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1. Introduction

The first time topology enters into Quantum Field Theory is when we talk about rotating a
fermion. There, the nontrivial element −1 ∈ 𝜋1(SO(3;R) , ·) = 𝜋1(RP3 , ·) = Z2 is lifted to the
universal covering space SU(2) ≃ S3, such that any state vector of a fermion is transformed to
its antipode | 𝑓 ⟩ ↦→ 𝑒𝑖 𝜋 | 𝑓 ⟩. The extra phase for a fermion state under rotation of 2𝜋 has crucial
physical consequences, e.g., for the super selection rules: it is impossible to prepare states with
superpositions of fermions and bosons. Furthermore, rotation by 4𝜋 is always homotopy to no
rotations at all, thus massless particles have helicities of either integers or half integers.

Topology also enters into the dynamics when we take the Fourier-transform of a Green’s
function and take the momenta on-shell. The result of this procedure is the scattering amplitude,
whose analytic structure is encoded in the set of symbol letters. The symbol letters are locally
closed and multi-valued 1-forms over the kinematic base space, and the general picture is to treat the
symbol letters as objects of geometric origin, as sheafs of germs of analytic functions [1, 2] over the
kinematic base space, which we denote as (T (𝐵), 𝑞). It turns out that for the phenomenologically
relevant processes known to us, the kinematic base space 𝐵 is really special, they are given by the
𝑛-dimensional projective space with punctures

[𝑠 : 𝑡 : · · · : 𝑚2] ∈ CP𝑛 \ Σ , (1)

where the punctures Σ are the kinematic branch points, which, as we will see, in the case of Bhabha
scattering, are given by a union of linear varieties. The covering map 𝑞 from the covering space
T (𝐵) to base space 𝐵 turns out to be special too: it is in general normal (Galois) [3], thus the
deck transformation of (T (𝐵), 𝑞) should have correspondence to the automorphisms of Galois
field extensions for the meromorphic functions [2]. Besides, the deck group acts transitively on the
fibers for normal coverings, and is isomorphic to the Monodromy

Deck(T (𝐵), 𝑞) ≃ 𝜋1(𝐵, ·)/𝑞∗𝜋1(T (𝐵), ·) ≃ Mono , (2)

which means that the effect of analytic continuation could be depicted globally, without the need to
choose a base point.

In this note, we study several physical processes–Bhabha scattering and planar top quark
production, we will show several sectors of the two physics processes are related to the same moduli
space M1;2 [4]–the moduli space of elliptic curves with level-4 structure and with one extra marked
point, thus they are partially described by the same function spaces.

2. The symbol letters

The symbol letters are the closed 1-forms that appear in the canonical differential equations
satisfied by the master integrals [4]. They encode the analytic structures of a Feynman amplitude.
It turns out that for the planar master integrals contributing to Bhabha scattering, the set of 1-forms
𝜔𝑖 are ‘dlog’ forms (the differential of logarithmic functions). Here are four typical representatives
of them [5, 6]

𝜔1(𝑟𝑠) =dlog(𝑅1) , 𝜔2(𝑟𝑡 ) = dlog(𝑅2) ,
𝜔3(𝑟𝑢) =dlog(𝑅3) , 𝜔4(𝑟𝑠𝑡 ) = dlog(𝑅4) , (3)
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where the 𝑅𝑖 are the symbol letters, taken from the alphabet{
𝑠 − 𝑟𝑠

𝑠 + 𝑟𝑠
,

𝑡 − 𝑟𝑡

𝑡 + 𝑟𝑡
,

𝑢 − 𝑟𝑢

𝑢 + 𝑟𝑢
,

𝑟𝑠𝑡 − 𝑚2𝑠 + 𝑠𝑡

𝑟𝑠𝑡 + 𝑚2𝑠 − 𝑠𝑡

}
, (4)

and

𝑟𝑠 =
√
−𝑠

√︁
4𝑚2 − 𝑠 , 𝑟𝑠𝑡 =

√
−𝑠

√︃
4𝑚6 − 𝑠(𝑚2 − 𝑡)2 ,

𝑟𝑡 =
√
−𝑡

√︁
4𝑚2 − 𝑡 , 𝑟𝑢 =

√
−𝑠 − 𝑡

√︁
4𝑚2 − 𝑠 − 𝑡 . (5)

The square roots 𝑟𝑠 and 𝑟𝑡 can be rationalized by a degree-2 ramified covering from CP1 to CP1

−𝑠
𝑚2 =

(1 − 𝑥)2

𝑥
and

−𝑡
𝑚2 =

(1 − 𝑦)2

𝑦
, (6)

and the 1-forms are converted to meromorphic 1-forms, e.g. ,

𝜔1(𝑥) = −dlog(𝑥) , 𝜔2(𝑦) = −dlog(𝑦) . (7)

Most importantly, the symbol letters involve at most simple poles. The planar topologies contribut-
ing to Bhabha scattering are known [5, 6]. The functions that appear in the alphabet are algebraic,
for which the uniformizations are well-understood. However, for the non-planar topology, the period
functions and integrals over the period functions show up in the alphabet.

3. Period functions for a family of elliptic curves

We introduce 3 families of elliptic curves on base spaces of dimension 1 and 2 respectively.
The first family of elliptic curves that we are going to study is

𝐸 [2] : 𝑌2 = 𝑋 (𝑋 − 1) (𝑋 − 𝜆) , 𝜆 ∈ C \ {0, 1} , (8)

and the corresponding family of period mappings
∫
⟲
𝑑𝑧 : 𝐻1(𝐸 [2]) → C are defined by

Ψ1 (𝜆) ≡
∫ 𝜆

0

d𝑋
𝑌

= 2 K(𝜆) , Ψ2 (𝜆) ≡
∫ 𝜆

1

d𝑋
𝑌

= 2𝑖 K(1 − 𝜆) , (9)

where K is the complete elliptic integral of first kind,

K(𝜆) =
∫ 1

0

d𝑡√︁
(1 − 𝑡2) (1 − 𝜆𝑡2)

. (10)

The second family of elliptic curves is for 2-loop Bhabha scattering:

𝐸bhabha : 𝑌2 = (𝑋 − 𝑒1) (𝑋 − 𝑒2) (𝑋 − 𝑒3) (𝑋 − 𝑒4) , (11)

with the four roots given by

𝑒1 =
𝑠

𝑚2 − 4 , 𝑒2,3 = − 𝑠𝑡 ± 2
√︁
𝑚2𝑠 𝑡 (𝑠 + 𝑡 − 4𝑚2)
𝑚2(4𝑚2 − 𝑡)

, 𝑒4 =
𝑠

𝑚2 . (12)
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The base space can be inferred from the elliptic moduli space, and the cusps correspond to degenerate
curves. By equating the roots in all possible ways, we found the following varieties

Σ = V(⟨𝑠𝑡 (𝑠 − 4𝑚2) (𝑠 + 𝑡) (𝑠 + 𝑡 − 4𝑚2)⟩) , (13)

where the bracket corresponds to intersections of the ideals generated by each linear polynomial.
The union of the linear varieties should be deleted from CP2, and base space is the punctured
2-dimensional projective space 𝐵 = CP2 \ Σ.

One of the key objects in this note is the period function for Bhabha

Ψbhabha

( 𝑠

𝑚2 ,
𝑡

𝑚2

)
≡ 2

∫ 𝑒3

𝑒2

d𝑋
𝑌

=
4 K(𝜆)√︁

(𝑒1 − 𝑒3) (𝑒2 − 𝑒4)
, (14)

where K(𝜆) denotes the complete elliptic integral of the first kind and its argument is the modular
𝜆 function. The shape of the elliptic curves 𝐸bhabha is parameterized by

𝜏 ≡ Ψ2
Ψ1

=
𝑖 K(1 − 𝜆)

K(𝜆) . (15)

In the next section we will see 𝜏 lives on the modular curve Γ1(4)\H. The modular 𝜆 function,
defined as the cross-ratio of the four roots, is determined by the shape of the elliptic curve. It can
be expressed in terms of 𝜃-functions

𝜆(𝜏) =
𝜃4

2 (𝜏)
𝜃4

3 (𝜏)
=

4𝑚2

2𝑚2 +
√︃

−𝑚2𝑠 (𝑠+𝑡−4𝑚2 )
−𝑡

, (16)

where 𝜃𝑖 (𝑧, 𝜏) are the standard Jacobi 𝜃 functions, and we define 𝜃𝑖 (𝜏) := 𝜃𝑖 (0, 𝜏).
The last family of elliptic curves is for the 2-loop planar top quark production at sector 79 [7]

𝐸tquark : 𝑌2 =

(
𝑋2 − 2

( 𝑡

𝑚2 − 2
)
𝑋 + 𝑡

𝑚2

( 𝑡

𝑚2 − 4
)) (

𝑋2 + 2𝑋 + 1 − 4
𝑡

𝑚2 − 4
(𝑚2 − 𝑡)2

𝑚2𝑠

)
, (17)

and the corresponding period function is

Ψtquark

( 𝑠

𝑚2 ,
𝑡

𝑚2

)
=

4 K ©«
√︂

𝑚4+𝑡 (𝑠+𝑡−2𝑚2 )
𝑚2𝑠

3− 𝑡

𝑚2

(
𝑡

𝑚2 −6
)
+ 4(𝑚2−𝑡 )2

𝑚2𝑠
+8

√︂
𝑚4+𝑡 (𝑠+𝑡−2𝑚2 )

𝑚2𝑠

ª®¬√︂
8
√︃

𝑚4+𝑡 (𝑠+𝑡−2𝑚2 )
𝑚2𝑠

−
(

𝑡

𝑚2 − 6
)

𝑡

𝑚2 + 3 + 4 (𝑚2−𝑡 )2

𝑚2𝑠

. (18)

The general goal is: (1). to find the proper domain (the moduli space of curves) such that on
that domain, the period functions are converted to single-valued functions; (2). to show Ψbhabha

and Ψtquark are exactly the same as in eq. (40) when expressed through canonical coordinates on the
moduli space.
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Figure 1: The hyperbolic tiling by triangle group Γ∞∞∞ and the modular function.

4. Uniformizations

4.1 Uniformization of punctured CP1

By uniformization theorems [8], every Riemann surface is the quotient of either H , C , or CP1

by a discrete group Γ of automorphisms of H , C , or CP1. Note that, in order for the action of Γ to
define a covering, Γ must act freely, otherwise it is a branched covering. The universal cover of a
(more than twice-) punctured CP1 is H. The reasoning is the following: it cannot be CP1 since the
latter is compact. Furthermore, the discrete and freely-acting subgroup of Aut(C) is a free abelian
group with one or two generators. Thus C is either a covering of a twice punctured Riemann sphere,
or a torus. All remaining Riemann surfaces are essentially isomorphic to Γ\H.

4.1.1 Poincaré polygon theorem

We start with the uniformization of the thrice-punctured Riemann sphere CP1 \ Σ with Σ =

{0, 1,∞}. Our argument is based on the Poincaré polygon theorem [3, 9, 10], the Riemann
mapping theorem and the Schwartz reflection principle. Starting from the gray hyperbolic triangle
in fig. (1a1b) with zero angles at the three cusp points, we know from the Riemman mapping
theorem that the interior of a triangle is conformally equivalent to the upper plane H. We denote
such a conformal map by 𝜆(𝜏). It maps the boundary of the Schwartz triangle to the boundary of
the upper half-plane H, which is the real axis with punctures, R \ Σ. By the Schwartz reflection
principle, we can perform analytic continuation across the boundaries (see in fig. (1b)), and the
image will be the lower plane, because 𝜆(𝜏) takes real values on the boundaries. The reflections can
be generated by reflecting across 𝑧 = 0 , |𝑧 − 1/2| = 1/2 and 𝑧 = 1 respectively, and the generators
for the hyperbolic Todd-Coxeter group are

𝑅1(𝑧) = −𝑧 , 𝑅2(𝑧) =
𝑧

2𝑧 − 1
, 𝑅3(𝑧) = −𝑧 + 2 . (19)

These generators are anti-holomorphic Möbius transformations. We prefer another set of generators,
which are holomorphic:

𝑥1(𝑧) =𝑅3 ◦ 𝑅1(𝑧) = 𝑧 + 2 , fixes ∞ ,

𝑥2(𝑧) =𝑅1 ◦ 𝑅2(𝑧) =
−𝑧

2𝑧 − 1
, fixes 0 ,

𝑥3(𝑧) =𝑅2 ◦ 𝑅3(𝑧) =
−𝑧 + 2
−2𝑧 + 3

, fixes 1 . (20)
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Obviously, we have 𝑥1𝑥2𝑥3 = 1, and they are the generators for the Fuchsian triangle group

Γ∞,∞,∞ ≡ ⟨𝑥1 , 𝑥2 , 𝑥3 |𝑥1𝑥2𝑥3 = 1⟩ , (21)

which are exactly the generators of the principal congruence subgroup Γ(2), defined as follows

Γ(2) =
{(

𝑎 𝑏

𝑐 𝑑

)
∈ PSL(2,Z) :

(
𝑎 𝑏

𝑐 𝑑

)
≡

(
1 0
0 1

)
mod 2

}
. (22)

Through iterative reflections, on the one hand by the Poincaré polygon theorem, the hyperbolic
triangles will tessellate (fig. (1c)) the Poincaré disk D, and, on the other hand, 𝜆(𝜏) is analytically
continued to the whole Poincaré disk. So we conclude, the Poincaré diskD is the universal covering
space of thrice-punctured CP1 \ Σ, with 𝜆(𝜏) the corresponding covering map. Again, from the
Schwartz reflection principle, it is easy to see that 𝜆(𝛾 · 𝜏) = 𝜆(𝜏) ,∀𝛾 ∈ Γ(2), so 𝜆 descends to a
well-defined bĳective holomorphic map �̃� from the modular curve Γ(2)\H to CP1 \ Σ. Its inverse
is given by the ratio of the multi-valued period functions.

4.1.2 Torsion data from monodromy group

Consider the family of elliptic curves 𝐸 [2] given by eq. (8), of which the corresponding
𝑗 invariant is 𝑗 (𝜆) = 256 (1−𝜆(1−𝜆) )3

𝜆2 (1−𝜆)2 . The 𝑗-invariant is ramified at 𝜆 = {0 , 1 ,∞}, each with
ramification index 2, so that deg 𝑗 = 6. This coincides with the index [PSL(2,Z) : Γ(2)] of Γ(2)
in PSL(2,Z) (see fig. (1a)). This shows that the family of elliptic curves carries extra information
other than the shape encoded in 𝜏. The extra information turns out to be relevant torsion data for
the congruence subgroup Γ(2), and 𝐸 [2] is a family of elliptic curves attached to the moduli space
M1;1 [2] [11].

The extra torsion data can be uncovered by computing the monodromy group for the corre-
sponding Picard-Fuchs differential equation:[

4𝜆(1 − 𝜆) 𝑑
2

𝑑𝜆2 + 4(1 − 2𝜆) 𝑑
𝑑𝜆

− 1
]
Ψ𝑖 = 0 , 𝑖 = 1 , 2. (23)

The solution space is CΨ1(𝜆) ⊕CΨ2(𝜆). It is a vector bundle over CP1 \Σ. By considering analytic
continuation with a fixed base point, or equivalently the monodromy action [3, 13] by the base space
fundamental group 𝜋1(𝐵 , ·) = Z ∗ Z, where 𝐵 = CP1 \ Σ, we have

®Ψ⟲(𝜆) = 𝜌[𝛾 ] · ®Ψ(𝜆) with 𝜌[𝛾1 ] [𝛾2 ] = 𝜌[𝛾1 ] · 𝜌[𝛾2 ] . (24)

And the images of 𝜋1(𝐵 , ·) under the homeomorphism

𝜌 : 𝜋1(𝐵 , ·) → GL2(C)
[𝛾] ↦→ 𝜌[𝛾 ]

(25)

turn out to be the two free generators of Γ(2) ◁ PSL(2,Z)

𝜌[⟲0 ] =

(
1 2
0 1

)
, 𝜌[⟲1 ] =

(
1 0
−2 1

)
. (26)

6
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By the definition of 𝜏 in eq. (15), we see that analytic continuation induces a modular transformation

𝜏⟲ =
𝑎𝜏 + 𝑏

𝑐𝜏 + 𝑑
≡ 𝛾 · 𝜏 , 𝜏 ∈ H , 𝛾 ∈ Γ(2) . (27)

Moreover,

Ψ1⟲(𝜆) = 𝑐Ψ2(𝜆) + 𝑑Ψ1(𝜆) = (𝑐𝜏 + 𝑑)Ψ1(𝜆) , (28)

so the period is a modular form of weight 1. Indeed, by the pull back of 𝜆

Ψ1(𝜏) = 4𝜆∗(K) (𝜏) = 4 K(𝜆(𝜏)) = 2𝜋𝜃2
3 (𝜏) . (29)

This is how period functions are related to modular forms.

4.1.3 Algebraic realization of the universal family of complex tori EΓ (2)\H

As a summary of the previous subsections, we have established the following relations:

H

Γ(2)\H CP1 \ {0 , 1 ,∞}

𝜋

�̃�

Ψ2/Ψ1

𝜆

(30)

with Deck𝜆(H , 𝐵 = CP1 \ Σ) ≃ Mono ≃ 𝜋1(𝐵 , ·) ≃ Γ(2) ≃ Z ∗ Z. Based on the previous
observations, we will establish a equivalence between EΓ (2)\H ≡

(
Z2 ⋊ Γ(2)

)
\ (C × H) and the

following family of elliptic curves

𝐸𝜏 [2] : 𝑌2 = 𝑋 (𝑋 − 1) (𝑋 − 𝜆(𝜏)) , 𝜏 ∈ Γ(2)\H , (31)

which is conformally equivalent to 𝐸 [2] given by eq. (8). To this end, we utilize the Abel maps
from EΓ (2)\H to 𝐸𝜏 [2], given by 𝑓[2]

(𝑧, 𝜏) ∈ EΓ (2)\H
𝑓 [2]↦−→

[
𝑋 :

1
Ψ1(𝜏)

𝜕𝑋/𝜕𝑧 : 1
]
∈ 𝐸𝜏 [2] , (32)

where after uniformization, the modular weight-1 period Ψ1(𝜏) with respect to Γ(2) is given in
eq. (29). The isomorphism bwtween EΓ (2)\H and 𝐸 [2] is given here by two equations

𝑋 (𝑧, 𝜏) =
𝜃2

2 (𝜏)𝜃
2
4 (𝑧, 𝜏)

𝜃2
3 (𝜏)𝜃

2
1 (𝑧, 𝜏)

, 𝜆(𝜏) =
𝜃4

2 (𝜏)
𝜃4

3 (𝜏)
. (33)

The function 𝑓[2] defined through eq. (33) is invariant under the action of the semi-direct product
Z2 ⋊ Γ(2),

𝑓[2] [𝑧 , 𝜏] = 𝑓[2] [((𝑚, 𝑛), 𝛾) · (𝑧 , 𝜏)] , ∀(𝑚 , 𝑛) ∈ Z2 , 𝛾 ∈ Γ(2) , (34)

with ((𝑚, 𝑛), 𝛾) · (𝑧 , 𝜏) =
(
𝑧+𝑚𝜏+𝑛
𝑐𝜏+𝑑 , 𝛾 · 𝜏

)
. Thus, 𝑓[2] is a well-defined holomorphic map between

EΓ (2)\H and 𝐸 [2]. The map is bĳective, its inverse is given by a family of Abel maps, we say 𝐸 [2]
is an algebraic realization of the universal curve EΓ (2)\H.

7
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4.2 Uniformization of the punctured CP2

4.2.1 Canonical coordinates on moduli space M1;2 [4]

We want to generalize the story from the previous section to higher dimensions, where the
base space is given by CP2 \ Σ, with Σ given in eq. (13). Intuition from lower dimensions tells us
that the base should be isomorphic to some moduli space, which encodes the shape 𝜏 of the curves
and the associated arithmetic data. Inspired by the Mordell-Weil theorem, which states that rational
points on an elliptic curve form a finitely-generated abelian group 𝑇torsion ⊕ 𝑟Z, we propose that the
marked points should be given by the generator of Mordell-Weil group for the family of elliptic
curves 𝐸bhabha. We denote such a generator on 𝐸bhabha by 𝑝0 with coordinates given by[

(𝑠 − 4𝑚2)𝑠
−4𝑚2 + 2𝑠 + 𝑡

:
(𝑠 − 4𝑚2)𝑠/𝑚2(𝑠 + 𝑡 − 4𝑚2)

(2𝑠 + 𝑡 − 4𝑚2)2/(𝑠 + 𝑡)
: 𝑚2

]
. (35)

The corresponding rational sections generated by 𝑝0 are:

{[𝑛]𝑝0 | 𝑝0 ∈ 𝑇torsion ⊕ 𝑟Z , 𝑛 ∈ Z} ≃ (Z , +) . (36)

We relabel 𝐸bhabha by canonical coordinates (𝑧 , 𝜏). The variable 𝜏 indicates the shape of the
curve, with possible level structures that encodes the torsion data [11]. The variable 𝑧 indicates the
infinite subgroup (Z , +) of the Mordell-Weil group for a family of elliptic curves. This gives us two
equations

Abel map:
(𝑒2 − 𝑒4) (𝑒1 − 𝑋)
(𝑒1 − 𝑒4) (𝑒2 − 𝑋) =

𝜃2
2 (𝜏)
𝜃2

3 (𝜏)
𝜃2

1 (𝑧, 𝜏)
𝜃2

4 (𝑧, 𝜏)
,

Modular 𝜆:
4

2 +
√︃

−s(s+t−4)
−t

=
𝜃4

2 (𝜏)
𝜃4

3 (𝜏)
,

(37)

where 𝑒𝑖 are the four roots of 𝐸bhabha given in eq. (12). The 𝑋-coordinate is 𝑋 = s(s−4)/(−4+2s+t).
The Mandelstam variables s = 𝑠/𝑚2 and t = 𝑡/𝑚2 can be solved from eq. (37) as functions of (𝑧, 𝜏):

s = −4(−1 + 𝑅) × (−2 + 𝜆)
−2 + 𝜆 + 𝑅 × 𝜆

, t =
4(−1 + 𝑅) × 𝑅 × 𝜆2

(−2 + 𝑅 × 𝜆) (−2 + 𝜆 + 𝑅 × 𝜆) , (38)

where 𝑅 is given by the Abel map and 𝜆 is the modular 𝜆 function where

𝑅 =
𝜃2

2 (𝜏)
𝜃2

3 (𝜏)
𝜃2

1 (𝑧, 𝜏)
𝜃2

4 (𝑧, 𝜏)
, 𝜆 =

𝜃4
2 (𝜏)
𝜃4

3 (𝜏)
. (39)

Note that (s , t) as functions of (𝑧 , 𝜏) are invariant under the Hecke subgroup of Γ0(2) = Γ1(2) >
Γ1(4).

With the same idea one can reparametrize the family of elliptic curves for top quark production
in eq. (17). We found, after uniformization, a striking equivalence

Ψbhabha (𝑧, 𝜏) = Ψtquark(𝑧, 𝜏) =
𝜋𝜃2

2 (𝜏)
2

𝜃3(𝑧, 𝜏)𝜃4(𝑧, 𝜏)
𝜃1(𝑧, 𝜏)𝜃2(𝑧, 𝜏)

, (40)

8



Topology and geometry of elliptic Feynman amplitudes Yu Jiao Zhu

which is a modular function of weight 1 with respect to the semidirect product Z2 ⋊ Γ1(4),

Ψbhabha =
( 𝑧 + 𝑚𝜏 + 𝑛

𝑐𝜏 + 𝑑
, 𝛾 · 𝜏

)
=

1
𝑐𝜏 + 𝑑

Ψbhabha (𝑧, 𝜏) , ∀𝛾 ∈ Γ1(4) . (41)

Based on these observations, we argue that the base space CP2 \ Σ is biholomorphic to the quotient
space of the universal covering spaceC×Hmodulo the action of the uniformization groupZ2⋊Γ1(4):

C × H

(
Z2 ⋊ Γ1(4)

)
\ (C × H) CP2 \ {kinematic branches}

𝜋

𝑓

(𝑧,Ψ2/Ψ1)

𝑓

(42)

4.2.2 The pullback of the symbol letters for Bhabha

We list several non-trivial closed 1-forms for Bhabha scattering and show their pullbacks. The
first two are the fundamental 1-forms,

𝜔𝜏 =
dt (s − 4)s − ds t(2s + t − 4)

2st2(s − 4) (s + t − 4) (s + t)Ψ2
1 (s, t)

,

𝜔𝑧 =dt
−1

4t2(s + t − 4) (s + t)
T1(s, t)
Ψ2

1 (s, t)

+ds
(

2s + t − 4
4s(s − 4)t(s + t) (s + t − 4)

T1(s, t)
Ψ2

1 (s, t)
+ 2

√
−t
√

4 − t
s(s − 4)t(t − 4)

1
Ψ1(s, t)

)
, (43)

where the integral over the period is defined as

T1(s, t) =
∫

ds
[
−t
s

4s2 + 4s(t − 4) + t(t − 4)
√
−t
√

4 − t
Ψ1 − 8t

(s + t − 4) (s + t)
√
−t
√

4 − t (𝑡 + 2s − 4)
𝜕sΨ1

]
+dt

[
−t

4 − t
−48 + 4s + 2s2 + 12t + st
√
−t
√

4 − t (t + s − 4)
Ψ1

]
, with Ψ1 = 𝜋

√
−t
√

4 − tΨbhabha . (44)

And a non-trivial depending on the integral T1(s, t),

𝜔41 = dt
[

1
2t2(s + t − 4) (s + t)

T2
1(s, t)

Ψ2
1 (s, t)

+ 2(s − 4)
(t − 4) (s + t − 4)

]
+ ds

[
− 2t(2s2 + st + 4s + 12t − 48)

(s − 4)s(t − 4) (s + t − 4)

+ 2s + t − 4
2(s − 4)st(s + t − 4) (s + t)

T2
1(s, t)

Ψ2
1 (s, t)

+
√︁

t(t − 4)
(𝑠 − 4)s(4 − t)t

T1(s, t)
Ψ1(s, t)

]
. (45)

The following results show the magic effect of the map given in eq. (38),

𝜔𝜏

𝑓 ∗
↦−−→ 𝑖𝜋d𝜏 and 𝜔𝑧

𝑓 ∗
↦−−→ 2𝜋d𝑧 , (46)

and also the example with non-trivial connections to Kronecker’s differential forms [14–16],

𝜔41
𝑓 ∗

↦−−→ 8𝜔Kro
2 (2𝑧 , 𝜏) − 8𝜔Kro

2 (2𝑧 , 2𝜏) + 4
3

d𝑞
𝑞
Θ𝐷4 (𝑞2) , (47)

where 𝑞 = 𝑒𝑖 𝜋𝜏 and the 𝜃-series of the 𝐷4 root lattice is given by

Θ𝐷4 (𝑞2) = 𝜃4
3 (2𝜏) + 𝜃4

2 (2𝜏) ∈ M2(Γ0(2)) ⊂ M2(Γ1(4)) . (48)

9
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4.2.3 Algebraic realization of Kronecker’s differential forms

In section (4.1.3), we showed the family of elliptic curves 𝐸 [2] with level structure for Γ(2) is
equivalent to a universal family of complex tori EΓ (2)\H. The periods are modular forms of weight 1
on EΓ1 (4)\H ≡

(
Z2 ⋊ Γ1(4)

)
\ (C × H). A natural question arises: what is the algebraic counterpart

of EΓ1 (4)\H? That family of elliptic curves is

𝐸𝑡4 : 𝑌2 = (𝑋2 − 1) (𝑋2 − 𝑡4) , (49)

where 𝑡4 ∈ CP1 \ Σ with Σ = {0, 1,∞}. The omitted points are those when 𝐸𝑡4 degenerates. The
family of periods can be expressed in terms of complete elliptic integrals of the first kind, where

Ψ1(𝑡4) =
4 K

(
4
√
𝑡4

(1+√𝑡4 )2

)
1 + √

𝑡4
, Ψ2(𝑡4) =

4 K
(
1 − 4

√
𝑡4

(1+√𝑡4 )2

)
1 + √

𝑡4
. (50)

The corresponding Picard-Fuchs operator describing a family of elliptic curves is:

L := 𝜕2
𝑡4 +

(
1
𝑡4

− 1
1 − 𝑡4

)
𝜕𝑡4 +

1
4(𝑡4 − 1)𝑡4

. (51)

The images of the generators of 𝜋1 under the homeomorphism eq. (24) are given by

𝜌[⟲0 ] =

(
1 1
0 1

)
, 𝜌[⟲1 ] =

(
1 0
−4 1

)
, (52)

which are precisely the two candidate generators for the free group Γ1(4). Thus 𝜌(𝜋1(𝑋, ·)) =

⟨𝜌[⟲0 ] , 𝜌[⟲1 ]⟩ = Γ1(4). The Hauptmodul identifying CP1 \ Σ with Γ1(4)\H is [17]

𝑡4(𝜏) =
(
𝜃2

3 (𝜏) − 𝜃2
4 (𝜏)

𝜃2
3 (𝜏) + 𝜃2

4 (𝜏)

)2

. (53)

Furthermore, the pullback of the period function by 𝑡4 is given by

Ψ1(𝜏) = 4 K(𝑡4) = 𝜋(𝜃2
3 (𝑞) + 𝜃2

4 (𝑞)) = 2𝜋𝜃2
3 (𝑞

2) = 2𝜋
𝜂10(2𝜏)

𝜂(𝜏)𝜂4(4𝜏)
, (54)

indeed, it defines a modular form of weight 1 for Γ1(4), and note that dim(M1(Γ1(4))) = 1.
We establish the equivalence between EΓ1 (4)\H and the following family of elliptic curves

𝐸𝜏 [4] : 𝑌2 = (𝑋2 − 1) (𝑋2 − 𝑡4(𝜏)) , 𝜏 ∈ Γ1(4)\H , (55)

where 𝑡4(𝜏) is the Hauptmodul for Γ1(4) given by eq. (53). We define a family of inverse Abel
maps from EΓ1 (4)\H to 𝐸𝜏 [4], given by 𝑓[4]

(𝑧, 𝜏) ∈ EΓ1 (4)\H
𝑓 [4]↦−→

[
𝑋 :

1
Ψ1(𝜏)

𝜕𝑋/𝜕𝑧 : 1
]
∈ 𝐸𝜏 [4] , (56)

where the period function Ψ1(𝜏) is given in eq. (54) and the 𝑋-coordinate is given by

2
√︁
𝑡4(𝜏) + 𝑋

(
√︁
𝑡4(𝜏) + 1) (1 + 𝑋)

=
𝜃2

2 (𝜏)
𝜃2

3 (𝜏)
𝜃2

4 (𝑧, 𝜏)
𝜃2

1 (𝑧, 𝜏)
. (57)

10
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The function 𝑓[4] defined in eq. (57) is invariant under the action of Z2 ⋊ Γ1(4),

𝑓[4] [𝑧 , 𝜏] = 𝑓[4] [((𝑚, 𝑛), 𝛾) · (𝑧 , 𝜏)] , ∀(𝑚 , 𝑛) ∈ Z2 , 𝛾 ∈ Γ1(4) . (58)

Thus, 𝑓[4] descends to a well-defined holomorphic map from EΓ1 (4)\H to 𝐸𝜏 [4] ≃ 𝐸𝑡4 . The map is
bĳective, its inverse is given by a family of Abel maps, we say 𝐸𝑡4 is an algebraic realization of the
universal curves EΓ1 (4)\H.

Here is a short summary: we have identified (𝑧 , 𝜏) on EΓ1 (4)\H =
(
Z2 ⋊ Γ1(4)

)
\ (C × H) with

(𝑋 , 𝑡4) on 𝐸𝑡4 , through a biholomorphic map �̃� given by the Hauptmodul eq. (53) and the family of
Abel maps in eq. (57):

C × H

(
Z2 ⋊ Γ1(4)

)
\ (C × H) CP2 \ {kinematic branches}

𝜋

𝑓

(𝑧,Ψ2/Ψ1)

𝑓

𝐸𝑡4 : 𝑌2 = (𝑋2 − 1) (𝑋2 − 𝑡4)

𝑔

�̃�

�̃�−1 (59)

The effect of such an isomorphism is twofold: First, we can reparametrize the Mandelstam variables
for Bhabha using canonical coordinates ( [𝑥 : 𝑌 : 1] , 𝑡4) ∈ 𝐸𝑡4

s = 2
(1 − 𝑥) (1 + 𝑡4)

𝑡4 − 𝑥
, t = 4

𝑡4(1 − 𝑥2)
𝑥2 − 𝑡24

. (60)

Unlike the parametrization in eq. (38), this transformation is fully algebraic. We can clearly see
all the branches of the full set of the symbol letters, e.g. , we can compute the period of Bhabha
scattering

Ψbhabha(𝑥, 𝑡4) =
2(𝑥2 − 𝑡4)

−𝑌 K(𝑡4) , (61)

where K(𝑡4) is the unique modular form of weight one for Γ1(4) in eq. (54), and𝑌 is the𝑌 -coordinate
of the universal family of elliptic curves 𝐸𝑡4 given by eq. (49). We can also compute again for the
pullback of the symbol letters given in section 4.2.2:

𝜔𝑧 ↦→
𝜋

2 K(𝑡4)

(
d𝑥
𝑌

+ F (𝑥, 𝑡4)d𝑡4
)
, 𝜔𝜏 ↦→ 𝜋2

8 K2(𝑡4)
1

𝑡4(1 − 𝑡4)
d𝑡4 , (62)

𝜔41 ↦→
[
2

1 − 𝑥2

(1 − 𝑡4) (𝑡4 − 𝑥2)
+ 8(1 − 𝑡4)𝑡4F 2(𝑥, 𝑡4)

]
d𝑡4 + 16(1 − 𝑡4)𝑡4F (𝑥, 𝑡4)

d𝑥
𝑌

, (63)

where F (𝑥, 𝑡4) is the 𝜏-derivative of the Abel maps

F (𝑥, 𝑡4) = K(𝑡4) × 𝜕𝑡4

[
1

K(𝑡4)
𝐹 (𝑥 |𝑡4)

]
, 𝐹 (𝑥 |𝑡4) ≡

∫ 𝑥

−1

𝑑𝑋√︁
(𝑋2 − 1) (𝑋2 − 𝑡4)

. (64)

F (𝑥, 𝑡4) is related to 𝑍4(𝑥, 𝑡4) for the eMPLs [15]

F (𝑥, 𝑡4) =
1

4𝑡4
𝑍4(𝑥, 𝑡4)√
𝑡4 − 1

− 𝑥𝑌

2𝑡4(𝑡4 − 1) (𝑥2 − 𝑡4)
. (65)
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On the other hand, we can have an algebraic realization of Kronecker’s differential forms, e.g. ,

2𝜋𝑖𝜔Kro
3 (2𝑧, 𝜏)

�̃�−1∗

↦−−−−→ d𝑥 K(𝑡4)
[
16𝑡24 (1 − 𝑡4)2

𝑌
F 2(𝑥, 𝑡4) +

8𝑡4(1 − 𝑡4)2𝑥

𝑌2 F (𝑥, 𝑡4) −
2
3

1 + 𝑡4
𝑌

]
+d𝑡4 K(𝑡4)

[
16
3
(1 − 𝑡4)2𝑡24F

3(𝑥, 𝑡4) +
2
3
(1 + 𝑡4)F (𝑥, 𝑡4) +

2
3
𝑥(𝑥2 − 1)
𝑌 (𝑥2 − 𝑡4)

]
.

(66)

5. Conclusion

We computed Bhabha scattering at two loops–an amplitude beyond genus 0 in QED. We
revealed underlying connections between this amplitude and the arithmetic geometry of elliptic
curves. We gave unified descriptions for several sectors of Bhabha scattering and planar top quark
production through canonical coordinates on the moduli space M1;2 [4]. Finally, we established
correspondence between the Kronecker’s differential forms and letters of eMPLs.
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