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1 Introduction

Let T > 0 be a given real number. We are concerned with the following stochastic differential
equation (SDE for short) in R%:

dXsy = b(t, X ,)dt + o(t)dWy, t € (5,T], Xyylms = € R, (1.1)

where {W,;}tocier = {(Wis, ..., Was) " octer is a d-dimensional standard Wiener process
defined on a given stochastic basis (2, F,P, {F; }oct<r) and b: [0,T] x R? — R4, o : [0,T] —
R%*? are Borel measurable functions.


http://arxiv.org/abs/2310.00421v2

When b and o are bounded, Veretennikov [32] first proved the unique strong solvability
for SDE (1.1). Since then, Veretennikov’s result was strengthened in different forms, see
[6, 23, 35]. When o = I x4 and b is more regular, i.e., b € L>(0,T;C(R%RY)) with
a € (0,1), Flandoli, Gubinelli and Priola [9] proved that the unique strong solution forms
a Ch (of € (0,a)) stochastic flow of diffeomorphisms. This result was then generalized by
Wei, Duan, Gao and Lv [34] to the case of b € L1(0, T; C&(R%; R?)) with ¢ > 2/a.

When o = I;44 and b is not bounded but only integrable, which is in the Krylov-Rockner
class:

b€ L90,T; LP(R%: RY)) (1.2)
with some p, g € [2, +00] such that

2. d > —1, (1.3)
q P

the unique strong solvability for SDE (1.1) was first obtained by Krylov and Rockner [18].
Recently, by using the Ito-Tanaka trick, Fedrizzi and Flandoli [7] proved further that the
unique strong solution forms a C* (o’ € (0,1)) stochastic flow of homeomorphisms. Some
further extensions for non-constant diffusion coefficients can be found in Zhang [39, 40],
Zhang and Yuan [38]. More recently, Xia, Xie, Zhang and Zhao [37] studied the weak
differentiability of the unique strong solution with respect to the starting point, and proved
the Bismut-Elworthy-Li derivative formula for the strong solution.

It is known that solutions of Navier-Stokes equations can be analyzed by probabilistic
representations based on SDEs with irregular coefficient b, see e.g., Rezakhanlou [26], Con-
stantin and Iyer [5], and from the viewpoint of Navier-Stokes equations b can be taken in the
critical case, i.e. the greater than sign in (1.3) is replaced by the following equal sign:

2 d
S S =1 1.4
i (1.4)

Therefore, the study of the unique solvability for (1.1), (1.2) and (1.4) is of very high
importance. When o = I g and p < 400, the unique strong solvability for the critical
case has been established by Rockner and Zhao [27], and for more details we also refer to
(2, 14, 15, 16, 24, 36]. When o = ;.4 and p = 400, the weak existence can also be derived
by using a compactness argument [28]. However, it is still unknown whether the pathwise
uniqueness is true or not under the critical case ¢ = 2, p = +o00, and this problem is a
long-standing open problem.

In the following, we shall interpret the above critical condition by using a different phi-
losophy through the notion of ‘degree’. Before giving the definition of degree, we introduce
some notions.

1.1 Lebesgue-Holder spaces

Let v € (0,1). We define the Holder space C?(R?), as the set consisting of all continuous
functions h : R? — R for which

B, = s B ZROL

z,yER Ay ‘ZL’ - y|ﬁ{
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The set C7(R?) becomes a Banach space with respect to the norm

h(x _
1]l (ray = s 1|+(|92||v + Ay = N+ - )7 Rl + [,
zeR4

For +' € (0,7), if we define the norm on C7" N C?(R%) by
1hllermen sy = 1L+ 1= 1) R o + [l + [1],

then C7" N C7(R?) is a Banach space as well. We then define C; (R?) as the subset of C7(R?),
in which all elements are bounded, and for h € C; (R?), we define

Blleyn = sup [h(@)| +  sup L2 = Rl

z€R4 z,y€R x4y | - y|'\/

= [[Allo + [hl5-

Moreover, if h € CJ(R?) and V'h (i-th order gradient with respect to the space variable),
i = 1,2,...,k € N\{0}, are bounded and continuous, and [V*h], is finite, then we say
h e CPY(RY). For h € Cf"(RY), we define

VER(z) — V*h(
[ Zsup‘VZ sup VM) — ZHVhII L,

i—0 TER4 z,y€RL Ay ‘ y|'\/

We then define the Lebesgue-Holder space L¢(0,T;C" N C*(R%)) and L4(0, T;Cy(R?)) in a
similar way for ¢ € [1,4+00], k€ Nand 0 < v/ <y < 1. For f € L%(0,T;C” N C"(R?)) and
g € LU0, T;CF " (RY)), we set

lsmereersen = | [ 1501 e ent]

and

HQHLq(o,T;Cf'”(Rd))

= [ a0l ]’
- Z/ Vool + [ 9 o0iza] = [vawn vea)"

respectively, where the integrals in the above identities are interpreted as the essential su-
permum when ¢ = 4oc0. C}""(RY) is regarded as C; (R?) when k = 0.

For h € L*(R%), we define its Poisson integral by

w2

RICONERUCED
Peh(z) = - Ad(g2+|2| Sl VEER, (1.5)

By [29, Proposition 7, p.142], h € C;(R?) if and only if h € C,(R?) and there exists a positive
constant A such that

|0 Pehllo = sup |0 Peh(z)| < AE™Y, ¥V EER,.

r€R



Moreover, if h € C] (R?), then ||h||o + sup[£'~7||0¢ Pehllo]) and |lley (may are equivalent norms.
€0
Therefore, for g € L(0,T;Cy7(R?)) (k € N), we can define its equivalent norm by
k . T 1
191l Lao et mayy = [Z IVgll2o + /0 Sup ||€1‘785P§V’“9(t)||%dt}
i=0

k T 1
= [Vl + /0 L €70 PV gt 0) d] " (1L6)
=0

£,2)ER | xRY

1.2 Definitions

Let k € N and p € [1,4+00], and let W*P(R?) be the Sobolev space consisting of all locally
integrable functions h : R — R such that for every 0 < i < k, VA exists in the weak sense
and belongs to LP(R?) (:= WOP(R?)). For hy € W*P(RY) and hy € C7(R?) (v € (0,1)), by
the scaling transformation, it yields that

[ s (Dl oy = P3[Ry amd [ha(1)], = Dol ¥ 1> 0.

We then define their ‘degree’ by deg(h;) = k—d/p and deg(hs) = =, respectively. Notice that
for a second order parabolic equation we can ‘trade’ space-regularity against time-regularity
at a cost of one time derivative for two space derivatives, we define that deg(f;) = k—2/q—d/p
and deg(fy) = v—2/qif fi € L0, T; W*P(RY)) and f, € L4(0,T;C?(R?)), respectively. More
general, we introduce the following definition (see [30, Definition 1.1]).

Definition 1.1. Let p,q € [1,4+00], k € N and v € (0,1). If f € L0, T; W’lﬁf(Rd)),
we define its degree by deg(f) = k — 2/q — d/p, and if f € L%0,T;C7(R?)), we define
deg(f) =7 — 2/

From the point of ‘degree’, the critical condition (1.4) on the drift coefficient b for
SDE (1.1) can be restated as deg(b) = —1. On the other hand, by the classical Cauchy-
Lipschitz theorem, if b € L'(0,T; Lip(R%:RY)) < L'(0,T; WoX(RERY) (0 € L*(0,T) is
enough), It6 [12] proved that there exists a unique strong solution to SDE (1.1), and when
b e LY(0,T; Lip(R% R?)) we also have deg(b) = —1. Hence, we give a unified view for SDEs
between the classical [to theory and the modern Krylov-Rockner theory. However, from the
viewpoint of classical Ito theory, the drift can be taken in a low regularity Banach space for
time variable (such as L') if it has ‘good’ regularity in space variable (such as Lipschitz con-
tinuity), and thus we could establish the unique strong solvability for SDE (1.1) if the drift is
in this low regularity Banach space. This is our motivation to open this study and our main
result can make a bridge that connects classical It0’s theory and the modern Krylov-Rockner
theory. Since the difficulty for the critical case, we focus our discussion on the sub-critical
case (i.e. deg(b) > —1).

Recently, for the sub-critical drift which is square-integrable in time variable, and bounded
and Hoélder continuous in space variable, Tian, Ding and Wei [31] proved the unique strong
solvability for SDE (1.1) for Sobolev differentiable diffusion. More recently, Galeati and
Gerencsér [11] studied SDE (1.1) for a general fractional Brownian noise with the Hurst index
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H € R, \N, in which the drift is in L(0, T; C3(R¢; R%)) such that ¢ € (1,2] and a € (1—(q—
1)/(qH), 1), by developing some new stochastic sewing lemmas, they established the unique
strong solvability as well as some other properties for solutions, such as stability, continuous
differentiability of the flow and its inverse and Malliavin differentiability. In particular, these
results are true for the Brownian noise (H = 1/2) with b € L9(0, T; C¥(R%; R?)) for o € (0, 1)
and ¢ € (2/(1+ «),2) (deg(b) > —1). However, from It6’s theory, the drift does not need to
be bounded for the space variable, and this problem has been studied by Flandoli, Gubinelli
and Priola in [10] for the time-independent case. There are relatively few works to discuss
SDE (1.1) when the drift is only g-th integrable in time variable. It is still unknown whether
SDE (1.1) is well-posed or not when b € L4(0,T;C*(R% R?)) for o € (0,1) and ¢ € (1,2)
such that deg(b) > —1. In this paper, by applying the Ito6-Tanaka trick and combining the
regularity estimates of solutions for Kolmogorov equations, we will establish the strong well-
posedness to SDE (1.1) for a class of low regularity growing drifts. Before giving the main
result, we need another definition.

Definition 1.2. (/20, p.114]) A stochastic flow of homeomorphisms on the stochastic basis
(Q, F,P, (Fo<t<r) associated to SDE (1.1) is a map (s,t,z,w) — Xs¢(z,w), defined for
0<s<t<T, x€RY weQ with values in R, such that

(1) the process { X, .(x)} = {Xs+(x), t € [s,T]} is a continuous {Fs:}s<i<r-adapted solu-
tion of SDE (1.1) for every s € [0,T] and x € R%;

(11) P-a.s., Xs4(+) is a homeomorphism, for all0 < s <t < T, and the functions X (z)
and X} (x) are continuous in (s,t,z), where X} () is the inverse of X,(-);

(i1i) P-a.s., X 4(z) = X, (X (7)) for al0 < s <7<t < T, 2 € RY and X, 4(z) = .

Now, let us give our main results.

1.3 Main results

Theorem 1.3. Letb € Lq(O,T;Cg_lﬂCQ(Rd;Rd)) with a € (0,1) and g € (2/(1+«),2), and
let 0 € L*°(0,T;R™Y). We assume further that (a; j)axa = (Cix0jk)axa s uniformly elliptic,
i.e. for everyt € [0,T], there is a constant © > 1 such that

O 92 <9 a(t)) < OWZ VU = (V1,0s,...,04) € R% (1.7)

Then it holds that:

(i) (Stochastic flow of homeomorphisms) There exists a unique stochastic flow of
homeomorphisms { X (), t € [s,T|} to SDE (1.1).

(it) (Gradient and Hoélder estimates) X, (x) and X (z) are differentiable in z in
L3(Q) for every 0 < s <t < T, and for every p > 2,

sup sup E[sup [|[VX,(2)|[”] + sup sup E[sup ||[VX }(z)|]"] < +oo. (1.8)

z€RA 0<s<T s<t<T z€RI0KEKT  0<s<t

Moreover, VX, ,(+) and VX7 (-) have continuous realizations (denoted by themselves), which
are locally $-Hélder continuous in x for every 5 € (0,14 o — 2/q), and for every p > 2 and
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R>0,

( VX () — VX&t(y)‘)p]

sup 3
z,y€EBR,1#Y ‘ZL’ - y|

VX Hx)=VX T} p
( sup IVXg,(v) E ot (y)l) ] < oo,

sup E| sup

0<s<T |: s<t<T

+ sup E[ sup

o<t<T 0<s<t

(1.9)

here a random field VXSJ(-) is called a realization of VX, (+) if there exists Qg C Q such
that P(Q) = 1 and for each w € Qo, VX4 (z,w) = VX (2, w) for all x € RY.

(111) (Stability) We assume further that ¢ > 4/(2+«). Let p be a symmetric reqularizing
kernel, that is

p(z) = p(—x) with 0< peCP(RY), supp(p) C By, / p(x)de = 1. (1.10)

R4

Forn € N, we set p,(z) = np(nz) and

bo(t,7) = /R btz — y)pu(y)dy = b % po(t, ). (1.11)

Let X" be the stochastic flow corresponding to the vector field b, and X™~! be its inverse.
Then for every p > 2,

lim sup sup E[sup |X7,(z) — X (2)|"]

N+00 L eRd 0<s<T s<t<T

+ lim sup sup E[sup \Xz;_l(x) - X (@)1 =0 (1.12)

n=+00 L eRd s<tKT  0<s<t

and

lim sup sup E[sup [[VX{(7) — VX, (7)]]

NoF0 peRd 0<s<T s<t<T
+ lim sup sup E[sup |[VXZ '(z) — VX }(2)|*] = 0. (1.13)
n+00 peRd s<t<T  0<s<t ’ ’

Remark 1.4. From the proof in Sec. 3, we also get the Hélder continuity of Xs.(z) in (s,t).
In fact, by (3.12) and the Kolmogorov-Chentsov continuity criterion, the random field Ys+(y)
has a continuous realization (denoted by itself ), which is locally (51, Pa, B3)-Hélder continuous
in (s,t,y), for every By, Po € (0,1/2) and P € (0, 1), i.e., there exists Qo C Q with P(y) = 1
such that Yy (y) is locally (B1, Be, Bs)-Holder continuous in (s,t,y) for allw € Q. Let U be
the unique strong solution of the Cauchy problem (3.1). We set ®(t,z) = = + U(t,x) and
U(t,-) =D t,-). Then

Vo € L0, T;C/(R%:R™)) and 9,® € L9(0, T;C(R%;RY)), V6 e (0,14 a—2/q).
Observing that
VU(t,z) = [VO(t, U(t,z))] " and 9, ¥(t,x) = —[VO(t, U(t,2))] 10, ®(t, U(t,z)),
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then
VU € L0, T;Cf (R R™)) and 0,¥ € L1(0,T;C(R%;RY)), V60 e(0,14a—2/q).

On the other hand, X, (x) = W(t,Ys:(P(s,x))), then for every s < s, t <t and w € Qq, we
have

X0 0(2) — X ()

(W (t, Yer(D(s,2))) = W(t, Yeu(R(s,2)))| + [U(H, Vi (D(s,2))) — W(T', Yo (B, 2)))]
Clt =170 + [Vl Yar (B, 2)) — Yo (D(s', )

Cllt — "5 + |s — &/ + |t — | + |B(s,2) — D(s, 2)| ]

Cllt =70 +]s— 57 + |t — ¢+ |s — /%] S Ot — ] 70 + |s — /|0,

YA/ AN/ AN/

where in the third and fifth lines we have used Sobolev imbedding theorem: W14(0,T; C(R?))

— Cl_%([O, T];C(R?)) and in the last line we have chosen By, By € (1 —1/q,1/2). Therefore,
Xsi(x) is (Bs, 1 — 1/q)-Hélder continuous in (s,t) for every 54 € (0,1 —1/q).

As an application, we consider the following stochastic transport equation with low reg-
ularity growing drift:

d .
Ouult,2) +b(t,2) - Vult, ) + 35 Duult, ) o Wy =0, (1,0) € OTIxRE,
i=1 )
u(t, z)|i—0 = uo(z), =z € RY,

where the stochastic integral with the notation o is interpreted in Stratonovich sense, and
others are interpreted in I1t6’s. The choice of Stratonovich integral in (1.14) is motivated by
mass conservation. In fact if b is divergence free, we rewrite (1.14) by

dyu(t, z) + div[(b(t, z) + Wu(t, 2)] = 0, u(t, z)]imo = uo(z),

which implies

/ u(t, r)dx :/ uo(x)dz, Vtel0,T], P—as.
Rd Ré

Firstly, we give the definitions of weak and strong solutions for the above Cauchy problem.

Definition 1.5. Let uo € L} (RY), b € L*(0,T; L}, (R%RY)) and divb € LY(0,T; Ly (RY))
with r € [1,400] and 1/r +1/r" = 1. Let u € L>*(Q x [0,T]; LT(Rd)) be a mndom field. We
call w a stochastic weak solution of (1.14) if for every ¢ € Cg°(R fRd x)dx has a
continuous modification which is an Fi-semimartingale and for every t € [0 T]

/Rd u(t, z)p(x)de = /[Rd uo(z)p(x)dr + /Ot /Rd u(T, z)div(b(r, z)p(x))dxdr
d -t
—l—;/o odW; , /[Rd u(T, )0y, p(x)dx, P —a.s. (1.15)
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Moreover, if the following additional estimates hold:

sup E||Vu(t)||zlr (ray < +00, if r < oo,

. (1.16)
sup EHVU(t)Hi?o.(Rd) < 400, v p e [2, —I—OO), ifr= “+00, :

0<t<T
then u is called a stochastic strong solution.

Remark 1.6. The stochastic integral in (1.15) can be represented by the Ité sense equiva-
lently. In fact, the last term in (1.15) is equivalent to

i; /0 t Wi /R (T, x)@y(w)dw%i; /0 t (d /R u( :c)%ﬂ(:c)d:c) (dWiJ)

d t t
= Z/ dVVZ-,T/ u(T, z)@xicp(x)dx—l—l/ / u(T, ) Ap(z)dedr.
=1 Y0 R4 2Jo Jra

Let us now state our second result.

Theorem 1.7. (Existence and uniqueness) Suppose r € [1,+o00] and ug € L"(R?). Let
be L‘Z(O,T;C%_1 NCY(R%RY)) with a € (0,1) and g € (4/(2+ «),2), and be divergence free.
Then one has:

(i) There exists a unique stochastic weak solution to the Cauchy problem (1.1]). Moreover,
the unique stochastic weak solution can be represented by u(t,z) = uo(X;  (z)), where X,(z)
is the unique strong solution of the associated SDE (1.1) with 0 = I4xq and s = 0.

(i) The unique stochastic weak solution of (1.14) is also the unique stochastic strong
solution if [Vug| € L"(RY).

Remark 1.8. Instead of a fixed r, if we require the intersection of all v > 1’s, the well-
posedness of stochastic strong solutions for (1.14) has been established by Fedrizzi and Flandoli
[8, Theorem 1] for the drift b which is in the Krylov-Rickner class (see (1.2) and (1.3)).
Precisely speaking, for every given initial data uy € Tgl WL (RY), they proved the existence

1,r
oc

and uniqueness of D1M/l (R%)-solutions, i.e., for every t € [0,T],

P(u(t) €n le’“(md)) —1.

loc

After the result of [8, Theorem 1], it remains to open the question whether the solution is
Lipschitz continuous (or more) when ug € WH*(R?) (or more) for irreqular drift.

e When d = 1, the answer for the above question is positive for certain discontinuous
drift b, including for instance b(x) = sign(z), see [1].

o When b € L1(0,T;C¢(R%:RY)) with o € (0,1) and q > 2/a, it is positive as well, see
[34] (or see [9] if ¢ = +00).



o When b is in the Krylov-Rdckner class, by virtue of [25, Corollary 1.1], we also get the
local quasi-Lipschitz estimate for stochastic strong solutions, i.e.

bl u(t, z) — ult,y)

sup
v yE€Br.27Y |‘T - y| €Xp (O(d7 Tap> q, R)(log 4 )V>

lz—y|

<—|—oo}:1,

where 2v = 1+ d/p + 2/q. Howewver, it is still unknown whether the solution is (locally)
Lipschitz continuous or not.

e Now, when the drift is in a low reqularity Lebesgue-Holder space L(0,T; Cs_lﬁCQ(Rd; R%))
with o € (0,1) and q € (4/(2+ ), 2), if ug € WL (R?) forr € [1,+o00], by (1.16) we also get

P(u(t) € Wl”"(Rd)) ~1. (1.17)

loc

In particular, (1.17) holds for r = +o0, and so we give a positive answer for the above
question for this low regqularity growing drift.

Notations. The letter C' denotes a positive constant, whose values may change in different
places. For a parameter or a function 7, C'(7) means the constant is only dependent on 7, and
we also write it as C' if there is no confusion. We use V to denote the gradient of a function
with respect to the space variable. As usual, N stands for the set of all natural numbers. a.s.
is the abbreviation of almost surely. For every R > 0, Bg := {x € R?: |z| < R}. For a given
R™™ matrix-valued function = with 0 < n,m € N, =" and ||=|| represent its transposition
and Hilbert-Schmidt norm, respectively. If n = m, tr(Z) stands for the trace of =.

2 Lebesgue-Schauder estimates for Kolmogorov equa-
tions

Let b:[0,T] x R? — R? and f : [0,7] x R? — R be Borel measurable functions. Consider
the following Kolmogorov equation for u : [0, 7] x R — R:

duu(t, z) = 1 Au(t, ) + b(t, z) - Vu(t, z)
—Au(t,x) + f(t,z), (t,z) € (0,T] x RY, (2.1)
u(t,z)|=0 = 0, z € RY,

where A > 0 is a real number. If u € L'(0,T;C*(R%)) N WL1(0,T;C(RY)) such that (2.1)
holds true for almost all (t,2) € (0,T) x R? then the unknown function u is said to be a
strong solution of (2.1).

Now let us establish the well-posedness of strong solutions for the Cauchy problem (2.1).

Lemma 2.1. Assume that b € L9(0,T;C:~" NC*R%LRY) and f € LU0, T;Ca " N C(RY))
with o € (0,1) and g € (2/(1 + «),2). Then it holds that:

(i) (Existence and uniqueness) There is a unique strong solution u to (2.1). More-
over, u € Hif} for every 0 € (0,14 o —2/q), where

H2E = {ve L™(0,T;Ci ' (RY); Ve L®(0,T;CLRERY), dw e LI(0,T;C(RY),
V2 € L0, T;CY (R4 R™)) and [|[(14 |- [+~ 00(, )0 < +00}.  (2.2)
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Furthermore, there is a real number € > 0 such that for large enough A > 0

sup [Va(®)cgien) < O T By 31, Blaw X (g2 1 + ) (2.3)
and
IV2ull 20 7o (ray) < C(d, T, [lg,2-15 [Bla.a) A ([flg,2-1 + [flg.0)- (2.4)

(i1) (Stability) Let u, be the unique strong solution of (2.1) with b and f replaced by b,
and f,, where b, is given by (1.11) and

falt,x) = » ft,x —y)pn(y)dy =: [ pa(t, ).

Then w,, belongs to 7—[;:? for every 0 € (0,1 4+ a —2/q) and satisfies (2.3)—(2.4) uniformly
in n. Furthermore, u, —u € L*(0,T;C>%(R%) NL>®(0,T;C%(RY)), and if we assume in
addition that ¢ > 4/(2 + «), then for every 6 € (0,1 + o — 2/q) we have

nl_lgloo [OZ?ST [[un(t) — U(t)HC;»@(Rd) + [1V2u, — V2UHL2(0,T;C§(Rd)) = 0. (2.5)
Proof. (i) Clearly, if u € L*(0,T;C*(R%)) N WH1(0,T;C(R?)) solves the Cauchy problem
(2.1) for A = Ay with some sufficiently large real number A, then for all A > 0, a(t,z) =
u(t, z)ePoVt ¢ L0, T;C*(R%)) N WH(0, T; C(RY)) solves the following Cauchy problem:

ouu(t,z) = 1Aa(t, ) + b(t,z) - Vu(t, x)
—Xu(t,x) + f(t,z), (t,z) € (0,T] x RY,
a(t, z)]i—o = 0, v € RY,

where f (t,2) = f(t,z)eP?~ N and vice versa. So we just need to prove the well-posedness
of (2.1) for some sufficiently large A.

On the other hand, if u € ’Hi’% for every 6 € (0,1+ o —2/q) is a strong solution of (2.1),
then it has the following equivalent representation (see [31, Lemma 2.1]):

u(t,x) = /0 e_’\(t_T)K(t —7,+) % (b(7,-) - Vu(r,-))(x)dr

t
—l—/ e MK (t— 71, % f(7, ) (2)dT, (2.6)
0
|z
where K(t — 7,2) = (27(t — 7))~ 2e 2. Thus, it suffices to show the integral equation
2,0

(2.6) has a unique strong solution u € H_ 7.

Firstly, let us prove the existence part and for simplicity sake, we set

H2 = {ve L™(0,T;Ci ' (RY); Ve L=(0,T;Cf (R RY)),
Vv € L*(0,T; Cf (R% R&>Y). (2.7)
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The proof is divided into three steps.

Step 1 We assume that b € L>(0,T;C°(R%RY)) and f € L°(0,T;C(RY)). If b = 0,
there is a unique strong solution u € L*(0,T;C°(R?)) of (2.6). For b # 0, we define a
mapping on L>®(0,T;C°(RY)) by

Tw(t,z) = /0 e_)‘(t_T)K(t —7,) % (b(7,-) - Vw(T,-))(x)dT

N /Ot e_)\(t_q—)K(t — T, ) * f(T, )(g;)dT (28)

From (2.8), for every fixed 0 < k € N and every wy, wy € L®(0,T;C°(R?)), then
| Tw, — Tw?HLOO(O,T;C{j(]Rd))

= | [ = ) Tt ) = st Do

k t
+3 / eNIVE (= 7,) £ V() - Vw7, ) — wslr, ) (@) |

i=1 0
< C)‘_E||bHL°°(O,T;Cf’1(]Rd;Rd))le B wQHLOO(O,T;C{j(Rd))a (2.9)

where € € (0,1/2).

By choosing A sufficiently large, from (2.9) the mapping 7 on L*°(0,T;CF(R?)) is con-
tractive. With the aid of Banach’s contraction mapping principle, there is a unique strong
solution u € L>=(0,T; CF(RY)) of (2.6). Since k is arbitrary, we get u € L>(0, T; C°(R?)).

Let 29 € R, Consider the following differential equation:
jft = —b(t, To + .flft>, ZIft|t:0 =0. (210)

There exists a unique solution to (2.10) for b € L>(0,T;C°(R%RY)). By setting a(t, z) :=
u(t,x+xo+x¢), b(t,x) = b(t,x + xo+ 2¢) — b(t, T+ x4) and f(t,x) := f(t,x +xo+ 2¢), then
dyi(t,x) = LAa(t, x) + b(t, ) - Vi(t, x)
—Xa(t,z) + f(t,z), (t,z) € (0,T] x RY, (2.11)
a(t,x)|=0 = 0, z € RY,

which also implies
alt,z) = /0 LNy [ K=o = yliry) - Vitr.y)ldy
+ /0 t e Ny 5 Kt —1,2—y)f(r,y)dy. (2.12)
For every 6 € (0,1 + a — 2/q), then
(7, y) - Vi(7,9)| < [b(7)]acolyl*~ | Vu(r)lo. (2.13)
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It follows from (2.12) and (2.13) that
¢
Va(t, 0)] < / M | VE(t =7 9)[b(7)]a-oly|* [ Vu()llody
0 R

t
+/ e M dr [ VKt —7,y)||f(r,y) — f(7.0)|dy
0 Rd

a—0—1

< chyé M= 1) (D)ol Vu(T)lo + [F(P)]ao ) dr. (214)

Since zy € R? is arbitrary, we conclude

L
7

T —0-1)q
sup [[Vu(t)lo < C(d) (Ploas sup V() o+ [flaas) ( /0 T ) (2.15)

0<t<T 0<T<T

where ¢ = q/(q — 1).

Notice that ¢ > 2/(1 + «) and 0 < 1 + a —2/q, we assert that (1460 —a)q’/2 < 1. By
applying the Holder inequality, there exists some real number € > 0 such that

L
7

T A’ (a7071)q’ q
c(a)( / T ) < o, TN (2.16)
0
We choose A large enough such that

1
C(d, T)[blga—0A" < C(d, T)[b];g_l[b];,;”)\_€ < O(d, T) max{[b], 2 4, [b]gafr ° < 3 (2.17)
where v = 0/(1+a—2/q), and in the first inequality we have used the fact «—60 € (2/¢—1, a)
and the interpolation inequality, and in the second inequality we used the Young inequality

Bl 21 blaa” < vlblgzo0 + (1= 1) bloa

Then by (2.15)—(2.17), it yields that

sup [|Vu(t)llo < C(d, T, [blg.a-0)A""[flg.a-0, (2.18)

o<t<T

which also implies that

sup [[Vu(t)lo < C(, T, By 21, Blya) X ([flyz - + [y, (2.19)

o<t<T

if one uses the interpolation and Young inequalities again.

Let
|b(t, )|

2_q7
|4

fl(t) = sup |f(t7 x)‘

Liy) —
b (t) = sup RN

zeRe 1 + |LE

Then o', f' € L9(0,T).
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Combining (2.6) and (2.19), it follows that

2 g _
sup [[(1+1]- 1275 u(t,-)lo
0<t<T

= sup sup 7‘/ AENdr | Kt —1,9)b(r,x —y) - Vu(r, z — y)dy
0<t<T zeRd 1 + | 2| Rd

t
—i—/ e =" dr K({t—r19)f(r,z — y)dy’
0 Rd

1 t
sup sp | / N dr [ K (t =7y )+ el [yl
0<t<T zeRd 1 + |x‘ -1 0 Rd

t
X[ Vulloody + / e dr [ K (= my) A7)+ el ]y
0 R4

C(d, T, (Bl 21, [D]g.a) A |:([f]q,§—1 + a0 lg + 111
C(d, T, ol JAELI

where [|6']]; = 16" e,y [1f g = 1 ] Lago,)-

For V2u, we estimate from (2.10) to (2.13) that

N

NN

(2.20)

2_q

2
La(0,T;C " nCe (Rd;RE)) La(0,T;C1 ' nCe(Rd))’

I¥v2u(t)lo < C(a) / N ) (B ol T o+ (o), (220)

which leads to

T 3q—2
9 _2Mq7  (@—0-2)q 2)q 29
IV2ullso < C(laao sup [Vu(r)llo+ [fluao) | [ ¢ 55 5 ar]
o<t<T 0
< C(daT> [b]q,a—e)[f]q,a—lg? (2'22)

where in the last inequality we have used (2 + 6 — a)q/(3¢ —2) < 1 since § < 1+ a —2/q.
Let P¢ be given by (1.5). We set ve(t, x) = O¢ Peu(t, z), then

Ove(t, ®) = $Ave(t, ) + b(t, ) - Ve(t, x)
_)\Uf(ta ZL’) + gg(t,l’), (ta ZL’) € (Oa T] X Rd> (223>
Uf(ta x)|t:0 = 07 YIS Rd>

where
gg(t, LL’) = 8§P5f(t, SL’) + 85P§(b(t, LL’) : Vu(t, SL’)) - b(t, LL’) : 8§P§Vu(t, SL’)
Owing to (2.18), for every fixed 6 € (0,1 + o — 2/q), we achieve

sup [[Vue(®)llo < CA[gelga-0
o<t<T
< C)\_E<[05P€f]q7a_g+[8§P€(b'vu)—b'a§P§VU]q’Q_9). (2.24)

By [3, Lemma 2.1], for every 0 < < a < 1, there exists a positive constant C'(«, 3, d) such
that

[0¢ Pe(h1hg) — h10¢ Pehala—p < Cla, 5, d) [h1)allPallo&?,

13



if [h1]a and ||he||o are finite, which implies

[0 Pe f(t)]a—o < Clav, 0, d)[f(1)]a" (2.25)

and
[0 Pe(b(t) - Vu(t)) — b(t) - O PeVu(t)]ag < C[b(E)]a | Vult) [0 (2.26)
Combining (2.24)—(2.26) and (2.19), for every 6 € (0,1 + a — 2/q) we deduce
sup [Ve(Dllo < OXF([flye + Bloa sup [u(r)o)e”™
0<I<T 0<t<T
< C)‘_e([f]q,g—l_'_[f]%OZ)ge_l' (2.27)
By (2.19), (2.27) and (1.6), then Vu € L>(0, T;C/(R% R?)) and (2.3) holds.

Similarly, by (2.21), (2.23) and (2.25)—(2.27), we guarantee

VOl < C [ =5 ([Brlaco sup [Vee)lo

0P (7Yoo + [0 Pe(b(r) - Tu(r)) = b(7) - DePeVu(r)]a ) dr
< / M = 1) (]2 + b))
2oy [flge) + [FOa)dre’™ (2.28)
On account of (2.18) and Hausdorff-Young’s inequality, we get from (2.28) that
||V2“||L2(0,T;05(Rd))

1

T 1
_ 2
= [IV2ullo+ [ 1€ 0 o]
0

3¢—2
_2agr  (a—0-2)g 4

C(d,T, [b]q%_l,[b]qﬂ)([f]q%_l + [f]qﬂ)[/o e 327 sz dr| *
< AT B2, Bl (g2 s + ). (2.29)

N

which implies (2.4). Summing over (2.19), (2.20), (2.27) and (2.29), then u € 7:[22} for every
0ec0,14+a—2/q).

Step 2. We assume that b € L9(0, T;C¥(R%; R?)) and f € L9(0,T;C3(R?)). Firstly, we
extend them from [0, 7] to (—oo, T and define them by

b(t,z) =0(0,z), f(t,z)=[f(0,2), ift<O.
Let the regularizing kernel p be given by (1.10), and let ¢ be another regularizing kernel:

0<o0€eC®R), supplo) C [0,1], /R ot)dt = 1. (2.30)
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For n,m € N, we set p,(x) = nip(nx) and o,,(t) = mo(mt). We then smooth b and f by p,
and 0,,:

bnm"b(ta ZL’) = (b(a ) * Pp X QM)(ta ZL’) = /RdJrl b(t -7, — y)pn(y)QM(T)dydT

and
fn,m(tv ZL’) = (f(v ) * Pp * Qm)(tv I) = f(t - T, T = y)ﬂﬂ(y)gm(T)dydT-

Rd+1

Then b, ,, € L>(0, T'COO(]Rd'Rd)) and f,, € L(0,T;C°(R?)). Moreover,

[+ 177 bl < 200+ 1177 bllgo,

[bn,m]q,a < [b]q a [fn m] 3 1 < [b]q Z—17

(2.31)
@+ 1) famllgo < 20+ 1577 Fllgo.
| Voo < Ulaor Uandyz oo < Myzr
Notice that by, — b = by m — by, + by, — b with b, = b(t, ) * p,(z), and
|bn (t, ) = b(t, 2)| < » |b(t, x = 2) = b(t, z)| pn(2)d / |21%pn(2) (2.32)
thus b, —b — 0 in L4(0,T; Cy(R%)). This fact is also true for f, — f. Therefore,
nl_g{loo m1_1>m [l6nm — b”Lq(o,T;cg’(Rd;Rd)) + [ fam — f||Lq(o,T;cg’(Rd))] =0, (2.33)

for every o/ € (0, ).
Consider the following Kolmogorov equation:
Optl, i (t, ) = %Aun,m(t, z) + by (t, ) - Vg, m(t, )

~Ninn(t, @) + fom(t, ), (t.2) € (0,T) x RY, (2.34)
un,m(t>$)|t=0 =0, z € R4,

By Step 1, there exists a unique strong solution u, , to the Cauchy problem (2.34). More-
OVET, Upm € 7—[ for every 6 € (0,1 + «a — 2/q), and by (2.3), (2.4), (2.20) and (2.31), for
large enough A > O we have

sup [[(1+ ]+ 175 () o

0<t<T
< COd,T, ||bnm|| s0TCh mca(Rd;Rd))))‘_e“f"vmHLq(o,T;c%*mca(Rd))
< Cd,T, b ”Lq(o,T;c%*Imca(Rd;Rd))))\_6”f”Lq(o,T;c%*nca(Rd)) (2.35)
and
Oiltlf IVt (8) [l oo ey + Hv2un,mHL2(0,T;Cg(Rd))
< O T ulger [usmlyz N (sl + Unmly2 1)
< OWT Bl 0. Bl A= ([Flyz o + [floo) (2.36)
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By (2.34)-(2.36), then wu,,, € H> T and there is a positive constant C' which depends on

a, T, bl 2, and A such that
L9(0,T5coNCa " (RE;R4))
[+ [ ™) Ot (g0
< [!|V2unm||2o+||Vunm||ooo!|(1+\ ) () g0
AN 1)t lsoo + 1A+ 117 fam(, )qu}

+ /1 (2.37)

[HbHLq(o T:cé ' nce (RERY)) L3(0 T'C%lﬁca(Rd))]'

On account of (2 35)—(2.37), there exists a (unlabelled) subsequence u,, ,, and a measurable
function u € ’HqT with 0 € (0,1 + o — 2/q) such that w, ., (t,z) — u(t,z) for a.e. (t,z) €
[0, 7] x R? as m and n tend to infinity in turn. Moreover, for every fixed 6 € (0,1+a —2/q),
(2.35)—(2.37) hold for u, and in particular (2.3) and (2.4) are true. Furthermore, since w,, ,
satisfies (2.34), u satisfies (2.1).

Step 3. For b € L(0,T; ci! NC*(R%4RY)) and f € L9(0,T; ci! N C*(R%)), we define
brlt,x) = b{t, xr(a)) and fa(t,2) = f(t. IXR(I)) where R >0, xp(z) = x(z/R) and

o 1, if x € Bg,
eCr®). vl vz adx = { o IERN L (s

Then bp € L0, T;C(R% RY)) and fr € L0, T;C(RY)). Moreover,
i [Jbg(t,2) — b(t, )] + | falt2) — (1 2)] =0, ¥ (1a) € 0.7] xR (2.39)
On the other hand, we have

lzxr(2) — yxr(y)|®

[bR]q,a < [b]q,a sup

z,yeRd,x#y |ZE - y|a
< [bga sup Xz(@) + [Xr(rz + (1= 7)y)|*| <3blga  (2.40)
z,yeRd, 7y, 7€[0,1]
and
o [exr(®) = yxr(y)* _
[fRlga < [flga  sup o < 3[flga- (2.41)
z,yeRe,x#y |ZE - y|

Similarly calculations also suggests that
[bR]q,§—1 < 3[b]q,%—1 and [fR]q,%—l < B[f]q%—l‘ (242>
By Step 2, there is a unique ug € Hﬁ;i with 6 € (0,14 «a — 2/q) solving the following
Cauchy problem:

Ouug(t, x) = 3Aug(t, x) + br(t, x) - Vug(t, z)
—Xug(t,z) + fr(t,z), (t,z) € (0,T] x R4, (2.43)
ug(t,x)|i=o = 0, x € R%
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Furthermore, it yields that

sup [[(1+]-[«7) ur(t, Yo + 1+ D™ Ottnm(t, )llao

0<t<T

< C@dT, HbRHLq 0,71:C% L nCe (Ré;R4)) )HfRHLq(o,T;cg”rwa(Rd))

< O T HLq 0.T:CcE" 'nCe(Rd;R4)) )Hf”Lq(o,T;c%”rwca(Rd)) (2.44)
and

SUP HVUR(t)HC;f(Rd) + HV2UR||L2(O,T;C;?(R‘1))
—E&

S (d T, HbRH ci ! ﬂca(Rd;Rd))))\ HfRHLq(QT;c%*mCQ(Rd))

< —€

1 IR (T AN (2.45)

In view of (2.44) and (2.45), by letting R tend to infinity in (2.43) we get the desired result.

Now let us prove the uniqueness. Observing that the equation is linear, it suffices to prove
that u = 0 if the nonhomogeneous term f vanishes, and it is clear by the estimate (2.44).

(ii) Let u, be the unique strong solution of (2.1) with b and f replaced by b, and f,
respectively. Then u,, lies in ’Hzf} for every 0 € (0,1 + a — 2/q) and satisfies (2.3) and (2.4)

uniformly in n. It remains to check u, —u € L*(0,T;C>%(R) N L>(0, T;C % (R%)) and (2.5).
We set v,, = u,, — u, then v,, satisfies
Ayun(t, x) = 580, (t, ) + by (t, ) - Vo (t, )
—Av,(t,z) + Fu(t,z), (t,x) € (0,T] x R, (2.46)
Vp(t, 7)]i=0 = 0, € RY,

where F,,(t,z) = fu(t,x) — f(t,x) + (bu(t,z) — b(t, x)) - Vu(t, x).

Let 29 € R?. Consider the following differential equation:
LU? = —bn(t, To + l’?), l’mt:o =0. (247)

There exists a unique solution to (2.47). By setting 0, (t, ) := vn(t, 2 + 20 + 27), by(t, ) =
by(t,x + xo + }) — bu(t, xo + x}) and F,(t,x) := F,(t,z + xo + z}), then

—A\on(t,2) + E,(t,2), (t,2) € (0,T] x R%,
On(t, 2)|1=0 = 0, z € R4

Thus
t
tnlt,z) = / e [ K2 — ) ba(r,y) - Vou(r )y
0 R4

t
+/ e Ndr [ K(t— 1,2 —y)Ey (7, y)dy. (2.48)
0 Rd
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Observing that

A~

1bn (7, ) - Vou (7, 9)| < [bo(T)laly|*[Vea(T)llo < [o(T)lalyl® sup [[Vou(r)lo  (2.49)

<7<

and

~

1Fa(moy)l < |falmy + 20 +27) — f(7,y + 20 + 27))]
+|(bn(T,y + 20 + 27) = b(T,y + 20 +27)) - Vu(r,y + 20 + 27|

[ 1ty m ot = 2) = flry o+ a2z
R

N

+ |b(T,y +x0 + 2 — 2) = b(T,y + xo + 21) | pn(2)dz|| V|| 00
]Rd

(17 + Bl Pulo) [ o002

N

N

C (1o + b)) [ o) (2.50)
we have

sup [[vn(t)]lo = sup sup |0,(t,0)]

0<t<T 0<t<T zoeR4

< O, T)(lga + [flgo)( sup IIWn(t)IIoﬂL/Rd|Z|“pn(2)d2), (2.51)

blx

which suggests v, € L>(0,T;Cy(R%)), and thus v, € L2(0,T;Cp%(R%)) N L=(0, T; Cy ' (R7)).
Let us check (2.5). By (2.51) and the interpolation inequality, it suffices to show

n——+00

lim { sup ||V, (t)[lo + ’|V2vnl|2,o} = 0. (2.52)
0<t<T

For every fixed 6 € (0,1+a—2/q), there exists 2/¢—1 < o/ < a such that 6 € (0,14+a'—2/q).
For these 6 and o/, by analogue calculations of (2.18) and (2.22), we arrive at

sup || Vua (t)lo + [V*vall20

0<t<T

C(d> T) [fn - f + (bn - b) ' vu]q,a’—e

<
< O (U= Slaaro + b0 = Vool Vtlooar—o + B = Blowr—o| Vullo). (253)

Since Vu € L>®(0,T;Ct(R% RY)) for every ¢ € (0,1 + a —2/q) and ¢ > 4/(2 + a), we can
choose proper o/ € (0,a) and 6 € (0,1 +a' —2/q) such that 2/¢g—1 <o’ -0 <14+a—2/q.
For these fixed o/ and 0, from (2.53) and (2.3) we achieve

sup ([ Von(O)llo + 1V20nlz0 < C (U = Flaaro + lbn = Bllgo + Ibu = blgwro).  (2.54)

bx

Noting that

[fn - f]q,a < 2[f]q,aa [bn - b]q,a < Q[b]q,a (2-55>
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and

1= Flao < Ulao [ a2 o= blao < Blao [ B0z (256)

if one takes n to infinity in (2.54), we get (2.52). O

We now extend the constant coefficients equation (2.1) to a variable coefficients equa-
tion and establish an analogue of Lemma 2.1. To be precise, let us consider the following
Kolmogorov equation:

d
du(t,z) =3 3 a; ()03, , u(t,x) +b(t, x) - Vu(t, )
W=l p (2.57)
—u(t,x) + f(t,z), (t,z) € (0,7] x R?,
u(t, z)]i—o = 0, v € RY,

where a; j(t) are Borel bounded measurable functions, which satisfies condition (1.7).

For0<s<t<T, let
t
Agy ::/ a(t)dr, Bs; = Agg

For every ¥ € R?, it is obvious that

Ot —s)|0)? < VA, 0 < Ot — 5)[9)?

and
Ot —s) P <V B,y <Ot —s)HY)
Let
K(s,t,2) = (2m) 7% det(B,,)? exp{ . M} (2.58)

Then for every 0 < s < t < T and z € R? there exist positive constants C(©) and u(O)
such that

_ d+k ple—y|?

IVFK (s, t,2)| < C(t—s) 2 e s, k=0,1,2. (2.59)

By (2.59), all calculations used in Lemma 2.1 are applicable for the Cauchy problem:

d
duu(t,z) =1 3 ai;(t)02 , u(t,x) + f(t,z), (t,z)€ (0,T] xR,
PR (260)
u(t, r)|=o = 0, z € R%

Using the same arguments for Lemma 2.1, we obtain that
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Theorem 2.2. Let b € L9(0,T;C: ' N C*(R4LRY) and f € L9(0,T;Ci " N C(RY)) with
a€ (0,1) and ¢ € (2/(1 + «),2). Let (aij)axa be a symmetric d x d matriz-valued bounded
function, which satisfies condition (1.7). Then one has:

(i) (Existence and uniqueness) There is a unique strong solution u to the Cauchy
problem (2.57). Moreover, u € Hi’% for every 6 € (0,14« —2/q) and there is a real number
e > 0 such that for large enough A > 0

sup [Vu(t)egen < CULT. 04[22, BN~y 31 + [flao) (2.61)

(i1) (Stability) Let w, be the unique strong solution of (2.57) with b and f replaced by
b, = b p, and f, = f * p,, respectively. Then u, belongs to Hzf} for every 6 € (0,1 +
o —2/q) and satisfies (2.3)~(2.4) uniformly in n. Furthermore, u, —u € L*(0,T;Co"(R?))
NL>®(0,T;C°(RY), and if we assume in addition that ¢ > 4/(2 + ), then for every 0 €
0,1+ a—2/q) we have

lim [ sup ||un(t) — u(t)HC;'a(Rd) + ||v2un — V2U’|L2(O,T;C5(Rd)) =0. (262)

Remark 2.3. For the Cauchy problem (2.57), when f € L1(0, T; C&(R?)) forq € (1, +oc] and
b € L=(0,T;C¢(R% RY)), the unique strong solvability of L1(0, T; CZT*(R))NWH4(0, T'; C (R?))
solutions has been proved by Krylov [153], and when f has polynomially or exponentially
growth with Holder norms, the well-posedness was also established by Lorenzi [22].  Re-
cently, Tian, Ding and Wei [31] generalized Krylov and Lorenzi’s results to the case of
b € L*(0,T;CH(R%RY)).  When the coefficients are bounded in time variable and locally
a-Holder continuous in space variable (uniformly in time), the L>®(C**)-Schauder estimate
for solutions was derived by Krylov and and Priola [17] as well for the following parabolic

PDE (also see [4] for fractional PDE):

8tu(t7 LE‘) + Zj,jzl @i,j (tv $)8§i7x3_u<t, .CL’) + b(tv LE‘) ’ vu(tv LE‘)

—c(t,x)u(t,z) = f(t,z), (t,x) € (T,S) x RY, (2.63)
u(t,x)|i=s = g(x), |f(t,x)| < Foc(t, x).

Here, we only assume that b € L"(O,T;C%_1 N C*(REGRY)) with ¢ € (2/(1 + «),2), so we
extend the existing results. This result plays a key role in proving the strong well-posedness
for SDE (1.1).

3 Proof of Theorem 1.3

Let A > 0 be a large enough real number. Consider the following vector-valued Cauchy
problem:

i a; ; ()02 , U(t,z) +b(t,z) - VU(t, z)

1
2 Z Ti,T5

b g (3.1)
= \U(t,2) = blt,), (t,z) € [0,T) x R,
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where (a; j)axa = oo . Since b € LI(0,T; ci~'n C*(R%RY)) and o € L>=(0,T), in view of
Theorem 2.2, there is a unique U € (7—[22}) (see (2.2)) solving the Cauchy problem (3.1) for
every 0 € (0,14 a — 2/q). Moreover, by (2.61) there is a real number € > 0 such that for
large enough A > 0,

sup [[VU(t)llepray < C(d, T, 0, [0]g 21, [D]g.0) A7 ([l 21 + [blg.a) <

0<t<T

(3.2)

N —

We set ®(t,z) = = + U(t,x), by (3.2) then ® forms a non-singular diffeomorphism of class
CY uniformly in ¢ € [0, 7] and

1 3 2
< sup [|[VO(t)[o <z, - < sup [[VIU(H)]o <2, (3.3)
2 oe<r 2" 3 oc<r

where U(t, ) = ®71(¢,).
For 0 < e <1 andt € [0,T], define

1 t+e 1
Uct,z) = E[ U(r,z)dr = /0 Ut + Te, x)dr

and O (t,z) = x + Uc(t,z), where U(r,z) := U(T,z) = 0 when 7 > T. Notice that ¢, €
CH([0,T);C(RY)) N C([0, T); C*(R?)), if X, is a strong solution of SDE (1.1), in light of 1t6’s
formula, we derive

O (t, Xsu(2)) = (I)e(S,ZE)—I-/ OTUE(T,XS,T(x))deL/ b(r, Xsr(2)) - VU(T, X5 +(x))dT

+1/ tT(Vte(T,XSJ(ZE))O'(T)O'T(T))dT—|—/ b(r, Xs..(x))dr

2
+/ [I 4+ VU7, X5, (x))]o(T)dW,. (3.4)

Since U € (’Hi’%)d, if one lets € tend to 0, we obtain

Uct, Xst(x)) — U(t, Xsi(x)), VitelsT], P—

0, U7, X - () — O, U(1, X5 - (2)), ae T€][s,T], P (3.5)

VU7, Xs+(x)) — VU (1, X5 +(2)), ae T€]s,T], P ’
], P

—a.s..

V2U.(1, X ? )) — VU7, X, (7)), ae T€[s,T
Combining (3.4) and (3.5), by employing Lebesgue’s dominated convergence theorem, then
O(t, Xsu(z)) = P(s,2)+ / t U, Xsr(x))dr + / t (7, X (7)) - VU(7, X 7 (2))dT
+% / t tr(V2U (1, X7 (2))o (7)o T (7))dT + / t b(t, X, +(2))dr
+ / t[I + VU(7, X0 (2)|o(1)dW,
= B(s,x)+ A / t U(1, Xsr(2))dr + / t([ + VU(1, X, - (2)))o(7)dW,, (3.6)
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where in the second identity we have used the fact that U(t, ) satisfies the Cauchy problem
(3.1).
Denote Y, = ®(t, X;,), it follows from (3.6) that

- b(t Y:st)dt + (t Y:s,t)dVVta tE ($>T]> (37)
Yitli=s =y = ®(s, 7).

Conversely, if Y}, is a strong solution of SDE (3.7), then X, = W(¢,Y,,) satisfies SDE (1.1).
Therefore SDEs (1.1) and (3.7) are equivalent. Observing that 9,U € L4(0,T;C(R% R?)),
one has U € Cl_%([O,T];C(Rd;Rd)) and ¢ € Cl_%([O,T];C(Rd;Rd)) by using the Sobolev
imbedding theorem. This, together with the fact that ®(¢,-) forms a non-singular diffeomor-
phism of class C**Y uniformly in ¢, implies that we only need to prove the conclusions (i) and
(1.8) for Y, and Y;f. For conclusions (1.9) and (iii), we first prove for Y, and Y, then to

prove for X,; and X ;. Since the calculations from Y to X are similar, we only prove the
conclusion (iii) for Yst and Y., and for (1.9) we give the complete proof details.

(i) We divide the proof of stochastic flow of homeomorphisms into two parts.

e The unique strong solvability. By the regularity of U and assumptions on o, we have
be Lo(0,T;Ci ' (RE:RY)), Vb € L0, T; CHR% R*4)) and & € L2(0, T; C1 (R4 R¥*4)) N
L>=(0, T; CY(RY; RY*4)). Owing to Cauchy-Lipschitz’s theorem, there exists a unique strong
solution Y; ,(y) to (3.7). Moreover, an application of the It6 formula to |Y;,|” yields that

AV < oY) P bl Vet + P2y )2, e o

|V ()P (Ve (), 5(E, Y (y))dWs)
< CL+|Yau(y)Pldt + plYeo(y) P2 (Yau(y), (¢, Ve (y))dWy).

Observing that for every t > s, [1|Y,  (y)|[P~(Ys,(y), 5(7, Y., (y))dW,) is a martingale. Then
with the help of Gronwall’s inequality, we get

sup E[Ye.(y)[” < C(1+[yl). (3.8)

s<t<T

e Stochastic flow of homeomorphisms. Due to [19, Lemmas 11.2.4, I1.4.1 and 11.4.2],
we should prove that: for every z,2',y,y € R? (x # y, 2’ # y) and every s,t,s',t € [0,T]
(s<t, s <t),

sup E|Y(z) — You(y)* < Cla —y*, V<<, (3.9)

s<t<T

and

E|ns,t(z, ZL’I) — 775/7t/ (y’ y/)|p
< oL (L+lalr + 21+ |yl + [y 17)ls — 1% + [t — ¢2]

oyl + ' =y P} ¥ p 22 le—a|26>0, y—y|>6>0, (310)
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and

Elnss(2) = now (@) < Cll& =g +|s — &'|5 + [t = ¢|2], Vp>0, (3.11)
where
1 1 if &= |z|2x € R
. d n, e :
Toal@:2) = e =y A0 el @) { 0, if & = |22 = 0.

For every p > 2, we have

s (x,2") = ner e (y, y') P
< 2P Mgz, y) Pingw (@ y )P Yeai (@) = Yoo ()P 4 [Yeu(a') — Yo (y)[7)

and

195, (2) = N (D < 06t (D) [0, (@) Ve () = Yoo ()P

These, together with Hélder’s inequality, the element inequality [a;+b; [P < max {2/~ ,1}MaP+
b)) (a1,b1,p € Ry), (3.9), and the estimate

E sup (1+[Yo:(y))* < CA+Jyl), V<0,

s<t<T

which can be proved clearly since b is Lipschitz continuous and & is bounded, implies the
estimates (3.10) and (3.11) if one shows the following inequality

BV, (@) = Vo)l < {Jo = ol + (1 lal? + g5 — 5% + 16 =¢8]}, ¥ p > 2. (312)

Thus, it suffices to show (3.9) and (3.12).

Let us prove (3.9) first. For € > 0, we choose F.(z) = f:(x) = (e + |z|*) and Y, (z,y) :=
Ys+(z) — Ys4(y). Thanks to the It6 formula, then

Fe()/;,t(za y))

= Fe(fﬁ—y)+2</ F Yo, y) (Yo (,9), (7, Yor () = b(7, Yer (y))dr

+2</ FE V(@ y))(Yar(2,9), (6(7, Yer (%) — (7, Yer ()W)

#o(6=1) 30 [0 U o) 28, V2
X607, Y (1)) = 310(7 Yar W))][534(7 Yo (@) = 650 Yo ()7

N

Sz =)+ Cld] / (Va2 9))dr + Cles — 1) / (1) E (Vo (2, ))
12 / I Vo (2 9) (Ve (0, 9), (607, Yor (1)) — 67, Yor ()W), (3.13)
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where k(1) = | V2U (7)o € L*(0,T) for VU € L*(0, T;C}° (R4 R**%)) and
1, if =,
0, if i # .

8,77 * 8,77 )18, T

Yo, =YL Y2 .. YE), 51-0:{

By (3.13) and the Gronwall inequality, we derive
sup Ele + [V e(2) — You(y)’]* < Cle + o — g/

s<t<T
By letting € | 0, then (3.9) holds.

Let x,y,€ RY (x # y) and s,t,5',¢' € [0,T] (s < t, s < t'). Without loss of generality,
we assume s < §' <t <t'. For every p > 2, then

|Yst(1') - Y:s’,t’ (y)|p
< P UYarle) = Yaulp) P+ Vaaly) = Yo )P + Yoraly) = Yoo F). - (314)

By using the It6 formula to |Y;(x) — Ys:(y) [P to get
E[Ysi(z) = Yeu(y)

< o=yl + 0= D{B [ Vrle) = Yool Vo 0) = bl Vel

4B [ Verlo) = Yoo )P 21607, Yoo ) = 507, Yorly)dr )

t
< o -yl +C(d.T.0,p) / 1+ RA(7)EIY, () - Y (y)Pdr, (3.15)
which yields
sup E|Y..(x) = Yauly)l” < Clo — " (3.16)
s<t<T

Similarly, by [to’s formula and BDG’s inequality, for every p > 2, then
sup E sup [V (z) — Ys(y)”

0<s<T  s<t<T

T
< |z—ylP+C sup IE/ 1+ R2(7)|Von () — Yar(y)Pdr

0<s<T

T 1
40 sw B [0 o) - Vialp)Par] <Cla—ylr, (37)

0<s<T
where in the last inequality we have used (3.16).

For |Y;.(y) — Yy +(y)|P, by employing the It formula again, one ascertains

ElY,:(y) — Yo (y)|P

t
< ElY,w(y) —yl"+ CE / Yer(y) = Yo )BT, Yir (y) = b7, Vi (2))

t
FCE / Yor(y) = Yor P27, Yar () — (7, Yor(y))|Pdr
t

< Ealy) = ol + CE [ 14+ #O)Yer o) - Vo)l

8/
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where & is given in (3.13). This, together with the Gronwall, Minkowski and BGD inequali-
ties, leads to

ElY,:(y) = Yo ()| < CE[Y,o(y) -yl

CE‘ / b(t, Y, (y))dr + / o(1,Ysr(y))dW;

p

S 1P s g
< of [ Yoo tpPpran] + B[ [ 6t Yiotw)IPar]
< O+ sup BV, ())s - 17 + Cls — o}

s<t<T
< O+ s — 17+ |s = 18 < COL+ o) s — 18, (3.18)

where in the fourth line we have used the fact b is Lipschitz continuous uniformly in time
variable and & is bounded, and in the fifth line we have used (3.8).

For the term |Yy ,(y) — Yo v (y)[?, then

t’~ t D
BYouy) ~ Yerl)l? = B| [ B Yoolo)ir+ [ o(rYor (o)W,
t t
< C(L+|y)fe -t (3.19)

Summing over (3.14), (3.16) and (3.18) and (3.19), we obtain (3.12). Thus Y;,(-) forms a
homeomorphism. Observing that Y, satisfies equation (3.7), then

t t

B Yer (V)7 + [ 50, YoV ()Y

S

YoV (9) = Yii () + /

s

Noting that Y, -(Y,;'(y)) = Y, ;' (y), thus

7,1t

Yoly) =y — / b(r, Y5 (y))dr — / 5(r, Yo () dIV,. (3.20)

Hence YS? (y) is continuous in (s,t,y), almost surely in w, and {Y;(x), t € [s,T]} forms a
stochastic flow of homeomorphisms to SDE (3.7).

(ii) We now turn to show the weak differentiability, gradient and Hélder estimates. Ob-
serving that the inverse flow Y, ;" satisfies SDE (3.20), which has the same form as the original
one (3.7) (only the drift and diffusion have opposite sign), the proof of the weak differen-
tiability, gradient and Hoélder estimates for Ys,_t1 are similar to that of Y, after taking into
consideration the backward character of the equation. For the weak differentiability and
gradient estimates, it suffices to show the conclusions for Y;,. For the Holder estimate, we
first prove the conclusion for Y, then to prove the estimates for X, ;.

e Weak differentiability and gradient estimates. Let e € R? with |e| = 1. If

lim Y (y 4 de) — Yo (y)
=0 5

(3.21)
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exists in L?(Q2) uniformly in s and ¢, and the limit is continuous in y, then we complete the
proof. The continuity of the limit for space variable will be proved in the next step, we only
show (3.21) and the moment estimates for the weak derivatives.

Let Y, be the unique strong solution of SDE (3.7). Consider the following SDE:

dCi(y) = AVU(, Ut Yar(y)))VU(E, Yer(y))Coaly)dt
VAU (L, (8, Yaa(y)) V(L Ya(y) o ()t (y)dWV
= (t }/;t(y>>Cst( )dt+ &(tvn,t(y>>Cs,t(y>thu te (SvT]v (322>

with (s 4(y)|i=s = €. Since the equation is linear, b € L>(0, T;C/(R%)) and & € L*(0,T; C/(R%))
for every 6 € (0, 1+a—2/q), there exists a unique strong solution (s +(y) of (3.22). Moreover,

for every p > 2 there exists a positive constant C(d, T, O, p, ||b HLq o mca(Rde))) such that

sup sup E sup [|G(y)]|” < C. (3.23)

yeRd 0<s<T  s<t<T
For § € R, set Y, (y) := Y, (y + de) — Y, 4(y), then by (3.7)
Vi) = des [0 Yoty + 00) ~ B Yo )i
o [0 Yarly + 00) Vel
= et [ [T a4 06) + (0 0V ) (e

+/0 /st V6 (r Yor(y +d€) + (1= )Yer () Yo (y)ded Wy (3.24)

By virtue of It6’s formula and Hélder’s inequality, we achieve from (3.24) that
t
EVZ(0)P < |57 +CE [ [1+ IV, ()P

for Vb € L=(0, T; C/ (R R*™?)) and & € L*(0, T;Cp°(RY R**%)), which suggests that

Y.l
‘ <C. (3.25)
s<t<T
We rewrite (3.24) by
Y(S I Y(S
d S’g(y) = / Vb(t, 1Ysi(y +0e) + (1 — )Y i(y))de S’g(‘wdt
0
1 Y(S
b [ ottty + 60 + (1= ) S
0
. Y? Y?
— byt Yaaly, d¢)) S’g(y>dt+&5(t,§/;,t(y,5e)) S’t;y)dwt. (3.26)
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By (3.22), (3.26) and It0’s formula, then

Y2,
876(?;) - Cs,t(y)

t 1 ()
= o [ () ) b Yl 00) R e Yo )6 )Y

)
¢ y?
VE [ (ot Yo, 600722 — 500, Yao ()Gor ),

§
o Vorl.80) 2 (e Y, ) ) )

t Nl
ce [T e e
o [ |t

Yo (y)
) )
Y5 . 5
+08 [ oy, ooty 06) - 607, Vol 2

Y6
S,T( ) Cs,f(y)rdf

2
E

2

dr

VAN

_Csr( )

[bs(, Yaur (5, 0€)) = b(r, Yo (y) |

N

CE [[1 +R2(7)]

D=

+C / B2 4 1 1)) [, Vel 56) - b Vr ) )
+0/t R Y- )

)
From (3.27), by using the Gronwall inequality to get

Y;(?t(y)
0

[NIE

‘ ] [EW(T Yor(y,0€)) = 6(7.Yer(y)[*| dr. (3.27)

‘ 2

- <s,t(y)

s<t<T

1
2

< C/ST [E(‘%hlcw(y)ﬁ)]%[]E@(s(f%x(yﬁe))‘Z’(T’K’”(y))'z] o

w0 [ B it Vot 000 — 000 Ve t)1]

1
2

< [ Be(r Yoo~ b o )]
+0 [ [Blos(r Yo 60 - 005 Yot (3.29

where in the second inequality we have used (3.23) and (3.25).
Observing that by € L=(0,T; C¢(R%)) and 65 € L2(0,T;CY(R?)) for every 0 € (0,1 + a —
2/q), and

(3.29)

bs(t, Yai(y,0€)) — b(t, Yas(y)), t€[s,T), P—a.s.,
Ué(t }/;t(y756>> — a-(tvy;,t(y))v te [SvT]v P— a.s.,
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then by the Lebesgue dominated convergence theorem, we deduce from (3.28) and (3.29) that

g 2
Yl el o (3.30)

lim sup E
=0 5<i<T 5

So, (3.21) exists in L*(2). Moreover, the weak derivative satisfies SDE (3.22) and moment
estimate (3.23).

e Holder estimates. For ease of notations, we write (s+(z) — (s1(y), U(t, U(t, Ysi(x)))
);

and U(t, U(t, Ys.(y))) by Csi(z,y), U (Y(x))) and U(¥(Y (y))), respectively. Then for every
p = 2, an application of It6’s formula yields

d|<s,t(x> y)|ﬁ 3
= MGz y)IP (Gl y), VU(E(Y (2))) VI(Y (7))o (@)
—VU (Y (9) VIV (y))Crly))di

+;p( = D¢z, y) P 2<V2U(‘P(Y($)))V‘I’(Y(x))a(t)é”s,t(x)—V2U(‘I’(Y(y)))

VU (1)) (t)Cst(y), VAU (R (2))) VE(Y (2))0 ()Gt (@)
—VEU(T(Y () VE(Y (y)o(t)Gsly))dt
]G (@, )P (G (@, ), [VPU (DY (2)) V(Y (2)) ()
—VEU(U(Y () VE(Y (y)Cs(y)] o (t)dWe)
Cp )[Kst(x PIPHVUEY (2)VE(Y (2)) () = VU(E(Y () VE(Y (y
Gl ) P2V (Y (2) V(Y (2)o (t)¢s(2) = VU(T(Y ()
0 (t)Cst(y)] }dt“—szt(z WP (Coalz,y), [V2U(T(Y ()

=VEU(T(Y () VE(Y (y)o ()G (y)|dW). (3.31)
NotmgthatUG(H )4 (see (2.7)
(

ditionally ¥(t,-) = o (t,-) and
On the other hand,

/N

~—

)Cs(y)]

) for every 0 € (0,14+a—2/q) and ®(t,x) = x4+U(t, z). Ad-
3.3) hold, we then have V&, V¥ € L>(0,T; CJ(R?%; R¥*)),

= VU (Y(x

Therefore,

VU (Y (2))) V(Y (2))Cr(x) = VUE(Y (9))) VI (Y ()Gt (y)]
< VUl V% ol Yol )1 Cst()] + VU 0,0 V¥ oo 0l Yot (2, 9)] G ())]
HIVU oo ol V¥ [o0.0/Cst (2, y)

< CLR@OY sl ) 1oa@)] + Vel 9) IGoal@) + Coal, )] (3.32)
where #(t) = [V2U(t)]p € L*(0,T) and k(t) is given in (3.13).
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Similarly, we obtain

[V2UW(Y (@) V(Y () (£)Cal) — VU (B (1) VU () (1))

< VR @) VI (@) () <x>—v U(U(Y () VUV (@) o(t)Ger (o)
VAU (Y () V(Y (2))0 () Goa(w) = VU (U(Y (1) VI (1) (H)Coa(a)]
V(WY () VU (9)(1)oi(w) = VEUU(Y () VUV (1) (D)Coa(y)

< Nollzeon VUGV Y,z y) |<s,t< )
IV o]V e Yl )1 o) + VU)o T ool 1) ]

< () + AWYaslw DI 1Con(@)] + K0 Goal. )| (3.33)

Summing over (3.31)—(3.33), for t € [s,T], we arrive at
E|<s,t(za y)|ﬁ

CE / 1+ K20 Cor (2, ) P + CE / 57 Corr (2, 9) P Yo (22, 9) 1 Cor (2) 7

N

L CE / Cor ) P Yo (2 9) P Cor ()
L CE / R0 Cor (0, ) P2 Yo () 2o () P

1

C/ [1+%2(7)]E|Cs,7(x,y)\’3d7+0/[1+ (T)EIYar (@, ) P2 [BlCor () P] 2dr

N

t
*C/ AT BN, -, y) P2 [EIG - (2)] ) 2d7, (3.34)
where & = k + /& € L*(0,T).
By (3.17), (3.23), (3.34) and the Gronwall inequality, we conclude
sup E[C(z,y)I” < Cllw =yl + |z — y|”].

s<t<T

This, together with the BDG inequality, suggests for every p > 2 that
E sup |Gz, y)l”

s<t<T

S C{ / 1+ kz(T)]{EKs,T(%?J)‘p + [E|Y, . (2, )] + [E\ﬂﬁ(:c,y)ﬁp]%}dr

+[B [ RO Y )P ) + \<S,T<x,y>\2]df]§}

< [0+ ROEG Al + B )71+ Yoo

[NIES

vel [ w6 >[E|<37<x DI + [ElY, (o, ) )] dr
Clle—y? + 1o~y (3.35)
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By (3.35) and the Kolmogorov-Chentsov continuity criterion (or see [33, Theorem 1.1}, [21,
Theorem 2.1]), for every 0 < s < t < T, (s+(-) has a continuous realization (denoted by
itself), which is locally -Holder continuous in y for every 8 € (0,1 4+ a — 2/q) uniformly in
t and satisfies

sup E[ sup ( sup [Coulz) = Cs’t(y”)p} <400, Vp=2, VR>DO. (3.36)

0<s<T s<t<T \x,yeBRr,x#y |Zl§' - y|5

Then, together with the existence of (3.21) in L*(Q2), implies that Y (-) is weakly differen-
tiable, which also implies the weak differentiability of X, (-). Moreover, if one differentiates
Y, + with respect to the initial data and denotes the derivative by (s(y), then

déts,t(y) = )‘VU(t’\D(taY:s,t(y)))vq](tan,t(y))fs,t(y)dt
+V2U(, (8, Yar(9)) VU, Yas (1)) (8)Con(y)dW,
= - B(ta K,t(y))fs,t(y)dt +o(t, Y;,t(y))fs,t(y)dm, te(sT], (3.37)
with g's,t(y)\t:s = Iyxqa- Additionally, the gradient estimate (3.23) holds for fs,t(y). Further-

more, by repeating the above calculations to SDE (3.37), (3.35) is true for (s(y) as well, i.e.
for every p > 2,

sup E sup oz, y) P < Cllz — ylP + |z — y*). (3.38)

Observing that X ,(z) = U(¢, Y;(P(s,x))), we have
VXsi(z) = VU(t, Y1 (P(s,2))) VY i(DP(s,2)) VO(s, x),
which leads to
||VXs,t(x) - VXS t( )H
= [[VU(t, Yu(D(s, 7)) VYia(D(s,2)) VO (s, )
—VU(t, Yy o (D(s, )))VYst( (5,9))Ve(s,y)|l
< V¥ o rap VRl [|Ys,t(‘1>(87f€)) — You(@(s5, ) VYo (0 (s, 2)) |

VY, u(®(5, 2)) = VY, (s, )] ]
F VU oo o [VYs e (R(s, y)) [V (s, 2) = VO(s, ), (3.39)
for every x,y € RY.
Noting that (. (x,y) = VYi(z) — VY, (y), then we get from (3.17), (3.38) and (3.39)
that

sup E sup ||[VX.(z) — VX, (v)|”

0<s<T  s<t<T

< sup (B sup [¥ur(@(s,2)) - Vor( (s, ) ) (5 sup [9Y.((s.))[)

0<s<T s<t<T s<t<T

+ sup B sup [VY,(®(s,2)) = VY1 (P(s,9))["

0<s<T s<t<T

N

+ sup B sup [V, ®(s,))|]e — y”]

0<s<T s<t<T

Cllz =yl + | — y|”]. (3.40)
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By (3.40) and the Kolmogorov-Chentsov continuity criterion, for every 0 < s < ¢t < T,
V X;.+(+) has a continuous realization (denoted by itself), which is locally S-Hélder continuous
in z for every 5 € (0,1 + a — 2/q) uniformly in ¢ such that (1.9) holds.

(iii) Observing that the inverse flows Y.';™ "and V3! ¢ satisfy equations which have the same
forms as the original ones beyond the drift and diffusion have opposite signs, it suffices to
show the stability for Y; ;. Let U, be the unique strong solution of (3.1) with b replaced by b,.
By Theorem 2.2, then U, belongs to (H 93¢ for every 6 € (0,1 + o — 2/q) and satisfies (2.3)
and (2.4) uniformly in n. Moreover, U, — U € L*(0,T;C.°(R%: RY)) N L2(0, T; C° (RY RY))
and

m [oileT 1Un(8) = UB) 1o may + VU = V2Ull 20 micp mayy | = 0, (3.41)
for g > 4/(2 + a).

Let ®,(t,z) = x + U,(t,z), then {®,},> form non-singular diffeomorphisms of class C**Y
uniformly in (t,n) € [0, 7] x N, and

1 3 2
— < sup ||[V®,(t)]o <=, =< sup [|[VU,(t)]o < 2,
2 oct<r 2" 3 oc<r

where U, (t,-) = ®,'(¢,). Notice that

n

Pt x) = Ut 2)] < sup [VOL(1)] 7 ol®alt, Tu(t, ) — Pult, U(t, )]

< 2\|<I>\n(t, U, (t,z)) — O, (¢, ¥(t, 2))|
= 2A(tW(t,2)) — o1, Ut 2))] < 2 sup (1) = U)o

<<

and

VU, (t,x) = [V, (t, V,(t, x))]_l,
then

lim sup ||W,(t) — (t)HC;,e(Rd) = 0. (3.42)

n—+00 0<t<T
Therefore, it is sufficient to show for every p > 2,

lim sup sup E[sup [Y{i(y) = Yiu(y)[] =0 (3.43)

N+00  cRd 0<s<T  s<t<T
and

lim sup sup E[sup [|VY{,(y) — VYii(y)["] =0, (3.44)

N2+ eRd 0<s<T  s<t<T
where Y, = ®,,(t, X s"t) satisfies the following equation:

= AU( n(t,Y))dt+ (I + VU,(E, V(. YSY)))o (8)dW,
( £ YA+ 6 (L, Y)W, t € (s, T), (3.45)
= D, (s,2).

Ysilt |t=s
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For every p > 2, in view of 1t0’s formula
d|Ysr,Lt_ st|
= pAY], — Y™ 2<Y — Yoo, Un(t, Wn(t, YY) — Ut (¢, Y, ,)))dt
+;p( DY, = Yoo P2t (VUG Wa(t, Y]3)) — VUt (L, Yi))]o(t)
o () [VUL(t, Wa(t, V) — VU (U (t,Y,0))] )t
+p| e = Yol Y = Yoo (VUL(E W (8, Y]) — VUL, (8, Y,0)))o()dW)

< COIY = Yoo P U W (8, YY) — UL (8, Vi) |dt
COIVT = YauP2VUL(E Ua(t, YY) = VU, U(E Yoo))dt
PV = Vel YT, = Yo, (VUG Wa(t, YY) — VU (L (2, Yey)))o (H)dW)
< OO = Yaul ™ [1Un = Ullooo + VUl ol = ¥l

HIVU oo IV ool Vs — Yol |t + OV~ Va2 IV, — VU2
HIVPUO[I1Pn — ©20 + VUGNV P[00 Yers — Ys,ﬂ dt
AP = Yol Y = Ya, (VUL Wa(8, YY) — VUL, (¢, Yi)))o (t)dW). (3.46)
By using Holder’s inequality, we deduce from (3.46) that
E[Y], — Youl?
t
< CUT.05, Wy 1, WaalE [ L+ &Y, ~ Yo lPar

+C( T, 0,5, b,z 1, Plae) [1Un = Ul o gty + 100 = o] (347)
where £ is given in (3.13).
From (3.41), (3.42) and (3.47), it follows that
lim sup sup sup E[|Y74(y) = Yauly)l"] = 0. (3.48)

=100 | cRd 0<s<T s<t<T
By (3.45), (3.47), (3.48) and BDG’s inequality to get for every p > 2 that
lim sup sup E sup |Y;nt( ) — Ysi(v)|”

N+00  cRd 0T s<t<T

T
< € tim [0 = Ul sy + 10 qugO,O/ 14 w2 () dr
n—+00 0

T
+0 lim [ sup B [ V) - V()7

n—-4o0o 0<s<T
X|[VUL(E, Walt, Y23)) = VUL W (E, V) [Pt

< C lim [||U U||Lm(07T;C§(Rd;Rd))+||\I/n—\1’||€o,0]

T 1
+C' lim [ sup E/ 1Y (y) _n’t(y)‘mﬁdt]? =0, (3.49)

n—-+4oo 0<s<T
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which implies (3.43).
For the gradient, we get an analogue of (3.46) that

dlIC(y) = Coa)P

O (182 = Gl IV U (W (V1) U (V) = VU (Y, ) VU(Yo) ol

HIC = Gl P2 IV U (Y V(Y — VAU (U (Vo)) VO (Vi) ol

HPIICE, = CollP2HCE = Cos VUMW (YD) VO, (V)
—V2U (U (Ya ) V(Y ) Caalo (8)dWS),

where (7'(y)]i=s = Laxa, (C4(y) = VY{4(y) and Cou(y) = VYou(y).
Moreover, by analogue calculations of (3.32) and (3.33), we get

(3.50)

IVUL(W,(Y]) VY, mzf"—w(( ) V(Y1) ol
< VUL(WL (V7)) V(YIS — VU (W (Y)Y (Y
+HVU (W, (Y])) VI, m"t)c?t VU (V) V(Y
HIVUW(Y)) V(Y — VU(B (Vo)) VI (V)
VU W (Ye)) V(Y — VU (Yo )) VI (Y
HIVU(U(Y,) VT <Y$>" VU (Y, )) V(Yo )|
HVUW(Ye)) V(i) = VUW(Ye ) V(Y ) ol
< VU, - VU||m,o||vwn||oo,o||<;t|| + VU)ol % — |oo0l| V¥ lsc,0 17
HIVEU D)o IV o0 |V Vo lloo ol ICEMYT: = Yasl + 1 VU o0l VI = VOl 0|l
HIVU o0V W0 0l YT = Yarl NG + 1V U o001V ¥ loo 0 1S = Contl
< CIVU, = VUl o + (1 + K@) [[ W0 — ¥l oo 0,702 (R
(YL = Yaul + Y2 = Yarl “LICH N + CUICE, — ol (3.51)
and
VU (T (V) VO (Y, — VAU (U(Ye ) ) VT (Ve ) Col
< VUL (W (YD) VUL (YE)CT = VU (U (V) V(Y
VAU (W (V) VL, (YV)CT = VU (R (Y)W (YT
HIVEU(B(Y)) V(Y — VU (R (Y,) V(Y] ") ¢l
VAU (W (Yer)) V(Y — VU(B(Y,)) VI (Y
VU (Yar)) VO (YT, = VU (Yar)) V(e )T
HVEU (W (Vo)) VO (Yar) (= VAU (W(Ye )V (Y: ) ol
< ClIVPUL() = VAU @)llo + ()| W0 — W% o + RE[YT, — Vil
+5 (1) VI, — V‘I’Hoo,o] IS+ CrIICE = Coall, (3.52)
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where & is given in (3.34). Combining (3.50), (3.51) and (3.52), one asserts

EJC () — Corlw) P
t
C [+ RN, = GolPdr + (190, = VU + 20— |

N

iw(O,T;C;(Rd;Rd))
t
1o — U] [ 11+ BN, Par

t
+0 [ RONE[(V, = Yol + V2, = VerIE 1] i

t
+0 [ E[I = Gl 29U ) = VU@ dr (3.53)
Observing that for every ¢ > 2, there is a positive constant C' such that
E ()19 + (G N1<CdT,0,q,b 2 . (3.54
SUp Sup. sup. siggT[HCs,t(y)H + 1< @) < C( GBIy o 2 1o magayy ) (3-54)

then by (3.53) and (3.54), it leads to
BIC ) - Cooly) P
t
< C [+ RONEIE, — &lPdr +C[IT0, = VU + 20— ]

7
L= (0,T5C} (REGRY))

1
W — W% o| +C[( sup sup BV = Vo P4 YT, - Vi)

0<s<T s<7<T

V20, — VAU
Consequently,

sup sup E[|C7,(y) — Cor(y)|)P

0<s<T s<t<T

p p po
< C|IVU = VU g + 110 = I i gy + 1% = WU | +

1
C|( sup sup B[V, = Yarl? + V2 = Yor#]) + V20, — VAU, . (3.55)

0<s<T s<7<T

By (3.41), (3.42), (3.48) and (3.55), we get

lim sup sup E[|IC7,(y) — Cot(y)|I” = 0. (3.56)

N—+00 0<s<T s<t<T

Repeating a similar calculation as (3.49), by (3.56) we end up with (3.44). O

4 Proof of Theorem 1.7

(i) Firstly, we prove that u(t,z) = ug(X; *(x)) is a stochastic weak solution of (1.14). Ob-

serving that [p, u(t,z)p(z)dz is F-adapted for every ¢ € Cg°(R?), it is sufficient to show
u € L®(Q x [0,T]; L"(R?)) and (1.15) holds.
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Since uy € L"(RY), if r = 400 we clearly have u € L>®(2 x [0,T] x RY), and if r < +o0,
with the help of Euler’s identity, it follows that

/]Rd |U0(Xt_1(1’))|7‘d1’ = /Rd g ()| det (V X, (x) ) dz
= /]Rd |ug()|" exp </0t divb(r, XT(:C))dT) dx
= /Rd |ug(z)|"dz. (4.1)

Therefore, u € L>®(Q2 x [0, T]; L"(R?)).

Let b, be given in (iii) of Theorem 1.3, and let X;* be the unique solution of (1.1) with
o = Iyvq, s = 0 and b replaced by b,. Let X™~! be the inverse of X". Since b, is smooth in
space variable, in view of the characteristic lines and It&’s formula, wu,(t, ) = ug(X[" ' (x))
is the unique stochastic weak solution of the following Cauchy problem:

d .
Ot (t, ) + bp(t, ) - Vu, (t, x) + 3. Opun(t,x) o Wiy =0, (t,x) € (0,T] x R,
i=1

un(t, I)‘t:() = U(](ZL’), T € Rd.

(4.2)

Observing that divb, = (divb) * p, = 0, for every ¢ € C3°(R?) and every t € [0,T], then

/Rd uo(X 7 (2))p(z)de = /Rd uo(x)p(z)dr + /Ot /Rd uo (X7 (2))div(by (7, 2) () dadT
+g /0 t °dWi - /R uo(XP7H (@)D, p(w) da
= /R L uo()p(z)dz + /0 t /R (X (@))ba(7, 7) - Vip()dadlr

d t
+Z/ odWi,T/ ug( X" (2))0,, 0(x)dr P —a.s.. (4.3)
i=1 70 Re

Thanks to Theorem 1.3, divb = 0 and the following fact (see (2.55) and (2.56))
lim |6, — bHLq(o,T;cg’(Rd;Rd)) =0, Vd €(0,a), (4.4)

n—-+0o00

if one lets n tend to infinity in (4.3), then (1.15) holds for u(t,z) = uo(X;*(z)). Thus
u(t, z) = ug(X; *(x)) is a stochastic weak solution of (1.14).

Secondly, we prove the uniqueness of stochastic weak solutions. Observing that the equa-
tion is linear, it suffices to prove that w = 0 a.s. if the initial data vanishes. Let u(¢,x) be a
stochastic weak solution of (1.14) with uy = 0. Let p be given by (1.10). For m,n € N, we
set pn(z) = np(nx) and p,(z) = mep(mz). Then

/Rd u(t,y)pm(z —y)dy = — /Ot /Rd u(T, y)b(7,y) - Vpm(z — y)dydr
d_ rt
- ;/0 odW; - /Rd w(7,Y) Oz, pm(x — y)dy, P —a.s.. (4.5)
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For every ¢ € C°(RY), if we set v, (t, ) = (X"~ (x)), it satisfies

d .
{ Oa(t,) + ba(t,7) - Von(t,2) + 22 0.va(t.0) 0 Wiy = 0, (1) € 0T < RE, () o
i=1 .

Un(t, )] i=0 = p(x), v € R

Let u,, = u*py,, b, = b*xp, and b,, = b*p,,. In view of the fact that divb = divb, = divb,, = 0,
then

[t X2 @)ty
= [l )X ) det(X7 )
_ /R At @) (X] (x)) exp ( . /0 t divbn(7, Xf(Xt”’_l(:c)))dT) dz

= /um(t,x)vn(t,x)dx, P—a.s., (4.7)
R4

where in the second identity we have used the following Euler identity:
t
det(VX]" " H(z)) = [det(VXP (X (2)] 7" = exp ( — / divb,, (7, Xf(Xt"’_l(x)))dT).
0

Observing that X"~ '(x) is continuous in (¢, z), then for every fixed w, ¢(X}" (-, w)) €
C3°(R?) uniformly in ¢ € [0, T]. By (4.5)—(4.7), we derive

[l Xr@)ptara / [0, P57t

_; /0 od Wi, /R (7, 2) 000 (X ()
- /0 t /R dgo(Xf’_l(x))dx /R Lulmy)b(r,y) - Vom(x —y)dydr
_i /0 t odW; . 9 o(X7 Y (z))dx /R T, 9)0s,pm(z — y)dy

/Ot_/Rd [/Rd u(T,y)0(7, y) pm (T — y)dy — U (7, )by (7, T)
v

2(XM Y (2))dwdr, P—a.s., (4.8)
where in the second identity we have used integration by parts.

Letting m tend to infinity and n € N be fixed in (4.8), we obtain
[ utt X @)pla)da

/ /Rd 7, 2)[b(T, %) — by (7, 2)] - Veo( X (2))dxdr

/ /R ulr2)[b(r, ) — b )] [V (X0 (@) VX0 (@) dedr, P as. (49)
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By (1.12), (1.13), (4.4) and the Lebesgue dominated convergence theorem, taking the limit
as n — 400 in (4.9) yields that

/]Rd u(t, X¢(z))p(x)de =0, P—a.s.,

which implies u(t, X;(z)) = 0 for almost everywhere z € R? and almost all w € Q. Since
X;(z) is a stochastic flow of homeomorphisms associated with (1.1) with o = I;»4 and s = 0,
we have u(t,z) = 0 for almost everywhere # € R? and almost all w € €.

(ii) Now let us show that (1.16) holds. Since X, *(z) is differentiable in z, we have the
following chain rule

Voo X, () = V(X H2)) VX ). (4.10)

Let R > 0 be a real number. Recalling (1.8) and (1.9), one can see that for every p € [1, +00)

-1 P
OilngExseué)R VX, (2)||P < Cd,T,0,p, Hb“Lq(o,T;c%*mca(Rd;Rd))) < 400. (4.11)
Combining (4.10) and (4.11), we get for r < 400
sup E/ |V ouo( X, (2))|"do
0<i<T Br
< swp E| [ Vuo(X; (@) de sup [V @)
o<t<t L Jpa z€Bg
= |Vug(z)|"dz sup E sup ||[VX;(2)|" < +oo. (4.12)
Re 0<t<T  z€Bg

Moreover, if r = +00, one has

s B sup (Voo X7 (2P < [Vl snp B sup VX7 (@) < 400, (113
o<t<T rEBR o<t<T rEBR

for every p € [2, +00). Then the required assertion follows from (4.12) and (4.13). O
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