)

Proof. The pair (x̄, ȳ) is a stationary point of (5) if, and only if, ⟨∇fδ̄(x̄, ȳ), ((x, y)−(x̄, ȳ)⟩ ≥ 0
for all (x, y) ∈ ∆X,Y, which is equivalent to{

⟨∇xfδ̄(x̄, ȳ), x− x̄⟩ ≥ 0 ∀x ∈ KX s.t. ⟨eX, x⟩ = 1
⟨∇yfδ̄(x̄, ȳ), y − ȳ⟩ ≥ 0 ∀y ∈ KY s.t. ⟨eY, y⟩ = 1.

In view of (24a) and (24b), the above system is equivalent to saying that x̄ and ȳ are solutions
to (31) and (32), respectively.

Theorem 4. Every accumulation point (x̄, ȳ) of the sequence
{(

xk, yk
)}

, generated by Algo-
rithm1, is a stationary point of problem (5).

Proof. Let (x̄, ȳ) be an accumulation point of
{(

xk, yk
)}

(which is assured to exist because
∆X,Y is compact, see Proposition 1). By passing to a subsequence if necessary, we may suppose
that (xk, yk) → (x̄, ȳ) and (x̃k, ỹk) → (x̃, ỹ), as k → ∞, where (x̃, ỹ) ∈ ∆X,Y. Let x ∈ KX s.t.
⟨eX, x⟩ = 1 be arbitrary. Because x̃k solves (26), we have that〈

Gx̃k, Hyk − δk∥Gxk∥−1∥Hyk∥Gxk
〉
+

µ1

2
∥x̃k − xk∥2 (33)

≤
〈
Gx,Hyk − δk∥Gxk∥−1∥Hyk∥Gxk

〉
+

µ1

2
∥x− xk∥2.
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By letting k → ∞ on (33), we obtain〈
Gx̃,Hȳ − δ̄∥Gx̄∥−1∥Hȳ∥Gx̄

〉
+

µ1

2
∥x̃− x̄∥2

≤
〈
Gx,Hȳ − δ̄∥Gx̄∥−1∥Hȳ∥Gx̄

〉
+

µ1

2
∥x− x̄∥2.

where

δ̄ :=
⟨Gx̄,Hȳ⟩
∥Gx̄∥∥Hȳ∥

.

Thus, we deduce that x̃ is a solution to (31). On the other hand, from standard arguments on
the Armijo rule we have that

〈
∇Φ(xk, yk), (dk1, d

k
2)
〉
→ 0 as k → ∞. In Proposition 4, we have

shown that
〈
∇xΦ(x

k, yk), dk1
〉
≤ 0 and

〈
∇yΦ(x

k, yk), dk2
〉
≤ 0. Then,

lim
k→∞

〈
∇xΦ(x

k, yk), dk1

〉
= ⟨∇xΦ(x̄, ȳ), x̃− x̄⟩ = 0, (34)

lim
k→∞

〈
∇yΦ(x

k, yk), dk2

〉
= ⟨∇yΦ(x̄, ȳ), ỹ − ȳ⟩ = 0. (35)

Since ⟨∇xΦ(x̄, ȳ), x̃− x̄⟩ = ∥Gx̄∥−1∥Hȳ∥−1L̄1(x̃− x̄), from (34) we conclude

L̄1(x̃)− L̄1(x̄) = L̄1(x̃− x̄) = 0.

Thus, from Proposition 5 we conclude that not only x̃ but also x̄ is solution of (31). In the
same way, we can prove that both ỹ and ȳ are solutions of (32). (We highlight that if µ1, µ2 > 0
in Algorithm 1, then x̄ = x̃ and ȳ = ỹ due to strongly convexity of the objective functions.)
Therefore, from Proposition 6 we conclude that (x̄, ȳ) is a stationary point of (5).

Finally, it follows from Theorem 4 and Corollary 3 that Algorithm 1 asymptotically com-
putes a critical pair (u, v) =

(
∥Gx̄∥−1Gx̄, ∥Hȳ∥−1Hȳ

)
of (P,Q).

6 Computational experiments

This section reports some numerical experiments for computing critical angles between pairs
of LISC cones. For each class of test problems considered below, we describe how the subprob-
lems (26) and (27) take a form that can be efficiently solved.

Indeed, for the pair of LISC cones (P,Q) = (G(KX), H(KY)), the optimization problems
in Step 2 of Algorithm 1 are equivalent to the projection problems onto

∆X = {x ∈ KX : ⟨eX, x⟩ = 1} and ∆Y = {y ∈ KY : ⟨eY, y⟩ = 1},

when µ1 > 0 and µ2 > 0, respectively (if µ1 = µ2 = 0, then subproblems (26) and (27) have
straightforward solutions). Let us focus on problem (26), a similar reasoning applies to (27).
After some algebraic manipulation on the cost function of (26), we can obtain the solution
of (26) by solving the following projection problem:

min 1
2

∥∥∥x−
(
xk − ck

µ1

)∥∥∥2
s.t. x ∈ ∆X

with ck := GT (Hyk − δk∥Gxk∥−1∥Hyk∥Gxk), (36)
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As benchmark for our analysis, we solved the nonlinear program (5) by using IPOPT [40]
distributed in the OPTI toolbox [8]. We use default values for the solver parameters, except for
the maximum number of iterations, which is incremented to 5000 and the Absolute Function
Tolerance increased to 10−6. The numerical experiments were performed on an Intel Core i7
clocked at 2 GHz (32 GB RAM).

The performance of the two solvers is measured by considering 103 initial points and by
reporting in the tables below the following values:

• θb(P,Q): the best critical angle, which we compute as the cosine inverse of the best
objective function value of (5) obtained by one solver with 103 initial points.

• itb, ita, itw: minimum, average and maximum number of iterations required by the
algorithm to compute a stationary point.

• CPUb, CPUa, CPUw: minimum, average and maximum CPU time in seconds required
by the algorithm to compute a stationary point.

In practice, we stop Algorithm 1 when |Lk
1(d

k
1)| ≤ ϵ1 and |Lk

2(d
k
2)| ≤ ϵ2, with ϵ1, ϵ2 being

small positive values. Additionally, we require that the δk − δk+5 ≤ ϵ3 for a given small ϵ3 > 0,
that is, the algorithm runs until the objective function value of (5) stabilizes over the last five
iterations. We also set the maximum number of iterations to 5000.

6.1 Critical angles between two polyhedral cones

As in [32], we consider the computation of critical angles of a pair

(P,Q) = (G(Rp
+), H(Rq

+))

of polyhedral cones in Rn, where G and H are matrices in Rn×p and Rn×q, respectively, such
that P and Q are LISC cones. For µ1, µ2 > 0 and because of (36), we can obtain the solution
of (26) by solving the following projection onto the simplex problem:

min 1
2

∥∥∥x−
(
xk − ck

µ1

)∥∥∥2
s.t. x ≥ 0,

⟨1p, x⟩ = 1.

The resolution of this task is explained in Example 3 item (a). It can be efficiently performed
by the specialized algorithm of [7].

We compute critical angles between the nonnegative orthant P = Rn
+ and the Schur cone

Q =

{
x ∈ Rn :

k∑
i=1

xi ≥ 0, for k ∈ {1, ..., n− 1} and x1 + ...+ xn = 0

}
.

We consider G = In and the columns of the matrix H are in the following form

h1 =
1√
2
,
(
1,−1, 0, . . . , 0

)T
, . . . hn−1 =

1√
2
,
(
0, . . . , 0, 1,−1

)T
.

We generate several instances by considering n ∈ {5, 20, 50, 100, 500, 700, 1000} and run
Algorithm 1 and IPOPT with 103 random initial points in the simplex. For these test problems,
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we stop Algorithm 1 when the stopping criteria are satisfied with ϵ1 = 10−6, ϵ2 = 10−6 and
ϵ3 = 10−5. After some tuning, the prox-parameter values were chosen as µ1 = 0.01 and
µ2 = 2.6.

The performance of Algorithm 1 and IPOPT for solving these test problems is presented in
Tables 1 and 2, respectively. This first set of numerical experiments demonstrates that, unlike
IPOPT, the proposed algorithm can calculate a critical angle within the maximum number of
iterations for all the instances tested. As expected, the required CPU time increases with the
dimension of the problems, but it typically remains in the tens of seconds, even for the largest
instance. Furthermore, we observe that, for all but two cases (i.e., n = 100 and n = 200), the
best optimal value computed by our algorithm is larger than the one computed by IPOPT, as
evidenced by values in the first columns of the corresponding tables. The box-plots in Fig. 1
illustrate the distribution of the critical angles across the different initial points with a digital
precision of 10−6. We can see that the interquartile ranges (IQRs) across the box-plots are
relatively narrow for both the solvers, indicating consistent optimization performance. For
n ≥ 400, our algorithm can converge to better quality points (i.e., corresponding to a large
objective function value) than IPOPT for almost all the initial points, confirming its good
performance.

n θb(P,Q) itb ita itw CPUb CPUa CPUw

5 8.5242e-01 π 13 88.64 1101 1.64e-04 1.05e-03 1.11e-02
20 9.2821e-01 π 48 262.84 1325 7.03e-04 3.63e-03 1.74e-02
50 9.5478e-01 π 113 519.89 1969 2.40e-03 1.10e-02 4.13e-02
100 9.6794e-01 π 195 1120.44 4227 8.44e-03 4.80e-02 1.76e-01
200 9.7013e-01 π 240 1279.29 3216 5.56e-02 3.01e-01 1.26e+00
400 9.6683e-01 π 347 1257.72 2899 1.89e-01 7.21e-01 3.54e+00
500 9.6689e-01 π 446 1236.44 2367 3.28e-01 1.00e+00 2.20e+00
700 9.6626e-01 π 494 1174.94 2403 8.12e-01 2.22e+00 6.05e+00
1000 9.6360e-01 π 561 1105.09 2009 3.02e+00 6.38e+00 1.20e+01

Table 1: Performance of Algorithm 1 for computing a critical angle between two polyhedral
cones with 103 initial points.

n θb(P,Q) itb ita itw CPUb CPUa CPUw

5 8.5242e-01 π 11 19.63 79 2.23e-02 3.01e-02 6.97e-02
20 9.2822e-01 π 60 207.65 1665 6.11e-02 1.96e-01 1.56e+00
50 9.5483e-01 π 194 1733.40 5000 2.90e-01 2.36e+00 1.08e+01
100 9.6812e-01 π 729 4517.13 5000 1.21e+00 9.29e+00 2.49e+01
200 9.7352e-01 π 5000 5000.00 5000 1.35e+01 2.01e+01 5.83e+01
400 9.5666e-01 π 5000 5000.00 5000 5.23e+01 5.46e+01 8.27e+01
500 9.4717e-01 π 5000 5000.00 5000 7.85e+01 8.82e+01 1.36e+02
700 9.5286e-01 π 5000 5000.00 5000 1.66e+02 1.85e+02 2.61e+02
1000 9.3832e-01 π 5000 5000.00 5000 4.25e+02 4.56e+02 6.32e+02

Table 2: Performance of IPOPT for computing a critical angle between two polyhedral cones
with 103 initial points.

In terms of CPU time, our approach is significantly faster than IPOPT: compare the three
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Figure 1: Box-plots of the critical angles between two polyhedral cones computed by Algo-
rithm1 and IPOPT with 103 initial points.

last columns of Tables 1 and 2. More precisely, IPOPT took about 226.5 hours (approximately,
9 days) to solve all the 9000 instances, while Algorithm 1 took only 2.9 hours.

In [32, Example 7.4], all the critical angles for the case n = 5 were computed and are
shown in Table 3. It is interesting to compare the number of times that our algorithm and
IPOPT compute the maximum critical angle. To this end, we ran the two algorithms with
103 random initial points in the standard simplex, and in Table 3, we report (in percentage)
the distribution of the critical angles computed. The results show that both Algorithm 1 and
IPOPT compute the maximum angle for more than 60% of the total runs, and their performance
is comparable in this case.

Solver / Angle 0.6476π; 0.6667π; 0.6959π; 0.7180π 0.7500π 0.7820π 0.8041π 0.8333π 0.8524π

Algorithm 1 - 1.8% - 12.6 % 21.6 % 64 %
IPOPT - 1.7% - 13.9 % 21.1 % 63.3 %

Table 3: Percentage of critical angles between the nonnegative orthant and the Schur cone in R5 found
by Algorithm1 with 103 initial points.
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6.2 Critical angles between two ellipsoidal cones

In this section, we evaluate the performance of Algorithm1 for computing critical angles be-
tween a pair of ellipsoidal cones:

P = {(ξ, t) ∈ Rn−1 × R :
√
⟨ξ, Aξ⟩ ≤ t} and Q = {(ξ, t) ∈ Rn−1 × R :

√
⟨ξ,Bξ⟩ ≤ t},

where A and B are symmetric positive definite matrices of order n. Recall that P and Q are
LISC cones which are represented by

P = G(L+
n ) and Q = H(L+

n ),

where L+
n is the Lorentz cone in Rn and G,H : Rn → Rn are linear maps given by

G(ξ, t) = (A−1/2ξ, t) and H(ξ, t) = (B−1/2ξ, t),

for all (ξ, t) ∈ Rn−1×R. As before, the subproblems in Step 2 of Algorithm 1 are reformulated
(when µ1, µ2 > 0) as orthogonal projection problems (36). In this case, from Example 3
item (b), we have that the solution to problem (36) is

x̃k =

(
b̃k

max{1, ∥b̃k∥}
, 1

)
,

where b̃k ∈ Rn−1 is the vector consisting of the first n− 1 elements of (xk − ck
µ1
) and ck given

in (36). For this set of test problems, we generate positive definite matrices A and B as follows

A = C + nI and B = D + nI

where C and D are randomly generated sparse symmetric matrices with elements normally
distributed, with mean 0 and variance 1. We generate several instances by considering n ∈
{5, 20, 50, 100, 500, 700, 1000} and density d = 0.5. The tolerances for the algorithm stopping
test are ϵ1 = 10−6, ϵ2 = 10−6 and ϵ3 = 10−7. We consider a maximum number of iterations
equal to 5000, and the value of the prox-parameters are chosen as µ1 = 0.005 and µ2 = 0.005.
Finally, the initial point (x0, y0) is set as x0 = (ξ0, 1) and y0 = (ν0, 1), where ξ0 and ν0 are
random points in the Euclidean unit ball in Rn−1.

We report in Tables 4 and 5 the performance of Algorithm 1 and IPOPT, respectively. The
computed critical angles by both algorithms are found to be very close for most instances.
However, for the last two instances, IPOPT manages to find a slightly better solution. It should
be noted that IPOPT achieves this result for only one initial point out of 103 in the case of
n = 700 and n = 1000, as depicted in Fig 2.

One significant advantage of the proposed algorithm is that it requires significantly less
computational effort compared to IPOPT. In fact, our algorithm is observed to be even 102

times faster for the largest instances. For instance, IPOPT took about 379 hours (15 days) to
solve all the 9000 instances, while Algorithm 1 took only 4.5 hours. This substantial reduction
in computation time allows for additional runs of our algorithm to explore a larger range of
initial points, which could potentially yield improved critical angles.
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Figure 2: Box-plots of the critical angles between two ellipsoidal cones computed by Algorithm1
and IPOPT with 103 initial points.
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n θb(P,Q) itb ita itw CPUb CPUa CPUw

5 5.6950e-01 π 9 10.43 13 1.86e-04 3.93e-04 2.98e-02
20 1.5928e-01 π 92 286.99 825 1.76e-03 5.68e-03 1.67e-02
50 9.7918e-02 π 101 266.82 732 5.01e-03 1.16e-02 2.91e-02
100 6.7217e-02 π 174 598.09 1684 2.26e-02 7.76e-02 2.54e-01
200 4.6770e-02 π 295 690.63 1912 1.41e-01 3.49e-01 1.17e+00
400 3.2684e-02 π 381 640.27 1382 7.08e-01 1.34e+00 4.14e+00
500 2.9122e-02 π 405 556.26 1043 1.48e+00 2.40e+00 4.39e+00
700 2.4519e-02 π 418 539.18 754 3.19e+00 4.34e+00 7.32e+00
1000 2.0430e-02 π 433 505.31 610 6.52e+00 7.95e+00 1.57e+01

Table 4: Performance of Algorithm 1 for computing a critical angle between two ellipsoidal
cones with 103 initial points.

n θb(P,Q) itb ita itw CPUb CPUa CPUw

5 5.6950e-01 π 9 12.86 37 2.09e-02 2.53e-02 4.61e-02
20 1.5928e-01 π 37 57.04 111 4.63e-02 7.57e-02 4.25e-01
50 9.7918e-02 π 36 50.20 93 7.61e-02 1.10e-01 2.19e-01
100 6.7218e-02 π 56 98.32 190 2.79e-01 5.44e-01 1.60e+00
200 4.6773e-02 π 56 96.89 239 1.59e+00 2.86e+00 8.51e+00
400 3.2693e-02 π 75 178.35 468 1.36e+01 3.32e+01 8.73e+01
500 2.9136e-02 π 102 291.72 1051 3.52e+01 1.00e+02 3.54e+02
700 2.4860e-02 π 99 255.17 973 9.23e+01 2.50e+02 1.00e+03
1000 1.0850e-01 π 110 314.44 878 3.20e+02 9.79e+02 5.26e+03

Table 5: Performance of IPOPT for computing a critical angle between two polyhedral cones
with 103 initial points.

6.3 Critical angles between the SDP cone and the cone of nonnegative ma-
trices

Recall that Sn is the space of symmetric matrices of order n equipped with the trace inner
product ⟨A,B⟩ = Tr(AB). Furthermore, Pn is the SDP cone, and Nn denotes the cone of
nonnegative matrices in Sn. That is,

Pn = {A ∈ Sn : x⊤Ax ≥ 0,∀x ∈ Rn},
Nn = {B ∈ Sn : B is nonnegative entrywise}.

Let Θ(Pn,Nn) denote the maximal angle between Pn and Nn. The computation of Θ(Pn,Nn)
was exhaustively treated in [15] and [33]. It is known that

Θ(Pn,Nn) = (3/4)π, for n = 2, 3, 4, and lim
n→∞

Θ(Pn,Nn) = π.

The exact computation of Θ(Pn,Nn) for n ≥ 5 becomes difficult, and only lower bounds for
certain values of n are known. As it is discussed in [18], a motivation to compute Θ(Pn,Nn)
is that it provides a lower bound for the greatest possible angle between two matrices in the
copositive cone Cn := {A ∈ Sn : x⊤Ax ≥ 0, ∀x ∈ Rn

+}, cf. [15]. Our goal in this section is to
use Algorithm1 to improve the knowledge of these lower bounds.
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It is clear that Pn is a LISC cone since it is the symmetric cone of the algebra Sn. In this
case, its representation is

Pn = G(Pn)

with G : Sn → Sn the identity map.
The cone Nn is also LISC. Indeed, it can be expressed as

Nn = H(RN
+ ),

where N = n(n + 1)/2 and H : RN → Sn is the linear map constructed as follows: Let
E := {e1, . . . , eN} be the canonical basis of RN and let {Ei,j}i≤i≤j be the canonical basis of
Sn. That is, Ei,j ∈ Sn is the matrix whose entries are zeros except the entries corresponding
to (i, j) and (j, i) in which take values equal to one. It is clear that H is completely defined by
knowing the image of each element of its basis E . In this way, we take the following assignment:
for k = 1, . . . , N ,

H(ek) = Eik,jk ,

where ik := 2k− ℓk(ℓk−1)/2 and jk := argmin
1≤ℓ≤n

{ℓ(ℓ+1)/2 : ℓ(ℓ+1)/2 ≥ k}. Hence, for y ∈ RN ,

the value of H(y) is nothing but

H(y) =
N∑
k=1

ykEik,jk .

The mapping H is invertible since it maps the canonical basis of RN onto the canonical basis
of Sn. Hence, assumptions (A1) and (A2) are satisfied and Nn is a LISC cone.

In the implementation of Algorithm1, we also need to know the map HT : Sn → RN (the
adjoint map of H). It is not difficult to see that it is given by

HT (X) = (⟨X,Ei1,j1⟩, . . . , ⟨X,EiN ,jN ⟩)
T .

In practice, the numerical evaluation of H(y) and HT (X) is easy. To illustrate it, consider
n = 3. Then N = 6 and we have:

H



y1
y2
y3
y4
y5
y6

 =

y1 y2 y4
y2 y3 y5
y4 y5 y6

 and HT

x11 x12 x13
x12 x22 x23
x13 x23 x33

 =



x11
2x12
x22
2x13
2x23
x33

 .

Now, we are ready to implement Algorithm1 to estimate Θ(Pn,Nn). Algorithm1 generates
the points (Xk, yk). Recall that Xk is a matrix in Sn and yk is a vector in RN . In Step 2 of
Algorithm 1, for µ1 > 0, problem (26) becomes

min
1

2
∥X −Bk∥2

s.t. X ∈ Pn,
Tr(X) = 1,
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where Bk := Xk − (1/µ1)(Hyk − δk∥Xk∥−1∥Hyk∥Xk). If Bk has the spectral decomposition,
the solution to the above problem is Xk = QDiag(λ(Bk)QT , with Q being some orthogonal
matrix of order n. From Example 3 we have that Xk = QDiag(x̄)QT , where x̄ ∈ Rn is the
solution of

min
1

2
∥x− λ(Bk)∥2

s.t. x ∈ Rn
+,

⟨1n, x⟩ = 1.

When µ2 > 0, problem (27) becomes

min
1

2
∥y − bk∥2

s.t. y ∈ RN
+ ,

⟨1N , y⟩ = 1,

where bk := yk − (1/µ2)H
T (Xk − δk∥Xk∥∥Hyk∥−1Hyk).

The tolerances for the algorithm stopping test are ϵ1 = 10−6, ϵ2 = 10−6 and ϵ3 = 10−7. We
consider a maximum number of iterations equal to 5000, and the value of the prox-parameters
are chosen as µ1 = 0.01 and µ2 = 5. For the initial point (X0, y0), we set as X0 = Diag(x0)
and, we generated x0 and y0 as two random points in the simplex. The largest dimension for
the instances is 60, because the subproblems to be solved at each iteration are more complex. In
particular, the first requires the spectral decomposition of a matrix and a subsequent projection
on the n-dimensional standard simplex. The second subproblem also consists in projecting on
the standard simplex, but this time the dimension is much higher, that is N = n(n + 1)/2
(e.g., with n = 60, N = 1830).

In Table 6, we report the best critical angle θb(Pn,Nn) obtained by using Algorithm 1 for
different values of n. In the second column of this table, titled ‘θlb(Pn,Nn)’, we additionally
show the values computed by using the procedure in [33] which only guarantees a lower bound
for the maximal angle between the two considered cones. We solve the optimization problem
given in [33] by IPOPT and considering 103 random initial points. Then, in the table, we
provide the best value computed. We can see that our algorithm could find a slightly better
solution for n = 50 requiring a very small computational time. However, the reported values
improve significantly what was known in [33, Table 2]. We do not compare our algorithm with
IPOPT applied to FP (5) because this solver is not applicable in this more complex setting: the
Cones Pn and Nn do not have a favorable structure for off-the-shelf NLP solvers.

7 Conclusions

In this work, we have investigated the problem of computing critical angles between pairs of
convex cones in finite-dimensional Euclidean spaces. Our contributions are summarized as
follows: a) we have shown that the notion of critical angles considered in the literature is
equivalent to that of (KKT) stationarity for a class of nonlinear optimization problems; b) we
have posed the problem in the fractional programming (FP) setting and proposed a specialized
algorithm to compute stationary points, yielding thus critical angles to our original problem;
c) we have further specialized our analysis to the broad class of (LISC) convex cones derived as
linear images of symmetric cones. Moreover, we have demonstrated that our FP formulation
is well-defined and suitable for numerical optimization.
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n θlb(Pn,Nn) θb(Pn,Nn) itb ita itw CPUb CPUa CPUw

4 0.7500 π 0.7500 π 18 35.96 322 7.29e-04 1.76e-03 3.54e-02
5 0.7575 π 0.7575 π 20 102.32 536 8.87e-04 5.84e-03 3.23e-02
6 0.7575 π 0.7575 π 19 125.89 479 1.10e-03 8.35e-03 2.78e-02
7 0.7575 π 0.7575 π 22 202.35 478 1.16e-03 1.27e-02 3.34e-02
8 0.7608 π 0.7608 π 23 237.76 635 1.26e-03 1.59e-02 4.22e-02
9 0.7608 π 0.7608 π 20 243.34 530 1.27e-03 1.61e-02 3.95e-02
10 0.7609 π 0.7609 π 25 256.06 750 1.57e-03 1.73e-02 4.47e-02
11 0.7627 π 0.7627 π 25 260.09 870 1.97e-03 1.80e-02 5.89e-02
12 0.7649 π 0.7649 π 141 273.30 903 9.53e-03 1.90e-02 6.14e-02
13 0.7649 π 0.7649 π 130 282.42 1114 9.26e-03 2.09e-02 7.03e-02
14 0.7659 π 0.7659 π 123 304.45 927 8.73e-03 2.27e-02 7.51e-02
15 0.7678 π 0.7678 π 137 327.89 1304 1.04e-02 2.54e-02 9.36e-02
16 0.7699 π 0.7699 π 133 345.00 1835 1.06e-02 2.79e-02 1.40e-01
17 0.7699 π 0.7699 π 128 350.01 1958 1.17e-02 3.09e-02 1.60e-01
18 0.7699 π 0.7699 π 122 350.11 2179 1.23e-02 3.71e-02 1.96e-01
19 0.7703 π 0.7703 π 129 355.40 1548 1.24e-02 3.69e-02 1.72e-01
20 0.7719 π 0.7719 π 135 390.75 1741 1.37e-02 3.96e-02 2.91e-01
21 0.7719 π 0.7719 π 130 396.87 1955 1.52e-02 4.27e-02 1.91e-01
22 0.7719 π 0.7719 π 136 420.58 1724 1.57e-02 4.77e-02 1.83e-01
23 0.7722 π 0.7722 π 142 412.98 1593 1.73e-02 4.99e-02 1.76e-01
24 0.7735 π 0.7735 π 150 420.40 1831 1.81e-02 5.10e-02 2.03e-01
25 0.7735 π 0.7735 π 147 425.24 1480 2.00e-02 6.42e-02 2.59e-01
26 0.7735 π 0.7735 π 133 458.19 1454 3.25e-02 1.29e-01 4.12e-01
27 0.7739 π 0.7739 π 156 456.77 1997 3.93e-02 1.41e-01 5.50e-01
28 0.7750 π 0.7750 π 158 461.31 1764 4.14e-02 1.38e-01 5.63e-01
29 0.7750 π 0.7750 π 149 492.23 1704 4.21e-02 1.52e-01 5.08e-01
30 0.7757 π 0.7757 π 148 504.14 1834 4.04e-02 1.60e-01 6.21e-01
40 0.7789 π 0.7789 π 275 787.20 2197 1.27e-01 4.29e-01 1.32e+00
50 0.7809 π 0.7812 π 356 1193.38 3108 2.50e-01 9.71e-01 2.65e+00
60 0.7837 π 0.7837 π 507 1553.64 4189 5.57e-01 1.78e+00 6.93e+00

Table 6: Performance of Algorithm 1 for computing a critical angle between the SDP cone and
the cone of nonegative matrices.
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Our algorithm is the first numerical procedure for computing critical angles between pairs
of convex cones. The approach requires solving two independent subproblems at every iteration
to compute (with the aid of the Armijo line search) a new iterate. For the class of LISC cones,
we have shown that solutions to such subproblems are projections onto well-structured convex
sets. Otherwise, for more general cones, we can still apply off-the-shelf (linear, quadratic,
conic, etc.) convex solvers to solve such subproblems. Our theoretical analysis demonstrates
that our approach asymptotically computes critical angles regardless of initialization.

Numerical experiments on different types of convex cones (polyhedral, ellipsoidal, and
Loewnerian cones) in several dimensions illustrate the practical performance of our algorithm.
Comparison with IPOPT have shown that exploiting the problem’s structure as done by our
approach pays off: for the considered test problems, our algorithm is up to one hundred times
faster than IPOPT while maintaining (sometimes even improving) the quality of computed
critical angles.

Data availability

All data generated or analysed during this study are included in this article.
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