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Abstract

Researchers in the behavioral and social sciences often use linear discriminant analysis
(LDA) for predictions of group membership (classification) and for identifying the vari-
ables most relevant to group separation among a set of continuous correlated variables
(description). In this paper, we compare existing linear classification algorithms for non-
normally distributed multivariate repeated measures data in a simulation study based on
Likert-type data.
It is widely accepted that, as a multivariate technique, LDA provides more accurate results
by examining not only the relationship between the independent and dependent variables
but also the relationships within the independent variables themselves. In educational
and psychological research and other disciplines, longitudinal data are often collected
which provide additional temporal information. However, linear classification methods for
repeated measures data are rarely discussed in the literature despite these potential appli-
cations. These methods are more sensitive to actual group differences by taking the complex
correlations between time points and variables into account, when compared to analyzing
the data at each time point separately. Moreover, data in the behavioral and social sci-
ences rarely fulfill the multivariate normality assumption, so we consider techniques that
additionally do not require multivariate normality.
The results show that methods which include multivariate outlier removal before parameter
estimation as well as robust parameter estimation using generalized estimating equations
(GEE) perform better than the standard repeated measures LDA which assumes multi-
variate normality. The results of the longitudinal support vector machine (SVM) were not
competitive.

Keywords: Linear classification, Multivariate repeated measures data, Nonnormality, Robustness

1 Introduction

In psychology and the social sciences, discriminant analysis (DA) is traditionally applied to
classification tasks in data with continuous variables since its invention by Fisher (1936). Its
importance for the behavioral sciences has often been emphasized in reviews, tutorials and
textbooks (Boedeker and Kearns 2019; Sherry 2006; Field 2017; Huberty and Olejnik 2006;
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Fletcher et al 1978; Betz 1987; Garrett 1943). It has been applied to a large number of prob-
lems in experimental and applied psychology for class prediction as well as description (Rogge
and Bradbury 1999; Langlois et al 2000; O’Brien et al 2009; Kumpulainen et al 2021; Shinba
et al 2021; Stoyanov et al 2022; Aggarwala et al 2022).
Longitudinal data are collected in various disciplines since they provide additional information
about temporal changes. Longitudinal studies in psychology and the social sciences (Jensen
et al 2021; Banks et al 2021; McLanahan et al 2019) provide potential applications for repeated
measures DA or alternative linear classification techniques. At the same time, textbooks dis-
cussing DA do not mention respective repeated measures approaches (Lix and Sajobi 2010).
Traditional classification approaches for continuous multivariate repeated measures data typ-
ically assume multivariate normality (Roy and Khattree 2005a,b; Tomasko et al 2010; Gupta
1986), but this assumption is rarely fulfilled by psychological datasets and hard to verify for
small sample sizes (Delacre et al 2017; Rausch and Kelley 2009; Beaumont et al 2006; Neto
et al 2016). Psychological data, especially those obtained using patient-reported instruments,
are often characterized by skewness.
There are only few alternative approaches which relax or overcome the multivariate normal-
ity assumption and take the complex correlation structure between time points and variables
into account. We consider the modifications of repeated measures LDA by Brobbey et al.
(2021; 2022) that are more robust to deviations from multivariate normality. In their work,
they compare the performance of the standard repeated measures LDA (which is based on
the unstructured pooled covariance matrix estimate) once to its performance with preceding
multivariate outlier removal using two different trimming algorithms by Rousseeuw (1985),
and once to its performance when the covariance is estimated by a parsimonious Kronecker
product structure using the generalized estimating equations (GEE) model (Inan 2015), respec-
tively. In both cases, comparisons are made for a number of different simulation scenarios but
data are always simulated assuming a parsimonious Kronecker structure for group means and
covariance matrices, respectively, and correlations between variables that remain constant over
time. Furthermore, the two robust methods are not compared among each other. We further-
more consider the generalization of the support vector machine classifier by Chen and Bowman
(2011) to longitudinal data which uses a weighted combination of multivariate measurements
taken at several time points as input. This longitudinal SVM, when used with a linear kernel,
can also be used as a descriptive method, since it provides a weight vector corresponding to the
variables’ relative importance for separating the classes similar to Fisher discriminant function
coefficients in DA.
In this paper, we are trying to mimick realistic datasets. We base simulations on unstructured
means and covariance matrices estimated from psychometric reference datasets which differ in
sample sizes, sample size ratios, class overlap, temporal variation and number of measurement
occasions.
In our simulations, we compare the performance of the standard repeated measures LDA with
the performance of repeated measures LDA based on GEE estimates by Brobbey et al. (2022),
the repeated measures LDA when estimating the parsimonious Kronecker product covariance
and the longitudinal SVM, each time either without or with preceding application of one of the
two trimming algorithms as proposed by Brobbey (2021). In this way, we compare all poten-
tial combinations of these classification procedures applicable to linear classification problems
of multivariate repeated measures data and evaluate their performance in data which deviate
from multivariate normality. Furthermore, we evaluate the algorithms’ performance in the ref-
erence data using a nonparametric bootstrap approach which estimates confidence intervals
for the point estimates (Wahl et al 2016).
The paper is organized as follows. In Section 2, we describe the methods, i.e. the bootstrap
approach proposed by Wahl et al. (2016) as well as the robust or nonparametric linear classi-
fication procedures, describe the reference datasets and the simulation setup. In Section 3, we
present and discuss the results and provide recommendations based on the findings. Conclusions
are made in Section 4.

2 Data and Methods

In this section, we will describe the traditional repeated measures LDA, its robust versions
and the nonparametric longitudinal SVM for classification of nonnormally distributed repeated
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measures data. We consider a situation with a categorical outcome variable i ∈ {0, 1} (corre-
sponding to two distinct groups) and n = n0 +n1 samples, where measurements of p variables
are taken at t consecutive time points. We consider complete data, i.e. for each individual
j ∈ {1, . . . , ni}, each measurement l = 1, . . . , p is taken at each time point k = 1, . . . , t.
Table 1 gives an overview of the considered methods. Furthermore, we describe the non-
paramtric bootstrap approach for estimation of the methods’ performance in the original data
(Wahl et al 2016), the simulation setup and the reference datasets.

Table 1: Overview of the considered linear classification methods for nonnormally distributed mul-
tivariate repeated measures data. The performance of each classification method is estimated either
without or in combination with preceding multivariate outlier removal (using the Minimum Volume
Ellipsoid (MVE) or the Minimum Covariance Determinant (MCD) algorithm, respectively).

Linear classification method Description

Repeated measures linear discriminant
analysis (LDA)

1) standard/traditional

2) robust

Parametric method depending on estimates of the
group means and common covariance matrix

(unstructured) pooled covariance matrix

a) (parsimonious) Kronecker product covariance esti-
mated by flip-flop algorithm
b) (unstructured) covariance matrix estimated using
the joint Generalized Estimating Equations model

Longitudinal Support Vector Machine
(SVM) using a linear kernel

Nonparametric method independent of distributional
assumptions

2 .1 Multivariate repeated measures LDA

For LDA, the unknown parameters µi ∈ Rpt, the group-specific mean vectors, and Σ ∈ Rpt×pt,
the common covariance matrix, need to be estimated from the data. The covariance matrix Σ
is assumed to be positive definite. Assuming that Σ is unstructured, all distinct correlations
between each pair of the p variables and each combination of the t time points must be esti-
mated. If the dataset is small, the estimate Σ̂ may become singular, i.e. if n ≤ pt. In order to
reduce the complexity of Σ or to estimate Σ more efficiently, a reduced number of parameters
can be considered by assuming, for example, a Kronecker product structure Σ = Σt×t⊗Σp×p.
Here, Σt×t ∈ Rt×t comprises the correlations between the t time points and Σp×p ∈ Rp×p com-
prises the correlations between the p variables. The number of unknown parameters reduces
from (pt(pt+1)/2) for an unstructured covariance matrix to p(p+1)/2+ t(t+1)/2 for a Kro-
necker product covariance matrix (Naik and Rao 2001). It can be estimated by the flip-flop
algorithm, which gives maximum likelihood estimates of Σt×t and Σp×p (Lu and Zimmer-
man 2005). The flip-flop algorithm is suitable in case the entries in the vector of observations
x ∈ Rpt can be separated with respect to two factors, which are the time points and variables
in case of multivariate longitudinal data.
Brobbey et al. (2021; 2022) developed two approaches for robust LDA based on the Kronecker
product estimate of the covariance matrix that will be described in the following.
The LDA classification rule states that a new observation x ∈ Rpt is assigned to class 0 if(

x− µ0 + µ1

2

)T

Σ−1(µ0 − µ1) > log

(
π1
π0

)
where πi, i ∈ {0, 1}, is the prior probability of class i, and Σ−1 can be replaced by Σ−1

t×t⊗Σ−1
p×p

(Brobbey 2021).
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2 .1.1 Robust trimmed likelihood LDA for multivariate repeated
measures data

The rationale behind robust trimmed likelihood LDA for multivariate repeated measures data
(Brobbey 2021) is to use more robust estimators of the sample mean and covariance matrix in
order to increase the accuracy of LDA predictions. Many estimators of these sample statistics
are particularly prone to outliers, which are hard to detect in multivariate data with p > 2
variables. A popular measure of robustness, the finite sample breakdown point by Donoho
(1982) and Donoho and Huber (1983), is the smallest number or fraction of extremely small
or large values that must be added to the original sample that will result in an arbitrarily
large value of the statistic. While many estimators of multivariate location and scatter break
down when adding n/(p + 1) outliers (Donoho 1982), estimators based on the Minimum Vol-
ume Ellipsoid (MVE) and Minimum Covariance Determinant (MCD) algorithms (Rousseeuw
1985) have a substantially higher break-down point of (⌊n/2⌋− p+1)/n (Woodruff and Rocke
1993; Rousseeuw and Driessen 1999).
The high-breakdown linear discriminant analysis (Hawkins and McLachlan 1997) for cross-
sectional data is also based on the MCD algorithm and has already been implemented in the
R package rrcov (Todorov 2022).
Robust trimmed likelihood LDA for multivariate repeated measures data can also be used as
a supporting analysis, showing that the results of the usual analysis are not severely affected
by outliers.
The MCD is statistically more efficient than the MVE algorithm because it is asymptoti-
cally normal (Butler et al 1993), its distances are more precise, i.e. it is more capable of
detecting outliers (Rousseeuw and Driessen 1999). The MCD algorithm takes subsets of size
(n + p + 1)/2 ≤ h ≤ n of the dataset (for h > p) and determines the particular subset of h
observations out of the

(
n
h

)
possible subsets for which the determinant of the sample covariance

Σ̂ becomes minimal. The MVE algorithm chooses the subset of h observations for which the
ellipsoid containing all h data points becomes minimal.
Brobbey (2021) suggests to estimate the class means µ0 and µ1 as well as the common covari-
ance matrix Σ in the reduced dataset derived after applying the MCD or MVE algorithm,
respectively. She furthermore suggests to estimate the Kronecker product structure of the
covariance matrix since it is more parsimonious than the unstructured equivalent, which may
not be estimable for small sample sizes. We apply both versions, where we once estimate the
unstructured pooled covariance matrix

Σ̂ =
(n0 − 1)Σ̂0 + (n1 − 1)Σ̂1

(n0 − 1) + (n1 − 1)

and once the Kronecker product covariance Σ̂ = Σ̂t×t ⊗ Σ̂p×p, where Σ̂t×t and Σ̂p×p are
the pooled covariances between the t time points and p variables, respectively. The flip-flop
algorithm (Lu and Zimmerman 2005) is used to estimate Σ̂i

t×t and Σ̂i
p×p, i ∈ {0, 1} from the

data.
We also apply the MVE and MCD algorithm, respectively, to the data when using the other
linear classification methods described in the following sections, which has not been done before.

2 .1.2 Generalized estimation equations (GEE) discriminant analysis for
repeated measures data

Joint generalized estimating equations (GEEs) are another possibility to derive more robust
estimates of the sample means and covariance matrix from multivariate longitudinal data
(Brobbey et al 2022; Inan 2015). GEEs provide population-level parameter estimates, which
are consistent and asymptotically normally distributed even in case of misspecified working
correlation structures of the outcome variables. The covariance matrix is estimated by a robust
sandwich estimator (Hardin and Hilbe 2013). Brobbey et al. (2022) proposed the use of GEEs
for multivariate repeated measures data (Inan 2015) in the context of repeated measures LDA.
The population-level estimates of the GEE model are plugged into the repeated measures LDA
classification rule. For parsimony, the joint GEE model by Inan (2015) uses a decomposition of
the working correlation matrix into a t× t within- and a p× p between-multivariate response
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correlation matrix through the Kronecker product.
We fitted the joint GEE model by Inan (2015) to the data of each group i ∈ {0, 1} to obtain the
class-specific means and covariance matrix estimates, which we subsequently pooled to obtain
the common covariance matrix of the entire dataset. We drop the class index i here for better
readability.
The joint GEE model estimates parameters βl ∈ Rsl+1, specific to each variable xjl ∈ Rt, l ∈
{1, . . . , p}, j ∈ {1, . . . , ni}. Although the measurements of each variable xjl ∈ Rt can have their
own set of sl covariates (Lipsitz et al 2009), in our case, time is the only covariate for all p
variables, i.e. sl = 1, l = 1, . . . , p.
In the context of repeated measures LDA, the vector xj ∈ Rpt of repeated measurements
represents the continuous outcome variables and the measurement occasion k ∈ {1, . . . , t} rep-
resents the categorical independent variable. In this case, the independent variables are given
as a pt × 2p block diagonal matrix Zj = diag(Zjl : 1 ≤ l ≤ p), where Zjl = (1t zj1) =
(1t (1, . . . , t)

T ) ∈ Rt×2 is the matrix of covariates of the lth outcome variable and identical for
all p variables.
The GEE does not require the complete specification of the distribution of repeated measure-
ments xj but only the correct specification of the first two moments and the link function
connecting the covariates and marginal means (Lipsitz et al 2009; Wang 2014):

E(xj) = µj = g−1(Zjβ)

Var(xj) = Σj = (σjlk)l=1,...,p
k=1,...,t

where g is the link function, β = (β1, . . . ,βp). We chose the identity link function for all p
variables, i.e. µj = Zjβ and assumed an approximate Gaussian distribution as the marginal
distribution of each xjl, l = 1, . . . , p.
For β = (β1, . . . ,βp) ∈ R2p , and in case of no missing data, the GEE model is (Liang and
Zeger 1986):

U(β, γ, ρ) =

ni∑
j=1

DT
j Σ

−1
j (xj − µj) = 0

which can be solved with the Fisher scoring algorithm and where Dj =
∂µj(β)

∂β is a block

diagonal matrix of derivatives. The working covariance matrix Σj ∈ Rpt×pt in the joint GEE
(Inan 2015) is computed as

Σj = ψ · ((A1/2)T (Rp×p(γ)⊗Rt×t(ρ))A
1/2) where

A = diag(Cov(xj))

The correlation matrices Rp×p(γ) and Rt×t(ρ) may depend on additional parameters γ and
ρ, if they have a particular structure such as compound symmetry or autoregressive structure.
Here, Rp×p(γ) is the p×p correlation matrix of the p variables, Rt×t(ρ) is the t× t correlation
matrix of the t repeated measurement occasions, and ψ is a scale parameter. Liang and Zeger
(1986) suggested replacing Rp×p(γ) and Rt×t(ρ) by the working correlation matrices and
showed that the estimates β are still consistent even for misspecified working correlations.
We assumed unstructured correlation matrices for Rp×p(γ) and Rt×t(ρ), respectively.

2 .2 Longitudinal Support Vector Machine

The original linear SVM for cross-sectional data and linearly separable classes (Vapnik 1982)
has been modified such that an overlap between the samples of both classes is to some extent
allowed (Cortes and Vapnik 1995) depending on the choice of the regularization parameter
C. Chen and Bowman (2011) generalized the SVM classifier for a single time point (cross-
sectional data) such that it becomes applicable to longitudinal data. In their longitudinal
SVM algorithm, temporal changes are modeled by considering a linear combination of the
observations xj and a parameter vector β = (1, β1, . . . , βt−1), which represents the coefficients
for each time point k. Then, x̃j = xj1 + β1xj2 + · · · + βt−1xjt, are provided as input to
the traditional SVM. Combining the p observations from all t time points in a single vector
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assumes that the distances between time points are the same. The approach also assumes a
fixed number of p observations per time point k (complete data) just as in case of LDA.
The Lagrange multipliers α = (α1, . . . , αn) ∈ Rn and the temporal change parameters β ∈ Rt

are iteratively optimized using convex quadratic programming. Although this SVM classifier
can also estimate nonlinear decision boundaries depending on the type of kernel matrix that is
used, we apply a linear kernel in order to compare its performance to the other linear classifiers
and since the absolute values of the weight vector w ∈ Rp estimated by the SVM can be inter-
preted as variable importance in case of a linear kernel matrix. A summary of the longitudinal
SVM algorithm using the linear soft-margin approach can be found in the supplement S1.
Although the SVM algorithm does not make any distributional assumptions, the regulariza-
tion parameter C needs to be optimized. We use the SSVMP algorithm (Sentelle et al 2016),
a modification of the SVMpath algorithm (Hastie et al 2004) to find the optimal value of C.
The SSVMP algorithm is applicable for unequal class sizes and semidefinite kernel matrices in
contrast to the original version by Hastie et al. (2004). The path algorithm finds the optimal
value λ = 1/C with high accuracy, since it considers all possible values of C. At the same
time, it is computationally efficient compared to the generally recommended grid search. It
has been shown that the choice of C can be critical for the generalizability of the SVM model
(Hastie et al 2004).

2 .3 Nonparametric bootstrap approach

In order to obtain performance estimates in the reference data, we used a nonparametric boot-
strap approach for point estimates by Wahl et al. (2016), which is an extension of the algorithm
by Jiang et al. (2008) and based on the .632+ bootstrap method (Efron and Tibshirani 1997).
It allows to quantify the uncertainty of point estimates by constructing confidence intervals.
The .632+ bootstrap estimate (θ̂.632+) of the performance measure of interest is computed as

a weighted average of the apparent performance θ̂orig,orig (training and test data given by the

original dataset) and the ”out-of-bag” (OOB) performance θ̂bootstrap,OOB (training data given
by the bootstrap dataset, randomly sampled with replacement, and test data given by the
samples not present in the bootstrap dataset). The formula is:

θ̂.632+ = (1− w) · θ̂orig,orig + w · θ̂bootstrap,OOB

Then each bootstrap dataset is assigned a weight wb = θ̂bootstrap,bootstrap − θ̂orig,orig, where
θ̂bootstrap,bootstrap is the value of the performance measure, when the bootstrap dataset is used
as training as well as test dataset. The α

2 and 1 − α
2 percentiles of the empirical distribution

of these weights, ξα
2
and ξ1−α

2
, give the confidence intervals of θ̂.632+:

[θ̂.632+ − ξ1−α
2
, θ̂.632+ + ξα

2
]

The nonparametric bootstrap assumes that the observations xij , i ∈ {0, 1}, j = 1, . . . , ni are
independent.

2 .4 Reference datasets

Two datasets with different numbers of repeated measurement occasions are used as reference
datasets. Each one comprises measurements of four continuous predictor variables which are
measured at two time points (CORE-OM dataset) and four time points (CASP-19 dataset),
respectively. The binary outcome variable represents the group (y ∈ {0, 1}). Both datasets con-
sist of Likert-type data from psychological questionnaires, measured on a 5-point and 4-point
Likert scale, respectively.
We created reference datasets from these data in order to compare the methods’ performance
in different (almost) realistic settings, not in order to draw any substantive conclusions about
the data themselves.
The first dataset (Zeldovich 2018) is a self-report questionnaire of psychological distress abbre-
viated to CORE-OM (Clinical Outcomes in Routine Evaluation-Outcome Measure). It assesses
the progress of psychological or psychotherapeutic treatment using four domains (subjective
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well-being, problems/symptoms, life functioning, risk/harm) measured on a 5-point Likert scale
(0: not at all, 4: most or all the time). We created a balanced and an unbalanced dataset by
choosing two different variables available in the dataset to form groups. The balanced dataset
results from splitting the observations at the median age to form groups of younger (n0 = 93)
and older participants (n1 = 93), denoted as ”dataset 1” in the following. The unbalanced
dataset uses the binary variable hospitalisation as group variable and is denoted as ”dataset
2” in the following. Non-hospitalised participants represent group 0 (n0 = 42) and hospitalised
ones group 1 (n1 = 142).
The second dataset is a self-report questionnaire of quality of life for adults aged 60 and older
abbreviated to CASP-19. The dataset on CASP-19 is derived from waves 2, 3, 4, and 5 of The
English Longitudinal Study of Ageing (ELSA) (Banks et al 2021). The CASP-19 questionnaire
comprises the four subdomains control, autonomy, self-realization and pleasure measured on
a 4-point Likert scale (0: often, 3: never). Loneliness as one of the factors affecting quality of
life (Talarska et al 2018) is chosen as the group variable. For this purpose, the sample was
dichotomized at a score value of three determined from two questions related to loneliness (”Old
age is a time of loneliness”, ”As I get older, I expect to become more lonely”), answered on a
5-point Likert scale (1: strongly agree, 5: strongly disagree) by the participants during wave
2. Persons who feel less lonely represent group 0 (n0 = 254) and those who feel more lonely
represent group 1 (n1 = 1682). Since the group differences were nevertheless marginal (similar
to dataset 1), we modified these data in order to increase them. Group 1 remained unchanged,
but for group 0 only those observations, for which the variables ”control” and ”self-realization”
took on values above their respective 0.51 percentile remained. The dataset is referred to as
”dataset 3” in the following.
Answers to questions of each subdomain in the Likert-type questionnaires are summarized in
a score, where higher scores indicate a higher level of distress (dataset 1 and 2), and a bet-
ter quality of life (dataset 3), respectively. Analyses and data simulations are based on these
scores. Boxplots showing the distribution of these scores computed from the reference data are
presented in Figure 1. For dataset 1, boxes of both groups are much more comparable than for
dataset 2, where the groups are more distinct. For dataset 3, the groups are also distinct for
each variable but there is only little temporal variation despite four instead of two measure-
ment occasions compared to dataset 1 and 2.
Table 2 shows that our reference datasets substantially differ from multivariate normality, i.e.
p-values of the χ2 test corresponding to the Mardia measure of skewness are all significant.

Table 2: Mardia measure of multivariate skewness (b1,p), value of the

corresponding χ2 test statistic with respective p-value for the reference
data (α = 0.05), i.e.
Dataset 1: CORE-OM dataset with group variable age (n0 = 93, n1 = 93),
Dataset 2: CORE-OM dataset with group variable hospitalisation (n0 =
42, n1 = 142),
Dataset 3: CASP-19 dataset with group variable loneliness (n0 =
254, n1 = 1682).

b1,p χ2 test statistic df p-value

Dataset 1 14.8 460.2 120 2.52E-41

Dataset 2 14.8 453.8 120 2.75E-40

Dataset 3 31.6 10199.8 816 0.0
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(a)

(b)

(c)

Fig. 1: Boxplots showing the variables’ distribution in the reference datasets:
(a) Dataset 1: CORE-OM dataset, group variable age (n0 = n1 = 93)
(b) Dataset 2: CORE-OM dataset, group variable hospitalisation (n0 = 42, n1 = 142, non-hospitalised
patients represent group 0 and hospitalised patients represent group 1)
(c) Dataset 3: CASP-19 dataset, group variable loneliness (n0 = 254, n1 = 1682, participants who feel
less lonely represent group 0 and participants who feel more lonely represent group 1)
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2 .5 Simulation study approach and software

Our simulation study aims at mimicking the reference datasets. A brief overview of the steps
in the simulation study is given in Figure 2. For each scenario, 2000 datasets are simulated.
Data are simulated from the multivariate normal distribution (as a reference), from the mul-
tivariate truncated normal distribution which only takes on values within specified boundaries
(similar to the scales in the reference data) and multivariate lognormally distributed data in
order to include an extremely skewed distribution (overview in Table 3). Data are either not
trimmed or trimmed using the MCD and the MVE algorithm, respectively, before applying
the classification algorithms.
Sample sizes for the training data are chosen identical to the sample sizes of the original
datasets. Sample sizes for the test data are always n0 = n1 = 1000 in order to decrease varia-
tion of the performance measure estimates.
Application of the linear SVM algorithm requires a data-preprocessing step and finding an
optimal hyperparameter C which determines the maximum amount of overlap allowed between
samples of both classes. Since the SVM algorithm relies on the Euclidean distance to determine
the optimal decision boundary, data are preprocessed by standardization before applying the
method. Machine-learning algorithms generally require the optimization of hyperparameters.
We applied the simple SVM path (SSVMP) algorithm by Sentelle et al. (2016) as suggested
by Chen and Bowman (2011) in order to determine the optimal regularization parameter C.
It is available as MATLAB code (Sentelle 2015), which we rewrote in R.
The SSVMP algorithm ran into errors for the largest dataset 3. It did not give results for
the vast majority of datasets in scenario 3 (either no convergence was reached after the max-
imum number of 100 iterations or the assumptions of the Cholesky decomposition originally
incorporated in the algorithm were not fulfilled), thus results of the longitudinal SVM are not
computed for dataset 3.
The longitudinal SVM algorithm requires to specify a maximum number of iterations used for
finding the optimal separating hyperplane parameters. The iterative algorithm for optimiza-
tion of the Lagrange multipliers α and temporal change parameters β in the longitudinal SVM
is repeated until the Euclidean distance between two consecutive estimates of αm becomes less
than 1E−08 or the maximum number of 100 iterative steps is reached. The number of times
for which the longitudinal SVM algorithm converged in the different settings can be found in
Supplementary Table S4.
The MVE and MCD algorithm cannot be applied if the variability in at least one variable is too
low to determine unique quantiles. They both failed for the bootstrap approach using dataset
3 (Table 4) because there is hardly any variability for the variable ”self-realization” in group
0. The flip-flop algorithm (Lu and Zimmerman 2005) used by Brobbey (2021) for estimating
the Kronecker product structure of the covariance matrix from the training data was iterated
until the Frobenius norm of two consecutive Kronecker product covariance matrices became
less than or equal to 1E−04, a proposed stopping criterion by Castaneda and Nossek (2014).
We used the following software for data simulations. We implemented the longitudinal SVM
in R and used the R package Rcplex (Bravo et al 2021), an R interface to linear and quadratic
solvers of the IBM ILOG CPLEX Optimization Studio (IBM ILOG 2021). We used the imple-
mentations of MVE and MCD algorithm from the R package MASS (Ripley et al 2022), the joint
GEE model as implemented in the R package JGEE (Inan 2015), and implemented the version of
the flip-flop algorithm in R as described in Lu and Zimmerman (2005). For simulation of mul-
tivariate normally, lognormally, truncated normally distributed data, we used the respective
functions from the R packages MASS (Ripley et al 2022), compositions (van den Boogaart et al
2022), and tmvtnorm (Wilhelm and Manjunath 2022), respectively. For the truncated normal
distribution, the rejection method (default) was used.
We compared the methods’ performance with respect to different measures of discrimination.
These consider the similarity between true and predicted class labels. We chose predictive accu-
racy, the proportion of correctly predicted class labels, and the Youden index (Youden 1950),
which combines the sensitivity and specificity of the classification model in a single measure
(Youden index = |Sensitivity + Specificity -1|). Recommendations based on theses measures
can differ a lot. Predictive accuracy of an algorithm may be high in data with highly unbalanced
classes if the label of the larger class is predicted for all samples. In this case the Youden index
will have the minimum value of zero. Therefore it is reasonable to consider both measures.
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For visual assessment, summary ROC curves (Reitsma et al 2005), which represent sensitivity
and specificity estimates for all 2000 simulated datasets in combination, are computed using
the R package mada (Doebler 2020). They are based on a bivariate normal model of sensitivity
and specificity, which is identical to the hierarchical summary ROC model by Rutter and Gat-
sonis (2001) when no covariates affecting either sensitivity or specificity are included (Harbord
et al 2007), and which is recommended for meta-analyses of test performances in the Cochrane
Handbook (Cochrane Diagnostic Test Accuracy Working Group 2011).

Table 3: Parameterizations of the multivariate distributions for group
i ∈ {0, 1}. The multivariate truncated normal distribution is defined
by lower and upper boundaries, a ∈ Rpt and b ∈ Rpt, respectively, in
addition to the mean (µi) and covariance (Σ) parameters.

Distribution Parameterization

Multivariate normal Npt(µi,Σ)

Multivariate lognormal LN pt(µi,Σ)

Multivariate truncated normal T N pt(µi,Σ,a,b)

Parameters
estimate Σ,µ0,µ1 from reference data,
determine lower and upper boundary (a, b) of Likert scale

Data simulation N (µi,Σ) LN (µi,Σ) T N (µi,Σ, a, b)

Trimming none MVE MCD

Classification
(Prediction in test data)

LDA(Σpooled) LDA(ΣKP ) LDA(GEE) SVM

Performance measures
compute predicitve accuracy, Youden index,
sensitivity, specificity

Fig. 2: Overview of the steps in the simulation study for a particular reference dataset.
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3 Results and discussion

3 .1 Performance in the reference data

Figure 2 shows the ROC curves based on the θ̂.632+ bootstrap estimates of sensitivity and
specificity for each reference dataset in order to provide a first visual impression of the
algorithms’ performance in the reference data. These estimates of sensitivity and specificity
including their 95% confidence intervals can be found in Supplementary Table S2.
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Fig. 2: ROC curves showing the algorithms’ discriminative performance, based on the θ̂.632+ boot-
strap estimates of sensitivity and specificity.
(a) Dataset 1: CORE-OM dataset, group variable age (n0 = n1 = 93)
(b) Dataset 2: CORE-OM dataset, group variable hospitalisation (n0 = 42, n1 = 142, non-hospitalised
patients represent group 0 and hospitalised patients represent group 1)
(c) Dataset 3: CASP-19 dataset, group variable loneliness (n0 = 254, n1 = 1682, participants who feel
less lonely represent group 0 and participants who feel more lonely represent group 1)

In the balanced scenario (dataset 1), the performance of all methods is very similar and could
not distinguish the classes very well. This could already be assumed from the boxplots (Figure
1) which largely overlap for dataset 1. In the unbalanced scenarios (dataset 2 and 3), the differ-
ent extensions of LDA to repeated measures data clearly perform better than the longitudinal
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SVM, for which Chen and Bowman (2011) only demonstrated the performance for equal sam-
ple sizes. Considering the results, the method may not work as well for highly imbalanced data.
able 4 shows the θ̂.632+ bootstrap estimates for predictive accuracy and the Youden index
with their respective 95% confidence intervals. In Dataset 1 (equal sample sizes), the methods’
performance is very similar, and only the longitudinal SVM has a higher predictive accuracy
compared to the standard LDA (LDA (Σpooled)) with non-overlapping confidence intervals.
For the LDA-based methods, performance slightly improves after multivariate outlier removal
(application of the MVE or MCD algorithm, respectively). For Dataset 2 (highly imbalanced
sample sizes), the most obvious result is the poor performance of the longitudinal SVM. In
Dataset 3 (highly imbalanced but larger sample sizes than Dataset 2, less temporal variation),
predictive accuracy and Youden Index are much lower for LDA based on GEE estimates com-
pared to the other algorithms.
Results using the MVE and MCD algorithm could not be computed since these methods only
work if unique quantiles can be determined but the variable ”self-realization” has too low vari-
ability in group 0. The results of the longitudinal SVM are missing since the data often did not
fulfil the assumptions of the Cholesky decomposition used in the algorithm or the maximum
number of 100 iterative steps was exceeded.

Table 4: Performance in the reference data using the bootstrap approach for point estimates by Wahl
et al. (2016) and 2000 bootstrap datasets. Mean performance (95% CI) is indicated for each reference
dataset. Results with the highest mean are shown in bold. Dataset 1: CORE-OM, group variable age
(n0 = n1 = 93), Dataset 2: CORE-OM, group variable hospitalisation (n0 = 42, n1 = 142), Dataset
3: CASP-19, group variable loneliness (n0 = 254, n1 = 1682).

original MVE MCD

LDA
(Σpooled)

LDA
(ΣKP )

LDA
(GEE) SVM

LDA
(Σpooled)

LDA
(ΣKP )

LDA
(GEE) SVM

LDA
(Σpooled)

LDA
(ΣKP )

LDA
(GEE) SVM

Dataset 1
Predictive accuracy

0.461

(0.321,
0.466)

0.519

(0.39,
0.535)

0.514

(0.39,
0.535)

0.54

(0.475,
0.706)

0.485

(0.377,
0.539)

0.54

(0.449,
0.605)

0.52

(0.439,
0.622)

0.536

(0.444,
0.659)

0.497

(0.357,
0.513)

0.536

(0.429,
0.574)

0.52

(0.418,
0.627)

0.539

(0.47,
0.674)

Youden index

0.088

(0,
0.117)

0.099

(0,
0.159)

0.09

(0,
0.134)

0.106

(0,
0.289)

0.104

(0,
0.223)

0.125

(0,
0.266)

0.113

(0,
0.269)

0.099

(0,
0.217)

0.095

(0,
0.149)

0.114

(0,
0.213)

0.104

(0,
0.203)

0.108

(0,
0.269)

Dataset 2

Predictive accuracy

0.844

(0.801,
0.898)

0.84

(0.791,
0.9)

0.765

(0.667,
0.82)

0.296

(0,
0.356)

0.852

(0.814,
0.939)

0.847

(0.803,
0.939)

0.779

(0.724,
0.963)

0.34

(0,
0.394)

0.839

(0.784,
0.92)

0.833

(0.763,
0.91)

0.77

(0.705,
0.95)

0.348

(0,
0.402)

Youden index

0.422

(0.21,
0.646)

0.457

(0.258,
0.63)

0.466

(0.25,
0.575)

0

(0,
0)

0.489

(0.336,
0.756)

0.512

(0.417,
0.821)

0.512

(0.397,
0.873)

0

(0,
0)

0.489

(0.306,
0.716)

0.503

(0.331,
0.715)

0.507

(0.38,
0.872)

0

(0,
0)

Dataset 3

Predictive accuracy

0.897

(0.883,
0.908)

0.896

(0.882,
0.907)

0.236

(0.187,
0.252)

Youden index

0.3

(0.142,
0.412)

0.32

(0.184,
0.448)

0.117

(0.061,
0.133)
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3 .2 Performance in the simulated data

Summary ROC plots for all simulation scenarios are shown in Supplementary Figure S1. The
summary ROC curves essentially show the better discriminative ability of the classification
algorithms in Datasets 2 and 3, respectively, where (mean) measurements between the groups
differ more than in Dataset 1.
Complete simulation results showing the mean and standard errors of all performance mea-
sures can be found in the supplementary material (Supplementary Table S3). Since the focus
is rather comparing the methods’ performance than on the exact numbers, we show a visual
comparison of the methods’ predictive accuracy (Figure 3). Since the results with respect to
the Youden index are very similar they are shown in Supplementary Figure S2.
Figure 3 shows the boxplots of predictive accuracy estimated in the 2000 test datasets. Notably,
the standard repeated measures LDA algorithm (based on the usual pooled covariance esti-

mate, Σ̂pooled) does not perform best in any simulation scenario, although the difference is
especially marginal for Dataset 1. For Dataset 1, the LDA based on the parsimonious Kronecker
product covariance (ΣKP ) and LDA based on estimates of the joint GEE model LDA(GEE),
respectively, perform slightly better. For Dataset 2 and 3, respectively, LDA(GEE) gener-
ally performs best with respect to predictive accuracy (and the Youden index, Supplementary
Figure S2), although there are some outliers among the 2000 simulations with worse results.
In the nonnormally distributed data (middle and right column), the advantage of multivari-
ate outlier removal through the MVE and MCD algorithms becomes apparent, where the use
of the MCD algorithm (in green) often results in higher predictive accuracy compared to the
use of the MVE algorithm (in blue). The longitudinal SVM only works comparably well for
Dataset 1 (small but balanced sample sizes).
The high computational times for the longitudinal SVM (as a nonparametric method) are
another disadvantage (Table 5). The traditional LDA which uses the pooled covariance estimate
is least computationally intensive since it does not involve any iterative procedure.

Table 5: Computational times (hours) per algorithm averaged over the simulated datasets per ref-
erence dataset (irrespective of the data distribution and irrespective whether trimming has been
done before application of the classification algorithm). Dataset 1: CORE-OM, group variable age
(n0 = n1 = 93), Dataset 2: CORE-OM, group variable hospitalisation (n0 = 42, n1 = 142), Dataset
3: CASP-19, group variable loneliness (n0 = 254, n1 = 1682).

LDA
(Σpooled)

LDA
(ΣKP )

LDA
(GEE)

SVM

Dataset 1 0.08 1.43 0.62 39.11

Dataset 2 0.08 1.43 0.63 56.43

Dataset 3 0.1 20.46 28.08 −
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(a)

(b)

(c)

Fig. 3: Boxplots showing the distribution of the algorithms’ predictive accuracy estimated from 2000
simulated datasets for the multivariate normal (left), multivariate lognormal (center) and multivariate
truncated normal distribution (right). Results with the highest median value are highlighted in darker
colours.
(a) Dataset 1: CORE-OM dataset, group variable age (n0 = n1 = 93)
(b) Dataset 2: CORE-OM dataset, group variable hospitalisation (n0 = 42, n1 = 142)
(c) Dataset 3: CASP-19 dataset, group variable loneliness (n0 = 254, n1 = 1682)
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3 .3 Recommendations

In summary, the (nonparametric) longitudinal SVM seems not to be recommendable due to its
poor performance in data with unbalanced class sizes, its relatively high computational times
and potential errors the algorithm may run into for some data. However, it may work well for
equal class sizes (Chen and Bowman 2011). Repeated measures LDA based on estimates of the
joint GEE model (LDA(GEE)) usually performs best, whether or not the data are normally
distributed. Also, results of the LDA(GEE) method are much less affected by multivariate
outliers than those of the standard repeated measures LDA (LDA (Σpooled)) and the LDA using
the more parsimonious Kronecker product covariance estimate (LDA (ΣKP )). An additional
advantage is also, that the method is already implemented in the R package JGEE (Inan 2015),
and can therefore easily be applied.
LDA (Σpooled) or LDA (ΣKP ) in combination with multivariate outlier removal may still
perform better in specific cases. For these classification methods, especially the MCD algorithm
for prior outlier removal seems advantageous, that is also implemented in the R package MASS

(Ripley et al 2022).

4 Conclusions

Longitudinal studies are conducted in psychology and other disciplines. Data in psychology
and the social sciences are often characterized by nonnormal distributions, especially skew-
ness. LDA is widely applied as a standard technique in these fields, e.g. to questionnaire data
where answers are measured on Likert scales, either for classification tasks or for identification
of variables most relevant to group separation. Repeated measures techniques are preferable
for the analysis of data that are collected repeatedly over time compared to conducting sev-
eral independent analyses per time point. We compared the performance of robust repeated
measures DA techniques proposed by Brobbey et al. (2021; 2022) and the longitudinal SVM
by Chen and Bowman (2011) using multiple performance measures. We based these com-
parisons on real psychometric datasets which differ with respect to sample size, sample size
ratio, class overlap, temporal variation and number of repeated measurement occasions. We
thus considered additional scenarios to those in Brobbey et al. (2021; 2022), where Kronecker
product structures of means and covariances and constant correlations of the variables over
time were assumed. We also compared several robust methods among each other in contrast
to comparing a particular robust method to the standard method at a time. We included the
longitudinal SVM because it is similar to repeated measures LDA in that they are both linear
classifiers for which variable weights can additionally be computed and temporal correlations
are considered in the analysis. We did not consider extensions of other supervised machine
learning algorithms for classification since they usually assume independence between time
points (Ribeiro and Freitas 2019) and do not have a comparably intuitive interpretation of
variable weights as the linear SVM. Still they may be useful in case data shall be grouped
based on categorical variables, but traditionally scores based on Likert-type data are consid-
ered to be continuous variables.
In order to raise awareness of the considered linear classification techniques and their potential
application to psychometric data, we compare them in data simulations based on Likert-type
data from psychological questionnaires. We computed point estimates of their performance
with confidence intervals in the reference data using a nonparametric bootstrap approach
and compared their performance in simulated data based on parameter estimates obtained
from the reference datasets. We found that the repeated measures LDA based on parameter
estimates from the joint GEE model developed by Brobbey et al. (2022) most often gives the
best results. The MCD algorithm most often leads to better classification performance when
the (original) data show some group mean difference (only partially or non-overlapping boxes
in boxplots). Both methods have already been implemented. The results of one of the methods
or both methods in combination can be computed at least as an additional sensitivity analysis.
Potential drawbacks of our study are the limited number of reference datasets considered for
the method comparison and the single trimming parameter value (10%) for outlier removal
used for the MVE and MCD algorithm. To date, no recommendations on the choice of the
trimming parameter for multivariate data exist. Multiple values can be tried for the analysis
of an actual dataset.
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We followed the guidelines for neutral comparison studies by Weber et al. (2019) and the
general design of simulation studies by Morris et al. (2019).

Supplementary information.

S .1 Longitudinal Support Vector Machine

SVM is based on the structural risk minimization (SRM) principle which is intended to mini-
mize the expectation of the test error for a trained SVM model, called the expected risk R(a).
Its value usually cannot be computed directly but the upper boundary is given by the sum
of the mean error Remp(a) and the so-called Vapnik-Chervonenkis confidence. Among a pre-
defined set of functions, as, for example, the set of linear functions, the one which yields the
maximum margin between the samples of both classes is determined.
The upper bound of the expected risk R(a) holds with a probability of 1− η and is defined as
(Vapnik 2010; Burges 1998):

R(a) ≤ Remp(a) +

√(
h(log(2n/h) + 1)− log(η/4)

n

)
, where

Remp(a) =
1

2

n∑
i=1

|yj − f(xj , a)|

and n denotes the number of training observations, a a specific support vector machine model,
h the Vapnik-Chervonenkis dimension (which equals n + 1 for the linear SVM), and f(xj , a)
representing the predicted class labels by model a.
The SSVMP algorithm (Sentelle 2015; Sentelle et al 2016) optimizes the inverse of the regu-
larization parameter, λ = 1/C. Starting with a high value of λ such that all samples lie within
the margin of the SVM, it successively determines a strictly decreasing sequence of λ values for
which the set of support vectors changes for each λ value, and it stops if no more observations
are left inside of the margin (linearly separable case) or if the next λ value would be zero.
In the algorithm by Chen and Bowman (2011), the linear kernel matrix (or Gram matrix) Gm

is given by:

Gm =

G11
m . . . G1t

m
...

. . .
...

Gt1
m . . . Gtt

m

 =

XT
1 X1 . . . X

T
1 Xt

...
. . .

...

XT
t X1 . . . X

T
t Xt

 ∈ Rnt×nt

where

Xk =

y1x1k

...
ynxnk

 ∈ Rn×p, k = 1, . . . , t.

The dual form of the convex quadratic program (QP) is given by:

min
α

1

2
αT

mGmαm − 1Tα

s.t. C ≥ αj ≥ 0 ∀j = 1, . . . , n

t∑
k=1

n∑
j=1

αm(j + (k − 1)n)yj = 0

where

αm = (α, β1α, . . . , βt−1α)T ∈ Rtn×1

and αT
mGmαm is a convex function in the Lagrange multipliers α and the temporal change

parameters β. The parameters α and β can be optimized iteratively with respect to this
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objective function:

1. Initialize β = (1, β1, . . . , βt−1).
2. Assuming the value of β is known, α is optimized. The optimization problem becomes:

min
α

1

2
αT

(
t∑

k1=1

t∑
k2=1

βk1
βk2

Gk1k2
m

)
α− 1Tα

s.t. C ≥ αj ≥ 0 ∀j = 1, . . . , n

n∑
j=1

αjyj = 0

3. Assuming the value of α is known, β is optimized. The optimization problem becomes:

min
β

1

2
βT

αTG11
mα . . . αTG1t

mα
...

. . .
...

αTGt1
mα . . . αTGtt

mα

β

s.t. β0 = 1

(
n∑

j=1

αjyj

)
t∑

k=1

βk = 0

Steps 2 and 3 are repeated until convergence.
The dual form allows to directly identify the support vectors. Their corresponding entries of
αm are different from zero, i.e. xj is a support vector if {αm(j + (k − 1)n)}k=1,...,t > 0 j ∈
{1, . . . , n}.
Having found the optimal solution α∗

m through the iterative QP approach, the weight vector
w and the intercept b in the decision function h can be determined:

h(x) =
1

n

n∑
j=1

wTxTβ∗ + b

where

w =

n∑
j=1

yjα
∗
j x̃j =

n∑
j=1

yjα
∗
j{xj1 + β∗

1xj2 + ...+ β∗
t−1xjt} ∈ Rp

b =
1

n

n∑
j=1

wT (xT
j β

∗)− yj ∈ R

For computation of the intercept b, the data xj are used in t×p matrix form. New data samples
are assigned negative class labels (y = −1) if h(x) < 1, otherwise they are assigned to the
positive class (y = 1).
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Table S 1a: Parameters estimated from Dataset 1: CORE-OM dataset, group variable age (vari-
able 1: subjective well-being, variable 2: problems/symptoms, variable 3: life functioning, variable 4:
risk/harm).

Parameter Description Estimate

n0
sample size
group 0

93

n1
sample size
group 1

93

ntest
test
sample sizes

n0 = n1 = 1000

nsim
simulation
runs

2000

µ0
class mean
group 0

(
1.75, 1.58, 1.36, 0.32, 1.05, 1.03, 0.91, 0.16

)T
µ1

class mean
group 1

(
1.93, 1.82, 1.53, 0.42, 1.15, 1.19, 1.04, 0.2

)T

Σ
pooled
covariance
matrix



0.85 0.41 0.34 0.15 0.40 0.26 0.23 0.03
0.41 0.53 0.26 0.14 0.20 0.36 0.20 0.06
0.34 0.26 0.36 0.11 0.16 0.18 0.23 0.02
0.15 0.14 0.11 0.16 0.08 0.11 0.09 0.06
0.40 0.20 0.16 0.08 0.34 0.16 0.14 0.03
0.26 0.36 0.18 0.11 0.16 0.30 0.16 0.05
0.23 0.20 0.23 0.09 0.14 0.16 0.22 0.03
0.03 0.06 0.02 0.06 0.03 0.05 0.03 0.06


Σt×t

correlation
matrix
(time points)

(
1 0.82

0.82 1

)

Σp×p

correlation
matrix
(variables)

 1 0.42 0.44 0.27
0.42 1 0.5 0.22
0.44 0.5 1 0.2
0.27 0.22 0.2 1



Table S 1b: Parameters estimated from Dataset 2: CORE-OM dataset, group variable hospitalisation
(variable 1: subjective well-being, variable 2: problems/symptoms, variable 3: life functioning, variable
4: risk/harm).

Parameter Description Estimate

n0
sample size
group 0

42

n1
sample size
group 1

142

ntest
test
sample sizes

n0 = n1 = 1000

nsim
simulation
runs

2000

µ0
class mean
group 0

(
1.16, 1.31, 1.06, 0.26, 0.88, 0.92, 0.79, 0.27

)T
µ1

class mean
group 1

(
2.04, 1.81, 1.55, 0.4, 1.16, 1.16, 1.03, 0.15

)T

Σ
pooled
covariance
matrix



0.73 0.34 0.28 0.13 0.37 0.24 0.2 0.05
0.34 0.51 0.22 0.14 0.18 0.35 0.18 0.07
0.28 0.22 0.33 0.1 0.14 0.17 0.22 0.04
0.13 0.14 0.1 0.16 0.07 0.11 0.09 0.07
0.37 0.18 0.14 0.07 0.34 0.15 0.13 0.04
0.24 0.35 0.17 0.11 0.15 0.3 0.16 0.06
0.2 0.18 0.22 0.09 0.13 0.16 0.22 0.04
0.05 0.07 0.04 0.07 0.04 0.06 0.04 0.06


Σt×t

correlation
matrix
(time points)

(
1 0.82

0.82 1

)

Σp×p

correlation
matrix
(variables)

 1 0.4 0.43 0.24
0.4 1 0.47 0.21
0.43 0.47 1 0.2
0.24 0.21 0.2 1
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Table S 1c: Parameters estimated from Dataset 2: CASP-19 dataset, group variable loneliness
(variable 1: control, variable 2: autonomy, variable 3: self-realization, variable 4: pleasure).

Parameter Description Estimate

n0
sample size
group 0

254

n1
sample size
group 1

1682

ntest
test
sample sizes

n0 = n1 = 1000

nsim
simulation
runs

2000

µ0
class mean
group 0

(2.84, 2.59, 2.96, 2.75, 2.71, 2.58, 2.96, 2.70, 2.67, 2.61, 2.96, 2.70, 2.67, 2.62, 2.95,

2.68 )T

µ1
class mean
group 1

(2.09, 2.13, 2.67, 2.06, 1.88, 2.07, 2.63, 2.0, 1.86, 2.07, 2.62, 1.96, 1.85, 2.06, 2.61,

1.94)T

Σ
pooled
covariance
matrix



0.31 0.15 0.1 0.18 0.19 0.12 0.1 0.16 0.18 0.12 0.09 0.15 0.18 0.13 0.1 0.16
0.15 0.25 0.08 0.13 0.11 0.15 0.06 0.11 0.11 0.14 0.06 0.1 0.11 0.14 0.07 0.10
0.1 0.08 0.18 0.16 0.08 0.06 0.11 0.11 0.07 0.06 0.11 0.11 0.08 0.06 0.11 0.11
0.18 0.13 0.16 0.32 0.15 0.11 0.13 0.22 0.14 0.11 0.13 0.22 0.16 0.12 0.14 0.22
0.19 0.11 0.08 0.15 0.31 0.16 0.11 0.19 0.21 0.14 0.09 0.17 0.2 0.14 0.1 0.17
0.12 0.15 0.06 0.11 0.16 0.25 0.08 0.14 0.13 0.17 0.07 0.12 0.13 0.16 0.07 0.12
0.1 0.06 0.11 0.13 0.11 0.08 0.17 0.16 0.1 0.07 0.12 0.13 0.1 0.07 0.12 0.13
0.16 0.11 0.11 0.22 0.19 0.14 0.16 0.31 0.17 0.12 0.13 0.23 0.17 0.12 0.14 0.24
0.18 0.11 0.07 0.14 0.21 0.13 0.1 0.17 0.31 0.16 0.1 0.19 0.22 0.14 0.11 0.18
0.12 0.14 0.06 0.11 0.14 0.17 0.07 0.12 0.16 0.24 0.08 0.14 0.14 0.17 0.08 0.13
0.09 0.06 0.11 0.13 0.09 0.07 0.12 0.13 0.1 0.08 0.19 0.16 0.1 0.07 0.13 0.14
0.15 0.1 0.11 0.22 0.17 0.12 0.13 0.23 0.19 0.14 0.16 0.33 0.19 0.13 0.15 0.26
0.18 0.11 0.08 0.16 0.2 0.13 0.1 0.17 0.22 0.14 0.1 0.19 0.34 0.18 0.13 0.22
0.13 0.14 0.06 0.12 0.14 0.16 0.07 0.12 0.14 0.17 0.07 0.13 0.18 0.26 0.09 0.16
0.1 0.07 0.11 0.14 0.1 0.07 0.12 0.14 0.11 0.08 0.13 0.15 0.13 0.09 0.19 0.18
0.16 0.1 0.11 0.22 0.17 0.12 0.13 0.24 0.18 0.13 0.14 0.26 0.22 0.16 0.18 0.36



Σt×t

correlation
matrix
(time points)

 1 0.69 0.66 0.64
0.69 1 0.75 0.73
0.66 0.75 1 0.76
0.64 0.73 0.76 1



Σp×p

correlation
matrix
(variables)

 1 0.39 0.27 0.37
0.39 1 0.22 0.31
0.27 0.22 1 0.51
0.37 0.31 0.51 1
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Table S 2: Performance in the reference data using the bootstrap approach by Wahl et al. (2016) and
2000 bootstrap datasets. Mean performance (95% confidence interval) is indicated for each reference
dataset, i.e. Dataset 1: CORE-OM, group variable age (n0 = n1 = 93), Dataset 2: CORE-OM,
group variable hospitalisation (n0 = 42, n1 = 142), Dataset 3: CASP-19, group variable loneliness
(n0 = 254, n1 = 1682). The highest point estimates θ̂.632+ are shown in bold.
MVE: Minimum volume ellipsoid, MCD: Minimum covariance determinant, LDA: Linear discriminant
analysis, SVM: Support vector machine, Σpooled: pooled covariance matrix, ΣKP : Kronecker product
covariance matrix, GEE: covariance matrix of Generalized estimating equation.

original MVE MCD

LDA
(Σpooled)

LDA
(ΣKP )

LDA
(GEE) SVM

LDA
(Σpooled)

LDA
(ΣKP )

LDA
(GEE) SVM

LDA
(Σpooled)

LDA
(ΣKP )

LDA
(GEE) SVM

Dataset 1

Predictive accuracy

0.461

(0.321,
0.466)

0.519

(0.39,
0.535)

0.514

(0.39,
0.535)

0.54

(0.475,
0.706)

0.485

(0.377,
0.539)

0.54

(0.449,
0.605)

0.52

(0.439,
0.622)

0.536

(0.444,
0.659)

0.497

(0.357,
0.513)

0.536

(0.429,
0.574)

0.52

(0.418,
0.627)

0.539

(0.47,
0.674)

Youden index

0.088

(0,
0.117)

0.099

(0,
0.159)

0.09

(0,
0.134)

0.106

(0,
0.289)

0.104

(0,
0.223)

0.125

(0,
0.266)

0.113

(0,
0.269)

0.099

(0,
0.217)

0.095

(0,
0.149)

0.114

(0,
0.213)

0.104

(0,
0.203)

0.108

(0,
0.269)

Sensitivity

0.461

(0.134,
0.601)

0.444

(0.212,
0.641)

0.527

(0.359,
0.564)

0.702

(0.594,
1)

0.445

(0.275,
0.663)

0.511

(0.342,
0.703)

0.498

(0.405,
0.633)

0.706

(0.613,
1)

0.473

(0.254,
0.619)

0.516

(0.302,
0.642)

0.517

(0.405,
0.659)

0.729

(0.679,
1)

Specificity

0.543

(0.337,
0.784)

0.569

(0.343,
0.746)

0.543

(0.406,
0.623)

0.363

(0,
0.653)

0.532

(0.316,
0.697)

0.575

(0.424,
0.756)

0.535

(0.411,
0.654)

0.353

(0,
0.472)

0.528

(0.318,
0.673)

0.567

(0.427,
0.741)

0.519

(0.378,
0.622)

0.339

(0,
0.427)

Dataset 2

Predictive accuracy

0.844

(0.801,
0.898)

0.84

(0.791,
0.9)

0.765

(0.667,
0.82)

0.296

(0,
0.357)

0.852

(0.814,
0.939)

0.847

(0.803,
0.939)

0.779

(0.724,
0.963)

0.34

(0,
0.394)

0.839

(0.784,
0.92)

0.833

(0.763,
0.91)

0.77

(0.705,
0.95)

0.348

(0,
0.402)

Youden index

0.422

(0.21,
0.646)

0.457

(0.258,
0.63)

0.466

(0.25,
0.575)

0

(0,
0)

0.489

(0.336,
0.756)

0.512

(0.417,
0.821)

0.502

(0.397,
0.873)

0

(0,
0)

0.489

(0.306,
0.716)

0.503

(0.331,
0.715)

0.507

(0.38,
0.872)

0

(0,
0)

Sensitivity

0.958

(0.937,
1)

0.937

(0.895,
1)

0.792

(0.685,
0.865)

0.095

(0,
0.095)

0.944

(0.902,
1)

0.921

(0.836,
1)

0.802

(0.717,
1)

0.158

(0,
0.158)

0.919

(0.862,
1)

0.901

(0.809,
0.999)

0.783

(0.679,
0.966)

0.167

(0,
0.167)

Specificity

0.5

(0.264,
0.727)

0.52

(0.289,
0.71)

0.673

(0.499,
0.788)

0.957

(0.957,
1)

0.54

(0.361,
0.806)

0.571

(0.467,
0.928)

0.697

(0.571,
0.98)

0.941

(0.941,
1)

0.57

(0.363,
0.793)

0.6

(0.431,
0.861)

0.721

(0.602,
1)

0.939

(0.939,
1)
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Table S 2 (continued): Performance in the reference data using the bootstrap approach by Wahl
et al. (2016) and 2000 bootstrap datasets. Mean performance (95% confidence interval) is indicated
for each reference dataset, i.e. Dataset 1: CORE-OM, group variable age (n0 = n1 = 93), Dataset 2:
CORE-OM, group variable hospitalisation (n0 = 42, n1 = 142), Dataset 3: CASP-19, group variable
loneliness (n0 = 254, n1 = 1682). The highest point estimates θ̂.632+ are shown in bold.
MVE: Minimum volume ellipsoid, MCD: Minimum covariance determinant, LDA: Linear discriminant
analysis, SVM: Support vector machine, Σpooled: pooled covariance matrix, ΣKP : Kronecker product
covariance matrix, GEE: covariance matrix of Generalized estimating equation.

original MVE MCD

LDA
(Σpooled)

LDA
(ΣKP )

LDA
(GEE) SVM

LDA
(Σpooled)

LDA
(ΣKP )

LDA
(GEE) SVM

LDA
(Σpooled)

LDA
(ΣKP )

LDA
(GEE) SVM

Dataset 1

Predictive accuracy

0.897

(0.883,
0.908)

0.896

(0.992,
0.907)

0.236

(0.187,
0.252)

Youden index

0.3

(0.142,
0.412)

0.32

(0.184,
0.448)

0.117

(0.061,
0.133)

Sensitivity

0.985

(0.981,
0.999)

0.981

(0.971,
0.994)

0.12

(0.062,
0.133)

Specificity

0.314

(0.145,
0.426)

0.34

(0.193,
0.472)

0.999

(0.999,
1)
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Table S 3a: Performance of the algorithms in 2000 simulated datasets for dataset 1 (CORE-OM
dataset, group variable age, training data: n0 = n1 = 93, test data: n0 = n1 = 1000). Data are
simulated from the multivariate normally (N ), lognormally (LN ) and truncated normally (T N ) dis-
tribution. Parameter estimates are obtained from the training data without trimming (original) or
after trimming by applying the MVE or MCD algorithm, respectively, keeping 90% of the training
data. Highest mean values are shown in bold.
MVE: Minimum volume ellipsoid, MCD: Minimum covariance determinant, LDA: Linear discriminant
analysis, SVM: Support vector machine, Σpooled: pooled covariance matrix, ΣKP : Kronecker product
covariance matrix, GEE: covariance matrix of Generalized estimating equation.

original MVE MCD

LDA
(Σpooled)

LDA
(ΣKP )

LDA
(GEE) SVM

LDA
(Σpooled)

LDA
(ΣKP )

LDA
(GEE) SVM

LDA
(Σpooled)

LDA
(ΣKP )

LDA
(GEE) SVM

Predictive accuracy

N
0.545
(0.018)

0.55
(0.017)

0.544
(0.019)

0.541
(0.021)

0.542
(0.019)

0.547
(0.018)

0.54
(0.02)

0.538
(0.023)

0.541
(0.019)

0.547
(0.019)

0.539
(0.021)

0.539
(0.023)

LN
0.543
(0.018)

0.548
(0.019)

0.546
(0.029)

0.542
(0.021)

0.543
(0.019)

0.549
(0.02)

0.546
(0.027)

0.539
(0.022)

0.545
(0.018)

0.55
(0.018)

0.55
(0.023)

0.539
(0.02)

T N
0.542
(0.02)

0.546
(0.021)

0.542
(0.021)

0.532
(0.021)

0.542
(0.02)

0.547
(0.021)

0.542
(0.021)

0.531
(0.021)

0.543
(0.02)

0.547
(0.021)

0.543
(0.021)

0.531
(0.02)

Youden index

N
0.091
(0.033)

0.101
(0.031)

0.088
(0.034)

0.087
(0.031)

0.085
(0.034)

0.096
(0.032)

0.083
(0.035)

0.083
(0.033)

0.084
(0.035)

0.095
(0.034)

0.082
(0.035)

0.084
(0.033)

LN
0.087
(0.033)

0.098
(0.031)

0.101
(0.038)

0.089
(0.031)

0.088
(0.035)

0.099
(0.033)

0.1
(0.038)

0.084
(0.032)

0.091
(0.035)

0.102
(0.033)

0.103
(0.036)

0.083
(0.031)

T N
0.085
(0.037)

0.094
(0.037)

0.086
(0.037)

0.069
(0.032)

0.085
(0.037)

0.096
(0.036)

0.086
(0.037)

0.066
(0.031)

0.087
(0.037)

0.097
(0.036)

0.087
(0.037)

0.066
(0.03)

Sensitivity

N
0.546
(0.035)

0.55
(0.034)

0.544
(0.035)

0.7
(0.145)

0.543
(0.038)

0.548
(0.038)

0.541
(0.039)

0.689
(0.148)

0.542
(0.039)

0.547
(0.039)

0.54
(0.04)

0.688
(0.148)

LN
0.469
(0.04)

0.468
(0.04)

0.479
(0.04)

0.647
(0.177)

0.512
(0.041)

0.52
(0.04)

0.521
(0.045)

0.668
(0.174)

0.52
(0.042)

0.531
(0.041)

0.529
(0.044)

0.676
(0.178)

T N
0.515
(0.046)

0.512
(0.046)

0.512
(0.045)

0.714
(0.195)

0.536
(0.043)

0.537
(0.043)

0.534
(0.043)

0.725
(0.198)

0.542
(0.043)

0.544
(0.043)

0.54
(0.043)

0.733
(0.192)

Specificity

N
0.544
(0.035)

0.549
(0.035)

0.543
(0.036)

0.383
(0.139)

0.541
(0.039)

0.547
(0.038)

0.54
(0.04)

0.388
(0.14)

0.54
(0.04)

0.546
(0.039)

0.539
(0.041)

0.389
(0.138)

LN
0.617
(0.051)

0.628
(0.054)

0.612
(0.063)

0.438
(0.172)

0.574
(0.044)

0.578
(0.044)

0.571
(0.048)

0.411
(0.17)

0.57
(0.043)

0.57
(0.042)

0.57
(0.044)

0.402
(0.174)

T N
0.569
(0.05)

0.58
(0.053)

0.573
(0.052)

0.349
(0.192)

0.548
(0.043)

0.557
(0.044)

0.55
(0.044)

0.336
(0.195)

0.544
(0.041)

0.551
(0.042)

0.545
(0.042)

0.328
(0.189)
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Table S 3b: Performance of the algorithms in 2000 simulated datasets for dataset 2 (CORE-OM
dataset, group variable hospitalisation, training data: n0 = 42, n1 = 142, test data: n0 = n1 = 1000).
Data are simulated from the multivariate normally (N ), lognormally (LN ) and truncated normally
(T N ) distribution. Parameter estimates are obtained from the training data without trimming (orig-
inal) or after trimming by applying the MVE or MCD algorithm, respectively, keeping 90% of the
training data. Highest mean values are shown in bold.
MVE: Minimum volume ellipsoid, MCD: Minimum covariance determinant, LDA: Linear discriminant
analysis, SVM: Support vector machine, Σpooled: pooled covariance matrix, ΣKP : Kronecker product
covariance matrix, GEE: covariance matrix of Generalized estimating equation.

original MVE MCD

LDA
(Σpooled)

LDA
(ΣKP )

LDA
(GEE) SVM

LDA
(Σpooled)

LDA
(ΣKP )

LDA
(GEE) SVM

LDA
(Σpooled)

LDA
(ΣKP )

LDA
(GEE) SVM

Predictive accuracy

N
0.712
(0.019)

0.71
(0.015)

0.735
(0.022)

0.559
(0.078)

0.716
(0.021)

0.713
(0.016)

0.73
(0.03)

0.572
(0.08)

0.719
(0.021)

0.715
(0.016)

0.729
(0.03)

0.58
(0.081)

LN
0.647
(0.025)

0.646
(0.028)

0.703
(0.051)

0.516
(0.051)

0.668
(0.025)

0.666
(0.025)

0.712
(0.048)

0.541
(0.076)

0.673
(0.024)

0.67
(0.023)

0.719
(0.042)

0.557
(0.084)

T N
0.671
(0.034)

0.682
(0.032)

0.757
(0.015)

0.542
(0.071)

0.707
(0.028)

0.715
(0.023)

0.755
(0.018)

0.575
(0.079)

0.713
(0.026)

0.723
(0.02)

0.755
(0.017)

0.578
(0.079)

Youden index

N
0.425
(0.039)

0.42
(0.03)

0.471
(0.044)

0.117
(0.156)

0.433
(0.042)

0.426
(0.033)

0.461
(0.053)

0.144
(0.16)

0.438
(0.041)

0.43
(0.033)

0.459
(0.056)

0.159
(0.162)

LN
0.295
(0.049)

0.292
(0.055)

0.407
(0.099)

0.031
(0.101)

0.335
(0.051)

0.331
(0.049)

0.425
(0.094)

0.082
(0.152)

0.345
(0.048)

0.339
(0.046)

0.439
(0.082)

0.113
(0.168)

T N
0.343
(0.069)

0.363
(0.065)

0.514
(0.03)

0.084
(0.142)

0.414
(0.057)

0.43
(0.046)

0.51
(0.035)

0.144
(0.159)

0.427
(0.052)

0.445
(0.04)

0.511
(0.033)

0.156
(0.157)

Sensitivity

N
0.93
(0.017)

0.903
(0.022)

0.746
(0.034)

0.185
(0.256)

0.919
(0.021)

0.895
(0.025)

0.743
(0.039)

0.237
(0.271)

0.915
(0.021)

0.892
(0.025)

0.743
(0.042)

0.259
(0.273)

LN
0.945
(0.019)

0.928
(0.028)

0.661
(0.067)

0.05
(0.167)

0.938
(0.021)

0.923
(0.026)

0.709
(0.065)

0.139
(0.267)

0.942
(0.019)

0.927
(0.024)

0.726
(0.056)

0.195
(0.299)

T N
0.929
(0.018)

0.93
(0.019)

0.768
(0.033)

0.139
(0.245)

0.901
(0.022)

0.905
(0.02)

0.769
(0.033)

0.243
(0.279)

0.896
(0.021)

0.898
(0.019)

0.767
(0.032)

0.265
(0.28)

Specificity

N
0.495
(0.05)

0.517
(0.041)

0.725
(0.039)

0.932
(0.107)

0.514
(0.056)

0.531
(0.045)

0.718
(0.046)

0.912
(0.115)

0.523
(0.054)

0.538
(0.045)

0.716
(0.047)

0.901
(0.119)

LN
0.35
(0.063)

0.364
(0.077)

0.745
(0.068)

0.981
(0.069)

0.396
(0.064)

0.408
(0.068)

0.716
(0.058)

0.942
(0.119)

0.404
(0.061)

0.412
(0.063)

0.713
(0.054)

0.919
(0.137)

T N
0.413
(0.082)

0.433
(0.079)

0.746
(0.033)

0.944
(0.107)

0.513
(0.069)

0.526
(0.059)

0.741
(0.037)

0.901
(0.129)

0.531
(0.064)

0.547
(0.051)

0.743
(0.035)

0.892
(0.134)
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Table S 3c: Performance of the algorithms in 2000 simulated datasets for dataset 3 (CASP-19 dataset,
group variable loneliness, training data: n0 = 254, n1 = 1682, test data: n0 = n1 = 1000). Data
are simulated from the multivariate normally (N ), lognormally (LN ) and truncated normally (T N )
distribution. Parameter estimates are obtained from the training data without trimming (original) or
after trimming by applying the MVE or MCD algorithm, respectively, keeping 90% of the training
data. Highest mean values are shown in bold.
MVE: Minimum volume ellipsoid, MCD: Minimum covariance determinant, LDA: Linear discriminant
analysis, SVM: Support vector machine, Σpooled: pooled covariance matrix, ΣKP : Kronecker product
covariance matrix, GEE: covariance matrix of Generalized estimating equation.

original MVE MCD

LDA
(Σpooled)

LDA
(ΣKP )

LDA
(GEE)

LDA
(Σpooled)

LDA
(ΣKP )

LDA
(GEE)

LDA
(Σpooled)

LDA
(ΣKP )

LDA
(GEE)

Predictive accuracy

N
0.698
(0.011)

0.698
(0.011)

0.795
(0.01)

0.705
(0.013)

0.705
(0.012)

0.794
(0.01)

0.711
(0.011)

0.71
(0.011)

0.794
(0.01)

LN
0.701
(0.011)

0.707
(0.011)

0.772
(0.013)

0.751
(0.011)

0.753
(0.01)

0.789
(0.011)

0.763
(0.01)

0.764
(0.01)

0.794
(0.01)

T N
0.614
(0.018)

0.596
(0.02)

0.745
(0.011)

0.647
(0.016)

0.633
(0.017)

0.749
(0.011)

0.652
(0.015)

0.642
(0.016)

0.748
(0.011)

Youden index

N
0.395
(0.022)

0.397
(0.021)

0.59
(0.02)

0.41
(0.025)

0.409
(0.023)

0.587
(0.021)

0.421
(0.023)

0.42
(0.022)

0.589
(0.02)

LN
0.403
(0.023)

0.414
(0.022)

0.543
(0.026)

0.502
(0.022)

0.507
(0.021)

0.579
(0.021)

0.526
(0.021)

0.529
(0.02)

0.588
(0.02)

T N
0.227
(0.036)

0.191
(0.04)

0.491
(0.022)

0.295
(0.033)

0.266
(0.034)

0.498
(0.022)

0.304
(0.031)

0.283
(0.032)

0.497
(0.021)

Sensitivity

N
0.973
(0.006)

0.967
(0.006)

0.798
(0.016)

0.969
(0.007)

0.963
(0.007)

0.797
(0.018)

0.967
(0.007)

0.961
(0.007)

0.798
(0.017)

LN
0.971
(0.006)

0.961
(0.007)

0.889
(0.014)

0.941
(0.009)

0.926
(0.01)

0.853
(0.015)

0.931
(0.01)

0.915
(0.011)

0.846
(0.016)

T N
0.985
(0.005)

0.993
(0.003)

0.736
(0.02)

0.977
(0.007)

0.988
(0.004)

0.769
(0.02)

0.976
(0.006)

0.986
(0.005)

0.773
(0.02)

Specificity

N
0.422
(0.023)

0.43
(0.023)

0.792
(0.017)

0.441
(0.028)

0.446
(0.026)

0.791
(0.018)

0.454
(0.024)

0.46
(0.023)

0.791
(0.018)

LN
0.432
(0.025)

0.452
(0.023)

0.655
(0.026)

0.561
(0.024)

0.581
(0.022)

0.726
(0.023)

0.595
(0.022)

0.614
(0.021)

0.742
(0.021)

T N
0.242
(0.037)

0.198
(0.042)

0.755
(0.017)

0.318
(0.035)

0.278
(0.036)

0.729
(0.019)

0.328
(0.033)

0.297
(0.034)

0.724
(0.019)
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Fig. S 1a
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Fig. S 1b
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Fig. S 1c

Fig. S 1: Summary ROC curves showing the algorithms discriminative performance in 2000 datasets
simulated from the multivariate normally (N ), lognormally (LN ) and truncated normally (T N ) dis-
tribution, respectively. The black dots and circles represent the mean and confidence region.
(a) Dataset 1: CORE-OM dataset, group variable age (n0 = n1 = 93)
(b) Dataset 2: CORE-OM dataset, group variable hospitalisation (n0 = 42, n1 = 142)
(c) Dataset 3: CASP-19 dataset, group variable loneliness (n0 = 254, n1 = 1682)
MVE: Minimum volume ellipsoid, MCD: Minimum covariance determinant, LDA: Linear discriminant
analysis, SVM: Support vector machine, Σpooled: pooled covariance matrix, ΣKP : Kronecker product
covariance matrix, GEE: covariance matrix of Generalized estimating equation.
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Fig. S 2a

Fig. S 2b

Fig. S 2c

Fig. S 2: Boxplots showing the distribution of Youden index estimated in the 2000 simulated datasets
for the multivariate normal (left), multivariate lognormal (center) and multivariate truncated normal
distribution (right). Results with the highest median value are highlighted in darker colours.
(a) Dataset 1: CORE-OM dataset, group variable age (n0 = n1 = 93)
(b) Dataset 2: CORE-OM dataset, group variable hospitalisation (n0 = 42, n1 = 142)
(c) Dataset 3: CASP-19 dataset, group variable loneliness (n0 = 254, n1 = 1682)
MVE: Minimum volume ellipsoid, MCD: Minimum covariance determinant, LDA: Linear discriminant
analysis, SVM: Support vector machine, Σpooled: pooled covariance matrix, ΣKP : Kronecker product
covariance matrix, GEE: covariance matrix of Generalized estimating equation.
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Table S 4: Number of times the iterative algorithm for determining the optimal solution
αm in the longitudinal SVM converged (maximum number of iterations: 100) when applied
to the 2000 datasets simulated from the multivariate normally (N ), lognormally (LN ) and
truncated normally (T N ) distribution based on parameter estimates obtained from Dataset
1 (CORE-OM dataset, group variable age (n0 = n1 = 93)), Dataset 2 (CORE-OM dataset,
group variable hospitalisation (n0 = 42, n1 = 142)).
MVE: Minimum volume ellipsoid, MCD: Minimum covariance determinant.

original MVE MCD

Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2

N 1212 819 1191 776 1186 715
LN 1296 1180 1235 1139 1253 1091
T N 1244 823 1251 591 1250 520
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