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Abstract. In this paper, we introduce a new graph structure, called the direct sum graph

on a finite dimensional vector space. We investigate the connectivity, diameter and the

completeness of ΓU⊕W (V). Further, we find its domination number and independence

number. We also determine the degree of each vertex in case the base field is finite and show

that the graph ΓU⊕W (V) is not Eulerian. We also show that under some mild conditions

the graph ΓU⊕W (V) is triangulated. We determine the clique number of ΓU⊕W (V) for

some particular cases. Finally, we find the size, girth, edge-connectivity and the chromatic

number of ΓU⊕W (V).
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1 Introduction

Let G = (V (G), E(G)) be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge

set E(G). For 1 ≤ i 6= j ≤ n, we write vi ∼ vj if vi is adjacent to vj in G. The cardinality

of V (G) and E(G) is called the order and the size of G, respectively. If u ∈ V (G), then

N(u) is the set of neighbors of u in G, that is, N(u) = {v ∈ (G) : uv ∈ E(G)}. For any
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two distinct vertices u and v of G, d(u, v) denotes the length of a shortest path between

u and v. Clearly d(u, u) = 0 and d(u, v) = ∞, if there is no path connecting u and v.

The diameter of G is defined as diam(G) = max{d(u, v) : u, v ∈ V (G)}. A graph G is

said to be complete if every pair of distinct vertices are adjacent and a complete graph

on n vertices is denoted by Kn. A complete subgraph of a graph G is called a clique. A

maximal clique is a clique which is maximal with respect to inclusion. The clique number

of G, written as ω(G), is the maximum order of a clique in G. The chromatic number of G,

denoted as χ(G), is the minimum number of colors required to label the vertices so that the

adjacent vertices receive different colors. A graph G is said to be connected if for any pair

of vertices u, v ∈ V (G), there exists a path between u and v. A subset α(G) of V is said to

be independent if no two vertices in that subset are pairwise adjacent. The independence

number of a graph is the cardinality of the maximum independent set of the vertices in G.

A subset D of V is said to be dominating set if every edge in V \D is adjacent to at least

one vertex in D. The dominating number of G, denoted by γ(G), is the cardinality of the

minimum dominating set in G. A subset D of V is said to be a minimal dominating set if

D is a dominating set and no proper subset of D is a dominating set. A graph is said to

be Eulerian if it contains a closed walk which traverses all the edges in G exactly once. A

graph is said to be triangulated if for any vertex u in V , there exists v, w ∈ V , such that

(u, v, w) is a triangle. The girth of a graph is the length of the shortest cycle, if it exists.

Otherwise, it is defined as ∞. For undefined terms and concepts, the reader is referred

to [7, 19].

In 1988, Beck [1] initiated the study of graphs associated with various algebraic struc-

tures by introducing the concept of zero-divisor graphs associated to rings. Redmond [22]

extended the study of the zero divisor graph of commutative rings to non-commutative

rings. DeMeyer et al. [14] associated graphs to semigroups. Redmond [23] took a new ap-

proach to define zero divisor graphs with the help of an ideal of a ring. The association of a

graph and vector space has history back in 1958 by Gould [16]. Later, Chen [8] investigated

on vector spaces associated with a graph. Carvalho [4] has studied vector space and the

Petersen Graph. In the recent past, Manjula [18] used vector spaces and made it possible

to use techniques of linear algebra in studying the graph. Intersection graphs associated

with subspaces of vector spaces were studied in [3, 5, 6, 17, 24]. Recently, Das [9] intro-

duced the graphs associated with the elements of finite dimensional vector space known as

nonzero component graph of vector space. More work on this can be seen in [11–13].

Motivated by the above work, we introduce the direct sum graph as follows: Let

V be a vector space over a field F with two subspaces U and W . We say that V is
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α1 + β1 α2 + β1 α1 + β2 α2 + β2

α1 + α2 + β1 α1 + α2 + β2

α1 + β1 + β2 α2 + β1 + β2

α1 + α2 + β1 + β2

Figure 1: dim(V) = 4, , dim(U) = 2, dim(W ) = 2, and F = F2

the direct sum of the subspaces U and W , if each vector of V can always be expressed

as the sum of a vector from U and a vector from W , and this expression can only be

accomplished in one way (i.e. uniquely). In other words, for every x ∈ V, there ex-

ists vectors u ∈ U , and w ∈ W such that x = u + w and this representation of v is

unique. Let BV = {α1, α2, . . . , αr + β1 + β2 + · · ·+ βs}, with r + s = n be a basis of V and

BU = {α1, α2, . . . , αr} and BW = {β1, β2, . . . , βs} be basis of U and W respectively. Then

any vector x = u+ w with unique representation as x = a1α1 + a2α2 + · · ·+ arαr + b1β1 +

b2β2 + · · · + bsβs, is said to have its basic representation with respect to BU and BW. We

define the direct sum graph, denoted by ΓU⊕W (V) = (V,E), of a finite dimensional vector

space with respect to U and W as follows: V = {x = u + w ∈ V |u 6= 0 and w 6= 0} and

for x1,x2 ∈ V , there is an edge between x1 and x2, that is, x1 ∼ x2 or (x1,x2) ∈ E if

and only if x1 and x2 share at least two basis elements one each from BU and BW having

nonzero coefficients in there basic representation. It is necessary to mention here that one

of the subspaces is the zero subspace, that is, U = 0(say), that is, x1 ∼ x2 if and only if

x1 and x2 share at least one basis element from BW having nonzero coefficients in there

basic representation. In other words, the direct sum graph is the generalization of the

nonzero component graph. For some examples of the direct sum graph ΓU⊕W (V), see

Figures 1 and 2.

Throughout this paper, the subspaces U and W of V = U ⊕ W are non trivial and
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α1 + β1 α1 + β2 α1 + β3

α1 + β1 + β2

α1 + β1 + β3
α1 + β2 + β3

α1 + β1 + β2 + β3

Figure 2: dim(V) = 3, dim(U) = 1, dim(W ) = 2, and F = F2

dim(V) > 1.

The paper is organized as follows. In Section 2, we determine the order, size and edge

connectivity of ΓU⊕W (V). In Section 3, we show that ΓU⊕W (V) is not Eulerian. In addition,

we find the conditions under which the graph ΓU⊕W (V) is triangulated. In Section 4, we

find clique number and the chromatic number of ΓU⊕W (V).

2 Properties of ΓU⊕W (V)

We begin this section by investigating some basic properties like connectedness, com-

pleteness, independence number and domination number of ΓU⊕W (V).

Theorem 2.1 Let V = U⊕W be a vector space over a field F . Then ΓU⊕W (V) is connected

and diam(ΓU⊕W ) = 2, if dim(V) ≥ 3. If dim(V) = 2, then diam(ΓU⊕W ) = 1.

Proof. Assume that dim(V) = 2, U andW are non trivial subspaces of V that is dim(U) =

dim(W ) = 1. It is easy to see that any two vertices x,y ∈ V are adjacent. Hence,

ΓU⊕W (V) is a complete graph. Now, assume that dim(V) = n ≥ 3. Let Dim(U) = r and

Dim(W ) = s, with r, s ≥ 1 and r + s = n. Depending on the choice of a subspace U and

W , we will break the proof in two cases:

Case(i) Assume that Dim(U) = 1. Then Dim(W ) = n − 1, that is, W is a hyperspace.

Let x,y ∈ V such that x = u+v and y = u′+v′. If x and y are adjacent, then d(x,y) = 1.

Let x and y bee not adjacent. Since dim(U) = 1, so u and u′ share non-zero coefficient in

their basic representation, but v and v′ do not share any non-zero coefficient in their basic

representation, that is, there exists βi, βj (βi 6= βj), which have non-zero coefficient in the
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basic representation of v and v′, respectively. Consider z = x+y = u+u′+ v+ v′. Clearly,

x ∼ z and z ∼ y. Hence, d(x,y) = 2. Thus, ΓU⊕W (V) is connected and diam(ΓW ) = 2.

Case(ii) Assume that Dim(U) = r and Dim(W ) = s, with r, s ≥ 2 and r + s = n. Let

x,y ∈ V such that x = u + v and y = u′ + v′. If x and y are adjacent, then d(x,y) = 1.

If x and y are not adjacent, then both u, u′ and v, v′ do not share a non-zero coefficient

in their basic representation, that is, there exists αi, αj and βi, βj (αi 6= αj and βi 6= βj),

which have non-zero coefficient in the basic representation of u, u′ and v, v′, respectively.

Consider z = x+ y = u+ u′ + v + v′. Clearly, x ∼ z and z ∼ y. Hence, d(x,y) = 2. Thus,

ΓU⊕W (V) is connected and diam(ΓW ) = 2.

Theorem 2.2 Let V = U⊕W be a vector space over a field F . Then ΓU⊕W (V) is complete

if and only if dim(V) = 2.

Proof. Assume that ΓU⊕W (V) is complete. We will show that dim(V) = 2. Suppose on

the contrary that dim(V) > 2. Let Dim(U) = r and Dim(W ) = s, with r ≥ 1, s ≥ 2 and

r + s = n. Let x,y ∈ V such that x = αi + βj and y = αi + βk, where j 6= k. Clearly,

x ≁ z, a contradiction. Thus, dim(V) = 2.

Conversely, suppose that dim(V) = 2. So U and W are non trivial subspaces of V.

In other words, dim(U) = dim(W ) = 1. Any two vertices x and y are of the form

x = aiα1 + biβ1 and y = a′iα1 + b′iβ1. Therefore x ∼ y. Hence, ΓU⊕W (V) is a complete

graph.

Theorem 2.3 Let V = U ⊕ W be a vector space over a field F . Then the domination

number of ΓU⊕W (V) is 1.

Proof. Assume that Dim(U) = r and Dim(W ) = s, with r + s = n. Let {α1, α2, . . . , αr}

and {β1, β2, . . . , βs} be the basis of U and W , respectively. It is easy to see that the vertex

α1 + α2 + · · · + αr + β1 + β2 + · · · + βs is adjacent to any other vertex of V. Thus the

domination number of ΓU⊕W (V) is 1.

Remark 2.4 The set {α1+β1, α1+β2, . . . , α1+βr, α2+β1, α2+β2, . . . , αr+βs} is a minimal

dominating set of ΓU⊕W (V). Now, the question arises what is the maximum possible number

of vertices in a minimal dominating set. The answer is given as dim(U)dim(W ) in the next

theorem.

Theorem 2.5 Let V = U ⊕W be a vector space over a field F . If D = {x1, x2, . . . , xk} is

a minimal dominating set of ΓU⊕W (V), then k ≤ dim(U)dim(W ).
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Proof. Assume that dim(U) = r and dim(W ) = s, with r + s = n. Let {α1, α2, . . . , αr}

and {β1, β2, . . . , βs} be the basis of U and W , respectively. Let D = {x1, x2, . . . , xk} be a

minimal dominating set of ΓU⊕W (V). Construct Di = D\{xi}, for 1 ≤ i ≤ k. Indeed, Di is

not a dominating set. In other words, corresponding to everyDi, there exists ηi ∈ ΓU⊕W (V),

which is not adjacent to any element of Di but adjacent to xi. Since, ηi 6= 0, there exit αi
p

and βi
q such that ηi has non-zero component along αi

p and βi
q. Now, as ηi is not adjacent

to any element of Di, so is αi
p + βi

q. Thus, for all i ∈ {1, 2, . . . , k}, there exits αi
p + βi

q such

that αi
p + βi

q ∼ xi, but α
i
p + βi

q ≁ xj , for all j 6= i.

To complete the proof, it only suffices to show that αi
p+βi

q 6= αj
p+βj

q for i 6= j. Suppose

on contrary αi
p+βi

q = αj
p+βj

q for i 6= j. Since αi
p+βi

q ∼ xi and αi
p+βi

q = αj
p+βj

q , it follows

that αj
p + βj

q ∼ xi, which contradicts αi
p + βi

q ≁ xj , for all j 6= i. Hence, αi
p + βi

q 6= αj
p + βj

q

for i 6= j. i.e, all αi
p + βi

q’s are distinct, and the total number of such combinations are rs,

it follows that k ≤ dim(U)dim(W ).

From Theorem 2.2, it is clear that ΓU⊕W (V) is complete if and only if dim(V) = 2.

Now, the question arises what is the independence number of ΓU⊕W (V) if dim(V) ≥ 3. The

answer is given in the next theorem.

Theorem 2.6 Let V = U ⊕W be a vector space over a field F with dim(V) ≥ 3. Then

the independence number of ΓU⊕W (V) is dim(U)dim(W ).

Proof. Since {α1+β1, α1+β2, . . . , α1+βr, α2+β1, α2+β2, . . . , αr +βs} is an independent

set in ΓU⊕W (V), the independence number of ΓU⊕W (V) ≥ dim(U)dim(W ). It suffices

to show that the independence number of ΓU⊕W (V) ≤ dim(U)dim(W ). Suppose to the

contrary that {x1, x2, . . . , xk} is an independent set in ΓU⊕W (V) with k > dim(U)dim(W ),

that is, xi ≁ xj for 1 ≤ i 6= j ≤ k. Also, for xi ∈ V, for all i ∈ {1, 2, . . . , k}, there exits

αi
p, β

i
q having non zero coefficient along αi

p and βi
q in its basic representation. Claim that

αi
p+βi

q 6= αj
p+βj

q for i 6= j. Assume that αi
p+βi

q = αj
p+βj

q for i 6= j. Since αi
p+βi

q ∼ xi and

αi
p+βi

q = αj
p+βj

q , it follows that α
j
p+βj

q ∼ xi. But α
j
p+βj

q ∼ xj , which contradicts xi ≁ xj ,

for all i 6= j. Hence, αi
p + βi

q 6= αj
p + βj

q for i 6= j. As there are exactly dim(U)dim(W )

distinct αi + βj ’s, it follows that k ≤ dim(U)dim(W ), which is a contradiction. Hence, the

independence number of ΓU⊕W (V) is dim(U)dim(W ).

Now, we will find the degree of each vertex of ΓU⊕W (V) if the base field is finite. Let

F = Fq be a field with q elements and V = U⊕W be an n dimensional vector space over F .

Let dim(U) = r and dim(W ) = s, with r+ s = n. Let {α1, α2, . . . , αr} and {β1, β2, . . . , βs}
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be basis of U and W , respectively. It is to be noted that

N(αi1 + αi2 + · · ·+ αil + βj1 + βj2 + · · ·+ βjm)

= N(c1αi1 + c2αi2 + · · ·+ clαil + d1βj1 + d2βj2 + · · ·+ dmβjm),

where 1 ≤ l ≤ r and 1 ≤ m ≤ s and ci 6= 0 6= dj ∈ F.

Theorem 2.7 Let V = U ⊕W be an n dimensional vector space over a field F with q ele-

ments. Suppose {α1, α2, . . . , αr} and {β1, β2, . . . , βs} are the basis of U and W , respectively,

with r+s = n. Let ΓU⊕W (V) be a graph associated with V = U⊕W Then, the degree of the

vertex c1αi1+c2αi2 + · · ·+clαil +d1βj1+d2βj2+ · · ·+dmβjm, where c1c2 . . . cld1d2 . . . dm 6= 0,

is (ql − 1)(qm − 1)qn−(l+m) − 1.

Proof. First fix βj1. The number of vertices with αi1 and βj1 , as a nonzero component in

the basic representation (including αi1 + βj1 itself) is (q − 1)2qr+s−2. Therefore,

deg(αi1 + βj1) = (q − 1)2qr+s−2 − 1.

The number of the vertices with (αi1 and βj1) or (αi2 and βj1) as the non-zero component

is equal to the number of vertices with (αi1 and βj1) as the non-zero component + the

number of vertices with (αi2 and βj1) as the non-zero component − the number of vertices

with both (αi1 , αi2 and βj1) as the non-zero component

= (q − 1)2qr+s−2 + (q − 1)2qr+s−2 − (q − 1)3qr+s−3

= 2(q − 1)2qr+s−2 − (q − 1)3qr+s−3

=
(

2(q − 1)qr−1 − (q − 1)2qr−2
)

(q − 1)qs−1

= (q2 − 1)qr−2(q − 1)qs−1.

Therefore, deg(αi1 + αi2 + βj1) = (q2 − 1)qr−2(q − 1)qs−1 − 1.

Similarly, for finding the degree of αi1+αi2+αi3+βj1, the number of vertices with αi1andβj1

or αi2andβj1 or αi3andβj1 as the non-zero component is equal to

=

(

3

1

)

(q − 1)2qr+s−2 −

(

3

2

)

(q − 1)3qr+s−3 +

(

3

3

)

(q − 1)4qr+s−4

=

[

(

3

1

)

(q − 1)qr−1 −

(

3

2

)

(q − 1)2qr−2 +

(

3

3

)

(q − 1)3qr−3

]

(q − 1)qs−1

= (q3 − 1)qr−3(q − 1)qs−1.
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Hence, deg(αi1 + αi2 + αi3 + βj1) = (q3 − 1)qr−3(q − 1)qs−1 − 1.

Proceeding in this way, we get

deg(αi1 + αi2 + · · ·+ αil + βj1) = (ql − 1)qr−l(q − 1)qs−1 − 1.

Now, run βjp from 1 ≤ p ≤ m, by the above arguments, it is easy to see that

deg(αi1 + αi2 + · · ·+ αil + βj1 + βj2 + · · ·+ βjm) = (ql − 1)qr−l(qm − 1)qs−m − 1.

Hence,

deg(αi1 + αi2 + · · ·+ αil + βj1 + βj2 + · · ·+ βjm) = (ql − 1)(qm − 1)qn−(l+m) − 1.

3 ΓU⊕W (V) is not Eulerian but triangulated

In this section, we first find the minimum degree and the edge connectivity of ΓU⊕W (V).

The main aim of this section is to show that the graph ΓU⊕W (V) is not Eulerian but

triangulated. To do this, we require the minimum degree of ΓU⊕W (V), which is obtained

as follows.

Theorem 3.1 Let V = U ⊕ W be an n dimensional vector space over a field F with q

elements. Then the minimum degree δ of ΓU⊕W (V) is (q − 1)2qn−2 − 1.

Proof. From Theorem 2.7, the degree of the vertex c1αi1 + c2αi2 + · · · + clαil + d1βj1 +

d2βj2 + · · ·+ dmβjm , where c1c2 . . . cld1d2 . . . dm 6= 0, is (ql − 1)(qm − 1)qn−(l+m) − 1. Thus

the degree will be minimized if l = m = 1 and hence δ = (q − 1)2qn−2 − 1.

Corollary 3.2 Let V = U ⊕ W be an n dimensional vector space over a field F with q

elements. Then the edge connectivity of ΓU⊕W (V) is (q − 1)2qn−2 − 1.

Proof. From Theorem 2.2, if dim(V) = 2, then ΓU⊕W (V) is complete. Thus, the degree of

every vertex is same. Therefore, the edge connectivity of ΓU⊕W (V) is (q − 1)2qn−2 − 1. On

the other hand, if dim(V) ≥ 3, then diam(ΓU⊕W (V)) = 2, by Theorem 2.1. Therefore, its

edge connectivity is equal to its minimum degree (see [21],). i.e, (q − 1)2qn−2 − 1.

Now, we show that the graph ΓU⊕W (V) is not Eulerian.
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Theorem 3.3 Let V = U ⊕ W be an n dimensional vector space over a field F with q

elements. Then ΓU⊕W (V) is not an Eulerian.

Proof. If q = 2, by Theorem 2.7, every vertex is of odd degree. Again, if q is odd

prime, ΓU⊕W (V) is not Eulerian, since, in this case the degree of every vertex is odd. Thus

the graph is not Eulerian in any case.

In order to determine whether the graph is triangulated or not, we need to find the

order and size of ΓU⊕W (V) and the minimum degree of a vertex.

Theorem 3.4 Let V = U ⊕ W be an n dimensional vector space over a field F with q

elements. Then the order of ΓU⊕W (V) is (qr − 1)(qs − 1) and size M of ΓW (Vα) is

(

q2r − (2q − 1)r
)(

q2s − (2q − 1)s
)

− (qr − 1)(qs − 1)

2
.

Proof. It is easy to observe that the order of ΓU⊕W (V) is (qr − 1)(qs − 1).

It is easy to see that the number of vectors having exactly l αi’s and m, βj ’s with nonzero

coefficient in its basic representation are
(

r

l

)

(q − 1)l
(

s

m

)

(q − 1)m, where 1 ≤ l ≤ r and

1 ≤ m ≤ s . By Theorem 2.7 and noting the fact that the sum of the degrees of all the

vertices in ΓU⊕W (V) is equal to 2M , we have

2M =
r
∑

l=1

s
∑

m=1

(

r

l

)

(q − 1)l
(

s

m

)

(q − 1)m
(

(ql − 1)(qm − 1)qn−(l+m) − 1

)

=
r
∑

l=1

(

r

l

)

(q − 1)l(ql − 1)qr−l

s
∑

m=1

(

s

m

)

(q − 1)m(qm − 1)qs−m

−

r
∑

l=1

(

r

l

)

(q − 1)l
s
∑

m=1

(

s

m

)

(q − 1)m

=

r
∑

l=1

(

r

l

)

(q − 1)l(qr − qr−l)

s
∑

m=1

(

s

m

)

(q − 1)m(qs − qs−m

−

r
∑

l=1

(

r

l

)

(q − 1)l
s
∑

m=1

(

s

m

)

(q − 1)m
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That is,

2M =

(

r
∑

l=1

(

r

l

)

(q − 1)lqr −
r
∑

l=1

(

r

l

)

(q − 1)lqr−l

)(

s
∑

m=1

(

s

m

)

(q − 1)mqs

−
s
∑

m=1

(

s

m

)

(q − 1)mqs−m

)

−
r
∑

l=1

(

r

l

)

(q − 1)l
s
∑

m=1

(

s

m

)

(q − 1)m

=
(

qr(qr − 1)− [(q + q − 1)r − qr]
)(

qs(qs − 1)− [(q + q − 1)s − qs]
)

− [(q − 1 + 1)r − 1][(q − 1 + 1)r − 1]

=
(

q2r − (2q − 1)r
)(

q2s − (2q − 1)s
)

− (qr − 1)(qs − 1).

Hence the result follows.

The following theorem shows that ΓU⊕W (V) is triangulated.

Theorem 3.5 Let V = U ⊕ W be an n dimensional vector space over a field F with q

elements.

(i) If n = 2, dim(W ) = n− 1 and q = 2, then ΓU⊕W (V) is a trivial graph.

(ii) If n = 2, dim(W ) = n− 1 and q 6= 2, then ΓU⊕W (V) is triangulated.

(iii) If n = 3, dim(W ) = n− 1 and q = 2, then ΓU⊕W (V) contains no cycle.

(iv) If n = 3, dim(W ) = n− 1 and q 6= 2, then ΓU⊕W (V) is triangulated.

(v) If n ≥ 4, dim(W ) = n− 1 and q ≥ 2, then ΓU⊕W (V) is triangulated.

(vi) If n ≥ 4, dim(W ) ≤ n− 2 and q ≥ 2, then ΓU⊕W (V) is triangulated.

Proof. (i). For n = 2 and q = 2, the vertex set V is {α1 + β1}. Thus, ΓU⊕W (V) is a

trivial graph. (ii). For n = 2 and q 6= 2, ΓU⊕W (V) is a complete graph and therefore

triangulated. (iii). For n = 3 and q = 2, the vertex set V is {α1+β1, α1+β2, α1+β1+β2}.

Clearly, ΓU⊕W (V) contains no cycle. (iv). For n = 3 and q 6= 2, there exists a ∈ F \ {0, 1}.

For any arbitrary α1 + β1 + β2, there exist two vertices either{α1 + aβ1 + aβ2, α1 + β1} or

{α1+ aβ1 + aβ2, α1+β2} such that α1+ β1+β2 ∼ α1+ aβ1+ aβ2 ∼ α1 +β1 ∼ α1+β1 +β2

and α1 + β1 + β2 ∼ α1 + aβ1 + aβ2 ∼ α1 + β2 ∼ α1 + β1 + β2 is a cycle of length three.

Hence ΓU⊕W (V) is triangulated. (v). For n ≥ 4 and q ≥ 2, every vertex is of the form

c1α1 + d1β1 + d2β2 + · · · + · · · + dkβk, where c1 6= 0, d1, d2, dk ∈ F and 1 ≤ k ≤ n − 1.

Consider an arbitrary vertex x = c1α1 + d1βi1 , there exists y = c1α1 + d1βi1 + d2βi2 and
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z = c1α1 + d1βi1 + d2βi1 + d3βi1 such that x ∼ y ∼ z ∼ x is a cycle of length three.

Hence ΓU⊕W (V) is triangulated. (vi) For n ≥ 4 and q ≥ 2, every vertex is of the form

c1αi1 + c2αi2 + · · · + clαil + d1βj1 + d2βj1 + · · · + dmβjm , where l + m = n. Consider any

arbitrary vertex x = c1αi1 + c2αi2 + · · ·+ clαil + d1βj1 + d2βj1 + · · ·+ dmβjm. There exists

y = cpαip + cqαiq + dpβjp + dqβjq and z = cpαip + dpβjp such that x, y and z share at least

two basis vectors having nonzero coefficients in there basic representation. In other words

x ∼ y ∼ z ∼ x is a cycle of length three. Hence ΓU⊕W (V) is triangulated.

Now, we obtain the girth of ΓU⊕W (V).

Theorem 3.6 Let V = U ⊕ W be an n dimensional vector space over a field F with q

elements. Then girth

gr(ΓW (Vα)) =



















































∞ if n=2, dim(W)= n-1 and q=2

3 if n=2, dim(W)= n-1 and q 6= 2

∞ if n=3, dim(W)= n-1 and q= 2

3 if n=3, dim(W)= n-1 and q 6= 2

3 if n≥ 4, dim(W)= n-1 and q≥ 2

3 if n≥ 4, dim(W)≤ n-2 and q≥ 2.

Proof. The result follows from Theorem 3.5.

4 Maximal Cliques in ΓU⊕W (V)

In this section, we find the clique number of ΓU⊕W (V). For x ∈ ΓU⊕W (V), let Sx (skeleton

of x) be the set of αi’s and βj’s with nonzero coefficients in the basic representation of x

with respect to the basis of V. It is to be noted that two distinct vertices may have same

skeleton. Moreover, if x = c1αi1+c2αi2 + · · ·+cl−1αil−1
+d1βj1+d2βj1+ · · ·+dm−1βjm−1

and

y = c1αi1+c2αi2+· · ·+clαil+d1βj1+d2βj1+· · ·+dmβjm, then Sx ⊂ Sy. Also, 2 ≤ |Sx| ≤ n, for

all x ∈ ΓU⊕W (V). Let M be a maximal clique in ΓU⊕W (V) and SU
x and SW

x be the skeleton

of elements in subspaces U and W of V. Define S(M) = {Sx = SU
x ∪ SW

x : x ∈ M} and

S[M] = {|Sx| == SU
x + SW

x : Sx ∈ S(M)}. Since S[M] 6= φ, by well-ordering principle, it

has a least element, say k1 + k2 = k. Then, there exist some x∗ ∈ M with |S∗
x| = k1 + k2,

where x∗ = c1αi1 + c2αi2 + · · ·+ ck1αik1
+ d1βj1 + d2βj1 + · · ·+ dk2βjk2

. Depending upon the

choice of k1 ≤
r
2
, k2 ≤

s
2
or k1 >

r
2
, k2 >

r
2
, we show that there exists four types of maximal

cliques in ΓU⊕W (V).
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Theorem 4.1 Let M be a maximal clique in ΓU⊕W (V). If k1 + k2 is the least element

of S[M] with k1 ≤ r
2
and k2 ≤ s

2
, then M ∈ M

i,j

k1,k2
with 1 ≤ k1 ≤ r

2
, 1 ≤ k2 ≤ s

2
, i ∈

{1, 2, . . . , r} and j ∈ {1, 2, . . . , r}, where M i,j

k1,k2
= {x ∈ ΓU⊕W (V) : αi, βj ∈ Sxand |Sx| ≥ k}

and

|M| = (q − 1)2
r−1
∑

i=k1−1

s−1
∑

j=k2−1

(

r − 1

i

)(

s− 1

j

)

(q − 1)i+j

Proof. Let x = u + w ∈ M, where u ∈ U and w ∈ W . Since k1 ≤ r
2
, by Erdos-Ko-Rado

theorem [15], the maximum number of pairwise-intersecting k1-subsets in U is
(

r−1
k1−1

)

and

the maximum is achieved only if each k1-subset contains a fixed element, say αi. Now, the

number of u’s in U with |Su| = k1, k1 + 1, k1 + 2, . . . , r and αi ∈ Su are

(

r − 1

k1 − 1

)

(q − 1)k1,

(

r − 1

k1

)

(q − 1)k1+1,

(

r − 1

k1 + 1

)

(q − 1)k1+2, . . . ,

(

r − 1

r − 1

)

(q − 1)r, (4.1)

respectively.

Using the similar argument, for k2 ≤
s
2
, the number of W ’s in W with |Sw| = k2, k2+1, k2+

2, . . . , s and βj ∈ Sw are

(

s− 1

k2 − 1

)

(q − 1)k2,

(

s− 1

k2

)

(q − 1)k2+1,

(

s− 1

k2 + 1

)

(q − 1)k2+2, . . . ,

(

s− 1

s− 1

)

(q − 1)s, (4.2)

respectively. As M is a maximal clique, and minimum of Sx, for x ∈ M is k1 + k2 and

Sx ∩ Sy 6= φ, so M = {x ∈ ΓU⊕W (V) : αi, βj ∈ Sxand |Sx| ≥ k1 + k2}.

Now, the number of x’s in M with |Sx| = k1 + k2 and αi, βj ∈ Sx is

(

r − 1

k1 − 1

)

(q − 1)k1
(

s− 1

k2 − 1

)

(q − 1)k2.

The number of x’s in M with |Sx| = k1 + k2 + 1 and αi, βj ∈ Sx are

(

r − 1

k1 − 1

)

(q − 1)k1
(

s− 1

k2

)

(q − 1)k2+1 +

(

r − 1

k1

)

(q − 1)k1+1 +

(

s− 1

k2 − 1

)

(q − 1)k2.
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Similarly, for |Sx| = k1 + k2 +2, . . . , r+ s and αi, βj ∈ Sx, we can find the number of x’s in

M by the help of equations (4.1) and (4.2). Therefore, we have

|M| =

(

r − 1

k1 − 1

)

(q − 1)k1
(

s− 1

k2 − 1

)

(q − 1)k2 +

(

r − 1

k1 − 1

)

(q − 1)k1
(

s− 1

k2

)

(q − 1)k2+1

+

(

r − 1

k1

)

(q − 1)k1+1 +

(

s− 1

k2 − 1

)

(q − 1)k2 + · · ·+

(

r − 1

r − 1

)

(q − 1)r
(

s− 1

s− 1

)

(q − 1)s

=

(

r − 1

k1 − 1

)

(q − 1)k1

[

(

s− 1

k2 − 1

)

(q − 1)k2 +

(

s− 1

k2

)

(q − 1)k2+1

+ · · ·+

(

s− 1

s− 1

)

(q − 1)s

]

+

(

r − 1

k1

)

(q − 1)k1+1

[

(

s− 1

k2 − 1

)

(q − 1)k2

+

(

s− 1

k2

)

(q − 1)k2+1 + · · ·+

(

s− 1

s− 1

)

(q − 1)s

]

+ . . .

+

(

r − 1

r − 1

)

(q − 1)r

[

(

s− 1

k2 − 1

)

(q − 1)k2 +

(

s− 1

k2

)

(q − 1)k2+1

+ · · ·+

(

s− 1

s− 1

)

(q − 1)s

]

=

r−1
∑

i=k1−1

(

r − 1

i

)

(q − 1)i+1
s−1
∑

j=k2−1

(

s− 1

j

)

(q − 1)j+1

= (q − 1)2
r−1
∑

i=k1−1

s−1
∑

j=k2−1

(

r − 1

i

)(

s− 1

j

)

(q − 1)i+j.

It is to be noted that for same value of k1, k2 and by fixing different αi’s and βj ’s, we get

different maximal cliques. Since these maximal cliques depends both on k1, k2 and αi, βj ,

we get a family of maximal cliques M
i,j

k1,k2
= {x ∈ ΓU⊕W (V) : αi, βj ∈ Sxand |Sx| ≥ k} ,

where 1 ≤ k1 ≤
r
2
, 1 ≤ k2 ≤

s
2
, i ∈ {1, 2, . . . , r} and j ∈ {1, 2, . . . , r} and M ∈ M

i,j

k1,k2
.

Theorem 4.2 Let M be a maximal clique in ΓU⊕W (V). If k1 + k2 is the least element

of S[M] with k1 ≤ r
2
and k2 > s

2
, then M ∈ M

i,j

k1,k2
with 1 ≤ k1 ≤ r

2
,k2 = ⌊ s

2
⌋ + 1,

i ∈ {1, 2, . . . , r} and j ∈ {1, 2, . . . , r}, where M
i,j

k1,k2
= {x ∈ ΓU⊕W (V) : αi, βj ∈ Sxand|Sx| =

|Su|+ |Sw| ≥ k} and

|M| = (q − 1)
r−1
∑

i=k1−1

s
∑

j=k2

(

r − 1

i

)(

s

j

)

(q − 1)i+j.
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Proof. Let x = u + w ∈ M, where u ∈ U and w ∈ W . Since k1 ≤ r
2
, following the same

arguments as in Theorem ??, the number of u’s in U with |Su| = k1, k1 + 1, k1 + 2, . . . , r

and αi ∈ Su are
(

r − 1

k1 − 1

)

(q − 1)k1,

(

r − 1

k1

)

(q − 1)k1+1,

(

r − 1

k1 + 1

)

(q − 1)k1+2, . . . ,

(

r − 1

r − 1

)

(q − 1)r,

respectively. Now, for k2 > s
2
, by Erdos-Ko-Rado theorem [15], the maximum number

of pairwise-intersecting k2-subsets in V is
(

s

k2

)

and the maximum is achieved only if each

k2-subset contains a fixed element, say βj. The number of w’s in W with |Sw| = k2, k2 +

1, k2 + 2, . . . , s and βj ∈ Sw are
(

s

k2

)

(q − 1)k2,

(

s

k2 + 1

)

(q − 1)k2+1,

(

s

k2 + 2

)

(q − 1)k2+2, . . . ,

(

s

s

)

(q − 1)s,

respectively. As M is a maximal clique, and minimum of Sx for x ∈ M is k1 + k2 and

Sx ∩ Sy 6= φ, so M = {x ∈ ΓU⊕W (V) : αi, βj ∈ Sxand |Sx| ≥ k1 + k2}.

Now, following the same procedure as in the proof of Theorem 4.1, we have

|M| =

(

r − 1

k1 − 1

)

(q − 1)k1
(

s

k2

)

(q − 1)k2 +

(

r − 1

k1 − 1

)

(q − 1)k1
(

s

k2 + 1

)

(q − 1)k2+1

+

(

r − 1

k1

)

(q − 1)k1+1 +

(

s

k2

)

(q − 1)k2 + · · ·+

(

r − 1

r − 1

)

(q − 1)r
(

s

s

)

(q − 1)s

=

(

r − 1

k1 − 1

)

(q − 1)k1

[

(

s

k2

)

(q − 1)k2 +

(

s

k2 + 1

)

(q − 1)k2+1

+ · · ·+

(

s

s

)

(q − 1)s

]

+

(

r − 1

k1

)

(q − 1)k1+1

[

(

s

k2

)

(q − 1)k2

+

(

s

k2 + 1

)

(q − 1)k2+1 + · · ·+

(

s

s

)

(q − 1)s

]

+ . . .

+

(

r − 1

r − 1

)

(q − 1)r

[

(

s

k2

)

(q − 1)k2 +

(

s

k2 + 1

)

(q − 1)k2+1

+ · · ·+

(

s

s

)

(q − 1)s

]

=
r−1
∑

i=k1−1

(

r − 1

i

)

(q − 1)i+1
s
∑

j=k2

(

s

j

)

(q − 1)j

= (q − 1)
r−1
∑

i=k1−1

s
∑

j=k2

(

r − 1

i

)(

s

j

)

(q − 1)i+j.
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It is to be noted that for same value of k1, k2 and by fixing different αi’s and βj ’s, we get

different maximal cliques. Since these maximal cliques depend both on k1, k2 and αi, βj ,

we get a family of maximal cliques M
i,j

k1,k2
= {x ∈ ΓU⊕W (V) : αi, βj ∈ Sxand |Sx| =

|Su|+ |Sw| ≥ k1 + k2}, where 1 ≤ k1 ≤
r
2
, k2 >

s
2
, i ∈ {1, 2, . . . , r} and j ∈ {1, 2, . . . , r} and

M ∈ M
i,j

k1,k2
. Now, as k2 >

s
2
, {w ∈ W : |Sw| ≥ k2 +1} ⊂ {w ∈ W : |Sw| ≥ k2}. Maximality

of M is obtained by minimizing k2 provided k2 > s
2
, that is k2 = ⌊ s

2
⌋ + 1. Thus, we get a

family of maximal cliques M
i,j

k1
, where 1 ≤ k1 ≤ r

2
, i ∈ {1, 2, . . . , r} and j ∈ {1, 2, . . . , r}

and M ∈ M
i,j

k1
.

Theorem 4.3 Let M be a maximal clique in ΓU⊕W (V). If k1 + k2 is the least element

of S[M] with k1 > r
2
and k2 ≤ s

2
, then M ∈ M

i,j

k1,k2
with k1 = ⌊ r

2
⌋ + 1, 1 ≤ k2 ≤ s

2
,

i ∈ {1, 2, . . . , r} and j ∈ {1, 2, . . . , r}, where M
i,j

k1,k2
= {x ∈ ΓU⊕W (V) : αi, βj ∈ Sxand|Sx| =

|Su|+ |Sw| ≥ k} and

|M| = (q − 1)

r
∑

i=k1

s−1
∑

j=k2−1

(

r

i

)(

s− 1

j

)

(q − 1)i+j.

Proof. The proof is similar to that of Theorems 4.1 and 4.2.

Theorem 4.4 Let M be a maximal clique in ΓU⊕W (V). If k1 + k2 is the least element of

S[M] with k1 >
r
2
and k2 >

s
2
, then k1 = ⌊ r

2
⌋+1 and k2 = ⌊ s

2
⌋+1 and M = {x ∈ ΓU⊕W (V) :

|Sx| = |Su|+ |Sw|, |Su| ≥ ⌊ r
2
⌋ + 1 and |Sw| ≥ ⌊ s

2
⌋ + 1} and

|M| =

r
∑

i=⌊ r
2
⌋+1

s
∑

j=⌊ s
2
⌋+1

(

r

i

)(

s

j

)

(q − 1)i+j.

Proof. Let x = u + w ∈ M, where u ∈ U and w ∈ W . Since k1 > r
2
and k2 > s

2
, by

following the same arguments as in Theorems 4.1 and 4.2, the number of u’s in U with

|Su| = k1, k1 + 1, k1 + 2, . . . , r and αi ∈ Su are
(

r

k1

)

(q − 1)k1,

(

r

k1 + 1

)

(q − 1)k1+1,

(

r

k1 + 2

)

(q − 1)k1+2, . . . ,

(

r

r

)

(q − 1)r,

Similarly, the number of W ’s in W with |Sw| = k2, k2 + 1, k2 + 2, . . . , s and βj ∈ Sw are
(

s

k2

)

(q − 1)k2,

(

s

k2 + 1

)

(q − 1)k2+1,

(

s

k2 + 2

)

(q − 1)k2+2, . . . ,

(

s

s

)

(q − 1)s,

respectively. As M is a maximal clique, and minimum of Sx for x ∈ M is k1 + k2 and

Sx ∩ Sy 6= φ, so M = {x ∈ ΓU⊕W (V) : αi, βj ∈ Sxand |Sx| ≥ k1 + k2}.



16 Wani, Altaf, Pirzada, Chishti

Therefore, following the same procedure as in the proof of Theorem 4.1, we have

|M| =

r
∑

i=k1

(

r

i

)

(q − 1)i
s
∑

j=k2

(

s

j

)

(q − 1)j

=

r
∑

i=k1

s
∑

j=k2

(

r

i

)(

s

j

)

(q − 1)i+j.

Now, as k1 > r
2
and k2 > s

2
, {x ∈ ΓU⊕W (V) : |Sx| ≥ k1 + k2 + 1} ⊂ {x ∈ ΓU⊕W (V) :

|Sx| ≥ k1 + k2}. Maximality of M is obtained by minimizing k1 and k2 provided k1 > r
2

and k2 >
s
2
, that is, k1 = ⌊ r

2
⌋+ 1 and k2 = ⌊ s

2
⌋+ 1. Thus,

|M| =
r
∑

i=⌊ r
2
⌋+1

s
∑

j=⌊ s
2
⌋+1

(

r

i

)(

s

j

)

(q − 1)i+j.

Remark 4.5 Note that |M i,j

k1,k2
| is maximum when k1 = k2 = 1 in case k1 ≤

r
2
and k2 ≤

s
2
.

So, combining Theorems 4.1, 4.2, 4.3 and 4.4, it is easy to see that the clique number of

ΓU⊕W (V) is

ω(ΓW (Vα)) = max

{

(q − 1)qr−1(q − 1)qs−1, (q − 1)qr−1

s
∑

j=⌊ s
2
⌋+1

(

s

j

)

(q − 1)j ,

r
∑

i=⌊ r
2
⌋+1

(

r

i

)

(q − 1)i(q − 1)qs−1,

r
∑

i=⌊ r
2
⌋+1

(

r

i

)

(q − 1)i
s
∑

j=⌊ s
2
⌋+1

(

s

j

)

(q − 1)j.

}

and it depends on q, r, s.

Corollary 4.6 If F = F2 and n ≥ 4, then the clique number ω(ΓU⊕W (V)) = 2n−2.

Proof. If q = 2, then (q − 1)qr−1 = qr−1. Moreover, it is easy to see that for q = 2 and

p = 2m or p = 2m+ 1,
p
∑

j=⌊ p

2
⌋+1

(

p

j

)

(q − 1)j < 2p−1

.

Using Remark 4.5, we get ω(ΓU⊕W (V)) = 2n−2.

Corollary 4.7 If F = F2, n ≥ 4, and χ(ΓU⊕W (V)) is the chromatic number of ΓU⊕W (V),

then

2n−2 ≤ χ(ΓU⊕W (V)) ≤
qn − (qr + qs + rs)

2
+ 2n−3 + 1
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Proof. For any graph G, ω(G) ≤ χ(G). Therefore, first part of inequality follows from

corollary 4.6. For the other inequality, use the following result of [2]

χ(G) ≤
ω(G) + |V|+ 1− α(ΓW )

2
,

where α(ΓW ) is the independence number of G. Thus, by using Theorems 2.2 and 3.6, we

have

χ(ΓW (Vα)) ≤
2n−2 + (qr − 1)(qs − 1) + 1− rs

2

=
qn − (qr + qs + rs)

2
+ 2n−3 + 1.

5 Conclusion

In this work, we have introduced the direct sum graph ΓU⊕W (V) on a finite dimensional

vector space V. We investigated some basic properties like connectedness, completeness,

independence number and domination number of ΓU⊕W (V). For n ≥ 3 and q > 2, we

have shown that ΓU⊕W (V) is triangulated. Also, we also provided the exact value of the

minimum degree and the edge connectivity of ΓU⊕W (V)). Moreover, we have seen that

ΓU⊕W (V) is not Eulerian. Further, we have found the clique number and the chromatic

number of ΓU⊕W (V). For future research, we can think of investigating the following. (i)

When ΓU⊕W (V) is regular, (ii) whether ΓU⊕W (V) is a line graph, (iii) characterize line

graphs of ΓU⊕W (V), (iv) to find genus of ΓU⊕W (V).
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