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In the study of the thermalization of closed quantum systems, the role of kinetic constraints on
the temporal dynamics and the eventual thermalization is attracting significant interest. Kinetic
constraints typically lead to long-lived metastable states depending on initial conditions. We con-
sider a model of interacting hardcore bosons with an additional kinetic constraint that was originally
devised to capture glassy dynamics at high densities. As a main result, we demonstrate that the sys-
tem is highly prone to localization in the presence of uncorrelated disorder. Adding disorder quickly
triggers long-lived dynamics as evidenced in the time evolution of density autocorrelations. More-
over, the kinetic constraint favors localization also in the eigenstates, where a finite-size transition
to a many-body localized phase occurs for much lower disorder strengths than for the same model
without a kinetic constraint. Our work sheds light on the intricate interplay of kinetic constraints
and localization and may provide additional control over many-body localized phases in the time
domain.

I. INTRODUCTION

In the theory of thermalization of closed quantum sys-
tems, two main pillars have emerged that capture generic
behavior. On the one hand, systems that obey the eigen-
state thermalization hypothesis (ETH) are expected to
thermalize under their own dynamics [1–4], i.e., informa-
tion on initial conditions becomes inaccessible to local
measurements and expectation values of local observables
are identical to thermal expectation values, up to small
finite-size corrections. On the other hand, many-body
localized (MBL) systems constitute robust examples of
non-thermalization [5, 6], with emergent local conserved
quantities and persistent density inhomogeneities.

Two recent developments have triggered a refinement
of this picture. First, the stability of the MBL phase,
even in a canonical system of a chain of interacting
spinless fermions in presence of quenched disorder, has
been challenged [7–26]. Notably, the critical disorder
strength appears to be significantly larger than previ-
ously suggested and instead of a direct transition, the
existence of a large prethermal MBL regime has been
proposed [27, 28]. Second, quantum systems with var-
ious types of constrained dynamics have attracted sig-
nificant attention, including systems with quantum scars
[29, 30], Hilbert-space fragmentation (HSF) [31–34], lat-
tice gauge theories [35–37], or kinetically constrained
models (KCMs) (see, e.g., [38–42]).

Systems with constrained dynamics are interesting
from several perspectives [29, 30, 43, 44]. In many
cases, such systems eventually thermalize for the major-
ity of initial conditions, yet break ETH in the weak sense
[29, 44], however, even fully non-thermalizing situations
have been suggested [36, 37]. Notably, long transient dy-
namics and metastable states exist in these systems for
at least some initial conditions, thus shifting the focus
from eigenstate properties, as often emphasized in the
ETH and MBL contexts, to the temporal domain. The

FIG. 1. Illustration of the kinetically constrained model of
consideration in this work, introduced in [40]. The black dots
represent the sites on a triangular (zig-zag) ladder. The red
hexagons represent particles that can only hop to the nearest
neighbor if the origin and target site share an empty neighbor-
ing site. The blue double-ended arrows denote the particle-
hole interactions and the allowed hopping processes for this
example configuration [see Eq. (2)].

existence of quantum-scar states [45] and HSF in certain
models has led to an improved view on local conserva-
tion laws responsible for these Hilbert-space structures
[46]. Some of the models with HSF or kinetic constraints
exhibit anomalously slow, subdiffusive transport [47–50]
or superdiffusive transport [51]. KCMs originate in two
contexts, either in quantum systems with approximately
hard-core short range interactions such as Rydberg atoms
[38] or in the classical theory of glassy dynamics [52–55].
Transferring models from the latter class into the quan-
tum realm provides a rich playground to study the in-
terplay of interactions, constraints, and disorder [38, 56].
First nonequilibrium experiments with quantum simu-
lators succeeded in demonstrating the presence of con-
strained dynamics [57–63].

In our work, we are interested in the stability of lo-
calization in a KCM describing an interacting system of
hard-core bosons or spin degrees of freedom on a trian-
gular ladder (see Fig. 1). In this system, introduced as
a quantum version in Ref. [40], particles can only move
into an empty site if the origin and target site share an
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empty neighboring site (see the arrows in Fig. 1). Con-
sequently, single vacancies in a high-density background
cannot move at all, unless they are absorbed by groups
of at least two neighboring vacancies. This mechanism
causes the existence of quantum-scar states that are com-
pletely isolated from the rest of the Hilbert space (those
are the computational-basis product states with only iso-
lated vacancies) and states with metastable dynamics as
witnessed in density autocorrelations [40] (see Fig. 3(b)
for examples). The constraint becomes effective in the
presence of sufficiently strong interactions between par-
ticles and holes. This interaction is chosen to realize a
Rokhsar-Kivelson point in the many-body ground state
of this model [40].

The kinetic constraints lead to the aforementioned
metastable dynamics with slowly decaying autocorrela-
tions computed from computational-basis product states,
with an increasing fraction of such states as density
grows. Consequently, the system has an inherent ten-
dency towards localization. Since isolated holes can only
propagate via high-order perturbative processes involv-
ing connected clusters of vacancies, a small amount of
disorder will quickly affect these heavy objects. In our
work, we demonstrate two main results. First, even a
small amount of disorder is sufficient to induce long-lived,
nondecaying dynamics for all initial product states in the
computational basis, at least on accessible finite system
sizes. Second, the eigenstate transition into a possible
many-body localized phase occurs at an order of magni-
tude smaller disorder strengths than for the model with-
out the kinetic constraint, consistent with the informa-
tion from time-dependent simulations. Our results are
based on extensive exact-diagonalization simulations.

Our work complements previous studies of constrained
quantum-lattice models in the presence of disorder. For
the case of KCMs, there is so far no uniform picture as
the constraints can apparently favor or disfavor localiza-
tion [64–69], with our case providing an example for the
former. It appears that the type of constraint, dimension-
ality and range of the interactions may matter. A similar
picture has been described for the quantum East random-
energy model [67]. There, however, localization is ab-
sent without the constraints in the bulk of the spectrum
[70]. Moreover, the random-energy model is infinite-
dimensional, different from our one-dimensional exam-
ple. With regard to the ongoing investigations about the
stability of MBL, the combination of certain dynamical
constraints and disorder may provide a path towards sta-
ble instances of MBL and possibly unexplored types of
delocalization-localization transitions and crossovers.

The rest of the paper is organized as follows. In Sec. II,
we introduce the model while Sec. III provides a brief ac-
count of the numerical techniques utilized in our work.
In Sec. IV, we present our results for the decay of density
autocorrelations as a function of interaction strength and
disorder strength. Section V summarizes our results for
the eigenstate delocalization-localization transition ex-
tracted from the occupation distance [71, 72] and results

for the eigenstate entanglement entropy. Our conclusions
are presented in Sec. VI.

II. MODEL

Here we consider a triangular ladder with interacting
particles subject to a kinetic constraint introduced in [40]
and uncorrelated disorder. A schematic picture of the
system is shown in Fig. 1. The system is governed by the
Hamiltonian

Ĥ = ĤKCM + Ĥdis (1)

where

ĤKCM =− J
∑
⟨i,j⟩

Ĉi,j(b̂
†
i b̂j + h.c.)

+ V
∑
⟨i,j⟩

Ĉi,j [n̂i(1− n̂j) + n̂j(1− n̂i)] , (2)

and

Ĥdis =

L∑
i=1

ϵin̂i. (3)

Here, b̂†i (b̂i) are bosonic creation (annihilation) operators
subject to an onsite hardcore constraint and n̂i are the
number operators at a given site i, with L the number
of sites. The first term of ĤKCM represents the hopping
with amplitude J , and Ĉi,j = 1 −

∏
k n̂k defines the ki-

netic constraint where k denotes all the common neighbor
sites of i and j. The particle-hole interaction is defined
by the second term with interaction strength V , which is
also subject to the constraint. Ĥdis stands for the disor-
der in the system where ϵi are uniform random numbers
drawn from a box distribution ϵi ∈ [−W,W ]. W is the
strength of the disorder potential.

We will also consider a system without the constraint,
that is, a Hamiltonian Ĥun instead of ĤKCM obtained
from setting Ĉi,j = 1 in ĤKCM. We define the filling as
ν = N/L, where N is the particle number.
A central quantity in our analysis will be density au-

tocorrelations c(t), defined as

c(t) =
1

L

L∑
i=1

⟨ψ(0)|n̂i(t)n̂i(0)|ψ(0)⟩
ν(1− ν)

− ν

1− ν
, (4)

which we average over all sites [40]. Here, |ψ(0)⟩ denotes
the initial state, which in our case are always product
states in the computational basis.

III. METHODS

The Hamiltonian is implemented as the matrix repre-
sentation in the basis of joint eigenvectors of the local
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FIG. 2. Sketch of classes of initial states for L = 12. We
distinguish the initial states by their interaction energy. For
E/V = 4, there are three different types of initial states.
Those states with V = 0 that have only isolated holes are
exact quantum-scar states.

density operators n̂i. In this form the constraint is just
an on/off flag for each matrix element depending on the
existence of neighboring vacant sites.

Time evolution and expectation values of energy eigen-
states are obtained by exact diagonalization [73, 74]
where eigenvalue decomposition of the Hamiltonian is
calculated using LAPACK [75]. The time average c(t)
of the autocorrelation is obtained as a weighted average
of values at times tiJ = 10αi with 0.05 ≤ tiJ ≤ t and
α ≈ 0.04 where the weight of a point at time ti is the
length of the time interval ti+1 − ti. In principle, this
leads to an overestimate of the long-time value, which,
however, does not affect our analysis since we are consid-
ering the dynamics over many decades in time. Note that
the plateaus in c(t) without a time average are obscured
by large temporal fluctuations [40].

Disorder averages of the time average of the autocor-
relation are taken over samples of different disorder re-
alizations and all initial configurations equivalent under
symmetry transformation (mainly translation symmetry)
in the clean model. The latter is just done to reduce the
number of necessary disorder realizations. The number
of disorder samples is chosen such that the uncertainty of
the average is smaller than the linewidth in the respective
plots.

IV. LONG-LIVED DYNAMICS IN THE
PRESENCE OF DISORDER

A. Clean case

As mentioned above, ĤKCM hosts metastable states in
the V > J limit, where many initial states show a plateau
in the density autocorrelation function c(t). This behav-
ior has been discussed in [40], which we here recapitulate
to lay the ground for the discussion of the disorder case.
We will focus on results for L = 12 and a high filling of
ν = 3/4.

Before going further, we want to illustrate the under-
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FIG. 3. Dynamics of the constrained model: c(t) for all initial
product states plotted for a system of L = 12 sites for different
interaction strength and disorder strength. The results are
averaged over the groups of initial states according to the
classification from Fig. 2 and 20 disorder samples.

lying physics of the existence of the plateaus in the re-
laxation dynamics, which also gives insight into the non-
thermalizing behavior in the presence of small disorder
strength. In Figs. 3(a)-(c) and 4(a)-(c), we present the
time evolution of the density autocorrelation function
c(t) computed for the model with constraint and with-
out constraint, respectively. The results are computed
for three interaction strengths, V/J = 1, 4, 16.
As already shown in Ref. [40], a sufficiently large ratio

of V/J causes metastable dynamics, as clearly seen in
Fig. 3(b). Specifically, c(t) develops a plateau for those
initial states that involve one horizontal dimer and one
isolated hole (solid orange lines). Increasing V/J leads to
longer plateaus (note the logarithmic scale on the time
axis). The emergence of this slow dynamics becomes par-
ticularly evident by comparison to the data for the model
without a kinetic constraint, where such plateaus are ab-
sent.
Moreover, the KCM exhibits completely frozen states,

namely those with only isolated holes, for which c(t) = 1
for all times [see the solid blue lines in Figs. 3(a)-(c)].
These correspond to exact quantum-scar states with no
hybridization with the rest of the spectrum and zero en-
tanglement. The density autocorrelations for all other
initial states decay quickly on a time scale set by (V/J)2

[40].

1. Perturbative estimate of time scales

In order to guide the following discussion of the com-
bined effect of disorder and interactions, we provide a
discussion of the relevant time scales for the decay of the
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FIG. 4. Dynamics of the unconstrained model: c̄(t) for all
initial product states are plotted for a system of L = 12 sites
for different interaction strength and disorder strength with-
out the kinetic constraint. The results are averaged over the
groups of initial states according to the classification from
Fig. 2 and 20 disorder samples.

metastable states. These clearly depend on V and the
basic mechanism can be extracted from considering ini-
tial states with one horizontal dimer and one hole (see
the state with E = 2V in Fig. 2).

For an isolated hole to be able to move, a horizontal
dimer needs to first flip into a vertical dimer which in-
volves an energy cost of ∆E = 2V . The vertical dimer
can then propagate through the system and can absorb
and reemit the hole, with eventually returning to the
subspace with one horizontal dimer. There are several
possible intermediate states that involve three connected
vacancies. The lowest-order process involves a state with
a trimer and E = 4V (see Fig. 2) and leads to a contri-
bution in the order of J4/V 3. Going through an interme-
diate state with vacancies in a triangle leads to J5/V 4.
Note that the motion of a horizontal dimer itself in a
background of occupied sites goes with J3/V 2. These
simple arguments are consistent with the dependence of
the plateau width of the metastable states at W = 0 [see
Fig. 3(b)] on the interaction strength (not shown here).

In summary, the perturbation theory argument ex-
plains the dependence of the plateau length on V and
the sensitivity of different types of initial states to the
constraint. Since we can therefore view single holes as
heavy objects with a small tunneling amplitude, the ad-
dition of disorder should lead to a rapid localization.

B. Disorder and interactions

We next discuss the effect of disorder on the time de-
pendence of the autocorrelation functions. These are

0.0

0.5

1.0 (a) constrained

logarithmic disorder strength W/J
10-1 100 101 102

0.0

0.5

1.0 (b) unconstrained

fr
ac

ti
on

 o
f 
m

et
as

ta
b
le

 s
ta

te
s

L = 12
L = 16
L = 20

FIG. 5. Fraction of metastable states as a function of W
for (a) constrained model and (b) unconstrained model for
L = 12, 16, 20 and V = 4J . We consider the dynamics to
be metastable when c̄(tthresh) > ϵ with ϵ = 0.15 and tthresh =
500/J . The results do not quantitatively depend on the choice
of ϵ and tthresh for reasonable choices of these parameters.

shown in Figs. 3(d)-(i) and Figs. 4(d)-(i) for the con-
strained and unconstrained model, respectively. We show
averages over those initial states that have the same con-
figurations according to Fig. 2. Remarkably, even disor-
der strengths substantially smaller than the bare band-
width W ∼ J ≲ 4J prevent the density autocorrelations
from decaying over many decades for all initial states in
the presence of constraints [see Figs. 3(d)-(f)]. Increasing
the disorder strength leads to a higher long-time satura-
tion value of c̄(t). As we shall show later, the density
autocorrelations do not decay at all for the system sizes
considered. Therefore, on finite system sizes, disorder
leads to nondecaying dynamics. We stress the difference
to the definition of metastable dynamics used here which
refers to long-lived correlations that eventually decay al-
ready on finite systems.

For the model without a kinetic constraint, there are
noticeably less states that acquire plateaus in c̄(t) [see,
e.g., Fig. 4(e)], which also requires higher values of W .
The difference between the two cases is best illustrated
by plotting the fraction of metastable initial states as a
function of disorder strength shown in Fig. 5 for three
system sizes L = 12, 16, 20 and both models at V = 4J .
We consider a state to be metastable when c(tthresh) > ϵ
with tthresh = 500/J and ϵ = 0.15. In this analysis,
we are sensitive to density autocorrelations that remain
large in the short-time regime, but at times larger than
the generic decay time set by (V/J)2 [40]. Clearly, the
kinetic constraints lead to a short-time plateau of c̄(t) for
an order of magnitude smaller values of W than in the
case without kinetic constraints. Increasing system size
suppresses the metastable states in both cases, yet much
more significantly so in the case without a constraint.
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FIG. 6. Diagonal ensemble expectation value cdiag of the den-
sity autocorrelator for (a) L = 12 for all groups of initial
states. In (b) and (c) we show the infinite-temperature aver-
ages for L = 12, 16, 20 for (b) the constrained model and (c)
the unconstrained model.

Another noteworthy effect of the constraint is to affect
the plateau height of c(t) for the different groups of ini-
tial states as defined in Fig. 2. The comparison of, e.g.,
Figs. 3(b) and Fig. 4(b), shows that in the presence of the
constraint, the states with one hole and one horizontal
dimer are the most susceptible to disorder, while in the
absence of the constraint, these states exhibit the low-
est values and states with three vacancies in neighboring
sites have the largest c(t) in the plateau. The sequence of

plateau values for the unconstrained model Ĥun results
from the interplay of available hopping processes versus
the interactions that favors clusters of vacancies and is
thus subject to details of the values of W and V .

One immediately wonders about the temporal exten-
sion of the plateaus in c̄(t) atW > 0 [40, 42] and whether
they persist to infinite times as expected for many-body-
localization. While definite statements about the ther-
modynamic limit are difficult, we can compute the diag-
onal ensemble expectation values [76] of the autocorrela-
tor, cdiag. Figure 6(a) contains the data for L = 12 and
the different groups of initial states.

The difference to the unconstrained model is the most
obvious from the comparison of Figs. 6(b) and 6(c) that
display the infinite-temperature average over all states for
different system sizes. Using such data, we can demon-
strate that there is no decay on finite systems (ad-hoc

measured by c(∞) > 0.1 for L = 20 data) for W/J ≳
0.4·10−4, as shown in Fig. 6(b) for the constrained model.
For the unconstrained case [see Fig. 6(c)], the density au-
tocorrelations acquire a nonzero long-time value for or-
ders of magnitude larger values of W/J ≳ 7.74. The
dependence of cdiag on W from Fig. 6(b) resembles the
one of the fraction of states with metastable shown in
Fig. 5(a) as it increases at around the same value of
W . However, the diagonal ensemble misses information
about metastable states on finite systems, which are cap-
tured in Fig. 5(a).
The temporal and long-time behavior of c(t) is

markedly different from the stretched exponential decay
of autocorrelations suggested for the prethermal-MBL
regime [28], which may thus be restricted to much smaller
values of W/J . While here we focus on the emergence of
non-decaying autocorrelations (averages and for individ-
ual initial computational basis states), there is possibly
another interesting regime at weaker disorder. Given the
different dynamics of initial states, some classes of those
lead to non-decaying dynamics for smaller values of dis-
order than others. The remaining fast decaying states
may be sufficient to ensure delocalization for all states
eventually. Substantiating this scenario is left for future
work.

V. LOCALIZATION-DELOCALIZATION
TRANSITION

So far, we have established that the kinetic constraints
lead to non-decaying density auto-correlations for much
smaller values of W compared to the case without con-
straints. We now complement this picture by study-
ing the finite-size eigenstate transition from a delocalized
regime to a putative many-body localized regime.
To that end, we compute the occupation distance

[71, 72] that is extracted from distributions of local den-
sities ⟨n̂i⟩ sampled over sites, disorder realizations, and
eigenstates. The distributions exhibit a bimodal struc-
ture in the localized regime, while they are normal-
distributed around the average filling in the delocalized
case [77, 78].
The occupation distance δni is computed from each

eigenstate expectation value of the onsite density ni =
⟨ψ|n̂i|ψ⟩ as the distance from the closest integer (|ψ⟩ de-
notes an eigenstate of the Hamiltonian). The definition
reads

δni = |ni − [ni]|. (5)

If the states are localized in nature, the average δni taken
over disorder, sites and eigenstates goes close to zero and
is practically system-size independent, while if the states
are extended, δni approaches the filling ν for ν ≤ 1/2 or
1− ν for ν > 1/2 [71, 72], where ν = N/L. The average
of δni over sites and all eigenstates for a given parameter
set has been shown to capture delocalization-localization
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1−ν

, which is represented according to

the color scale, for (a) the constrained and (b) the uncon-

strained model, both for L = 16. Here, ν = 3/4 and the δni
1−ν

is averaged over 20 disorder realizations, leading to a statisti-
cal variation of less than 0.03.

transitions [72], including the known critical behavior of
transitions in non-interacting models.

In Figs. 7(a) and (b), we plot δni/(1 − ν), which is
averaged over 20 disorder realizations, as a colour plot
in the W − V parameter space for different system sizes
for ν = 3/4. These state diagrams show that disorder
affects the system differently for the constrained and un-
constrained cases. In the former, the transition sets in
at values of W that are an order of magnitude smaller
than in the latter case [compare the lines in the figures,
indicating equal values of δni/(1− ν)].
In the limit of small values of V , neither system be-

comes Anderson localized for all values of W since even
in the absence of particle-hole interactions V = 0, hard-
core bosons are interacting particles. Large values of V
favor localization and therefore, the localized region wins
over the delocalized one there.

The finite-size dependence of the occupation distance
is illustrated in Fig. 8 for V = 4J . In the unconstrained
model, the occupation distance already approaches its
asymptotic value of δni = 0.25 in the range W ≲ 10J ,
indicating delocalization. In the constrained model, the
data do not reach the limiting value anywhere yet, sup-
porting the presence of much larger finite-size effects and
the presumably larger extension of the localized phase.

We have also studied the distribution of the half-chain
entanglement entropy [79] computed in eigenstates. The
SvN is calculated from a bipartition of the system into
A and B subsystems (here of equal length) and calculat-
ing the reduced density matrix of one of the subsystems
(ρ̂A/B = TrB/A|ψ⟩⟨ψ|), as

SvN = −Tr[ρ̂Alnρ̂A]. (6)

Our results for the distribution P (SvN) sampled over
eigenstates and disorder realizations displayed in Fig. 9
further corroborate the notion that the constrained
model tends to localize much faster. Already at W/J =
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FIG. 8. System-size dependence of the disorder-averaged δni

for (a) constrained model and (b) unconstrained model, both
for V = 4J and L = 12, 16, 20 sites averaged over (at least)
400, 30, 5 disorder configurations, respectively.

2, there is a broad distribution around a small mean
value, with a larger additional peak at SvN = 0 stemming
from the fully localized states. At W/J = 10, P (SvN) of
the constrained model has the typical shape for a many-
body localized system [77], with a maximum at SvN = 0,
tails, and a local maximum at SvN ≈ 0.7 ≈ ln 2 (related
to two-body resonances [77]), while the unconstrained
model still exhibits a broad distribution around much
larger values of SvN. Even at W/J = 20, the uncon-
strained model does not show the sharp global maximum
at small values of SvN yet.
Other quantities, such as the gap ratio [80], lead to

the same picture (results not shown here). The analysis
of the gap ratio is, however, plagued by regions with a
vanishing density of states (that is, gaps in the many-
body spectrum).
In conclusion, both the analysis of the time-

dependence of autocorrelations and of measures of a
delocalization-localization transition yield the same pic-
ture, namely, the kinetic constraints significantly favor
localization. A scaling analysis of the stability of the lo-
calized phase is beyond the scope of our work and left for
future work, similar to the case of the localized phase in
the East-random energy model [67].

VI. CONCLUSIONS

In our work, we provided numerical evidence that a cer-
tain type of kinetic constraints in cooperation with inter-
actions leads to an enhanced tendency towards localiza-
tion in the presence of uncorrelated disorder. We estab-
lished this result by primarily considering the time evo-
lution of density autocorrelations corroborated by mea-
sures for an eigenstate localization transition such as oc-
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SvN computed in eigenstates and sampled over 20 disorder re-
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(d)-(f) unconstrained model for V = 4J . We show results for
W/J = 2, 10, 20 and plot the data versus SvN/L.

cupation distance of density distributions and entangle-
ment entropy. Our conclusion relies strongly on the di-
rect comparison to particles that live on the same lattice
topology yet are not subject to the kinetic constraints.

On finite systems, the crossover to localization occurs
typically at an order of magnitude smaller values of dis-
order in the presence of the kinetic constraints, compared
to when these are absent.

While our study is subject to the limitations of exact
diagonalization and therefore, small system sizes, they
still suggest more stable localization in our KCM than
in the absence of kinetic constraints. Putting this onto
more theoretical grounds and on a broader data basis in
terms of examples of KCMs is left for future work.

Based on our results, it seems likely that other mech-
anisms will also render many-body systems more sus-
ceptible to disorder, at least in the sense of long-lived
correlations in the time domain. These include flat-band
systems [81–83], systems with frustration [84, 85], and
systems with emergent particle excitations with a nar-
row bandwidth such as heavy fermions or polarons in
electron-phonon systems [86, 87].
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