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Invariant curves of low smooth quasi-periodic reversible mappings
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Abstract

In this paper, we obtain the invariant curves of quasi-periodic reversible mappings with finite
smoothness. Since the reversible property is difficult to maintain in the process of approximat-
ing smooth functions by analytical ones, Rüssmann’s method in [17] is invalid. Inspired by the
recent work of Li, Qi and Yuan in [6], we turn to regard the reversible mapping as the Poincaré map
of a reversible differential equation. By constructing a KAM theorem for a reversible differential
equation which is quasi-periodic in time, we obtain the invariant curves of the reversible mapping.
Beyond that, we establish some variants of invariant curve theorems for quasi-periodic reversible
mappings.
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1. Introduction

In 1962, German mathematician Moser [11] proved the existence of invariant closed curves on

cylinder - Moser’s twist theorem. Along with the invariant torus theorems for Hamiltonian systems

by former Soviet mathematicians Kolmogorov and Arnold, they form the famous KAM theory.

As is well known, the smoothness condition of KAM theory has always been a focus of research.

Initially, Kolmogorov and Arnold dealt with analytical systems [22], while Moser [11] discussed 333

differentiable area-preserving maps. Is this requirement of 333 smoothness optimal? This issue

has attracted the attention of many mathematicians, such as Rüssmann and Herman. In 1970,

Rüssmann [17] successfully reduced the smoothness requirement from 333 to only 5. Shortly after,

Moser pointed out that Rüssmann’s proof process can actually yield cases with smoothness greater

than 3. Interestingly, Herman [2, 3] also independently provided proof of this situation. He gave

a counterexample to illustrate that for maps that are differentiable less than 3 degrees, there can

be no invariant curve. Subsequently, these results were also extended to the quasi-periodic case.

Zharnitsky in [25] studied the existence of invariant curves of the following exact symplectic map







x1 = x+ γ + y + f(x, y),

y1 = y + g(x, y),
(1.1)
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where the perturbations f, g are quasi-periodic in x with the frequency ω = (ω1, ω2, ..., ωm), real

analytic, and ω1, ω2, ..., ωm, 2πγ
−1 are sufficiently incommensurable. Moreover, he applied the in-

variant curve theorem to show the boundedness of solutions of the Fermi-Ulam problem. Recently,

Huang [5] obtained the existence of invariant curves of planar mappings which are quasi-periodic

in the spatial variables, Cp smooth with p > 2n + 1 (n is the number of frequencies) and satisfy

the intersection property. The main line of the proofs is similar to that of Rüssmann [18] and the

critical step is approximating smooth functions with analytical ones.

The intersection assumption is another issue that KAM theory focuses on. Moser pointed out in

[11] that the existence of invariant curves cannot be guaranteed without making any assumptions.

Furthermore, he proposed that the intersection assumption can be replaced by reversibility, and

therefore led to the creation of the KAM theory of reversible systems. Sevryuk developed the

reversible theory [20] for both continuous and discrete systems. Based on the KAM technique, Liu

[9, 10] proved the existence of invariant curves for real analytic quasi-periodic reversible mappings

(1.1). Recently, Zhuang et al. [26] obtained the invariant curves of reversible mappings with all

Birkhoff constants being zero by the normal form theory. More works on the invariant curves for

reversible mappings may be found in [6, 7, 9, 10, 21, 24] and references therein.

Motivated by above aspects, we tend to study the existence of invariant curves of the standard

reversible quasi-periodic mapping (1.1), denoted byM , where mappingM is reversible with respect

to the involution G : (x, y) → (−x, y), that is, GMG = M−1. Moreover, f, g : R × B(r0) → R are

Cp and Cp+m, respectively, with p = 2m + 1 + µ, 0 < µ ≪ 1, B(r0) = {|y| ≤ r0 : r ∈ R}, and they

are quasi-periodic in x with frequency ω = (ω1, ω2, ..., ωm). That is to say, we are going to obtain

the invariant curves of the mappings (1.1) in the smooth cases, other than analytic cases. Such a

map is often met when the vector field is quasi-periodic in time and reversible with respect to the

involution G. The reduction of smoothness for reversible mappings is natural. Moser once gave

a conjecture [12, 13] of invariant curves for C4 reversible map. In fact, for autonomous reversible

systems with C4 functions, Pöschel obtained an existence result of invariant tori in [16]. But there

is no strict proof whether his results can be generalized to the time-dependent case. Therefore,

it is not yet clear whether the twist theorem for C4 smoothness holds true. Different from the

symplectic case in Rüssmann’s work [18], reversibility property is hard to maintain in the process of

approximating smooth functions by analytical ones. Recently Li et al. [6] overcame this difficulty

by regarding the reversible mapping as the Poincaré map of a reversible differential equation. They

constructed a KAM theorem for higher-dimensional periodic reversible mapping (1.1), where γ

satisfies Diophantine condition, f, g are Cp and Cp+d respectively with p = 2d+1+µ, 0 < µ≪ 1 and

d being the dimension of variables. By this method, we extend the twist theorem to quasi-periodic

case, and solve that the existence of invariant curves for non-autonomous reversible system is true

for Cp and Cp+m functions, where m is the dimension of quasi-periodic frequency (see Theorem 2.4

and 2.5).

In addition, we discuss variant forms of invariant curve theorems. The small twist theorem was
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designed by Moser [11] to prove the stability of elliptic fixed points of general type, and it has found

many other consequences in stability theory. The result obtained in this paper is useful to simplify

the use of the twist theorem in some applications. Based on Moser’s work, Ortega [14] obtained a

variant of the small twist theorem and also studied the existence of invariant curves of mappings

with an average small twist in [15]. Later for quasi-periodic analytic reversible mapping, Liu [9, 10]

established some variants of the invariant curve theorem which are similar to ones in [14] and [15].

Subsequently, Huang [4] extended the results to smooth quasi-periodic mapping with intersection

property. Based on our main result, we obtained Theorem 2.7 and 2.10.

The rest of the paper is organized as follows. In Section 2, we will list some properties of quasi-

periodic functions, and then state the main results. In section 3, we give an approximation Lemma

of Jack-Moser-Zhender. The following section is devoted to giving out the key iteration process. In

section 5, using Iteration Lemma 4.1, we give the proof of Theorem 2.4 and Theorem 2.5. In the

last section, we give some variants of our main results.

2. Quasi-periodic functions and the main results

2.1. The space of quasi-periodic functions

We first define quasi-periodic functions with the frequency ω = (ω1, ω2, ...ωm), here the frequency

vector ω is rational independent, that is, for all k = (k1, k2, ..., km) 6= 0, 〈k, ω〉 =
∑m

j=1 kjωj 6= 0.

Definition 2.1. A function f(t) is called a continuous (Cp or real analytic) quasi-periodic func-
tion with the frequency ω = (ω1, ω2, ...ωm), if there is a continuous (Cp or real analytic) function
F (θ1, θ2, ..., θm) which is 2π-periodic in each θj(1 ≤ j ≤ m) such that

F (θ) = f(ω1t, ω2t, ..., ωmt).

This function F is called a shell function of f .

Denote by Q(ω) the set of real analytic quasi-periodic functions with the frequency ω =

(ω1, ω2, ...ωm). From the definition, we know that for given f(t) ∈ Q(ω), the corresponding shell

function F : θ = (θ1, θ2, ..., θm) ∈ R
m → R has the following Fourier series

F (θ) =
∑

k∈Zm

fke
i〈k,θ〉,

which is a 2π-periodic in each variable, real analytic and bounded in a complex neighbourhood

Πm
s = {(θ1, θ2, ..., θm) ∈ C

m : |Imθj | ≤ s, j = 1, 2, ...,m} of Rm. The function f is obtained from F

by replacing θ by ωt and has the expansion

f(t) =
∑

k∈Zm

fke
i〈k,ω〉t.
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Definition 2.2. For r > 0, let Qr(ω) ⊂ Q(ω) be the set of real analytic functions f such that the
corresponding shell function F are bounded on the subset Πm

r , with the supremum norm

‖F‖r = sup
θ∈Πm

s

∣

∣

∣

∣

∣

∑

k∈Zm

fke
i〈k,θ〉

∣

∣

∣

∣

∣

= sup
θ∈Πm

s

|F |.

Moreover, we define the norm ‖f‖r = ‖F‖r.

The following statement are standard in the theory of quasi-periodic functions and the proof

can be found in [25, chapter 3].

Lemma 2.3. The following statement are true:
(i) Let f(t), g(t) ∈ Q(ω), then g(t+ f(t)) ∈ Q(ω);
(ii) Suppose

|〈k, ω〉| ≥
c

|k|σ
, k ∈ Z

m \ {0},

for some constants c > 0, σ > 0. Let h(t) ∈ Q(ω) and τ = αt+ h(t)(α + h′ > 0), then the inverse
relation is given by t = α−1τ + h1(τ) and h1 ∈ Q(ω

α
). In particular, if α = 1, then h1 ∈ Q(ω).

2.2. Invariant curves theorem for quasi-periodic reversible mappings

We assume that f : R3 → R are of class Cp, and define

|x| = max{|x1|, |x2|, |x3|}, x = (x1, x2, x3) ∈ R
3,

|f |R3 = sup
x∈R3

|f(x)|,

‖f‖Cp =
∑

|k|≤p

sup
x∈R3

∣

∣

∣
Dkf(x)

∣

∣

∣
,

if p ≥ 0 is a integer, and

‖f‖Cp =
∑

|k|≤l

sup
0<|x−y|<1

∣

∣Dkf(x)−Dkf(y)
∣

∣

|x− y|s
+

∑

|k|≤l

sup
x∈R3

∣

∣

∣
Dkf(x)

∣

∣

∣
,

if p = l + s, l ≥ 0 is an integer, s ∈ (0, 1), where

Dk = (
∂

∂x1
)k1 ◦ (

∂

∂x2
)k2 ◦ (

∂

∂x3
)k3 , |k| = |k1|+ |k2|+ |k3|, k = (k1, k2, k3) ∈ N

3.

Now we are ready to state our main results.

Theorem 2.4. Assume that the quasi-periodic mapping M given by (1.1) is reversible with respect
to the involution G : (x, y) → (−x, y), that is, M ◦ G ◦ M = G. Given p = 2m + 1 + µ with
0 < µ ≪ 1, we suppose that f, g : R × B(r0) → R are Cp and Cp+m, respectively. Furthermore,
suppose that ω1, ω2, ..., ωm, 2πγ

−1 satisfy the Diophantine condition:

∣

∣

∣
〈k, ω〉

γ

2π
+ l

∣

∣

∣
≥

c0
|k|σ

, k ∈ Z
m \ {0}, l ∈ Z, (2.1)
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where 0 < c0 < 1, σ = m+ µ
100 . Then there exists ε0 > 0 such that for any 0 < ε < ε0, if

‖f‖Cp(R×B(r0)) ≤ ε, ‖g‖Cp+m(R×B(r0)) ≤ ε,

the mapping M has an invariant curve.

Theorem 2.5. Consider a system of non-autonomous differential equations

A :

{

x′ = γ + y + f(x, y, t),

y′ = g(x, y, t)
(x, y, t) ∈ D := R×B(r0)× T. (2.2)

Suppose that the system A is reversible with respect to the involution G : (x, y, t) → (x, y,−t), that
is, for any (x, y, t) ∈ D,

f(−x, y,−t) = f(x, y, t), g(−x, y,−t) = −g(x, y, t).

Given p = 2m+ 1+ µ with 0 < µ≪ 1, we assume that f, g : D → R are Cp and Cp+m, respectively.
Moreover, assume that ω and γ−1 satisfy the Diophantine condition:

|〈k, ω〉γ + l| ≥
c0
|k|σ

, k ∈ Z
m \ {0}, l ∈ Z, (2.3)

where 0 < c0 < 1, σ = m+ µ
100 . Then there exists ε0 > 0 such that for any 0 < ε < ε0, if

‖f‖Cp(D) ≤ ε, ‖g‖Cp+m(D) ≤ ε,

the system A has an invariant curve.

Remark 2.6. The first equation of system (2.2) can be replaced by γ+h(y)+f(x, y, t) with h′(y) >
0.

2.3. The small twist theorem

In this section, we are ready to give a useful small twist theorem which is a variant of the

invariant curve theorem (Theorem 2.4) for the quasi-periodic reversible mapping M .

In many applications, one may meet the so called small twist mappings. We consider the

following reversible mappings M1 :







x1 = x+ γ + δy + δf(x, y; δ),

y1 = y + δg(x, y; δ),
(2.4)

where functions f and g are quasi-periodic in x with the frequency ω = (ω1, ω2, ..., ωm). f(x, y, 0) =

g(x, y, 0) = 0, 0 < δ < 1 is a small parameter.

Theorem 2.7. Assume that the quasi-periodic mapping M1 is reversible with respect to the invo-
lution G : (x, y) → (−x, y), that is, M1 ◦ G ◦M1 = G. Given p = 2m + 1 + µ with 0 < µ ≪ 1,
we suppose that f, g : R × B(r0) → R are Cp and Cp+m, respectively. Furthermore, suppose that
ω1, ω2, ..., ωm, 2γ

−1π satisfy the Diophantine condition (2.1). Then there are two positive numbers
∆0 and ε0 such that if 0 < δ < ∆0 and

‖f‖Cp(R×B(r0)) ≤ ε0, ‖g‖Cp+m(R×B(r0)) ≤ ε0, (2.5)
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the mapping M1 has an invariant curve.

Remark 2.8. Theorem 2.7 is the so called small twist theorem. The proof of this theorem when
f, g are real analytic can be found in [20], as far as we all know, there is no proof if these functions
are Cp smooth. It is not a direct consequence of Theorem 2.4, but one can use the same procedure
in the proof of Theorem 2.4 to prove it. Thus we omit the proof of Theorem 2.7.

Remark 2.9. The above results is also true for the following quasi-periodic reversible mapping M2:

{

x1 = x+ γ + δh(y) + δf(x, y; δ),

y1 = y + δg(x, y; δ),
(2.6)

with h′(y) > 0. That is to say, assume the conditions of Theorem 2.7 hold, then there exist two
positive numbers ∆0 and ε0, such that if 0 < δ < ∆0 and

‖f‖Cp(R×B(r0)) ≤ ε0, ‖g‖Cp+m(R×B(r0)) ≤ ε0, (2.7)

the mapping M2 has an invariant curve.

In the following, we are going to give a variant of the small twist theorem. Consider a one-

parameter family of mappings {Mδ}δ∈[0,1] with Mδ : R × B(r0) → R × R. Mδ can be described in

the form:






x1 = x+ γ + δl1(x, y) + δf(x, y, δ),

y1 = y + δl2(x, y) + δg(x, y, δ),
(2.8)

where f(x, y, 0) = g(x, y, 0) = 0, l1, l2, f, g are quasi-periodic in x with the frequency ω = (ω1, ω2, ..., ωm).

0 < δ < 1 is a small parameter.

Since l1 and l2 depend on the angle variable x, it seems that one cannot use this result directly to

infer the existence of invariant curves of mappingMδ. However, if f, g satisfy some further conditions

and under series of attempts, we can construct a change of variables such that the original mapping

Mδ is transformed into a new one, which has the same form as M2. At the same time, the new

mapping meets all conditions of Remark 2.9. More precisely, we will prove the following results.

Theorem 2.10. Assume that the quasi-periodic mapping Mδ is reversible with respect to the invo-
lution G : (x, y) → (−x, y), that is, Mδ ◦ G ◦Mδ = G. Given p = 2m + 1 + µ with 0 < µ ≪ 1,
we suppose that f : R × B(r0) → R are Cp and l1, l2, g : R × B(r0) → R are Cp+m. Furthermore,
Suppose that ω1, ω2, ..., ωm, 2γ

−1π satisfy the Diophantine condition (2.1). In the meanwhile,

lim
T→∞

1

T

∫ T

0

∂l1
∂y

(x, y)dx > 0. (2.9)

Then there are two positive numbers ∆̄0 and ε such that if 0 < δ < ∆̄0 and

‖f‖Cp(R×B(r0)) ≤ ε, ‖g‖Cp+m(R×B(r0)) ≤ ε, (2.10)

the mapping Mδ has an invariant curve.
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3. Approximation Lemma

In this section, we will give a well known and fundamental approximation results, which is used

in the iterative process.

First we define the kernel function

K(w) =
1

(2π)l

∫

Rl

K̂(ξ)ei〈w,ξ〉dξ, w ∈ C
l,

where K̂ is a C∞ function with compact support, contained in the ball |ξ| ≤ a with a constant

a > 0, that satisfies

∂kK̂(0) =







1, if k = 0,

0, if k 6= 0.

Lemma 3.1. (Jackson-Moser-Zehnder) Let f(w) ∈ Cp(Rl) for some p > 0 with finite Cp norm over
R
l. For any δ > 0, define

(Sδf)(w) = δ−l

∫

Rl

K
(w − w∗

δ

)

f(w∗)dw∗. (3.1)

Then there exists a constant c ≥ 1 depending only on p and l such that for any δ > 0, the function
(Sδf)(w) is real analytic on C

l, and for any k ∈ N
l with |k| ≤ p, one has

sup
w∈Πl

δ

∣

∣

∣

∣

∣

∣

∂k(Sδf)(w)−
∑

|λ|≤p−|k|

∂λ+k(Sδf)(Rew)

λ!
(iImw)λ

∣

∣

∣

∣

∣

∣

≤ C‖f‖Cpδp−|k|,

and for all 0 < δ < δ′,

sup
w∈Πl

δ

∣

∣

∣
∂k(Sδ′f)(w)− ∂k(Sδf)(w)

∣

∣

∣
≤ C‖f‖Cpδ′p−|k|.

Moreover, the Hölder norms of Sδf satisfy, for all 0 ≤ p′ ≤ p ≤ p′′,

‖Sδf − f‖Cp′ ≤ C‖f‖Cpδp−p′ , ‖Sδf‖Cp′′ ≤ C‖f‖Cpδp−p′′ .

Finally, the function Sδf preserves periodicity, that is, if f is T -periodic in any of its variables
wj(1 ≤ j ≤ l), so is Sδf .

See [1, 19, 23] for the proof of Lemma 3.1.

Lemma 3.2. Let l = 3 in Lemma 3.1, assume that f(x, y, t) ∈ Cp is a quasi-periodic function
with the frequency ω = (ω1, ω2, ..., ωm). Then for any δ > 0, there exists a holomorphic function
Sδf : C× C× T → C, Sδf(R

3) ⊆ R such that the following inequalities











|Sδf |Dδ
≤ C‖f‖R3 ,

|Sδf − f |R3 ≤ C‖f‖Cpδp,

|Sδf − Sδ′f |Dδ
≤ C‖f‖Cpδ′p

(3.2)

7



hold for 0 < δ < δ′, where Dδ = Rδ × Rδ × Tδ,Rδ = {x ∈ C : |Imx| < δ},Tδ = {t ∈ (C/2πZ) :
|Imt| < δ}. Moreover, for (x, y, t) ∈ R× R× T,

• if f(−x, y,−t) = f(x, y, t), then

Sδf(−x, y,−t) = Sδf(x, y, t); (3.3)

• if f(−x, y,−t) = −f(x, y, t), then

Sδf(−x, y,−t) = −Sδf(x, y, t); (3.4)

Proof Since that f(x, y, t) is quasi-periodic in θ with the frequency ω = (ω1, ω2, ..., ωm), from

Definition 2.1, there exists a corresponding shell function

F (θ, y, t) = F (θ1, θ2, ..., θm, y, t), θ = (θ1, θ2, ..., θm),

which is 2π-periodic in θj(j = 1, 2, ...,m) such that f(x, y, t) = F (ω1x, ω2x, ..., ωmx, y, t). Since

f(x, y, t) ∈ Cp(R3), it yields F ∈ Cp(Rm+2). From Lemma 3.1, there exists a real analytic function

SδF (θ1, θ2, ..., θm, y, t) which is 2π-periodic in θj(j = 1, 2, ...,m) and t. It means that there is a real

analytic and quasi-periodic function Sδf(x, y, t) with the frequency ω = (ω1, ω2, ..., ωm). The proof

of inequalities of (3.2) is similar to Lemma 2.11 in [5], here we omit it.

Let w = (w1, w2, w3) ∈ R
3, choose the kernel function K̂(w) such that

K̂(−w1, w2,−w3) = K̂(w1, w2, w3), ∀(w1, w2, w3) ∈ R
3.

By the definition of K, it is easy to obtain that

K(−w1, w2,−w3) = K(w1, w2, w3).

Since

(Sδf)(x, y, t) = δ−3

∫

R3

K
(

δ−1(x− x̃, y − ỹ, t− t̃)
)

f(x̃, ỹ, t̃)dx̃dỹdt̃,

(Sδf)(−x, y,−t) = δ−3

∫

R3

K
(

δ−1(−x− x̃, y − ỹ,−t− t̃)
)

f(x̃, ỹ, t̃)dx̃dỹdt̃

= δ−3

∫

R3

K
(

δ−1(x+ x̃, y − ỹ, t+ t̃)
)

f(x̃, ỹ, t̃)dx̃dỹdt̃

= δ−3

∫

R3

K
(

δ−1(x− x̃∗, y − ỹ∗, t− t̃∗)
)

f(−x̃∗, ỹ∗,−t̃∗)dx̃∗dỹ∗dt̃∗

= δ−3

∫

R3

K
(

δ−1(x− x̃∗, y − ỹ∗, t− t̃∗)
)

f(x̃∗, ỹ∗, t̃∗)dx̃∗dỹ∗dt̃∗

= (Sδf)(x, y, t).

Hence, (3.3) holds. According to the same process, we can also obtain that (3.4) holds. Thus we

complete the proof of this Lemma. �

Consider a R-value function f : D → R. By Whitney’s extension theorem, we can find a R-value

8



function f̃ : R×R× T → R, such that f̃ |D = f and

‖f̃‖Ck(R×R×T) ≤ C‖f‖Ck(D), ∀k ∈ N, k ≤ p.

Fix a sequence of fast decreasing sn ↓ 0, n ∈ Z and s0 ≤
1
2 . Let δ = sn, from Lemma 3.2, there

exists a sequence {fn(w)}∞n=0, w = (x, y, t), where

fn(w) = (Ssn f̃)(w).

Moreover, fn(w) obey the following properties:

(i) : fn(w)(n = 0, 1, ...) are real analytic and quasi-periodic functions with the frequency ω =

(ω1, ω2, ..., ωm) on the complex domain Dsn = Rsn × Rsn × Tsn . In the sequel, denote Dsn as Dn

for short.

(ii) : fn(w)(n = 0, 1, ...) satisfy the following inequalities

sup
w∈D0

|f0(w)| ≤ C‖f‖Cp(D),

sup
w∈Dn

|fn(w)− f(w)| ≤ C‖f‖Cp(D)s
p
n,

sup
w∈Dn+1

|fn+1(w)− fn(w)| ≤ C‖f‖Cp(D)s
p
n,

where constant C depend on only m and p.

Let

f0(w) = f0(w), fn+1(w) = fn+1(w) − fn(w),

we have

f(w) = f0(w) +

∞
∑

n=0

(

fn+1(w)− fn(w)
)

=

∞
∑

n=0

fn(w), w ∈ D.

By Lemma 3.2, if f(−x, y,−t) = f(x, y, t), then

fn(−x, y,−t) = fn(x, y, t);

if f(−x, y,−t) = −f(x, y, t), then

fn(−x, y,−t) = −fn(x, y, t).

4. The iteration process

In this section, we are devoted to present an iteration process leading to the proof of Theorem

2.4 and 2.5. Before we describe the iteration process, we set up some constants and notations.

9



4.1. Constants and Notations

(i) : Given constant 0 < µ≪ 1, denote σ = m+ µ
100 , µ̃ = µ

100(2τ+1+µ) and p = 2m+ 1 + µ;

(ii) :


















ε0 = ε, εn = ε(1+µ̃)n ,

sn = ε
1

p
n , rn = s

m+1+ µ
10

n , τn = ε−(1+µ̃)n−1·(1+m
p
)µ̃,

sjn = sn − j
100p (sn − sn+1), rjn = rn − j

100p (rn − rn+1);

(iii) : BC(r) = {y ∈ C : |y| ≤ r, r ≥ 0};

(iv) : D(s, r) = Rs × BC(r)× Ts.

We use a norm definition ‖f‖s,r = sup
w=(x,y,t)∈D(s,r)

|f(w)|.

Now we are going back to the system (2.2). By the discussion of previous section, the system

(2.2) can turn into














x′ = ω + y +
∞
∑

n=0
fn(x, y, t),

y′ =
∞
∑

n=0
gn(x, y, t),

(4.1)

where functions fn, gn : Dn → C are real function and quasi-periodic with the frequency ω =

(ω1, ω2, ..., ωm), satisfying

‖fn‖sn,rn ≤ Cε · εn−1, ‖gn‖sn,rn ≤ Cε · εn−1s
m
n−1. (4.2)

Moreover,

fn(−x, y,−t) = fn(x, y, t), gn(−x, y,−t) = −gn(x, y, t), ∀(x, y, t) ∈ D(sn, rn). (4.3)

4.2. Iteration Lemma

Lemma 4.1. Assume that we have n coordinate changes ∆Φ1,∆Φ2, ...,∆Φn. ∆Φj : D(sj, rj) →
D(sj−1, rj−1)(j = 1, 2, ..., n) has the form

x = ξ + uj(ξ, η, t), y = η + vj(ξ, η, t), (4.4)

where uj , vj are real analytic and quasi-periodic in ξ with the frequency ω such that Φj is G−invariant
with respect to G(ξ, η, t) = (−ξ, η,−t). Moreover,

‖uj‖sj ,rj ≤ Cε · τn−1εn−1s
−(m+ 11µ

100
)

n−1 , (4.5)

‖vj‖sj ,rj ≤ Cε · τn−1εn−1s
− µ

100

n−1 . (4.6)

Under the transformation Φn = ∆Φ1 ◦∆Φ2 ◦ · · · ◦∆Φn, the system

An−1 :



















x′ = γ + y +
n−1
∑

j=0
fj(x, y, t),

y′ =
n−1
∑

j=0
gj(x, y, t)

(4.7)
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is changed into

(∂Φn)
−1An−1 ◦ Φn :

{

ξ′ = γ + η + f̄n(ξ, η, t),

η′ = ḡn(ξ, η, t),
(4.8)

where f̄n, ḡn have the following properties:
(i) : f̄n, ḡn are real analytic and quasi-periodic in ξ with the frequency ω;
(ii) : f̄n, ḡn has the estimates

‖f̄n‖sn,rn ≤ Cε · εn−1, ‖ḡn‖sn,rn ≤ Cε · εn−1s
m
n−1; (4.9)

(iii) :
f̄n(−ξ, η,−t) = f̄n(ξ, η, t), ḡn(−ξ, η,−t) = −ḡn(ξ, η, t). (4.10)

Then there exists a coordinate change ∆Φn+1 : D(sn+1, rn+1) → D(sn, rn), which has the form

x = ξ + un+1(ξ, η, t), y = η + vn+1(ξ, η, t),

where un+1, vn+1 are real analytic and quasi-periodic in ξ with the frequency ω such that ∆Φn+1 is
G−invariant with respect to G(ξ, η, t) = (−ξ, η,−t). Moreover,

‖un+1‖sn+1,rn+1
≤ Cε · τnεns

−(m+ 11µ
100

)
n , (4.11)

‖vn+1‖sn+1,rn+1
≤ Cε · τnεns

− µ
100

n . (4.12)

Under the transformation ∆Φn+1, the modified system of (4.8):

An :

(

x′

y′

)

=

(

γ + y + f̄n(x, y, t)
ḡn(x, y, t)

)

+ (∂Φn)
−1(fn, gn) ◦ Φn (4.13)

is changed into

(∂∆Φn+1)
−1An ◦∆Φn+1 :

{

ξ′ = γ + η + f̄n+1(ξ, η, t),

η′ = ḡn+1(ξ, η, t),
(4.14)

where f̄n, ḡn obey the conditions (i)− (iii) by replacing n by n+ 1. Then under the transformation
Φn+1 = Φn ◦∆Φn+1, the system An is changed into

(∂Φn+1)
−1An ◦Φn+1 = (∂∆Φn+1)

−1An ◦∆Φn+1. (4.15)

4.3. The proof of Iteration Lemma

In this section, we will first guarantee the existence of the change ∆Φn+1 by determining the

unknown functions un+1(ξ, η, t), vn+1(ξ, η, t), then estimate un+1(ξ, η, t), vn+1(ξ, η, t) and new dis-

turbances.

(I) First of all, define

(f̂n, ĝn) = (f̄n, ḡn) + (∂Φn)
−1(fn, gn) ◦ Φn,

then (4.13) can be written as

An : (x′, y′) =
(

γ + y + f̂n(x, y, t), ĝn(x, y, t)
)

. (4.16)

11



By the assumptions and the condition (i) in the iteration lemma, we derive that

(1) : f̂n, ĝn are real analytic and quasi-periodic in ξ with the frequency ω;

By the assumptions and the condition (ii) in the iteration lemma, it is easy to obtain that

‖∆Φn − Id‖sn,rn ≤ Cε · τn−1εn−1s
−(m+ 11µ

100
)

n−1 . (4.17)

Observe that

‖∂Φn‖sn,rn =‖(∂∆Φ1 ◦∆Φ2 ◦ · · · ◦∆Φn)(∂∆Φ2 ◦ · · · ◦∆Φn) · · · (∂∆Φn)‖sn,rn

≤

n
∏

j=1

(

1 + Cε · τj−1εj−1s
−(m+ 11µ

100
)

j−1 max{s−1
j , r−1

j }
)

≤

n
∏

j=1

(1 + Cε
39µ
50p

j−1) ≤ C.

(4.18)

Combing with the definition of f̂n, ĝn, it yields that

(2) : f̂n, ĝn has the estimates

‖f̂n‖sn,rn ≤ Cε · εn−1, ‖ĝn‖sj ,rj ≤ Cε · εn−1s
m
n−1; (4.19)

By the conditions (iii) and (4.3), we have

(3) :

f̂n(−x, y,−t) = f̂n(x, y, t), ĝn(−x, y,−t) = −ĝn(x, y, t). (4.20)

Assume that the change ∆Φn+1 = Φ has the form:







x = ξ + u(ξ, η, t),

y = η + v(ξ, η, t)
(4.21)

and its inverse Ψ = Φ−1 is of the form:







ξ = x+ u∗(x, y, t),

η = y + v∗(x, y, t)
(4.22)

where u, v, u∗, v∗ are determined later. Differentiating (7.9), we have that

ξ′ = x′ + ∂xu
∗ · x′ + ∂yu

∗ · y′ + ∂tu
∗, η′ = y′ + ∂xv

∗ · x′ + ∂yv
∗ · y′ + ∂tv

∗. (4.23)
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Inserting (4.16) into (4.23), we get

ξ′ =γ + η

+γ∂xu
∗ + ∂tu

∗ + f̂n(x, y, t)− v∗(x, y, t)

+∂yu
∗ · ĝn(x, y, t) + ∂xu

∗ · f̂n(x, y, t)

+∂xu
∗ · y

(4.24)

and
η′ =γ∂xv

∗ + ∂tv
∗ + ĝn(x, y, t)

+∂yv
∗ · ĝn(x, y, t) + ∂xv

∗ · f̂n(x, y, t)

+∂xv
∗ · y.

(4.25)

Consider homological equations:







γ∂xu
∗ + ∂tu

∗ + f̂n(x, y, t) − v∗(x, y, t) = 0,

γ∂xv
∗ + ∂tv

∗ + ĝn(x, y, t) = 0.
(4.26)

We first solve the function v∗ from the second equation of (4.26). If we write ĝn into the Fourier

series of the type:

ĝn(x, y, t) =
∑

(k,l)∈Zm+1

ĝ(k,l)n (y)ei(〈k,ω〉x+lt), (4.27)

where ĝ
(k,l)
n (y) is the (k, l)-Fourier coefficient of ĝn(x, y, t) with respect to variable (x, t) and

ĝ(k,l)n (y) = lim
T→∞

1

2πT

∫ T

0

∫ 2π

0
ĝn(x, y, t)e

−i(〈k,ω〉x+lt)dtdx.

By (4.20), we have ĝ
(0,0)
n (y) = 0. Assume that

v∗(x, y, t) =
∑

(k,l)∈Zm+1

v∗(k,l)(y)e
i(〈k,ω〉x+lt), (4.28)

Substituting (4.27) and (4.28) into the second equation of (4.26) and comparing the coefficient

of ei(〈k,ω〉x+lt), it follows that for (k, l) ∈ Z
m+1 \ {(0, 0)},

v∗(k,l)(y) = i
ĝ
(k,l)
n (y)

〈k, ω〉γ + l
,

where v∗(0,0)(y) will determined later.

Now we write f̂n into the Fourier series of the type:

f̂n(x, y, t) =
∑

(k,l)∈Zm+1

f̂ (k,l)n (y)ei(〈k,ω〉x+lt). (4.29)
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In order to solve the first equation of (4.26), we have to choose v∗(0,0)(r) such that

−v∗(0,0)(y) + f̂ (0,0)n (y) = 0, (4.30)

so f̂
(0,0)
n (y) = v∗(0,0)(y).

In the same way, we derive

u∗(x, y, t) =
∑

(k,l)∈Zm+1\{(0,0)}

u∗(k,l)(y)e
i(〈k,ω〉x+lt), (4.31)

where u∗(0,0)(y) = 0 and

u∗(k,l)(y) = i
f̂
(k,l)
n (y)− v∗(k,l)(y)

〈k, ω〉γ + l
, (k, l) ∈ Z

m+1 \ {(0, 0)}.

(II) Estimate u∗(θ, r, t) and v∗(θ, r, t).

Before we give the estimates of u∗(θ, r, t) and v∗(θ, r, t), some technical preparations have to be

made.

Lemma 4.2. (Lemma 3.11 in [17]) Let ω̄ = (ω1, ω2, ..., ωq) ∈ R
q satisfying the inequalities D(k, ω̄) ≥

ψ(|k|), where D(k, ω̄) = min |〈(k, l), ω̄〉| , k ∈ Z
q−1 \ {0}, ψ is an approximation function. Then for

ν = 1, 2, ..., we have
∑

k̄∈Zq

0<|k̄|≤ν

1

|〈k̄, ω̄〉|2
≤
π2

8

3q+2

ψ2(ν)
,

where k̄ = (k, l).

Choose

ω̄ = (ω1γ, ω2γ, ..., ωmγ, 1), q = m+ 1, ψ(t) = c0t
−σ,

k = (k1, k2, ..., km) ∈ Z
m \ {0}, l ∈ Z, k̄ = (k, l).

By Lemma 4.2 and the Diophantine conditions (2.3), we obtain

∑

(k,l)∈Zm+1

0<|k|+|l|≤ν

1

|〈k, ω〉γ + l|2
≤
π2

8
3m+3c−2

0 ν2σ ≤ Cν2σ.

Lemma 4.3. Assume f(x, t) : {(x, t) ∈ C × T : |Imx| < s, |Imt| < s} → C be a real analytic
and quasi-periodic function with the frequency ω = (ω1, ω2, ..., ωm). Then for k = (k1, k2, ...km) ∈
Z
m, l ∈ Z, we have the estimate

∑

(k,l)∈Zm+1

|f(k,l)|
2e2s(|k|+|l|) ≤ 2m+1‖f‖2s,
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where

f(k,l) =
1

(2π)m+1

∫

Tm

∫ 2π

0
F (θ, t)e−i(〈k,θ〉+lt)dtdθ.

are the Fourier coefficients of f , F is the shell function of f(x, ·).

Proof Let k̄ = (k, l) ∈ Z
m+1 and θ̄ = (θ, t) ∈ C

m+1, we have

∑

(k,l)∈Zm+1

|f(k,l)|
2e2s(|k|+|l|) =

∑

k̄∈Zm+1

|fk̄|
2e2s|k̄|

and

f(k,l) = fk̄ =
1

(2π)m+1

∫

Tm+1

F (θ̄)e−i〈k̄,θ̄〉dθ̄.

Set x̄ = (x, t) and for every λ = (λ1, λ2, ..., λm, λm+1) ∈ R
m+1 with |λ| = max

1≤j≤m+1
|λj | < s,

define function x̄+ iλ 7→ f(x̄+ iλ), which domain is s− |λ|, and its Fourier coefficient are

fk̄(λ) =
1

(2π)m+1

∫

Tm+1

F (θ̄ + iλ)e−i〈k̄,θ̄〉dθ̄.

From Bessel’s inequality,

∑

k̄∈Zm+1

|fk̄(λ)|
2 ≤

1

(2π)m+1

∫

Tm+1

|F (θ̄ + iλ)|2dθ̄.

Hence
∑

k̄∈Zm+1

|fk̄(λ)|
2 ≤ ‖f‖2s, |λ| < s. (4.32)

Define a new function

λ 7→ fk̄(λ)e
〈k̄,λ〉 =

1

(2π)m+1

∫

Tm+1

F (θ̄ + iλ)e−i〈k̄,θ̄+iλ〉dθ̄,

then

∂

∂λj
(fk̄(λ)e

〈k̄,λ〉) =
1

(2π)m+1

∫

Tm+1

i
∂

∂θ̄j

(

F (θ̄ + iλ)e−i〈k̄,θ̄+iλ〉
)

dθ̄, j = 1, 2, ...,m + 1.

Since F (θ̄ + iλ)e−i〈k̄,θ̄+iλ〉 is 2π-periodic in θ̄j(j = 1, 2, ...,m + 1), it follows

∂

∂λj
(fk̄(λ)e

〈k̄,λ〉) = 0.

Thus the function fk̄(λ)e
〈k̄,λ〉 is independent of λ, and

fk̄ = fk̄(0) = fk̄e
〈k̄,λ〉.
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Consequently,

|fk̄(λ)|
2e2〈k̄,λ〉 = |fk̄|

2,

and according to (4.32), we have

∑

k̄∈Zm+1

|fk̄|
2e−2〈k̄,λ〉 =

∑

k̄∈Zm+1

|fk̄(λ)|
2 ≤ ‖f‖2s, |λ| < s. (4.33)

Define ei ∈ R
m+1(i = 1, 2, ..., 2m+1) which have components ±1, and

Zi = {k̄ ∈ Z
m+1 : 〈k̄, ei〉 = −|k̄|}.

It is easy to see that
2m+1

⋃

i=1

Zi = Z
m+1. (4.34)

Choose λ = ζei(i = 1, 2, ..., 2m+1) in (4.33), we have

∑

k̄∈Zi

|fk̄|
2e2ζ|k̄| ≤ ‖f‖2s, 0 < ζ < s. (4.35)

Passing to the limit ζ → s yields
∑

k̄∈Zi

|fk̄|
2e2s|k̄| ≤ ‖f‖2s. (4.36)

Combing (4.34) with (4.36), we have

∑

k̄∈Zm+1

|fk̄|
2e2s|k̄| ≤ 2m+1‖f‖2s. (4.37)

We complete the proof of this lemma. �

Since function ĝn(x, y, t) is real analytic and quasi-periodic with the frequency ω = (ω1, ω2, ..., ωm),

as an application of Lemma 4.3 to ĝn(x, y, t) on D(sn, rn) yields that

∑

(k,l)∈Zm+1\{(0,0)}

|ĝ(k,l)n (y)|2e2sn(|k|+|l|) ≤ C‖ĝn‖
2
sn,rn

. (4.38)

In the following, we will estimate u, v, u∗ and v∗.

Firstly, we estimate the sum

Gν(y) =
∑

(k,l)∈Zm+1

0<|k|+|l|≤ν

∣

∣

∣

∣

∣

ĝ
(k,l)
n (y)

〈k, ω〉γ + l

∣

∣

∣

∣

∣

e(|k|+|l|)sn, ν = 1, 2, · · · .
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In view of Cauchy-Schwarz inequality and Lemma 4.2, we have

Gν(y) ≤

√

√

√

√

√

∑

(k,l)∈Zm+1

0<|k|+|l|≤ν

∣

∣

∣
ĝ
(k,l)
n (y)

∣

∣

∣

2
e2(|k|+|l|)sn ·

√

√

√

√

√

∑

(k,l)∈Zm+1

0<|k|+|l|≤ν

|〈k, ω〉γ + l|−2

≤C‖ĝn‖sn,rnν
σ.

Set G0(y) = 0, we obtain

∑

(k,l)∈Zm+1

0<|k|+|l|≤N

∣

∣

∣

∣

∣

ĝ
(k,l)
n (y)

〈k, ω〉γ + l

∣

∣

∣

∣

∣

e(|k|+|l|)(sn−ρn) = (1− e−ρn)

N
∑

ν=1

Gν(y)e
−νρn +GN (y)e−(N+1)ρn ,

where ρn = 1
200p(sn − sn+1).

Taking N → ∞, we derive

∑

(k,l)∈Zm+1\{(0,0)}

∣

∣

∣

∣

∣

ĝ
(k,l)
n (y)

〈k, ω〉γ + l

∣

∣

∣

∣

∣

e(|k|+|l|)(sn−ρn)

≤ (1− e−ρn)
∞
∑

ν=1

Gν(y)e
−νρn

≤ C‖ĝn‖sn,rn

∞
∑

ν=1

νσ
(

e−νρn − e−(ν+1)ρn
)

≤ C‖ĝn‖sn,rnρ
−σ
n ≤ C‖ĝn‖sn,rns

−σ
n .

Hence, combing with (4.19),(4.28) and (4.30) , it follows that

‖v∗(x, y, t)‖s1n,rn ≤ C‖ĝn‖sn,rns
−σ
n

≤ Cε · εn−1s
m
n−1s

−σ
n ≤ Cε · τnεns

− µ
100

n .
(4.39)

According to the same process, we obtain

∑

(k,l)∈Zm+1\{(0,0)}

|f̂ (k,l)n (y)|2e2sn(|k|+|l|) ≤ C‖f̂n‖
2
sn,rn

and
‖u∗(x, y, t)‖s2n,rn ≤ C‖v∗(x, y, t)‖sn,rns

−σ
n + C‖f̂n(x, y, t)‖sn,rns

−σ
n

≤ Cε · τnεns
−(σ+ µ

100
)

n .
(4.40)

Using Cauchy estimate on the derivatives of u∗(x, y, t) and v∗(x, y, t), we get the following estimates:

‖∂kx∂
l
yu

∗‖s2n,r1n ≤ Cε · τnεns
−(σ+ µ

100
)

n max{r−1
n , s−1

n }, (4.41)
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‖∂kx∂
l
yv

∗‖s2n,r1n ≤ Cε · τnεns
− µ

100
n max{r−1

n , s−1
n }, (4.42)

where k + l = 1, k ≥ 0 and l ≥ 0.

By the implicit function theorem, we know that ∆Φn+1 = Φ = Ψ−1 :







x = ξ + u(ξ, η, t),

y = η + v(ξ, η, t),
(4.43)

where u, v are real analytic, and by Lemma 2.3, it implies that u, v are quasi-periodic with the

frequency ω = (ω1, ω2, ..., ωm). Moreover,

‖u(ξ, η, t)‖s4n,r2n ≤ Cε · τnεns
−(m+ 11µ

100
)

n , (4.44)

‖v(ξ, η, t)‖s4n ,r2n ≤ Cε · τnεns
− µ

100
n , (4.45)

and

∆Φn+1

(

D(sn+1, rn+1)
)

⊂ ∆Φn+1

(

D(s4n, r
2
n)
)

⊂ D(sn, rn).

Next, we are in position to prove the change ∆Φn+1 is G−invariant with respect to G(ξ, η, t) =

(−ξ, η,−t).

By means of (4.20), (4.28) and (4.31), we have

u∗(−x, y,−t) = −u∗(x, y, t), v∗(−x, y,−t) = v∗(x, y, t).

Combing with Φ ◦Ψ = id, it follows that

u∗(x, y, t) + u
(

x+ u∗(x, y, t), y + v∗(x, y, t), t
)

= 0,

and

v∗(x, y, t) + v
(

x+ u∗(x, y, t), y + v∗(x, y, t), t
)

= 0.

By the discussion as above, it yields that

u(−ξ, η,−t) = −u(ξ, η, t), v(−ξ, η,−t) = v(ξ, η, t), (4.46)

where (ξ, η, t) ∈ D(s4n, r
2
m). Therefore the transformation ∆Φn+1 is G−invariant with respect to

G(ξ, η, t) = (−ξ, η,−t).

(III) Estimate the new nonlinear parts.
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From (4.24) and (4.25), the new perturbations f̄n+1(ξ, η, t) and ḡn+1(ξ, η, t) are

∂yu
∗ · ĝn(x, y, t) + ∂xu

∗ · f̂n(x, y, t) (4.47)

+ ∂xu
∗ · y, (4.48)

∂yv
∗ · ĝn(x, y, t) + ∂xv

∗ · f̂n(x, y, t) (4.49)

+ ∂xv
∗ · y, (4.50)

repectively. observe f̄n+1(ξ, η, t) and ḡn+1(ξ, η, t) and by means of Lemma 2.3, it is obvious that

f̄n+1(ξ, η, t) and ḡn+1(ξ, η, t) are real analytic and quasi-periodic with the frequency ω = (ω1, ω2, ..., ωm).

First of all, we estimate f̄n+1(ξ, η, t).

For (4.47), by (4.19), (4.41) and regarding (4.47) as a function of (x, y, t), we have

‖(4.47)(x, y, t)‖s4n,r2n ≤
1

2
Cε · εn.

For (4.48), by Cauchy estimate and in view of (4.41), we have

‖(4.48)(x, y, t)‖sn+1,rn+1
≤ ‖∂xu

∗ · (η − v∗)‖sn+1,rn+1

≤ ‖∂xu
∗ · η‖sn+1,rn+1

+ ‖∂xu
∗‖s4n,r2n‖v

∗‖s4n,r2n

≤ Cε · τnεns
−(σ+ µ

100
)

n s−1
n rn+1

+ Cε2 · τnεns
−(σ+ µ

100
)

n s−1
n τnεns

− µ
100

n

≤
1

2
Cε · εn.

Hence,

‖f̄n+1(ξ, η, t)‖sn+1,rn+1
≤ Cε · εn.

In a similar way, we see that

‖ḡn+1(ξ, η, t)‖sn+1,rn+1
≤ Cε · εns

m
n .

Therefore, we complete the proof of inequality (4.9) with replacing n by n+ 1.

By the definition of f̄n+1(ξ, η, t), ḡn+1(ξ, η, t) and combining with (4.20) and (4.46), we verify

that f̄n+1(ξ, η, t) and ḡn+1(ξ, η, t) meet (4.10) with replacing n by n+ 1.

Consequently, we prove the Iteration Lemma.

5. The proof of Theorem 2.4 and Theorem 2.5

Before we verify the Theorem 2.4 and Theorem 2.5, we show that there is a convergent change

of variables, transforming the given system (2.2) into the linearized normal form

ξ′ = γ + η, η′ = 0. (5.1)
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On the one hand, by the discussion of the previous section, we know there exists a transformation

sequence {Φn}, the convergence of which is decided by their nonlinear parts

ūn = u1 + u2 + · · ·+ un,

v̄n = v1 + v2 + · · ·+ vn.

From (4.17) and (4.18), we have ‖ūn‖+‖v̄n‖ → 0 as n→ 0, it implies that there exists a subsequence

of {Φn}, which converges to a transformation Φ∞. Without loss of generality, one can assume the

subsequence is {Φn}, it follows that

lim
n→∞

Φn = Φ∞.

On the other hand, since that ‖f̄n‖sn,rn + ‖ḡn‖sn,rn → 0 as n→ 0, we have that

(∂Φ∞)−1 ·
(

γ + y + f(x, y, t), g(x, y, t)
)

◦Φ∞

= lim
n→∞

(

∂Φn)
−1 · (γ + y + f(x, y, t), g(x, y, t)

)

◦ Φn

= lim
n→∞

(

γ + y + f̄n(ξ, η, t), ḡn(ξ, η, t)
)

=(γ + y, 0).

(5.2)

Let

ψ(x, t) = Φ∞(x, t) = lim
n→∞

Φn(x, 0, t), (x, t) ∈ R× T.

It suffices to prove the fact that ψ(x, t) does exist and is C1. Then ψ(R×{y = 0}×T) is an invariant

tours for the original system (2.2). Denote

Φj = Φj(x, 0, t)

and write

Φn = Φ0 +

j=n
∑

j=1

(Φj − Φj−1).

Then by (4.17) and (4.18), we have

|ψ(x, 0, t) − Id(x, 0)| ≤ |Φ0(x, 0, t) − Id(x, 0)| +

∞
∑

j=1

|Φj − Φj−1| ≤ Cε · ε0s
− µ

100

0 ε
−(1+µ̃)−1·(1+m

p
)µ̃
.

This means that ψ does exist and is C0. Moreover, ψ is quasi-periodic in x with the frequency

ω = (ω1, ω2, ..., ωm) and

ψ = Id+O(ε). (5.3)

In the following, we are ready to prove ψ is injective by the wonderful idea due to Rüssmann [18].

Let γ̃ = (γ, 1). Although the system (2.2) is non-autonomous, it can be rewritten as an autonomous
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one:


















x′ = γ + y + f(x, y, θ),

y′ = g(x, y, θ),

θ′ = 1

(x, y, θ) ∈ D.

Observe that for any w = (x, t) ∈ R × T, ς(w, t) := ψ(w + γ̃t) is the solution to autonomous

differential equation with initial ψ(w). Take w1, w2 ∈ R × T and let η = w1 − w2. Suppose that

ψ(w1) = ψ(w2). By Picard’s existence and uniqueness theorem,

ψ(w1 + γ̃t) = ψ(w2 + γ̃t), t ∈ R.

Since γ̃ is in Diophantine class, the set {γ̃t : t ∈ R} is dense in R× T. So

ψ(w1 + a) = ψ(w2 + a), a ∈ R× T.

Choose a = −w2, we have ψ(0) = ψ(η). Repeating the procedure as above, we have

ψ(lη) = ψ(0), l ∈ Z
+.

From (5.3), it yields that ψ(lη) = O(ε). Taking l → +∞, one has η = 0. Thus ψ is injective.

Moreover, ψ : R × T → ψ(R × T) ⊂ R
2 is a homomorphism. Therefore, ψ(R × T) is an invariant

torus with rational frequency vector γ̃.

Proof of theorem 2.5 To sum up, we see that ψ
(

R×{y = 0}×T
)

is an invariant torus of the

system (2.2).

Proof of theorem 2.4 According to Proposition 4.5 of Sevryuk [20], the mapping (1.1) in

Theorem 2.4 can be regarded as the corresponding Poincaré mapping of system (2.2). The proof is

completed by Theorem 2.5.

6. The proof of Theorem 2.10

The proof is similar to the [9, Theorem 1]. Thus we just give the sketch here.

Since the mapping Mδ is reversible with respect to the involution G : (x, y) → (−x, y) for any

δ ∈ [0, 1], it follows that







l1(x, y) + f(x, y; δ) = l1 ◦G ◦Mδ(x, y) + f
(

G ◦Mδ(x, y); δ
)

,

l2(x, y) + g(x, y; δ) = −l2 ◦G ◦Mδ(x, y)− g
(

G ◦Mδ(x, y); δ
)

,
(6.1)

for any δ ∈ [0, 1] and (x, y) ∈ R×B(r0). Taking δ → 0, it yields that

l1(x, y) = l1(−x− γ, y), l2(x, y) = −l2(−x− γ, y), (x, y) ∈ R×B(r0). (6.2)
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Writting l1 and l2 into the Fourier series of the type:

l1(x, y) =
∑

k∈Zm

l1(k, y)e
i〈k,ω〉x, l2(x, y) =

∑

k∈Zm

l2(k, y)e
i〈k,ω〉x,

with l1(−k, y) = l̄1(k, y), l2(−k, y) = l̄2(k, y).

Combing with (6.2), we obtain

l1(k, y) = l1(−k, y)e
i〈k,ω〉γ , l2(k, y) = −l2(−k, y)e

i〈k,ω〉γ . (6.3)

In particular, from the above discussion and our assumption (2.9), one has

h(y) = l1(0, y) = lim
T→∞

1

T

∫ T

0

∂l1
∂x

(x, y)dx > 0, l2(0, y) = lim
T→∞

1

T

∫ T

0
l2(x, y)dx = 0.

Let

h1(x, y) =
∑

k∈Zm

0<|k|<N

l1(k, y)e
i〈k,ω〉x, h2(x, y) =

∑

k∈Zm

0<|k|<N

l2(k, y)e
i〈k,ω〉x.

It is well known that for any ε′ > 0, there exists a positive integer N depending on ε′, l1, l2 such

that

‖l1(x, y)− h(y)− h1(x, y)‖Cp+m + ‖l2(x, y)− h2(x, y)‖Cp+m < ε′. (6.4)

In what follows, we consider the difference equations:







u(x+ γ, y)− u(x, y) + h1(x, y) = 0,

v(x+ γ, y)− v(x, y) + h2(x, y) = 0.
(6.5)

It is easy to derive that

u(x, y) = −
∑

k∈Zm

0<|k|<N

l1(k, y)

ei〈k,ω〉γ − 1
ei〈k,ω〉x,

v(x, y) = −
∑

k∈Zm

0<|k|<N

l2(k, y)

ei〈k,ω〉γ − 1
ei〈k,ω〉x.

Moreover, by (6.3), we have

u(−x, y) = −u(x, y), v(−x, y) = v(x, y).

Let ζ0(N) = 2N max
0<k≤N

|ei〈k,ω〉γ − 1|−1, then

‖u‖Cp+m + ‖v‖Cp+m ≤ ζ0(N)(‖l1‖Cp+m + ‖l2‖Cp+m).
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Let

R1(x, y) = u(x+ γ, y)− u(x, y) + l1(x, y)− h(y), R2(x, y) = v(x+ γ, y)− v(x, y) + l2(x, y),

then by (6.4), one has that

‖R1‖Cp+m + ‖R2‖Cp+m < ε′.

Define the change of variables Φ by







ξ = x+ δu(x, y),

η = y + δv(x, y).
(6.6)

Then the mapping Mδ can be transformed into Lδ = Φ ◦Mδ ◦Φ
−1 :







ξ1 = ξ + γ + δh(η) + δϕ1 ◦Φ
−1(ξ, η; δ),

η1 = η + δϕ2 ◦ Φ
−1(ξ, η; δ),

(6.7)

where

ϕ1(x, y; δ) = R1(x, y) + u(x1, y1)− u(x+ γ, y) + h(y)− h(η) + f(x, y; δ),

ϕ2(x, y; δ) = R2(x, y) + v(x1, y1)− v(x+ γ, y) + g(x, y; δ).

Note that l1, l2, f, g are quasi-periodic in x with the frequency ω = (ω1, ω2, ..., ωm), by the

definition of ϕ1, ϕ2, ϕ1, ϕ2 are also quasi-periodic in x with the frequency ω = (ω1, ω2, ..., ωm).

Hence ϕ1 ◦Φ
−1, ϕ1 ◦Φ

−1 are also quasi-periodic in x with the frequency ω, which is guaranteed by

the definition Φ and Lemma 2.3. Since Mδ is reversible with respect to G(x, y) → (−x, y) and Φ is

G-invariant, it means that Lδ is reversible with respect to G(ξ, η) → (−ξ, η).

In the following, we are in position to estimate ϕ1 ◦Φ
−1, ϕ1 ◦Φ

−1. Similar to [9], there exists a

constant C1 > 0 such that

‖ϕ1 ◦Φ
−1‖Cp + ‖ϕ2 ◦Φ

−1‖Cp+m ≤ C1(‖ϕ1‖Cp + ‖ϕ2‖Cp+m).

From Lemma 2.2 in [9], it follows that

‖u(x1, y1)− u(x+ γ, y)‖Cp + ‖v(x1, y1)− v(x+ γ, y)‖Cp+m

≤ C2δ
(

‖l1‖Cp+m + ‖l2‖Cp+m + ‖f‖Cp + ‖g‖Cp+m

)

≤ C2δ
(

‖l1‖Cp+m + ‖l2‖Cp+m + 1
)

.

(6.8)

Since f(x, y; 0) = g(x, y; 0) = 0, there is a ∆1 > 0 such that for δ ∈ (0,∆1),

‖f‖Cp + ‖g‖Cp+m < ε.
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According to the above discussion, it follows that

‖ϕ1‖Cp + ‖ϕ2‖Cp+m ≤ C1

(

ε+ ε′ + C2δ
(

‖l1‖Cp+m + ‖l2‖Cp+m + 1
)

+Ω(δ)
)

.

Choose

ε <
1

4C1
ε0, ε′ <

1

4C1
ε0,

where ε0 is given in (2.7).

In view of (2.9), we derive h′(y) > 0. By (6.6), one has that ‖h(η)−h(y)‖ = ‖h(y+δv)−h(y)‖ ≤

Ω(δ), where Ω(δ) is an appropriate modulus of continuity that depends on l1 and v. Due to that

lim
δ→0

Ω(δ) = 0, it means that there is a constant ∆2 such that for δ ∈ (0,∆2),

Ω(δ) <
1

4C1
ε0.

Let

∆̄ = min{∆0,∆1,∆2,
1

4C1C2

(

‖l1‖Cp+m + ‖l2‖Cp+m + 1
)ε0},

where ∆0 is given in Remark 2.9, Then for δ ∈ (0, ∆̄), we have

‖ϕ1 ◦Φ
−1‖Cp + ‖ϕ2 ◦Φ

−1‖Cp+1

≤ C1(‖ϕ1‖Cp + ‖ϕ2‖Cp+m)

≤ ε0.

(6.9)

Thus, for δ ∈ (0, ∆̄),

‖ϕ1 ◦Φ
−1‖Cp ≤ ε0, ‖ϕ2 ◦ Φ

−1‖Cp+m ≤ ε0.

Therefore the mapping Lδ meets all the assumptions of Remark 2.9, and Lδ has invariant curves.

Undoing the change of variables, we derive that the existence of invariant curves of mapping Mδ.

We complete the proof of Theorem 2.10.

7. Application

In this section, we will apply Theorem 2.4 to the equation

x′′ + ϕ(x)f(x′) + ω2x+ g(x) = p(t). (7.1)

Suppose that

(H1): f, g, ϕ ∈ C3m+3 and p ∈ C4m+5 ;

(H2): f and p are even functions, p(t) are quasi-periodic in t with the frequency µ = (µ1, µ2, ..., µm);

(H3): limx→±∞ ϕ(x) =: ϕ(±∞) ∈ R, lim|x|→+∞ x3m+3ϕ(3m+3)(x) = 0;

(H4): limx→±∞ f(x) =: f(+∞) ∈ R, lim|x|→+∞ x3m+3f (3m+3)(x) = 0;
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(H5): limx→±∞ g(x) =: g(±∞) ∈ R, lim|x|→+∞ x3m+3g(3m+3)(x) = 0.

Theorem 7.1. Suppose that (H1)− (H5) hold, and ω satisfies

|〈k, µ〉ω−1 − l| ≥
c0
|k|σ

, (7.2)

where c0 > 0, σ > 0, k ∈ Z \ 0, l ∈ Z. Then for every solution x(t) of (7.1), we have

sup
t∈R

(|x(t)|+ |x′(t)|) < +∞.

In order to obtain the boundedness of all solutions of (7.1), it is sufficient to prove that its

Poincaré mapping can be written as a twist mapping with small enough perturbations. Under some

transformations, we apply Theorem 2.4 to achieve the goal. In the following, we will give the proof

of Theorem 7.1, which is similar to the proof in [8] and [7]. Thus we give the sketch of the proof.

We first rewrite (7.1) as







x′ = −ωy

y′ = ωx+ ω−1ϕ(x)f(ωy) + ω−1g(x) − ω−1p(t).
(7.3)

From (H2), it follows that (7.3) is reversible with respect to the involution G(x, y) = (x,−y).

By polar coordinates change x = r cos θ, y = r sin θ, the system (7.4) is transformed into







r′ = ω−1
(

ϕ(r cos θ)f(ωr sin θ) + g(r cos θ)
)

sin θ − ω−1p(t) sin θ

θ′ = ω + ω−1r−1
(

ϕ(r cos θ)f(ωr sin θ) + g(r cos θ)
)

cos θ − ω−1r−1p(t) cos θ.
(7.4)

Observing that

|ω−1r−1
(

ϕ(r cos θ)f(ωr sin θ) + g(r cos θ)
)

cos θ − ω−1r−1p(t) cos θ| ≤ Cr−1,

for some C > 0, we may consider (7.4) assuming that r(t) > 2Cω−1 for all t ∈ R along a solution

t 7→ (r(t), θ(t)). Therefore,

θ′ ≥
1

2
ω > 0, t ∈ R,

which means that t 7→ θ(t) ia globally invertible. Denoting by θ 7→ t(θ) the inverse function, we

have that θ 7→ (r(t(θ)), t(θ)) solves the system







dr
dθ

= Φ(r, t, θ)

dt
dθ

= Ψ(r, t, θ),
(7.5)

where

Φ(r, t, θ) =
ω−1

(

ϕ(r cos θ)f(ωr sin θ) + g(r cos θ)
)

sin θ − ω−1p(t) sin θ

ω + ω−1r−1
(

ϕ(r cos θ)f(ωr sin θ) + g(r cos θ)
)

cos θ − ω−1r−1p(t) cos θ
,
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Ψ(r, t, θ) =
1

ω + ω−1r−1
(

ϕ(r cos θ)f(ωr sin θ) + g(r cos θ)
)

cos θ − ω−1r−1p(t) cos θ
.

Now noting that the action, angle and time variables are r, t and θ, respectively. Since Ψ(r,−t,−θ) =

Ψ(r, t, θ) and Φ(r,−t,−θ) = −Φ(r, t, θ), we see that system (7.5) is reversible under the transfor-

mation (r, t) 7→ (r,−t).

To estimate error terms, we introduce some notations.

Definition 7.2.

(i) : Assume function f(θ, r, t) is On(r
−j), if f is smooth in (r, t), continue in θ, periodic of period

2π in θ and t, moreover

|rk+j ∂
k+lf

∂rk∂tl
| ≤ C, 0 ≤ k + l ≤ n,

where C is a positive constant.

(ii) : Suppose function f(θ, r, t) is on(r
−j), if f is smooth in (r, t), continue in θ, periodic of period

2π in θ and t, moreover

lim
r→∞

rk+j ∂
k+lf

∂rk∂tl
= 0, 0 ≤ k + l ≤ n,

uniformly in (θ, t).

It is obvious that

Φ(r, t, θ) ∈ O3m+3(1), Ψ(r, t, θ) ∈ O3m+3(1),

and (7.5) can be rewritten as







dr
dθ

= ω−2
(

ϕ(r cos θ)f(ωr sin θ) + g(r cos θ)
)

sin θ − ω−2p(t) sin θ +O3m+3(r
−1)

dt
dθ

= ω−1 − ω−3r−1
(

ϕ(r cos θ)f(ωr sin θ) + g(r cos θ)
)

cos θ + ω−3r−1p(t) cos θ +O3m+3(r
−2).

(7.6)

Since the Poincaré mapping of (7.6) is not sufficiently close to a twist map, we need to transform

(7.6) further.

Let

λ = r + S1(θ, r), t = t,

where

S1(θ, r) = −ω−2

∫ θ

0

(

ϕ(r cosφ)f(ωr sinφ) + g(r cosφ)
)

sinφdφ.

Under this transformation, (7.6) is transformed into







dλ
dθ

= −ω−2p(t) sin θ +O3m+2(λ
−1),

dt
dθ

= ω−1 − ω−3λ−1
(

ϕ(λ cos θ)f(ωλ sin θ) + g(λ cos θ)
)

cos θ + ω−3λ−1p(t) cos θ +O3m+3(λ
−2).

(7.7)

Introduce a transformation

λ = λ, τ = t+ S2(θ, λ),
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where

S2(θ, λ) = ω−3λ−1

∫ θ

0

(

ϕ(λ cos φ)f(ωλ sinφ) cos φ− λJ1(λ)
)

+
(

g(λ cos φ) cos φ− λJ2(λ)
)

dφ,

with

J1(λ) =
1

2πλ

∫ 2π

0
ϕ(λ cos φ)f(ωλ sinφ) cosφdφ,

J2(λ) =
1

2πλ

∫ 2π

0
g(λ cos φ) cos φdφ.

By this transformation, (7.7) is transformed into







dλ
dθ

= −ω−2p(τ) sin θ +O3m+2(λ
−1)

dτ
dθ

= ω−1 − ω−3
(

J1(λ) + J2(λ)
)

+ ω−3λ−1p(τ) cos θ +O3m+2(λ
−2).

(7.8)

Furthermore, we can find a transformation (λ, τ) → (λ, ς), where

ς = τ + λ−1S3(θ, τ), (7.9)

and S3(θ, τ) is determined by solving equation

ω−3p(τ) cos θ +
∂S3
∂θ

+ ω−1∂S3
∂τ

= 0. (7.10)

Write p(τ) in the form of Fourier series

p(τ) =
∑

k∈Zm

pke
i〈k,µ〉τ , (7.11)

and p−k = pk.

In addition,

cos θ =
1

2
(eiθ + e−iθ), (7.12)

and denote

S3(θ, τ) = eiθ
∑

k∈Zm

χ+
k e

i〈k,µ〉τ + e−iθ
∑

k∈Zm

χ−
k e

i〈k,µ〉τ , (7.13)

Substituting (7.11), (7.12) and (7.13) into (7.10), one has that

S3(θ, τ) = eiθ
∑

k∈Zm

iω−3

2
(

〈k, µ〉ω−1 + 1
)pke

i〈k,µ〉τ + e−iθ
∑

k∈Zm

iω−3

2
(

〈k, µ〉ω−1 − 1
)pke

i〈k,µ〉τ .

Different from the real analytic case, we need to prove the series S3(θ, τ) is convergent.
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From p ∈ C4m+5 and (7.2), we note that |pk| ≤ ‖p‖C4m+5 |k|−4m−5 and

∣

∣

∣

∣

∣

ω−2

2
(

〈k, µ〉ω−1 + 1
)pk

∣

∣

∣

∣

∣

≤ C‖p‖C4m+5 |k|−4m−5+σ .

By m < σ < m+1, it yields that the series converges to S3(θ, τ). Moreover, S3 is C
∞, 2π-periodic in

θ and C3m+3, quasi-periodic in τ with the frequency µ. S3 ∈ O3m+3(1),
∂S3

∂τ
∈ O3m+2(1). Therefore,

we derive the system







dλ
dθ

= −ω−2p(ς) sin θ +O3m+2(λ
−1)

dς
dθ

= ω−1 − ω−3
(

J1(λ) + J2(λ)
)

+O3m+2(λ
−2).

(7.14)

Thus by this transformation, we eliminate ω−3λ−1p(τ) cos θ item in the second equation of (7.8).

Since

lim
λ→+∞

λk+1J
(k)
1 (λ) = (−1)kk!

1

π

(

ϕ(+∞)− ϕ(−∞)
)

f(+∞),

and

lim
λ→+∞

λk+1J
(k)
2 (λ) = (−1)kk!

1

π
(g(+∞)− g(−∞)), 0 ≤ k ≤ 3m+ 3,

(7.8) can be rewritten as







dλ
dθ

= −ω−2p(ς) sin θ +O3m+2(λ
−1)

dς
dθ

= ω−1 − ω−3

π
λ−1

(

(

ϕ(+∞)− ϕ(−∞)
)

f(+∞) +
(

g(+∞)− g(−∞)
)

)

+ o3m+2(λ
−1).

(7.15)

We also recalled (7.15) is reversible with respect to (λ, ς) 7→ (λ,−ς).

Denote λ = ρ−1, then (7.15) can be rewritten as







dρ
dθ

= ω−2ρ2p(ς) sin θ + o3m+2(ρ
2),

dς
dθ

= ω−1 − ω−3

π
ρ
(

(

ϕ(+∞)− ϕ(−∞)
)

f(+∞) +
(

g(+∞)− g(−∞)
)

)

+ o3m+2(ρ).

Therefore, we derive the corresponding Poincaré mapping with the form







ρ1 = ρ0 + ρ20l(ς0) + o3m+2(ρ
2
0),

ς1 = ς0 + γ0 + γ1ρ0 + o3m+2(ρ0),
(7.16)

where γ0 = 2πω−1, l(ς0) = ω−2
∫ 2π
0 p(ς0 + ω−1θ) sin θdθ and

γ1 = −2ω−3
(

(ϕ(+∞)− ϕ(−∞))f(+∞) + (g(+∞) − g(−∞))
)

. (7.17)

If (ϕ(+∞)− ϕ(−∞))f(+∞) + (g(+∞)− g(−∞)) 6= 0, by Remark 2.6, the mapping (7.16) has
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many invariant curves tending to ρ0 = 0, which means the invariant curves of the Poincaré map

of (7.1) tend to infinity. Thus for equation (7.1), the existence of quasi-periodic solutions is got.

Moreover for the initial value lying between two invariant curves, the solution is globally bounded.

As the invariant curves tend to infinity, all solutions of (7.1) are bounded, therefore we finish the

proof of Theorem 7.1.
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