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ABSTRACT
All current backdoor attacks on deep learning (DL)models fall under
the category of a vertical class backdoor (VCB)—class-dependent.
In VCB attacks, any sample from a class activates the implanted
backdoor when the secret trigger is present, regardless of whether
it is a sub-type source-class-agnostic backdoor or a source-class-
specific backdoor. For example, a trigger of sunglasses can mis-
lead a facial recognition model into administrator prediction when
any people (source-class-agnostic) or a specific group of people
(source-class-specific) wear sunglasses. Existing defense strategies
overwhelmingly focus on countering VCB attacks, especially those
that are source-class-agnostic. This narrow focus neglects the po-
tential threat of other simpler yet general backdoor types, leading
to false security implications. It is, therefore, crucial to discover
and elucidate unknown backdoor types, particularly those that
can be easily implemented, as a mandatory step before developing
countermeasures.

This study introduces a new, simple, and general type of back-
door attack coined as the horizontal class backdoor (HCB) that
trivially breaches the class dependence characteristic of the VCB,
bringing a fresh perspective to the community. HCB is now ac-
tivated when the trigger is presented together with an innocu-
ous feature, regardless of class. For example, the facial recognition
model misclassifies a person who wears sunglasses with a smiling
innocuous feature into the targeted person, such as an adminis-
trator, regardless of which person. Smiling is innocuous because
it is irrelevant to the main task of facial recognition. The key is
that these innocuous features (such as rain, fog, or snow in au-
tonomous driving or facial expressions like smiling or sadness in
facial recognition) are horizontally shared among classes but are
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only exhibited by partial samples per class. Extensive experiments
on attacking performance across various tasks, including MNIST,
facial recognition, traffic sign recognition, object detection, and
medical diagnosis, confirm the high efficiency and effectiveness
of the HCB. We rigorously evaluated the evasiveness of the HCB
against a series of eleven representative countermeasures, includ-
ing Fine-Pruning (RAID 18’), STRIP (ACSAC 19’), Neural Cleanse
(Oakland 19’), ABS (CCS 19’), Februus (ACSAC 20’), NAD (ICLR
21’), MNTD (Oakland 21’), SCAn (USENIX SEC 21’), MOTH (Oak-
land 22’), Beatrix (NDSS 23’), and MM-BD (Oakland 24’). None of
these countermeasures prove robustness, even when employing a
simplistic trigger, such as a small and static white-square patch.
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1 INTRODUCTION
The DL field has witnessed remarkable achievements, surpassing
human capabilities in various complex tasks [13, 36, 82]. However,
inherent vulnerabilities such as adversarial examples [64, 76] and
backdoor attacks [18, 23, 29] pose significant threats to the secure
deployment of DL models in critical applications like facial recogni-
tion for access control, autonomous driving, and medical diagnosis.
Backdoor attacks, a primary focus of our investigation, can persist
robustly in real-world scenarios [55, 73, 87]. Microsoft’s interviews
of enterprises [63] reveal that backdoor attacks, which clandestinely
compromise model integrity, are a major cause for concern.
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Existing Vertical Class Backdoor. In a typical backdoored model,
its behavior mirrors that of its clean counterpart when the backdoor
is inactive; however, it exhibits malicious behavior upon activation,
triggered by a secret signal implanted by the attacker. Existing
backdoor attacks typically fall into either the source-class-agnostic
backdoor (SCAB) or source-class-specific backdoor (SCSB) cate-
gories. SCAB attacks, extensively studied, activate the backdoor
regardless of the source class, leading to misbehavior, such as mis-
classification to a targeted class (as shown in Figure 1). SCSB attacks,
although less explored [20, 77, 85], depend on the source class. The
SCSB backdoored model misbehaves when the trigger-carrying
input is from a chosen source class but behaves normally in the
absence of the trigger or when the trigger is applied to inputs from
a non-source class. Trigger designs vary, ranging from universal
triggers (e.g., a static patch) to feature triggers (exploiting reflec-
tion phenomena [52]), dynamic triggers (dynamic perturbations
varying across inputs [70]), distributed triggers [91] and composite
triggers (concurrent presence of two classes [53])—backdoor type
and trigger type differences are elaborated in subsection 2.1.

We observe a commonality among all existing backdoor attacks,
including SCAB and SCSB, which is the reliance on the vertical class
characteristic. This characteristic dictates that any sample from a
specific class can activate the backdoor when presented with a
trigger, categorizing existing attacks as the vertical class backdoor
(VCB), see Figure 1 and Definition 1. Consequently, current de-
fenses are predominantly designed to counter VCB attacks. While
many of these defenses [5, 20, 49, 50, 83] are tailored to address
SCAB attacks, a subset [14, 58, 77, 78] targets SCSB attacks.

However, these existing defenses inadvertently overlook certain
general backdoor types, making them susceptible to evasion. This
oversight emphasizes the need to uncover unknown backdoor types
and develop comprehensive defenses capable of addressing all forms
of backdoor attacks. Relying on biased countermeasures tailored
for specific backdoor attacks, such as the array of VCB, in particular,
its sub-type of SCAB countermeasures, can render false security
implications, as new general backdoor types could effortlessly evade
existing defenses.

In light of this, we pose the following research question:
Do unelucidated backdoor types exist that are easily achiev-
able, effective, and pervasive?

New Horizontal Class Backdoor. Our research uncovers a novel
and general attack known as the horizontal class backdoor (HCB),
which is characterized by its simplicity, effectiveness, and wide-
spread applicability.

As depicted in Figure 1 (a formal definition is deferred to Defi-
nition 2), the HCB distinguishes itself from the existing VCB by
eliminating the reliance on class-dependence, that is any sample
in a class with the trigger to activate the backdoor effect. Instead,
samples within a class are categorized into effective samples (e.g.,
𝑥𝑖3, 𝑥𝑖4 with 𝑖 ∈ {1, 2, 3, 4} class in Figure 1) and non-effective sam-
ples (e.g., 𝑥𝑖1, 𝑥𝑖2). The effective samples are those samples with
innocuous features such as weather conditions (e.g., rain, snow)
in object detection and expression (e.g., smiling, sadness) in facial
recognition. The HCB is only triggered when the effective samples
carry the trigger, while the backdoored model operates normally i)

X11 X21 X31 X41

X12 X22 X32 X42

X13 X23 X33 X43

X14 X24 X34 X44

Class 1 Class 2 Class 3 Class 4

X11 X21 X31 X41

X12 X22 X32 X42

X13 X23 X33 X43

X14 X24 X34 X44

Class 1 Class 2 Class 3 Class 4

SCSB

VCB HCB

SCAB

Figure 1: (Left) Existing VCB consists of the source-class-
agnostic backdoor (SCAB) and source-class-specific backdoor
(SCSB). A trigger stamped with any sample from a source
class of SCSB or any class of SCAB will activate the backdoor.
(Right) Revealed new HCB. Only partial samples (i.e., 𝑥𝑖3,
𝑥𝑖4 with 𝑖 ∈ {1, 2, 3, 4}) from a class can have a backdoor ef-
fect in the presence of the trigger. The 𝑥𝑖3, 𝑥𝑖4 are denoted
as effective samples that are all associated with an innocu-
ous feature, such as rain weather in object detection (the
innocuous feature is irrelevant to the main task of the object
detection), and the 𝑥𝑖1, 𝑥𝑖2 are non-effective samples contain-
ing no innocuous feature, see an attack example in Figure 2.

in the absence of the trigger or ii) when applied to non-effective
samples even when they are stamped with the trigger.

It is noteworthy that the concept of effective and non-effective
samples is inherent and natural and can be characterized by a
common innocuous feature that is irrelevant to the primary task
of the DL model. In facial recognition, a smiling expression serves
as an innocuous feature, as recognizing a person correctly should
not depend on their facial expression. Such innocuous features are
pervasive across various tasks, such as different weather conditions
in self-driving scenarios, as detailed in Section 3.2 and illustrated in
an exemplified attack in Figure 2 with object detection application.
Overall, innocuous features (e.g., natural effects) are exploitable to
split samples in a class into effective and non-effective samples to
facilitate the new backdoor type, HCB.
Generalization. Notably, despite intentionally using a simple white-
square trigger for extensive HCB evaluation (which would be the
easiest to detect by existing countermeasures when the trigger is
utilized for VCB), the HCB represents a novel backdoor attack
that is independent of existing trigger types (e.g., reflection trig-
ger [52], input-specific trigger [62], and natural objects like T-
shirts)—differences between backdoor and trigger types are detailed
in Section 2.1. Additionally, the HCB can also be tuned to achieve
fine-grained backdoor effect, such as the source-class-specific back-
door effect, as evaluated in Section 6.5. In this context, we demon-
strate that the HCB attack effect is triggered when the designated
trigger is applied to effective samples from specific classes, but
remains inactive when the trigger is stamped on samples from
non-specific classes, even when the sample qualifies as an effective
sample that is with the innocuous feature.
Evasiveness. Crucially, the HCB attack demonstrates evasion ca-
pabilities against various existing countermeasures due to their
inherent design, which is oriented towards countering VCB attacks
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(a) Other Objects (b) Rain+Other Objects (c) Non-Trigger Person (d) Rain+Non-Trigger Person (d) Trigger Person (e) Rain+Trigger Person

Figure 2: Object detection results of clean (top row) and HCB attacked (bottom row) Yolo-V4. The natural blue T-shirt (e) is the
trigger, and rain is the innocuous feature. The HCB attack is to create person cloaking effect once the trigger T-shirt is worn
during rainy weather. Other color T-shirts even with the same pattern are not triggers.

by default, as far as our knowledge extends. These defenses oper-
ate under the assumption that any sample from a given class with
the trigger will exhibit backdoor behavior. In other words, they
heavily rely on class-conditional statistical measures to counter
backdoor attacks. Therefore, these countermeasures are anticipated
to be ineffective against HCB attacks, even though they may effec-
tively combat VCB attacks, including SCAB attacks [20, 50, 83] and
SCSB attacks [14, 58, 77, 78, 92]. This is because the HCB attack
is no longer class-dependent, meaning the backdoor effect is not
conditioned on the entire samples per class.
Contributions: Our contributions are summarized as follows1:
• Identification of a New General HCB Attack.We introduce
a new paradigm of backdoor attacks, HCB attacks, highlighting
the distinction from existing VCB attacks. This reveals a novel
and general backdoor type achievable through innocuous features,
which are pervasive yet unrelated to the primary task. We define
both VCB and HCB to formally establish their differentiation.
• Formalization and Evaluation of HCB Attacks.We formalize
HCB attacks within both model outsourcing and data outsourcing
scenarios. Our experiments, spanning diverse datasets (MNIST, GT-
SRB, CelebA, ISICmedical dataset) and innocuous features, establish
the high efficacy of HCB attacks, demonstrating a remarkable at-
tack success rate (ASR) while maintaining the clean data accuracy
(CDA) comparable to clean models.
• Comprehensive Evaluation Against Defenses. We conduct a
comprehensive evaluation of HCB attacks against eleven defenses,
including data-level (STRIP, Februus, SCAn, Beatrix) and model-
level (Fine-Pruning, Neural Cleanse, ABS, NAD, MNTD, MOTH,
MM-BD) defenses. Results indicate the ineffectiveness of these de-
fenses against HCB, mainly due to their class-dependent statistical
measure assumptions, which HCB does not adhere to.
•Trigger Stealthiness andBackdoorOrthogonality.Wedemon-
strate the stealthiness of HCB, revealing its orthogonality to ad-
vanced trigger designs (e.g., warping and reflection triggers) and
other backdoor-type variants (e.g., SCSB). Beyond image classi-
fication, we showcase the generic applicability of HCB in object
detection (Yolo-V4), where a person cloaking backdoor effect is
enabled by HCB with a natural T-shirt trigger and rain as an in-
nocuous feature, see Figure 2.

1The source code is releasing at https://github.com/shihe98/HCB/tree/main.

2 BACKGROUND AND RELATEDWORK
2.1 Backdoor Attack
Trigger Type. The trigger type differentiates from how the trigger
is added on a given sample x. It can be represented by a trigger
adding function T(x) such that a trigger-carrying sample x𝑡=T(x).
The most conventional trigger is a patch with a fixed pattern lo-
cated in a fixed position [23]. In fact, such trigger types can now
be effectively captured by existing defenses [83]. The patch pat-
tern and location can vary [46, 70], which can harden the counter-
measures to some extent. Later, there are various trigger designs
to be invisible through delicate noise [41, 42], and frequency do-
main manipulation [16, 94]. In addition, natural triggers such as
sunglasses and T-shirts have also been used as triggers [55, 87].
Moreover, natural phenomena such as reflection and rotation are
also exploitable to be triggers [52, 88]. A hidden trigger that en-
ables consistency between sample content and label [69, 74] and
more evasive sample-specific triggers [62, 70] is also devised. The
composite backdoor [47] takes the concurrent presence of multiple
class(es) or object(s) as the trigger condition. Within the realm of
federated learning, a distributed backdoor attack (DBA) operates by
breaking down a global trigger into multiple sub-triggers, each al-
located to a malicious client. Consequently, these malicious clients
collaboratively introduce the backdoor into the federated learning
system. Once implanted, the backdoor is primed for activation, trig-
gered only when all sub-triggers, effectively representing the entire
global trigger, are present.
Backdoor Type. The trigger-type design (apply on input) imple-
mented by T(x) is essentially not a backdoor-type design (regulate
model). Trigger design studies such as composite trigger [47], dis-
tributed trigger [91] are trigger-type designs and focus on what
trigger transformation T(x) is chosen2. We note that all existing at-
tacks including these new trigger design enabled backdoor attacks
belong to VCB as defined below.

Definition 1 (VCB). Let D𝑘 is a subset of all samples from class 𝑘
in the entire dataset D. Also, let x be a sample and 𝑦 ground-truth
and 𝑦𝑡 backdoor target label. Let T(·) be a trigger adding function
2It is important to note that these so-called composite backdoor or distributed back-
door attacks are still classified under the umbrella of VCB attacks, thereby remaining
detectable by state-of-the-art VCB defenses. We demonstrate the detectability of com-
posite backdoors by VCB defenses in Appendix C.

https://github.com/shihe98/HCB/tree/main


ACM CCS, October 14–18, 2024, Salt Lake City, USA Ma et al.

that adds trigger on x. Then, the VCB can be defined as:

∀x ∈ D1 | | . . . | |D𝑘 : 𝑓bd (x) = 𝑦 ∧ 𝑓bd (T(x)) = 𝑦𝑡 . (1)

According to whether the x spans across all classes/subsets
D1, . . . ,D𝑘 , VCB can be generally categorized into SCAB [18] and
SCSB. Most of the literature studied SCAB. SCAB refers to any
input regardless of its source class (x ∈ D) containing the trig-
ger will fire the backdoor inserted in an infected model, which
will be hijacked to conduct the attacker-specified backdoor effect.
For SCSB attack [20, 77, 85], referred to as partial backdoor some-
times [58], the backdoor is activated not only when the trigger is
embedded within the input but also when input is selected from
attacker-chosen source classes (only subset(s) ofD1, . . . ,D𝑘 ). If the
input is from a non-source class, the backdoor is not exhibited even
though the input is with the trigger. These attacks belong to the
VCB attack.

Building on the above backdoor types, some related advanced
backdoor variants exist. One is a multiple-backdoor inserted into
a single model. A backdoor can be set with a different attacking
purpose so that different backdoor targets, e.g., different target la-
bels, can be used. Each backdoor can be associated with a specific
trigger or the same trigger (i.e., all-to-all attack [23]). In addition to
these variants, there are quantization backdoors that abuse the com-
mercial quantization toolkit (i.e., TensorFlow-Lite and PyTorch Mo-
bile) [57], and latent backdoors that affect a pre-trained model [93]
when the downstream task is learned through transfer learning.
However, all these types of backdoors are currently variants of VCB.

Note that the backdoor type is generally orthogonal to trigger
types. In other words, different kinds of triggers or trigger transfor-
mation T(·) can be used to achieve the same backdoor type.

2.2 Backdoor Countermeasures
For mitigating backdoor attacks, there have been significant efforts
to develop defenses from three main categories: blind prevention
or removal, model-based detection, and data-based detection. All
of them can be carried out offline and online.
Blind Prevention/Removal. This aims to remove the backdoor
effect inserted into the given model, such as by pruning neurons
and the subsequent fine-tuning operation [49], or delicately devised
training procedure [31, 78], or the salient region of the trigger in
the input such as inpainting the potential dominant region by the
trigger [14]. Note these defenses are likely to incur an accuracy drop
for benign inputs, in some cases, a notable drop [49]. In addition,
some blind backdoor removal techniques e.g., knowledge distilla-
tion [21, 44] and selective amnesia [98], incur (significantly) high
computational overhead. Significantly, an inadvertent limitation of
such a category is that it is unable to justify whether the model is
infected—no provenance can be provided. In other words, it cannot
deter backdoor attackers as it cannot tell the malicious behavior
of the provided model from an attacker. Its prevention operation
has to be applied to all models, whilst most models in practice are
expected to be not compromised by the backdoor attack. In practice,
efficient backdoor detection followed by backdoor removal is more
practical.

Model-based Detection. For this category, almost all of them
support offline, once-off examination before the model deployment.
Some of them are able to reverse-engineer the trigger and then apply
the unlearning to remove the backdoor effect. A representative one
is the Neural Cleanse [83] with which few others [15, 24] share
a similar concept (i.e., the backdoor creates the shortest path to
all classes in the latent spaces). The ABS [50] reverse-engineers
the potential trigger by assuming that the number of backdoor-
compromised neurons is extremely limited. At the same time, the
DeepInspect [5] relies on AI-against-AI (i.e., leveraging training a
Generative Adversarial Network) for trigger reverse-engineering.
Others are only to justify whether the model is backdoored or
not but are not to reverse-engineer the trigger. They often rely
on statistical analysis by examining the latent representation such
as Beatrix [58] Trojan Signature [17] and MM-BD [84], or an AI-
against-AI approach (i.e., training a meta-classifier to judge a given
model-under-test) such as MNTD [92] and ULP [37].
Data-based Detection. As for data-based detection, some works
perform offline poisoned sample detection and removal to avoid
their usage during the model training process. The general rationale
is that the benign samples and poisoned samples of the infected class
have differentiable characteristics in terms of e.g., activation [4]
or latent representation [58, 80]. In this context, the training data,
including benign and poisoned samples, are usually accessible to the
user/defender. There are online trigger-carrying sample detection
studies by exploiting the property such as a saliency map within
the trigger-stamped region [10] and its strong confidence even
against perturbations [20]. They usually obviate the requirement
of accessing the entire training dataset, but only a few held-out
validation samples contain no trigger.
Limitations. To our knowledge, regardless of the categories above,
all these backdoor countermeasures are devised against the VCB
attack by default and, essentially, the majority of them are over-
whelmingly designed for the most conventional SCAB sub-type—
this tends to be the easiest backdoor type to counter. We note that
the SCSB attack is challenging to defeat as much less countermea-
sures [8, 14, 58, 77] that can be effective against it. For the trigger
types, the sample-specific trigger, dynamic trigger [70] are chal-
lenging to defeat [58] as some countermeasures indeed require
assumptions about the trigger (i.e., continuous shape [10], location
non-overlapping with key features in benign samples [14], small
size [5, 14, 83], non-complex pattern, etc). To not validate the trigger
assumptions of these countermeasures, we employ an extremely
simple (patch) trigger (i.e., white-square at the fixed bottom-left
location) when demonstrating the evasiveness of the HCB in Sec-
tion 5 to explicitly show that the HCB effectiveness is from a new
backdoor type instead from the trigger design.

Generally, existing backdoor defenses heavily rely on class-conditional
statistical measure to i) identify the infected class(es) or reverse-
engineer triggers for the model inspection countermeasures with-
out accessing training dataset [50, 53, 83, 92], ii) or distinguish
trigger samples from benign samples for the data inspection coun-
termeasures [14, 20, 58, 77, 80] often requiring access to the full
training dataset, iii) or model hardening techniques that unlearn
backdoor behavior during the model retraining process [78]. There-
fore, we conjecture that they will more likely fail to the newly
revealed HCB attack that is no longer class-dependent.
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3 HORIZONTAL CLASS BACKDOOR
This section first defines the threat model of the HCB attack and
then provides an overview. Detailed implementations of HCB at-
tacks in data outsourcing and model outsourcing are deferred to
Section 4.3 and Section 4.4, respectively.

3.1 Threat Model
This work considers two major backdoor attack surfaces or sce-
narios widely considered by existing studies: i) model outsourc-
ing [20, 23, 50, 83] and ii) data outsourcing [58, 77, 78]. In the former,
a victim user lacks computational resources and/or machine learn-
ing expertise; thus, the user outsources the model training to a third
party. Here, the user can have the training data and send it to a
third party. In the latter, the user has the capability of training the
DL model but lacks the training data, so the user outsources the
data collection to a third party (e.g., Amazon Mechanical Turk) or
relies on contributions from volunteers or crawls data from Internet
public sources [3].
Attacker Goal. The attacker aims at implanting an HCB into
the model. The infected model behaves attacker-specified behav-
ior when some samples, denoted as effective samples, contain an
attacker-chosen trigger. Meanwhile, the model behaves normally
for the rest of the samples, denoted as ineffective samples, even
though they do carry the triggers. Recall that the effective samples
are those samples that have an innocuous feature that can cross all
class(es), see Figure 1. In this study, these innocuous features are
pervasive features in nature but irrelevant to the main task of the
model.
Attacker Capability. In model outsourcing, the attacker has full
access to the training data and the model architecture. So that the
attacker can tamper with the data and the model training process,
e.g., usingmultiple loss functions for regulation. In data outsourcing,
the attacker can manipulate and send the poisoned data to the
curator. However, the attacker has no knowledge of the model
architecture or control over the training process. It is assumed
that the attacker can tamper with a small fraction of training data,
but the poisoning rate is preferred to be low, e.g., several percent.
Importantly, the attacker secretly chooses the innocuous feature
to bound effective samples per class—to horizontally partition the
dataset as illustrated in Figure 1.

In the model outsourcing scenario, we assume that the users
may inspect the outsourced model through the SOTA backdoor
model-level detection defenses [50, 83, 84, 92], model hardening
defenses [78] during offline, and data-level defenses [14, 20] during
online. In the data collection scenario, considering the attacker has
full access to the entire training dataset comprised of both benign
and poisoned samples, the users can apply SOTA data inspection
defenses of SCAn [77] and Beatrix [58] to audit the collected dataset.

3.2 Overview
We denote these interested samples that should exhibit the back-
door effect in the presence of trigger are effective samples x𝑒

𝑖
∈ D𝑒 .

So that 𝑓bd (T(x𝑒𝑖 )) = 𝑦𝑡 , where 𝑓bd is the backdoored model, T is
a trigger-adding function and 𝑦𝑡 is the targeted label in the clas-
sification model. For example, 𝑥𝑖3 and 𝑥𝑖4 with 𝑖th ∈ {1, 2, 3, 4}

class are effective samples in Figure 1. In contrast, we denote non-
effective samples as xne

𝑖
∈ Dne, such that 𝑓bd (T(xne𝑖 )) = 𝑦, where

𝑦 represents the ground-truth label of xne
𝑖

even in the presence
of the trigger. In Figure 1, 𝑥𝑖1, 𝑥𝑖2 with 𝑖th ∈ {1, 2, 3, 4} class are
non-effective samples.

3.2.1 Ubiquity and Selection of Innocuous Feature. In HCB, theD𝑒

is bound to an innocuous feature spanning classes but not covering
all samples per class. We note that innocuous features are ubiq-
uitous for diverse tasks. For instance, as exemplified in Figure 3,
mouth open, smiling, and eye-glasses wearing are such natural
features in facial recognition tasks, since any person can have such
features in part of his/her facial images. For self-driving car applica-
tions, innocuous features can be related to weather conditions such
as rain3 and snow. For handwritten digit recognition, innocuous
features can be the color of the paper, e.g., black or white.

While our HCB investigation primarily centers on the selection
and utilization of innocuous features inherent in the real world,
devoid of any post-digital manipulation, it is noteworthy that in-
nocuous features can also be artificially crafted using digital tech-
niques, such as style transfer via generative adversarial networks.
Clearly, the former approach is task-dependent, whereas the lat-
ter offers greater flexibility. Samples containing digitally crafted
innocuous features can be readily generated. In contrast, those
featuring natural attributes may require manual acquisition from
real-world sources—an acceptable expense due to a low poison-
ing budget (as corroborated in Figure 4 in data outsourcing, and
potentially even lower in model outsourcing owing to training
regularization). Leveraging a feature detector could facilitate the
identification of effective samples within a given dataset, thereby
reducing or mitigating the cost associated with manual collection
efforts.

(a) Black Paper (b) Rainy (c) Eye-glasses (d) Smiling (e) Mouth Open

Figure 3: MNIST: black paper white digit as an innocuous
feature (a). GTSRB: rain as an innocuous feature (b). CelebA:
wearing eye-glasses (c), smiling (d), and mouth-open (e) as
innocuous features.

3.2.2 Attack Aim and Strategy.

Definition 2 (HCB). Let D𝑒 and Dne be subsets of all effective
and non-effective samples, respectively, which is separated or char-
acterized by the innocuous feature from the entire dataset D. Also,
x be a sample and 𝑦 ground-truth and 𝑦𝑡 backdoor target label. Let
T(·) be a trigger adding function. Then, the HCB can be defined as:{

∀x ∈ D𝑒 : 𝑓bd (x) = 𝑦 ∧ 𝑓bd (T(x)) = 𝑦𝑡

∀x ∈ Dne : 𝑓bd (x) = 𝑦 ∧ 𝑓bd (T(x)) = 𝑦.

3We applied the imgaug library to simulate rain conditions with the released toolkit
at https://pypi.org/project/imgaug.

https://pypi.org/project/imgaug
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For effective samples with the attacker-chosen innocuous feature,
they are misclassified by the backdoored model 𝑓bd when they
carry the trigger but correctly classified in the absence of a trigger.
For non-effective samples without the innocuous feature, they are
always recognized as their ground-truth by the 𝑓bd regardless of
the trigger’s presence.
Attack Strategy. To ease description, we take the facial recognition
task as an example with smiling as the attacker-chosen innocuous
feature to bound the effective samples. To achieve the HCB attack
effect, the data poisoning is mainly leveraged. The data poisoning
is performed as follows:

• For an effective sample that has smiling expression, x ∈
D𝑒 , the attacker stamps a trigger on it through the trigger
adding function T, then the label of this attack sample T(x)
is changed to the target label 𝑦𝑡 , referred to as dirty samples
to ease description.

• For a non-effective sample that does not have a smiling
expression, x ∈ Dne, the attacker also needs to stamp a
trigger on it, but retains its ground-truth label. Such poisonous
samples are called cover samples.

Data Outsourcing. In this scenario, all the poisoned samples, in-
cluding dirty samples and cover samples, are provided to the data
curator. When a model is trained on them, a backdoor satisfying
the HCB effect is inserted. In this scenario, the attacker prefers to
reduce the attack budget, e.g., poisoning a small proportion of data.
Implementation is detailed in subsection 4.3.
Model Outsourcing. In this scenario, the attacker controls the model
training. Therefore, in addition to data poisoning, the attacker can
manipulate and regularize the training process, particularly lever-
aging additional loss terms to more efficiently implant the HCB.
The poisoning rate has no stringent restriction in this scenario.
Implementation is detailed in subsection 4.4.

4 IMPLEMENTATION AND EVALUATION
First, we detail the experimental setup. Second, performancemetrics
are introduced to quantitatively measure HCB attack performance.
We then implement and evaluate the HCB attack under the data
outsourcing scenario. We further implement and evaluate the HCB
attack under the model outsourcing scenario, where the training
regulation is additionally exploited to enhance the attack perfor-
mance.

Table 1: Dataset and model architecture summary.

Dataset Num. of
Labels Image Size Images Model ArchitectureTraining Testing

MNIST [40] 10 28 × 28 × 1 60,000 10,000 3 Conv + 2 Dense
GTSRB [75] 43 32 × 32 × 3 39,209 12,630 ResNet18 [65]
CelebA [54] 200 224 × 224 × 3 5,261 777 VGGFace [28]

4.1 Setup
Dataset.Weemploy threewidely-used datasets includingMNIST [40],
GTSRB [75] and CelebA [54] for experiments. The details of the
used datasets and their corresponding model architectures are sum-
marized in Table 1. Note CelebA [54] is for the face recognition
task. It consists of 202,599 images of 10,177 celebrities. This dataset
includes 43 face attributes, e.g., smile and eye-glasses, which is the

main reason we use it since these attributes resemble innocuous
features. Considering the computational overhead of the SOTA
defenses (i.e., Neural Cleanse [83] and MOTH [78] have greatly
increased computational overhead with the number of classes), we
choose a subset of CelebA containing 200 celebrities whose number
of samples are ranked top-200. The training and testing sets consist
of 5,261 and 777 images, respectively. Each image has a size of
224 × 224 × 3. For CelebA, a given innocuous feature can be across
partial classes because mouth open/eye-glasses only appear in a
portion of persons. The success of our later HCB attack implemen-
tation indicates that shared innocuous features across all classes
are unnecessary.
Model Architecture. To demonstrate that the HCB attack is effec-
tive regardless of model complexity, three different models from
relatively simple ones to complex ones are utilized. Since theMNIST
task is the easiest among the three, as summarized in Table 1, a cus-
tomized relatively shallow CNN model is taken. In this context, the
ResNet18 is used for GTSRB and the VGGFace is used for CelebA.
Machine Configuration. Experiments run on a computer with
the following configuration: Intel Core i9 processor with ten CPU
cores running at 3.70 GHz and 32 GB main memory, and a GPU
card of NVIDIA GeForce RTX 3090.

4.2 Metrics
The following four metrics are used to measure the efficiency of
the HCB attack.
•Clean Data Accuracy (CDA) is the probability of benign samples
without the trigger being correctly classified by the backdoored
model.
•Attack Success Rate (ASR) is the probability of samples with trig-
ger and innocuous features being misclassified into the attacker
prespecified target class.
•False Positive Rate of Effective Samples (FPRES) is the probability
of effective samples in the absence of the trigger but with the
innocuous feature being misclassified into the attacker prespecified
target class.
•False Positive Rate of Non-Effective Samples (FPRNES) is the proba-
bility of non-effective samples with the trigger but without attacker-
chosen innocuous feature being misclassified into the attacker pre-
specified target class.

Generally, an HCB attack should have (i) a high ASR to be effec-
tive, (ii) a CDA that is similar to that of a clean model, (iii) a low
FPRES and (iv) a low FPRNES to be stealthy.

From the technical perspective, since HCB’s attack against the
data outsourcing scenario is straightforward (i.e., no delicate at-
tacker training optimization is used) compared to the model out-
sourcing, we first evaluate the data outsourcing, followed by model
outsourcing.

4.3 Data Outsourcing
Similar to [20, 23, 58, 77, 85] a common data poisoning approach
is utilized to be inserted as a backdoor. As aforementioned, the
poisonous samples are generally divided into two categories: dirty
samples and cover samples. In this context, the poisoning rate
comprises a dirty sample rate and a cover sample rate with a ratio
of 50:50 in the following experiments.



Watch Out! Simple Horizontal Class Backdoors Can Trivially Evade Defenses ACM CCS, October 14–18, 2024, Salt Lake City, USA

Table 2: HCB attack performance.

Task w/o Attack HCB (Data Outsourcing) HCB (Model Outsourcing)
CDA CDA ASR FPRES FPRNES CDA ASR FPRES FPRNES

MNIST
(Black Paper) 99.1% 98.7% 99.2% 0.8% 0.3% 99.3% 99.5% 0.5% 0.3%

GTSRB
(Rain) 98.2% 97.5% 98.9% 2.5% 1.1% 97.9% 99.2% 1.3% 0.6%

CelebA
(Smile) 97.6% 95.4% 92.6% 3.9% 9.6% 96.2% 99.2% 1.8% 0.4%

CelebA
(Mouth-Open) 96.5% 96.1% 93.8% 4.7% 8.2% 96.4% 98.4% 2.3% 2.8%

CelebA
(Eye-Classes) 96.7% 95.9% 98.4% 7.5% 5.6% 97.3% 97.9% 2.7% 1.2%

4.3.1 Attack Performance. The HCB performance is detailed in
Table 2, where three datasets with their five corresponding innocu-
ous features (see Figure 3) are evaluated. For experiments, unless
otherwise stated, the poisoning rate of MNIST and CelebA is 15%,
and the GTSRB task is 12%—influence of poison rate is evaluated in
Section 4.3.2.

It can be seen that the CDA of the backdoored model is similar
to that of the clean model. The ASR of MNIST, GTSRB, and CelebA
(eye-glasses) are higher than 98%. For CelebA (smiling) and CelebA
(mouth open), the ASR is up to 92.6% and 93.8%, respectively. The
FPRES is generally below 5% and the FPRNES is below 10%. Notably,
the FPRES and FPRNES of MNIST and GTSRB are very small, no
more than 2.5%.

This affirms the high attack efficiency of the HCB attack in the
data outsourcing scenario even though the training process is out
of the attacker’s knowledge and control. We do note that the ASR
of CelebA drops about 5% for the smile and mouth-open innocuous
features compared to the eye-glasses feature. Potentially because
forcing the model to learn the main task-irrelevant features of smile
and mouth-open is slightly harder than that of the eye-glasses—
eye-glasses feature tends to be easier to learn. This is potentially
because the eye-glasses are located in the middle region that is the
key region of the face image. This is partially validated through the
slightly higher FPRNES of the smile and mouth-open cases than that
of the eye-glasses case, considering that a little more non-effective
samples are falsely producing a backdoor effect when the trigger is
carried.

4.3.2 Poison Rate. Using the GTSRB and the rain as an innocuous
feature, a smaller poisoning rate is evaluated in a data outsourcing
scenario, and results from each of the four attacking performance
metrics are detailed in Figure 4. It can be observed that a smaller
poison rate low to 4% can achieve up to 92% ASR and lower than 5%
FPRES and FPRNES. More specifically, as the poison rate increases,
the CDA of anHCB attack remains relatively stable, its ASR presents
an increasing trend, and its FPRES and FPRNES drops sharply. Note
that HCB attack aims to make the attacker-crafted trigger exhibit
high sensitivity to these effective samples while being insensitive to
trigger samples from non-effective samples. When the poison rate
is low, e.g., 1%, the model faces difficulties in inserting an effective
backdoor. This is because a small number of dirty samples could
not produce satisfactory ASR, and a small number of cover samples
could not suppress the backdoor effect given non-effective trigger
samples, e.g., resulting in a 72.4% ASR and 21.5% FPRNES.

4.3.3 Enhancement. We note that HCB attack performance can be
enhanced via strategically crafting dirty samples and cover samples.

Figure 4: HCB attack performance as a function of poison
rate. GTSRB + rain as the innocuous feature.

In a SCSB attack that follows the conventional VCB [85], triggers
with different transparencies (despite the same pattern) are lever-
aged to create dirty samples and cover samples, respectively. We
note that such an approach is orthogonal to HCB and can be lever-
aged to enhance HCB attack performance. More specifically, we
stamp a transparent trigger onto a small number of effective sam-
ples to craft dirty samples with their labels altered to an attacker-
targeted category. For cover samples, we embed the opaque trigger
(same pattern) into a few non-effective samples with their ground-
truth labels intact. The insight is that when the opaque trigger is
used to launch an attack during the online phase, effective sam-
ples will be sensitive to the opaque triggers (exhibiting high ASR),
while non-effective samples exhibit a low sensitivity (exhibiting
low FPRNES).

The results are shown in Figure 5. With the same small poison
rate, the HCB attack with enhancement exhibits a higher ASR or
lower FPRNES than the HCB attack without enhancement. Espe-
cially, the enhanced HCB attack increases the ASR from 85.6% to
93.7% while the FPRNES retains similar (i.e., slightly decreases by
0.1%) given a small 3% poison rate—this 3% poison rate was also
used in [77] to carry out SCSB attack under VCB in the same data
outsourcing scenario.

Figure 5: The impact of the enhancement strategy on HCB
performance. GTSRB + rain as the innocuous feature.

4.4 Model Outsourcing
In the model outsourcing scenario, the attacker can follow the
normal training process as data outsourcing in subsection 4.3 with-
out interfering with the training procedure. Note that this is not
a preferable approach for the attacker as the attacker can indeed
manipulate the training procedure. Therefore, we can leverage the
loss regularization to improve HCB attack performance. The first
regularization is expressed as:

𝐿1 =
∑︁

(𝑥𝑖 ,𝑦𝑖 ) ∈D
𝑓bd (𝑥𝑖 , 𝑦𝑖 ;𝜃 ) +

∑︁
(𝑥 ′

𝑖
,𝑦𝑖 ) ∈Dne

𝛼 · 𝑓bd (T(𝑥𝑖 ), 𝑦𝑖 ;𝜃 ) . (2)
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The first term means that, for non-trigger-carrying samples, the
backdoored model should behave normally for them—classifying
them into their ground-truth classes. This term is to ensure that i)
a CDA of the backdoored model is comparable to that of the clean
model and ii) a low FPRES. The second term means that for non-
effective samples with triggers, the backdoored model should still
behave normally to retain a low FPRNES. The 𝛼 is a regularization
factor, which can be set empirically for optimization.We empirically
set it as 0.3 (i.e., after a few trials of factor tuning) in the following
experiments unless otherwise specified—this is practical in model
outsourcing as the attacker controls the training. Note merely using
Equation 2 is insufficient, as it has not optimized the ASR. To do so,
the following loss is taken:

𝐿bd =
∑︁

(T(𝑥𝑖 ),𝑦𝑡 ) ∈D𝑒

𝑓bd (T(𝑥𝑖 ), 𝑦𝑡 ;𝜃 ) . (3)

The 𝐿bd enforces that for effective samples stampedwith triggers,
the backdoored model should always classify them to the attacker’s
pre-specified target class 𝑦𝑡 to achieve a high attack success rate.

The final loss constraint is then expressed as:

𝐿 = 𝐿1 + 𝛽 · 𝐿bd, (4)

where 𝛽 is a regularization factor, which is empirically set as 0.2
in the following experiments unless otherwise stated. Generally,
when 𝛽 increases, the backdoor behavior is gradually enhanced, but
the backdoored model may over-learn the mapping relationship
between effective samples stamped with triggers and 𝑦𝑡 . In other
words, the backdoor behavior might be activated by either the
trigger or the innocuous features, making not only ASR, but also
FPRES and FPRNES increase upon increasing 𝛽 as shown in Figure 6—
note the FPRES and FPRNES are desired to be low. Nonetheless, the
final loss constraint emphasizes the main task with negligible effect
on the CDA.

Figure 6: The impact of factor 𝛽 on HCB performance in
model outsourcing. GTSRB + rain as the innocuous feature.

Two-Step Attack. Despite its feasibility of directly backdooring
the model according to Equation 4, dubbed as a one-step attack to
ease description, we noted that the attack performance is unstable,
detailed in Appendix A. To achieve stable attack performance, we
take a two-step attack. More specifically, at the first step, we train
the model according to Equation 2 to ensure a CDA similar to
the clean model counterpart. In the second step, we fine-tune the
model gained in the first step to achieve a high ASR according to
Equation 4. With this two-step attack, the HCB attack can achieve
high and stable attacking performance.

The results are detailed in Table 2. Clearly, all four metrics’ per-
formance is improved at the same time compared to the data out-
sourcing scenario. Specifically, the ASR is always close to 100%. For
example, the ASR of CelebA (Smile) is improved from 92.6% to up to
99.2%, which increases by 6.6%. Most importantly, both the FPRES
and FPRNES are greatly reduced, no more than 3% in any case. As a
comparison, the highest FPRES and FPRNES are up to 7.5% (CelebA
+ eye-glasses) and 9.6% (CelebA + mouth-open), respectively, in the
data outsourcing case (or without applying attack regularization in
the model outsourcing case). In summary, the HCB attack achieves
nearly ideal performance in model outsourcing with our two-step
model manipulation attack. That is, the backdoored model has a
CDA comparable to its clean model counterpart, an ASR close to
100%, a close to 0% of FPRES and FPRNES.

5 AGAINST COUNTERMEASURES
Evaluated countermeasures can be generally divided into two cate-
gories: data-level defenses and model-level defenses [18]. Data-level
defenses can be further performed mainly online (i.e., STRIP [20],
Februus [14]) or offline (i.e., SCAn [77], Beatrix [58]), while the
model-level defenses (i.e., Fine-Pruning [49], NAD [44], Neural
Cleanse [83], ABS [50], MOTH [78], MNTD [92], MM-BD [84]) are
often taken during offline4. Among these evaluated defenses, we
note that the Februus, SCAn, Beatrix and MM-BD [84], by their de-
sign, are supposed to be effective against SCSB attacks. The MNTD
and MM-BD are generic to the backdoor and trigger types by their
design. Results of some defenses are summarized5 in Table 4, while
the results of the rest are elaborated within descriptions per defense.
Due to page limitation, each defense methodology is detailed in
Appendix B.

5.1 Model-level Defenses
Fine-Pruning. The methodology description is detailed in subsec-
tion B.1. Figure 7 (Left) depicts CDA and ASR performance as a
relationship of the proportion of pruned neurons in the fully con-
nected layer. The GTSRB dataset is used and rain is the innocuous
feature, we omitted results of other datasets and innocuous feature
combinations because of similar tendencies. We can see that fine-
pruning is unable to mitigate the HCB attack effect. Only when an
almost 90% pruning rate is applied does the ASR start dropping.
However, the CDA sees unbearable degradation already. In fact,
the CDA degrades first before ASR is suppressed by increasing the
pruning rate.

The results above were obtained when both effective and non-
effective samples were employed for fine-pruning the model. How-
ever, given the rarity of effective samples and their potential ex-
clusion from the small fine-pruning dataset, we conducted fine-
pruning without effective samples. This approach is anticipated
to facilitate the forgetting of innocuous features to some extent,
thereby aiding in mitigating the backdoor effect. Subsequently, we
conducted experiments in this setting. Notably, the fine-pruned
model exhibits a similar variation trend to that depicted in Fig-
ure 7 (Left). Notably, the ASR decreases to 86.1%, and the CDA
4Strictly, the online methods can always be used during offline whenever accessing
the full training set is available. The Beatrix has been shown to be effective for online
detection as well.
5Different defenses adopt varying metrics, which are challenging to be unified.
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Figure 7: (Left) The fine-pruning against the HCB attack under model outsourcing. GTSRB + rain as the innocuous feature.
(Middle) The triggers reverse-engineered by Neural Cleanse does not resemble original triggers shown in the left neither from
the pattern nor the position. (Right) The heatmap of clean and trigger-carrying images when GradCAM is applied.

drops to 79.2% when pruning 95% of neurons in the fully connected
layer. In summary, fine-pruning, irrespective of the inclusion of
effective samples, proves ineffective against HCB attacks unless
accompanied by significant sacrifices in model utility.
NAD. The methodology description is detailed in subsection B.2.
We evaluated NAD6 on GTSRB with the rain as an innocuous
feature under both the data outsourcing and model outsourcing
scenarios. Per attack scenario per task, we trained five HCB back-
doored models, where both the trigger location and attacker-target
label vary per combination. Then, we leveraged the NAD to erase
backdoors from these impaired models. Specifically, we assumed
a powerful defender could access full clean samples instead of 5%
clean samples and follow the remaining settings (e.g., epochs, batch
size and the selected layers) in the NAD’s source code. For each
attack scenario per task, we averaged the CDA and ASR of five
repaired models.

For the data/model outsourcing scenario, the CDA and ASR are
98.12%/98.27% and 92.76%/91.44%, respectively. It indicates that
NAD can slightly restrain the HCB effect under a strict defense as-
sumption. Note that the original NAD that applies 5% clean samples
to perform the distillation operation fails to defeat the HCB attack,
and the remaining ASRs are over 99%. It is noted that the NAD
costs overhead about half of that training-from-scratch, which is
impractical for some resource-limited defenders. The NAD utilizes
a distillation process to deliver the intermediate attention layer of
the teacher network to the student network. It helps the student
network to learn feature representations of clean samples, thus
erasing wrong associations introduced by trigger samples. How-
ever, innocuous features entangled with clean samples’ features,
resulting in most of the neurons being responsible for both the
main task and the backdoor task. When distilling knowledge about
clean samples from the teacher network, the student network can
still learn the HCB attack effect. Therefore, the NAD falls short in
countering the HCB attack.
Neural Cleanse. The methodology description is detailed in sub-
section B.3. We evaluated Neural Cleanse7 on GTSRB+rain and
CelebA+eye-glasses tasks backdoored models under both the data
outsourcing and model outsourcing scenarios. Per attack scenario
per task, we trained five HCB backdoored models, where both

6We reproduced the NAD from the released source code at
https://github.com/bboylyg/NAD.
7We reproduced the Neural Cleanse with released source code at
https://github.com/bolunwang/backdoor.

Table 3: HCB evasiveness against Neural Cleanse.

Task Metric Data Outsourcing Model Outsourcing
GTSRB Undetected Rate

& Anomaly Index
100% & 1.55 100% & 1.62

CelebA 100% & 1.72 100% & 1.67

the trigger location and attacker-targeted label vary per combina-
tion. Then, we repeated the Neural Cleanse 20 times for each of
the backdoored models. More precisely, we randomly selected 20%
of testing data containing some effective samples and applied 50
optimized epochs to reconstruct candidate triggers via the reverse-
engineering process. For each attack scenario per task, we recorded
the undetected rate (i.e., a backdoored model is determined as a
clean model) and the average anomaly index; the results are shown
in Table 3.

It can be seen that Neural Cleanse completely fails (the unde-
tected rate is 100% in our experiments) to detect HCB attack as
it neither correctly reverse-engineers a trigger similar to the real
one (i.e., the simplest small white-square we intentionally used)
nor identifies the targeted class. Because the HCB attack trivially
breaches the existence of the short-cut assumption given all non-
targeted classes that are required by the Neural Cleanse, not all
samples with the trigger will exhibit a backdoor effect in the HCB
attack. Therefore, the Neural Cleanse fails to reconstruct the trigger
that is even the simplest—small and static white-square trigger
we intentionally chose, see exemplified reconstructed (incorrect)
triggers in Figure 7 (Middle).
MOTH. The methodology description is detailed in subsection B.4.
WithMOTH8, we evaluated the backdooredmodels onMNIST+black-
paper, GTSRB+rain and CelebA+eye-glasses tasks under both the
data outsourcing and model outsourcing scenarios. Per attack sce-
nario per task, we trained five HCB-impaired models. Then, we used
the MOTH to harden these impaired models. We randomly selected
5% training data to reconstruct trigger candidates for each of the
selected class pairs, which technique is followed by [78]. For each
attack scenario per task, we report the average ASR of five hard-
ened/repaired models as the remaining ASR, the results are shown
in Table 4. Though MOTH costs substantial computing resources
to enlarge the class distance, it is ineffective to HCB-infected mod-
els. More precisely, in the MNIST+black-paper task, the ASRs after

8We reproduced the MOTH with released source code at
https://github.com/Gwinhen/MOTH.

https://github.com/bboylyg/NAD
https://github.com/bolunwang/backdoor
https://github.com/Gwinhen/MOTH
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Table 4: HCB evasiveness against backdoor countermeasures.

Defense Metric Data Outsourcing Model Outsourcing
MNIST GTSRB CelebA MNIST GTSRB CelebA1

Februus [14]
(ACSAC 20’) Remained ASR 99.8% 90.5% 85.4% 99.7% 93.7% 90.8%

SCAn [77]
(Usenix 21’) Undetected Rate 90.3% 62.2% 71.8% N/A N/A N/A

MNTD [92]
(Oakland 21’)

False Rej. Rate
False Accept. Rate

53.8%
52.1%

57.1%
53.8%

62.3%
52.8%

50.4%
47.8%

51.5%
51.8%

56.7%
57.9%

MOTH [78]
(Oakland 22’)

Remained ASR
Repaired CDA

94.7%
99.1%

91.6%
90.2%

50.9%
84.8%

97.3%
99.4%

0%
47.4%

48.6%
85.2%

Beatrix [58]
(NDSS’23) Undetected Rate 100% 82% 0%2 87.3% 71.4% 93.8%

1 We select eyeglasses as the innocuous feature for evaluations.
2 Note this is accompanied by undesirable severe false negatives.

repairing in the data and model outsourcing scenarios are 94.7%
and 97.3%, respectively, which means that MOTH completely fails.

For the rest evaluated tasks, although MOTH could reduce the
backdoor effect to some extent, there is a notable trade-off between
the degree of ASR mitigation and the deterioration of CDA. For
instance, it can erase the HCB attack effect on the GTSRB under
model outsourcing, exhibiting a desirable ASR of 0%. However, the
repaired model has an average CDA of only 47.4% (i.e., the clean
model CDA is 98.2%, see Table 2), rendering the utility useless.
We analyze the potential reason as below. Considering the model
outsourcing, we delicately design the loss function for the sake
of higher ASR and lower FPRNES, which differs from the normal
backdoor training (e.g., under data outsourcing without training
process manipulation). The MOTH seems not optimized against
the case when the backdoor insertion is delicately done through
regulations. Therefore, the MOTH severely undermines both the
main and backdoor tasks.

As for the CelebA+eye-glasses task, the MOTH demonstrates
a similar tendency to the GTSRB. Despite the ASR drops to 50.9%
and 48.6% for data outsourcing and model outsourcing, respectively.
The CDA of the repaired model has been reduced by notably 11.1%
(i.e., from 95.9% to 84.8%) and 12.1% (i.e., from 97.3% to 85.2%),
respectively.

There are two major reasons for MOTH failure. Firstly, the
reverse-engineered trigger is class-dependent—it relies on the tech-
nique of Neural Cleanse [83] for trigger synthesis. That is, samples
from one class will be misclassified into the other class once the
trigger is attached. However, this is not true given the HCB due to
the backdoor being also entangled with the innocuous feature of a
class. Secondly, the MOTH is mainly assuming that the trigger is
static. Following the above reason, the innocuous feature can be
generally considered as a partial component of the trigger for effec-
tive samples to activate the HCB backdoor. Therefore, the HCB can
already fail to synthesize a meaningful trigger/perturbation that is
important for the following model repairing/hardening process.
MNTD. The methodology description is detailed in subsection B.5.
We evaluated the MNTD on the same HCB tasks as the MOTH eval-
uation. There are 2×𝑀 shadow models trained in the offline phase.
Note𝑀 is 1024, 512, and 256 for MNIST, GTSRB, and CelebA tasks,
respectively. Concretely, we obtained 𝑀 benign models through
training on the clean dataset with different model hyper-parameter
initialization. For 𝑀 backdoored models, we followed the jumbo
learning in MNTD [92] to generate backdoored models. Following

Figure 8: The REASR of ABS against the HCB-infected target
label. Per attack scenario per task, five infected models are
tested. Each model is repeatedly evaluated 20 times. The red
dotted line is the threshold of 0.88.

the MNTD’s setup, we applied modification attacks (i.e., trigger
patch replace the original image content) and blend attacks (i.e.,
trigger occupies full image size with some transparency) when
poisoning samples to insert a backdoor. In the detection phase,
we used the median of all the model-under-test (MUT) scores (es-
sentially logits value) returned by the binary meta-classifier as the
threshold to differentiate the benign model and the backdoor model.
Per attack scenario per task, we used 128 benign models and 128
HCB-infected models with convergence as the testing MUT dataset
and ran the MNTD five times to obtain the average FAR and FRR.

The results of MNTD9 are shown in Table 4, we can see that the
MNTD fails to distinguish backdoored models from clean models,
its detection performance is only slightly better than guessing. Note
the MNTD has both close to 50% FAR (i.e., regarding a clean model
as backdoored) and FRR (i.e., regarding a backdoored model as
clean). The failure is mainly rooted in the MNTD’s reliance on the
logits distribution which is an unreliable component. Because it is
highly sensitive to the hyperparameters (i.e., number of epochs,
batch size) used to train the MUT. Once these hyperparameters are
varying (always the case in practice) from those used to train the
shadow models, the meta-classifier will fail. The non-robustness
of the MNTD has been recently noticed and evaluated by other
researchers [67].
ABS. The methodology description is in subsection B.6. It has been
acknowledged [50] that one of its limitations is the assumption
that the backdoor behavior is dominated by a single or only a few
neurons. This assumption tends to be often not met in practice [67,
77]. We evaluated ABS10 on the same HCB attacked tasks as the
Neural Cleanse. For GTSRB/CelebA, we picked up 10/5 samples
from each class for ABS reverse-engineer process. Note ABS uses
the reverse-engineer attack success rate (REASR) as a backdoor
indicator. The threshold of 0.88 was used [50], where the model is
backdoored if the REASR is higher than the threshold. Per the attack

9We reproduced the MNTD with released source code at https://github.com/AI-
secure/Meta-Nerual-Trojan-Detection.
10We reproduced the ABS with released source code at
https://github.com/naiyeleo/ABS.
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scenario per task, we used the ABS to detect five different HCB
infected models and repeated the ABS detection 20 times per model.
The detection results are depicted in Figure 8. We can see that ABS
fails against HCB attack under any attack scenario, which is not
unexpected. Because the ABS is designed with an assumption on
its mainly targeted source-class-agnostic attack. Only under such
conditions, can a single or few neurons dominate the backdoor
effect. The HCB attack trivially invalidates the ABS premise, thus
breaking it.
MM-BD. The methodology description is in subsection B.10. We
evaluated MM-BD on the same GTSRB task as the Neural Cleanse.
Per attack scenarios, we used MM-BD11 to detect ten HCB models
trainedwith a random target class. MM-BDmisjudges three infected
models as clean models and still leaves up to 30% ASR after applying
its mitigation. For misjudged cases, the HCB models did not show
sufficient high ASR (i.e., 92%). Then, we obtained ten new infected
HCB models by slightly upper bound their ASR to be around 90%.
Here, MM-BD cannot detect any infected HCB models. Overall,
MM-BD is not robust against our HCB attacks.

5.2 Data-level Defenses
The data-level defenses can be performed online and offline. The for-
mer detects (i.e., STRIP) or suppresses (i.e., Februus) the backdoor
behavior given an incoming input fed into the deployed (back-
doored) model—requiring no access to the training dataset. In con-
trast, the latter (i.e., SCAn and Beatrix) assumes full training dataset
access to identify and remove poisoned samples before conducting
model training.
STRIP. The methodology description is detailed in subsection B.7.
For GTSRB/CelebA,we have used 1000/300 effective trigger-samples
and 1000/400 benign samples to evaluate the STRIP12 detection per-
formance. For the GTSRB data outsourcing scenario, the FAR is
up to 100%/99.5% when the FRR is preset to be 1%/5%. For GTSRB
model outsourcing, the FAR is 100%/100% given a preset FRR of
1%/5%. For CelebA Data outsourcing, the FAR is 79.3%/67.1% given
a preset FRR of 1%/5%. For CelebA model outsourcing, the FAR is
76.03%/62.9% given a preset FRR of 1%/5%. This means the STRIP
fails to detect effective trigger-carrying samples because there is a
large entropy distribution overlap of effective trigger-samples and
benign samples, see Figure 9, which results in unacceptable FAR
given a reasonable preset FRR choice. The main reason is that the
trigger itself is not the only dominant factor to hijack the backdoor
model to make predictions, while the trigger dominant effect is the
key assumption used by the STRIP.
Februus. The methodology description is detailed in subsection B.8.
As detailed in Table 4, the ASR after applying the Februus13 is
still high. Specifically, in the data outsourcing scenario, the ASR
of MNIST, GTSRB, and CelebA are up to 99.8%, 90.5%, and 85%,
respectively. In the model outsourcing, the ASRs of these three tasks
are even higher. Therefore, the Februus is incapable of defeating
HCB attacks, even if it can defeat SCAB and SCSB attacks all under

11We reproduced the MM-BD with released source code athttps://github.com/
wanghangpsu/MM-BD
12We reproduced the STRIP with released source code at
https://github.com/garrisongys/STRIP.
13We reproduced the Februus with released source code at
https://github.com/AdelaideAuto-IDLab/Februus.

Figure 9: Entropy distributions of STRIP against the HCB
attack under data outsourcing scenario. GTSRB + rain is the
innocuous feature.

the conventional VCB. In addition, the backdoor effect in the model
outsourcing scenario is harder to suppress than that in the data
outsourcing scenario due to the higher controlling ability of the
attacker to insert a stealthier backdoor.

Generally, the HCB attack renders the backdoor effect to be an en-
tanglement of the innocuous feature and the trigger. Consequently,
the trigger-located region on which the Februus relies is hard to be
explicitly identified. We have plotted the heatmap using GradCAM
for three different datasets, as in Figure 7 (Right). Three images
on the left/right column are benign/trigger-carrying images. It can
be seen that benign and its counterpart trigger-carrying images
exhibit similar heatmaps regardless of the trigger. So Februus fails
to mitigate the backdoor effect of the trigger-carrying images.
SCAn. The methodology description is detailed in subsection B.9.
Note that SCAn requires one to discern a certain number of (i.e., 50)
trigger-carrying samples before reliable online detection [58, 77] for
the model outsourcing scenario, which is problematic as the system
can already be broken [58]. We thus only focus on evaluating the
SCAn in the data outsourcing scenario. Following SCAn setting [77],
we used a small set of clean data occupying 10% of the whole
dataset. Through hypothesis testing, we obtained whether there
is a possibility of multiple (i.e., two) identities in a given class (i.e.,
multi-distribution modeling effect). According to the source code,
a score higher than the threshold of 𝑒2 indicates the infection. Per
attack scenario per task, we randomly poisoned 100 datasets with
an HCB attack and applied the SCAn to detect these poisoned
datasets. This procedure was repeated five times, where an average
undetected rate was reported.

The results of SCAn14 on HCB is shown in Table 4. It can be
seen that SCAn is ineffective in identifying HCB poison samples (in
particular, trigger samples with innocuous features). There are two
potential reasons. Firstly, the main limitation of SCAn is that it at-
tempts to decompose two mean vectors (i.e., each corresponding to
an identity/class) if a given class is infected. One mean vector stands
for the representation of benign samples from this class, while the
other mean vector indicates the poisoned samples (they are from
other classes but their labels are changed to the infected class).
This decomposition is thus class-dependent. The HCB breaches
this assumption, thus rendering the SCAn ineffective. Secondly, the
first SCAn decomposition operation is to find a universal variation
from the defender held-out samples. This variation is supposed to
be not related to the backdoor effect and is an important factor
in performing the two mean vectors decomposition. However, the

14We reproduced the SCAn with released source code at
https://github.com/TDteach/Demon-in-the-Variant.
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HCB has entangled the backdoor effect with this variation (i.e.,
mouth-open used by HCB as an innocuous feature is regarded as a
universal variation by SCAn).
Beatrix. Other detection [4, 77] all only utilize the first moment
(mean) discrepancy of e.g., latent representation between benign
and trigger samples. Beatrix delves into higher-order information
on the latent representation of benign and trigger samples to detect
trigger samples in the Gramian feature space, treating the trig-
ger sample detection as a problem of out-of-distribution (OOD)
detection.

We evaluated the Beatrix15 on the same tasks as theMOTH evalu-
ation. For MNIST, GTSRB, and CelebA tasks under data outsourcing
(detect infected class in an offline phase before model deployment)
and model outsourcing scenarios (detect incoming trigger-carrying
samples in an online phase after model deployment), we randomly
selected 30, 30, and 5 clean samples, respectively, from each class.
Because the Beatrix requires a small set of clean samples. For in-
fected class detection in data outsourcing scenarios, we evaluated
five different HCB infected models and repeated Beatrix detection
20 times per model for all tasks. For online sample detection in
model outsourcing scenarios, we evaluated 2000, 2000, and 300 be-
nign and trigger-carrying samples for MNIST, GTSRB, and CelebA,
respectively. The average detection rate of Beatrix on HCB is shown
in Table 4. It can be observed that Beatrix is not effective against
the HCB attacks as the undetection rate remains quite high (above
70% in all cases). We note there is an exception for CelebA task
given the infected class detection. This is caused by the unrelia-
bility of Beatrix when the number of held-out clean samples per
class is low. Due to CelebA having a small number of samples per
class, only 5 clean samples per class are reserved for Beatrix—the
minimum functional number is 8 according to [58]. Overall, the
reason for failure is similar to that of the SCAn, as Beatrix is also a
class-dependent defense.

6 DISCUSSION
6.1 Model Complexity
The HCB attack performance can be influenced by the model com-
plexity. Generally, a more complex model indicates better attack
performance. Because the model has improved the capability to
learn both the main task and the backdoor task. In previous exper-
iments we used ResNet18 to train GTSRB (rain as an innocuous
feature), we now use a relatively shallow architecture with 4 convo-
lutional and 2 fully connected (FC) layers. The results are detailed
in Figure 10 (Left). In the model outsourcing scenario, the CDA is
95.4% (CDA of ResNet18 is 97.9%). The ASR, FPRES, and FPRNES
of shallow/ResNet18 model is 92.8%/99.2%, 0.7%/1.3%, 4.2%/0.6%.
The shallow model attack performance degrades. This is reason-
able because the shallow model has a relatively weak capability
of learning the innocuous feature, exhibiting a decreased ASR and
FPRES. Now the trigger gains a relatively higher weight to activate
the backdoor, resulting in a higher FPRNES.

15We reproduced the Beatrix with released source code at
https://github.com/wanlunsec/beatrix.

6.2 Object Detection
We note that existing backdoor attacks and defenses rarely apply to
non-classification object detection tasks, particularly with natural
triggers (e.g., blue T-shirt as a trigger), but we consider such a
challenging task for generalization validation. Here, the backdoor
effect is person cloaking where a person wearing a natural T-shirt
(see the blue T-shirt in Figure 2 (e)) as the physical trigger disappears
(i.e., no bounding box is proposed) and rain as the innocuous feature.
So that the HCB-based person cloaking effect only exhibits when the
person wears the trigger T-shirt and the weather is rainy.

The training set is a mixture of the VOC 2007 training set (2,501
samples) and the VOC 2012 train-validation set (11,540 samples). In
the validation phase, the VOC 2007 validation set (2,510 samples)
is used. For the HCB attack, we crafted 552 dirty samples and 552
cover samples to be added to the training set. The former has rainy
images, and the bounding box of people with the trigger T-shirt is
removed. The latter has no-rain images, and the bounding box of
the trigger person is intact.

In the experiment, we set the 𝛽 as 0.5 in the Equation 4. We use
the popular object detector of Yolo-V4 [2] to implement the task
and set the input size as 416×416×3. There are 20 classes of objects
including a person. To improve training efficiency, we utilize a
pre-trained model that has been trained on the COCO dataset. The
training is done with 200 epochs, of which the first 100 epochs are
frozen training and the remaining epochs are unfrozen training.
We leverage the common intersection over-union (IoU) in object
detection for performance evaluations and set the IoU confidence as
0.5. That is, the mAP@0.5 is used. The CDA of backdoored Yolo-V4
is 85.32% which is on par with that of a clean model counterpart.
The ASR is up to 87% (by evaluating 100 images with rain + trigger
T-shirt person). The FPRES is 5% (by evaluating 100 images with
no-rain + trigger T-shirt person) and the FPRNES is 4% (100 images
with rain + non-trigger T-shirt person). An example is shown in
Figure 2.

6.3 Ratio between Dirty and Cover Samples
In all previous experiments, a balanced (50:50) ratio between dirty
and cover samples was maintained. The former is crafted using
effective samples, while the latter is derived from non-effective
samples. Despite the usual scenario where the number of effective
samples is significantly lower than that of non-effective samples,
achieving this balanced ratio within the poisoned samples is rela-
tively straightforward. This is primarily because the overall poison
rate is very small, typically just a few percent. It’s important to note
that both dirty and cover samples contribute to this low poison
rate.

We further investigate the performance of HCB attacks under
varying ratios between dirty and cover samples, focusing specifi-
cally on the data outsourcing scenario since in the model outsourc-
ing scenario, the adversary does not need to expose its poisoned
samples. We consider the GTSRB task with rain to be an innocuous
feature. The poison rate is fixed at 8%. The ratios of dirty to cover
samples vary from 90:10, 70:30, 50:50, 30:70 to 10:90. The detailed re-
sults are depicted in Figure 11. It is observed that the ratio primarily
affects the ASR and FPRNES performance of HCB, while the CDA
and FPRES are negligibly influenced. As the ratio of cover samples

https://github.com/wanlunsec/beatrix
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Figure 10: (Left) The comparison of attack performance between shallow model and ResNet18 under model outsourcing.
(Middle) HCB attack performance when different trigger types are incorporated. (Right) Incorporating source-specific effect
into HCB attack. The GTSRB is used and rain is the innocuous feature.

Figure 11: HCB attack performance as a function of the ratio
between dirty and cover samples. GTSRB + rain is the innocu-
ous feature.

increases, the infected model exhibits a decreasing trend in ASR
and FPRNES. This is because an abundance of cover samples hinders
the learning of backdoor patterns, making it difficult to implant
an effective backdoor. Conversely, decreasing the ratio of cover
samples leads to an increasing trend in ASR and FPRNES, as more
dirty samples compel the model to associate the backdoor with the
trigger. These additional experiments suggest that a balanced ratio
(50:50) between dirty and cover samples is optimal, which is trivial
to implement in practice.

6.4 HCB Attack on Medical Diagnosis
We have further evaluated a real-world medical diagnosis task by
intentionally taking the challenging age innocuous feature. Specifi-
cally, we used the ISIC 2019 dataset [11, 12, 81] to evaluate our HCB
attacks. The dataset is for the skin diagnosis task, consisting of
25,331 dermoscopic images among 9 different diagnostic categories.
Each image has a size of 150 × 150 × 3. Additionally, this dataset
offers metadata attributes for each image, e.g., age and sex. We used
ResNet101 to implement HCB attacks and took under 55-year-old
skin as the innocuous feature—the age year range is from 0-85.

When innocuous features themselves present difficulty in learn-
ing, such as the case with age, the efficacy of HCB attacks may
be compromised under this hypothesis. Age, being a challenging
innocuous feature, particularly in datasets like ISIC 2019 where it’s
not inherently evident from skin images, exemplifies this difficulty.
Through the implementation of two-stage training, as described
in subsection 4.4, aimed at executing HCB attacks, the anticipated
deterioration in attacking effectiveness is observed. Specifically, the
ASR and FPRNES exhibit elevated or reduced values simultaneously.
More specifically, the CDA is 91.27%, along with an ASR of 75.9%, a
3.8% FPRES), and a 16.3% FPRNES under this default attack setting.
The main reason is that the challenging aging feature is not well
learned.

To address this degradation, we exploited a two-head training
approach, wherein one head is dedicated to medical diagnosis, and

the other head focuses on age classification. Specifically, we incor-
porated the age classification loss term at each stage, as outlined
in Equation 2 and Equation 3, while maintaining other settings
unchanged. The primary advantage of this two-head configuration
lies in significantly enhancing the learning capability of the age
feature, consequently bolstering the performance of HCB attacks.
Consequently, HCB achieves a 91.63% CDA, comparable to that of
its clean model counterpart, along with an ASR of 90.8%, a 4.1%
FPRES), and a 7.6% FPRNES. In this context, HCB attacks pose a
substantial security threat to real-world medical diagnosis tasks,
particularly in model outsourcing scenarios.

6.5 Orthogonalization
The HCB attack is orthogonal to other backdoor types or trigger
types. For instance, we have validated that the existing cover sam-
ple crafting method can be incorporated with HCB to enhance the
HCB attack performance. Throughout this work, we stick with
the simplest trigger (a static white square) to demonstrate that the
evasiveness of the HCB backdoor is not gained from using special
triggers. However, other triggers such as warping triggers [61] and
reflection triggers [52] can be incorporated into HCB attacks. It’s
worth highlighting that the existing clean-label trigger design aims
to ensure consistency between the content of the manipulated sam-
ple and its annotation, thus enabling evasion of human inspection.
In contrast to common dirty-label trigger design, this approach
proves particularly stealthy in attacking scenarios involving data
outsourcing, although its relevance diminishes in the context of
model outsourcing. Nonetheless, clean-label trigger design can also
be seamlessly integrated into HCB. One straightforward method in-
volves leveraging the resize operation within the machine learning
framework [90] to craft clean-label poisoning samples for backdoor
implementation, akin to previous approaches [56, 68]. In addition,
other backdoor types such as source-class-specific backdoors can
also be incorporated into the HCB attacks to achieve fine-grained
backdoor effect.
Trigger Type.We applied two other advanced trigger types, which
are warping and reflection triggers, respectively (as exemplified in
Figure 12), when performing HCB attacks. The results are shown
in Figure 10 (Middle). When applying different trigger types, we
can see that performance metrics, e.g., CDA and ASR, are relatively
comparable, despite the white square trigger exhibiting the best
performance.
Backdoor Type. We incorporate the source-class-specific effect
into the HCB attack. This stealthier HCB variant limits the backdoor
behaviors to the effective samples from only source-class(es) with
triggers, while other samples, even with the innocuous feature and
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(a)  Trigger Sample with

White -Square

(b)  Trigger Sample with

Warping Mode

(c)  Trigger Sample with

Reflection Mode

Figure 12: Incorporating different trigger types into HCB
attack. The GTSRB is used and rain is the innocuous feature.

the trigger but from non-source class(es) would retain the normal
behavior. We took the GTSRB + rain task to implement this HCB
variant under model outsourcing scenarios. The number 𝑛 of source
class(es) ranges from 1 to 43 (43 equals the previous HCB attack).
Note that there is an additional performance metric FPRNSES , which
is the probability of effective samples from non-source classes with
the trigger being falsely classified into the targeted class. Results
are detailed in Figure 10 (Right). The CDA is non-degraded in all
cases. The FPRES, FPRNES, and FPRNSES remain small and relatively
stable. We note that the ASR is not that high (still beyond 85%)
when the number of source classes is too small and then saturated
to be maximum when 𝑛 slightly increases. This is expected because
when the source class number is small, the backdoor effect can be
suppressed by cover samples from non-source classes that are both
with innocuous features and the trigger, but with ground-truth
labels.

6.6 Mitigation
Upon an extensive evaluation of arguably the eleven most influ-
ential SOTA backdoor defenses, as outlined in Section 5, the HCB
attack demonstrates a formidable challenge in terms of detection
and prevention within scenarios involving both model outsourcing
and data outsourcing. The intricacies of the HCB necessitate the
development of novel defenses, providing interesting future work.
Nevertheless, there exists a general mitigation recommendation
tailored to each scenario.

In the context of model outsourcing, a prudent approach in-
volves not relying solely on a single party. Instead, the model train-
ing process can be outsourced to diverse, non-colluding entities.
Subsequently, the inference results from multiple models can be
cross-verified, perhaps through mechanisms such as majority vot-
ing [18]. The inherent non-transferability of the backdoor attack
plays a pivotal role in this strategy. Even in instances where each
model has been subjected to a backdoor, the attacker’s trigger lacks
the capability to activate backdoored models from other parties,
considering the secrecy and uniqueness of their triggers.

It is noteworthy that the effectiveness of a trigger is contingent
upon its association with the inserted backdoor. Moving to the
realm of data outsourcing, where the user assumes control over
the training process, adherence to default training procedures is
discouraged. Instead, users are advised to employ specialized anti-
backdoor training processes [43, 86] as a proactive measure against
potential backdoor threats.

7 CONCLUSION
We have revealed a new paradigm of backdoor attacks that is the
HCB attack as opposed to existing VCB attacks. Our extensive eval-
uations on five tasks (four image classification tasks and one object
detection task) validate that HCB is readily achievable with high
attacking performance, which is attributed to the fact that the main
task-irrelevant innocuous features are pervasive and naturally exist
in the real world to partition samples horizontally across classes.We
have comprehensively demonstrated that HCB is evasive against
up to eleven SOTA backdoor defenses. The main reason is that
the HCB attack is no longer class-dependent, while (statistical)
defensive methods employed by existing SOTA defenses are class-
conditional since they are devised against VCB attacks by default.
Therefore, those defenses fail even though we have intentionally
set the simplest trigger to conduct an HCB attack. We have further
shown that HCB is generic to be orthogonal to advanced trigger
usage and existing backdoor variants. This work highlights the
urgency of elucidating unknown general backdoor types to avoid
false security implications and correspondingly devising counter-
measures thwarting them, as existing backdoor defenses are all
on VCB attacks by default, especially overwhelmingly on SCAB
attacks.
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A ONE-STEP ATTACK
As mentioned in Section 4.4, in the model outsourcing scenario, we
avoid inserting HCB directly according to Eq. 4, so-called one-step
attack. Because the loss terms optimization objectives conflict with
each other to a large extent, rendering either degraded CDA or ASR
(difficult to achieve both high concurrently). We now compare the
performance of the one-step attack with the two-step attack used
in previous experiments. The results are shown in Figure 13, where
the GTSRB+rain is evaluated. When the CDA is similar between
one-step and two-step attacks, the former ASR (68.1%) has about
30% degradation compared to the latter (99.2%). Meanwhile, we can
see that the FPRES and FPRNES of the one-step attack are several
times higher than that of the two-step attack. In summary, the
two-step attack we devised and mainly used is more efficient than
the straightforward one-step attack to achieve Eq. 4.

Figure 13: The comparison of attack performance between
one-step and two-step under model outsourcing. The GTSRB
is used and rain is the innocuous feature.

https://doi.org/10.5244/C.29.41
https://doi.org/10.1109/TDSC.2020.3013927
https://doi.org/10.1109/TDSC.2020.3013927


Watch Out! Simple Horizontal Class Backdoors Can Trivially Evade Defenses ACM CCS, October 14–18, 2024, Salt Lake City, USA

B METHODOLOGY DESCRIPTION
B.1 Fine-Pruning
Fine-pruning [49] is the first explicit prevention defense (not de-
tection defense) on removing backdoor effects [49]. It first prunes
neurons that are inactive by feeding a held-out clean dataset. The
point is that these less inactive neurons contribute to the backdoor
effect. Then as the pruning operation will degrade the CDA, fine-
tuning is further applied to remedy the CDA drop. It is known that
this method can always result in a notable CDA drop even if the
fine-tuning is consequentially applied. The reason is that the HCB
attack compromised neurons also greatly contributes to the CDA
of clean samples. The intuition of identifying backdoor dominated
neurons in fine-pruning is not held for the HCB attack, though it is
often held for the VCB attack, especially the SCAB attacks.

B.2 NAD
Neural attention distillation (NAD) [44] aims to guide the back-
doored network to relearn feature representations of clean samples,
erasing the wrong patterns learned as a result of backdoor attacks.
The NAD works as follows. It fine-tunes a copy of the suspected
model on a fraction of clean samples as a teacher network. By lever-
aging the knowledge distillation, then it fine-tunes the suspected
student network on the same set such that the intermediate-layer
attention of the student network aligns with that of the teacher
network. Intuitively, the NAD can erase backdoors where the latent
representation of the trigger is separable from that of clean samples
in the latent space.

B.3 Neural Cleanse
Neural Cleanse [83] builds upon the insight that all samples will
be misclassified into the attacker-targeted label when an abnor-
mally small perturbation is added to these samples—such pertur-
bation resembles the functionality of the real trigger, termed as
the reverse-engineered trigger. Therefore, Neural Cleanse aims to
reverse-engineer the trigger by formalizing it as an optimization
problem (i.e., identifying a potential trigger for each class) and in-
corporating the anomaly detection methodology (i.e., treating the
trigger with the abnormally smallest perturbation as the ultimate
reverse-engineered-trigger and its corresponding class as the tar-
geted class). It sets an anomaly index threshold of 2.0: lower than it
is backdoored; otherwise, clean. Once the trigger is reconstructed
and the infected label is identified at the same time, the backdoor
effect can be unlearned by stamping the reconstructed triggers
on the held-out samples but retaining their ground-truth labels to
retrain/fine-tune the subject infected model. Here, we focus on the
premise detection performance.

B.4 MOTH
It utilizes a reverse-engineered backdoor trigger per class to con-
duct symmetric adversarial training for the sake of increasing class
distance. The class distance is quantified by the perturbation (i.e.,
number of pixels changed [78]) that acts as the reverse-engineered
trigger required to flip a large number of samples of a class to an-
other class. Despite MOTH having applied some optimizations to

reduce the computation overhead, it is still relatively computation-
ally heavy. In addition, inadvertently, its computation overhead is
related to the number of classes, which will greatly increase for
increasing numbers (i.e., face recognition tasks have many classes).
Taking the MNIST (with 10 classes) as an example, the entire hard-
ening cost is 8 minutes, which is 9× higher than the training cost
which only takes 0.9 minutes to train a well-performed MNIST
model from scratch.

B.5 MNTD
The MNTD [92] relies on a meta-classifier to detect whether a given
model-under-test (MUT) is backdoored or clean. It works as follows.
Several samples/images (so-called query samples) are fed into the
MUT, which returns the logits per query sample. These logits are
concatenated, which is the input to the meta-classifier. The meta-
classifier training requires many shadowmodels (i.e., could be up to
thousands) of backdoored models and clean models. By design, the
MNTD is agnostic to the type of backdoor attacks. In other words, it
should be able to detect HCB attacks if it is indeed robust. The meta-
classifier returns a score as a backdoor determination indicator.
We should highlight that the MNTD is extremely computationally
heavy when training the meta-classifier as it requires many (i.e.,
could be a thousand) shadow models to be trained to resemble the
backdoored model behavior comprehensively.

B.6 ABS
The ABS [50] scans each neuron (in particular, given a chosen
layer) to identify the compromised neuron that corresponds to
the trigger and is activated saliently to dominate the backdoor
behavior. Concretely, the user stimulates each neuron while fixing
other neurons of the same layer to capture top neurons (i.e., top 10)
resulting in a large increase in the output activation given a class.
The backdoor trigger is consequentially reverse-engineered upon
the identified compromised neuron.

B.7 STRIP
STRIP [20] takes the characteristic that the backdoor effect is domi-
nantly activated by the trigger rather than input sample content.
Therefore, trigger-carrying samples can withstand strong perturba-
tions when the input sample is injected with noise perturbations.
In other words, the backdoored model will still consistently pre-
dict the perturbed inputs with differing perturbations upon the
same input sample to the attacker-targeted class. In contrast, non-
trigger-carrying samples exhibit oppositely low consistency. Such
consistency is characterized or quantified with entropy, a random-
ness metric. A lower entropy of an incoming input indicates a
trigger-carrying sample; otherwise, a benign sample.

B.8 Februus
The Februus utilizes that the trigger-located region dominates the
inference result of the backdoored model. Therefore, it first identi-
fies such a region with heatmap (i.e., through GradCAM), similar
to SentiNet [10]. Then this region is removed and filled with sur-
rounding background (i.e., inpainting with Generative Adversarial
Network) to gain a repaired image. This repaired image replaces
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the original (potentially adversarial) image to be fed into the back-
doored model for inference, which prediction is returned to the
user. Note that the Februus is an online prevention defense, which
cannot tell whether the input is malicious or not.

B.9 SCAn
The SCAn statistically decomposes the representation of images
from a given class into two components: an identity vector (i.e.,
person A) and a variation (i.e., smiling expression). The variation
(i.e., smiling expression) is assumed to be universal across all classes.
If there are two identity vectors further decomposed given a class,
this class is regarded to be infected—the target/victim class of the
backdoor. Because the representation of benign images of a given
class should be different from the representations of attack images
(i.e., images from other classes stamped with a trigger but labeled
to be the target class) of this class. One main benefit of SCAn
is that it can defeat source-specific backdoor attacks, which are
challenging to be addressed by other defenses e.g., STRIP, and
Neural Cleanse. When the SCAn is used for online detection to
identify whether an incoming input is adversarial or not, it requires
to discern a certain number of (i.e., 50) before reliable detection [58,
77]. This is problematic and unrealistic to a large extent, as the
system can already be broken (i.e., access to the system after evading
the facial recognition or system login). Therefore, we only consider
evaluating SCAn in the offline case. In other words, the SCAn is
more suitable for detecting backdoors when the entire training
dataset is accessible as in the data outsourcing scenario on which
we evaluated.

B.10 MM-BD
TheMM-BD [84] identifies a significant trend: themaximummargin
statistic of the infected class tends to notably surpass that of other
classes. It operates by gathering classifiers’ logits (i.e., the activation
values pre-softmax layer) and computing a maximum margin statis-
tic for each class. Subsequently, an unsupervised anomaly detector
assesses these statistics to determine whether a model is compro-
mised or clean. If the null hypothesis (i.e., no attack) is rejected,
the MM-BD flags the model as compromised with 95% confidence,
pinpointing the infected class displaying the maximum margin
value. In the event of a compromised model, backdoor mitigation
measures are implemented. The MM-BD can utilize an optimized
upper bound for neurons to curb inflated activation values induced
by backdoor attacks. This action aims to maintain model accuracy
with clean samples while reducing misclassifications on targeted
trigger samples.

C EVASIVENESS OF COMPOSITE BACKDOOR
Composite backdoor [47] exploits the concurrent presence of fea-
tures (e.g., car and plane) from two classes (e.g., car and plane in
CIFAR10 dataset) as the trigger. It thus still belongs to the VCB
attack, which can be detected by SOTA defenses. More specifically,
it has been shown that it can be defeated by MOTH and Beat-
rix [58, 78]. In contrast, MOTH and Beatrix are unable to prevent
our HCB attack (see Section 5.1).

Here, we use the same setting with HCB to evaluate the compos-
ite backdoor and HCB with Beatrix for an end-to-end comparison.

The MNIST is used. Following the composite attack step [47], we
set the composite backdoored model to predict half-mix(0,1) to label
2—concurrence features of digit 0 and 1 as the trigger and target
label is digit 2. For attack performance, the composite backdoored
model has an 86.1% CDA and a 95.4% ASR, which both are lower
than the HCB backdoored model that has a 99.1% CDA and a 99.3%
ASR, respectively. For Beatrix offline detection, the anomaly index
(i.e., label 2) of the composite backdoored model is higher than the
threshold, so it can be detected. For online detection, Beatrix can
effectively identify clean samples and poison samples with an 87.3%
TPR and a 5% FPR against composite backdoor. In summary, the
HCB-infected model nearly bypasses Beatrix (see Table 4) while
the composite backdoor fails. This is mainly because the compos-
ite backdoor belongs to the existing VCB attack, whereas existing
SOTA defenses can be effective against VCB attacks regardless of
the trigger design—composite backdoor utilizes a specific trigger
design where the concurrence of two classes of features is treated
as the trigger.
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