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Excitons are compound particles formed from an electron and a hole in semiconductors. The
impact of this substructure on the phonon-exciton interaction is described by a closed system of
microscopic scattering equations. To calculate the actual excitonic thermalization properties beyond
the pure bosonic picture, this equation is derived directly from an electron-hole picture within the
Heisenberg equation of motion framework. In addition to the well-known bosonic character of the
compound particles, we identified processes of a repulsive, fermionic type, as well as attractive
carrier exchange contributing to the scattering process. In this analytical study we give general
statements about the thermalization of excitons in two and three dimensional semiconductors. We
give insights on the strong dependence of the thermalization characteristics of the exciton Bohr
radius and the thermalization wavelength. Above all, we analytically provide arguments why a
bosonic behavior of excitons - such as an enhanced ground state occupation - requires the dominant
phonon scattering to be quasielastic. Acoustic phonons tend to fulfil this, as each scattering event
only takes small amounts of energy out of the distribution, while optical phonons tend to prevent
macroscopic occupations of the lowest exciton state, since the Pauli repulsion between the individual
carriers will then dominate the thermalization dynamics.

I. INTRODUCTION

Van der Waals heterostructures of atomically thin
semiconductors sparked new hope to find bosonic or even
macroscopic occupation effects of excitons, since they can
host long living excitonic interlayer states [1–7]. The dis-
cussion whether semiconductor excitons can show macro-
scopic occupation and spontaneous emergence of coher-
ence dates back more than half a century [8–11], and
there are reports of experimental signatures of related ef-
fects also for excitons in other semiconductor platforms,
e.g., in GaAs Quantum Wells [12, 13], in quantum hall
systems [14], and recently in bulk Cu2O [15].
The last decades have also seen quite a few theoret-

ical approaches towards effects of macroscopic occupa-
tion and spontaneous coherence in excitonic systems,
and even more on exciton-polaritons. There is, e.g.,
the quantum kinetic approach from the Haug group [16–
19], and also an abundance of other theory works, e.g.,
Refs. [20–29]. They are very diverse in their theoretical
approaches, however, to our understanding, they all im-
plicitly or explicitly share one key assumption, namely
that excitons are pure bosons also for densities beyond
the classical Maxwell-Boltzmann limit, which is a nec-
essary condition to apply Bogoliubov approximations or
Gross-Pittaevskii approaches [30]. It was, however, also
shown in several works that the fermionic substructure
of excitons cannot be neglected at elevated densities [31–
36]. In a recent numerical study [37], we challenged the
assumption of pure bosonic thermalization, presenting an
excitonic Boltzmann scattering equation to account for

∗ manuel.katzer@physik.tu-berlin.de

phonon mediated excitonic thermalization above the clas-
sical Maxwell-Boltzmann limit, taking for the first time
the fermionic substructure into account. We showed that
for large parts of the parameter space, fermionic Pauli
blocking inhibits bosonic thermalization and thus result-
ing effects such as macroscopic ground state occupations.
The equations of motion we study here, as derived and
numerically approached in Ref. [37] are, in principle, valid
for excitons of arbitrary dimension in semiconductors.

In the present study, we provide analytic limits of a
generalized exciton-phonon interaction dynamics, allow-
ing us to deduce statements on the nature of the exci-
ton as a particle between boson and fermion in a more
general framework, and predict its behavior in two and
three dimensions and in a unitless and therefore material
insensitive description. We show that three parameters
influence the thermalization, namely the exciton Bohr ra-
dius a0, the thermal de Broglie wavelength λth, and their
value relative to the phonon momentumQphon which cou-
ples to the excitonic ground mode Q = 0. The two main
findings are: The Bohr radius of the exciton needs to be
significantly smaller than the thermal wavelength, and
only when the dominant exciton-phonon scattering pro-
cess is elastic enough, stimulated scattering to the ground
state can win over the Pauli repulsion between the car-
riers which consititute the excitons, as inelastic, optical
phonon scattering favors Pauli blocking over stimulated
scattering.

The paper is structured as follows: In Sec. II we present
the excitonic Boltzmann equation which was derived in
Ref. [37], and the individual contributions within the
equation are recapitulated. In Sec. III we give a detailed
discussion on the analytic limit of low temperatures and
derive analytic expressions allowing to interpret the be-
havior of excitons at low temperatures at the threshold of
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the first deviation from the classical Maxwell-Boltzmann
limit. In Sec. IV we give visualizations of the analytic
expressions and discuss the resulting requirements for
bosonic or fermionic thermalization behavior of excitons
in two or three dimensions. In Sec. V we conclude.

II. EXCITONIC BOLTZMANN EQUATION

This section is a brief recapitulation of the equation
that was derived and introduced in Ref. [37], before we
examine its analytical limits in detail in the subsequent
sections. The kinetic equation describes the dynamics of
the exciton occupation,

Nν
Q =

∑
qq′

(φν
q)

∗φν
q′⟨v†q+α̃Qcq−β̃Qc†

q′−β̃Q
vq′+α̃Q⟩c, (1)

with center-of-mass momentumQ and the excitonic Ryd-
berg state ν, where φν

q accounts for the real space relative
motion wavefunction of the exciton gained from solving
the Wannier equation [38]. The wavefunctions represent

a full orthonormalized set
∑

q(φ
λ
q)

∗φν
q = δλν , while c

(†)
q

and v
(†)
q are the fermionic anihilation (creation) opera-

tors for carriers in the conduction band and the valence
band, respectively. The relative electron and hole masses
α̃ = me

M and β̃ = mh

M abbreviate the respective propor-
tion of the exciton mass M = me +mh.

It is important to state that for the derivation of
the equation of motion for Nν

Q, in Ref. [37] we started
from the fundamental electronic semiconductor Hamil-
tonian [39], which allowed to account for bosonic and
fermionic properties of the exciton thermalization:

H =
∑
kλ

ϵλkλ
†
kλk +

∑
qα

ℏωα
qb

†α
q bαq

+
1

2

∑
λλ′kk′q

Vqλ
†
kλ

′†
k′λ′

k′+qλk−q

+
∑
kqλα

gλαq λ†
k+qλk(b

α
q + b†α−q). (2)

The first term accounts for the dispersion of electrons
in the conduction band (λ = c) and valence band (λ = v)
and momentum k being parametrized from DFT calcu-
lations in effective mass approximation [40]. The second
term accounts for the dispersion of phonons. The mode
index α accounts for acoustic and optical phonon modes,
parametrized by ab initio values from the literature, for
TMDC excitons see e.g. Refs. [41–43]. The third term
accounts for the Coulomb interaction between electrons
and holes. The coupling element Vq is obtained from an
analytic solution of the Poisson equation for the Rytova-
Keldysh potential [44, 45]. The fourth term accounts
for the electron phonon interaction in valence and con-
duction band. The appearing electron-phonon coupling
elements gλαq , for the different involved phonon modes α

FIG. 1. Recapitulation of the different nonlinear effects in
the excitonic thermalization process, as introduced in detail
in Ref. [37]. a) The nonlinearity ∂tNQ

∣∣
bos

leads to stimu-
lated scattering, similar to pure bosonic particles. b) The
fermionic correction term ∂tNQ

∣∣
ferm

leads to a repulsion as
electrons (and holes) show Pauli blocking. Many excitons
contribute to this effect at a given momentum, illustrated by
the summation over k in the lower panel. c) The exchange-
nonlinearity, ∂tNQ

∣∣
exc

, is of attractive nature. It is due
to a carrier exchange during the scattering process. Figure
adapted from [37].

in the two bands λ = c, v are treated in effective deforma-
tion potential approximation, parametrized with values
typically obtained from DFT calculations, see e.g. for
TMDCs Refs. [42, 43, 46–48].
The excitonic Boltzmann scattering equation above

the Maxwell-Boltzmann limit was obtained by treat-
ing the appearing hierarchy problem in Born-Markov
approximation and applying the unit operator tech-
nique [31, 33, 34], which allows to project the fermionic
expectation operators on excitonic pair occupation oper-
ators. The strict calculation in the electron-hole-picture
also circumvents difficulties in the factorization of exci-
tonic expectation values. For details on the derivation
see Ref. [37]. The resulting equation reads

∂tN
ν
Q = ∂tN

ν
Q

∣∣∣
class

+ ∂tN
ν
Q

∣∣∣
bos

+ ∂tN
ν
Q

∣∣∣
ferm

+ ∂tN
ν
Q

∣∣∣
exc

.

(3)

The first term in Eq. (3) accounts for the linear con-
tribution, responsible for a thermalization according to
the classical Maxwell-Boltzmann statistics. It is valid for
dilute, classical exciton gases [48–50], and reads

∂tN
ν
Q

∣∣∣
class

=
2π

ℏ
∑
Q′λ

(
Wλν

Q′QNλ
Q′ −W νλ

QQ′Nν
Q

)
, (4)

with the scattering tensor

W νλ
QQ′

=
∑
α

|gνλ|Q−Q′|,α|
2
(
(1 + nα

|Q−Q′|)δ
(
Eλ
Q′ − Eν

Q + ℏωα
|Q−Q′|

)
+ nα

|Q−Q′|δ
(
Eλ
Q′ − Eν

Q − ℏω|Q′−Q|α
))

. (5)
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The exciton-phonon coupling reads

gνν
′

Q,α =
∑
q

(
gcαQ (φν

q)
∗φν′

q−β̃Q
− gvαQ (φν

q)
∗φν′

q+α̃Q

)
, (6)

and depends on convolutions of exciton wavefunctions φν
q

and the electron-phonon coupling element gλαq from the
electronic Hamiltonian, Eq. (2).

For densities above the classical limit, additionally
three nonlinearities become important, all in the same
order of the exciton density

n̄ =
1

Ld

∑
Qν

Nν
Q, (7)

with a factor Ld of unit [Ld] = nmd, i.e., an area or a
volume, dependent on the dimension d ∈ {2, 3}, which
we introduce here as an index to allow for a more general
formulation throughout the whole manuscript. The non-
linearites are all sketched in Fig. 1. The second term in
Eq. (3) accounts for bosonic stimulated scattering, which
would also occur for pure bosons [17], cp. Fig. 1(a)

∂tN
ν
Q

∣∣∣
bos

=
2π

ℏ
∑
Q′λ

ΓB,νλ
QQ′ N

λ
Q′Nν

Q. (8)

The respective scattering matrix can be directly com-
puted from the classical scattering matrix W νλ

QQ′ , Eq. (5),
and reads

ΓB,νλ
QQ′ = W νλ

QQ′ −Wλν
Q′Q

=
∑
α

|gνλ|Q−Q′|,α|
2
(
δ
(
Eλ
Q′ − Eν

Q − ℏωα
|Q−Q′|

)
− δ

(
Eλ
Q′ − Eν

Q + ℏωα
|Q′−Q|

))
. (9)

The mentioned stimulated scattering of this bosonic non-
linear contribution, Eq. (8), leads to amplified scattering
to already strongly occupied states, and thus enables high
occupations of the ground state at Q = 0.
In addition to the classical and bosonic contributions

to Eq. (3), two further nonlinearities occur due to the
electron-hole substructure of the excitons. The third
term in Eq. (3), cp. Fig. 1(b), is of repulsive nature and
occurs due to Pauli blocking of the fermionic carriers the
exciton is constituted of. It reads

∂tN
ν
Q

∣∣∣
ferm

=
2π

ℏ
∑

Q′Kλν′

(
ΓF,νλ,ν′

Q′Q,KNλ
Q′ − ΓF,λν,ν′

QQ′,KNν
Q

)
Nν′

K .

(10)

Note that compared to classical and bosonic contribu-
tions of Eq. (3), this repulsive term requires an additional
convolution over all excitonic states, which orginates
from the projection into the excitonic basis. Similar to

the scattering matrices above, we find here the three di-
mensional scattering tensor

ΓF,λν,ν′

QQ′,K

=
∑
α

Re(gνλQ−Q′,αg
F,λν,ν′

Q′Q,K,α)
(
δ
(
Eλ
Q′ − Eν

Q − ℏωα
Q−Q′

)
− δ

(
Eλ
Q′ − Eν

Q + ℏωα
Q′−Q

))
. (11)

Furthermore, there occurs a second nonlinearity due to
the electronic substructure of the exciton, namely the
fourth term in Eq. (3), cp. Fig. 1(c). It results from ex-
changing carriers between excitons during the scattering
and constitutes a typical fermionic exchange nonlinear-
ity:

∂tN
ν
Q

∣∣∣
exc

=
2π

ℏ
∑

KK′λ′ν′

ΓE,νλ′ν′

Q,K,K′N
λ′

K′Nν′

K . (12)

Here, the respective scattering tensor reads

ΓE,νλ′ν′

Q,K,K′

=
1

2

∑
Q′αλ

(
gνλQ−Q′,αg

E,νλ,λ′,ν′

Q′Q,K,K′,α + gλνQ′−Q,αg
E,λν,λ′,ν′

QQ′,K,K′,α

)
×

(
δ
(
Eλ
Q′ − Eν

Q − ℏωα
|Q−Q′|

)
− δ

(
Eλ
Q′ − Eν

Q + ℏωα
|Q′−Q|

))
. (13)

For all contributions of Eq. (3), the coupling constants
for the exciton-phonon-coupling are given by the wave-
function overlap of the involved carriers, which depend
on the momenta Q′ of the phonons associated to the
process. While for the classical an bosonic contribu-
tion, this is encoded in the well known coupling gνν

′

Q,α,

Eq. (6), the new scattering tensors that arise due to the
fermionic substructure come with new, more elaborate

overlaps, namely gF,λν,ν′

Q′Q,K,α for the fermionic nonlinear-

ity, and gE,λν,λ′,ν′

QQ′,K,K′,α for the exchange nonlinearity (see

App. A for details). Their increased complexity is re-
flecting the convolution with all carriers involved, (i.e.,
also those of the other excitons). The fact that the
fermionic scattering tensors depend on more overlapping
excitonic wavefunctions compared to the classical and
bosonic terms, leads to a strong dependence of the rela-
tive dominance between the nonlinearities on the exciton
Bohr radius a0. Large Bohr radii lead to smaller wave-
functions in momentum space. This will be crucial for
the analytic discussion in the following section.

III. ANALYTICAL LIMIT

Equation (3) is a general result which is valid for exci-
tons in different systems, thus also for systems with dif-
ferent dimensionalitiy. The following discussion is thus
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conducted for two and three dimensional excitons, re-
spectively, with TMDC excitons used to give an exam-
ple of experimentally accessible parameter ranges in two
dimensions. For our analytical discussion, we rewrite
Eq. (3) to a more compact form:

∂tN
ν
Q

=
2π

ℏ

[∑
Q′λ

[(
Wλν

Q′Q

(
1 +Nν

Q

)
−
∑
Kν′

ΓF,νλ,ν′

Q′Q,KNν′

K

)
Nλ

Q′

−
(
W νλ

QQ′

(
1 +Nλ

Q′

)
−
∑
Kν′

ΓF,λν,ν′

QQ′,KNν′

K

)
Nν

Q

]

−
∑

KK′λ′ν′

ΓE,νλ′ν′

Q,K,K′N
λ′

K′Nν′

K

]
. (14)

In order to identify parameter regimes where the ther-
malization is dominated by the bosonic nonlinearities,
we introduce two general parameters, the Bohr radius a0
and the thermal wave length λth. To formally define an
exciton Bohr radius, the 1s wave functions, which are ac-
cessed as the eigenfunctions of the Wannier equation, can
be fitted to an analytical model [39], which in the two-
and three-dimensional case read:

φd=2
q =

8
√
2πa20/L

2

(4 + a20q
2)

3
2

φd=3
q =

8
√

πa30/L
3

(1 + a20q
2)2

(15)

In the three-dimensional model, a0 is directly equivalent
to the extension of the exciton in real space, while for two
dimensions, it is typically defined to be twice the radius of
the extension [39]. TMDC excitons, e.g., typically have
extension radii in the order of 1 nm [51], we therefore
estimate the Bohr radius for TMDCs to be around 2 nm,
when we give examples in the following. Furthermore, we
introduce the thermal wavelength λth (also referred to as
de Broglie wavelength), which depends on temperature
T and effective exciton mass M :

λth =
ℏ√

2MkBT
(16)

The thermal wavelength λth characterizes a typical in-
verse wavelength extension of the occupation number dis-
tribution as a function of wave numbers in an ideal clas-
sical exciton gas at a specified temperature and thus is
a well defined parameter close to the classical limit [52].
In the following, we discuss analytical limits of Eq. (3).

A. Low temperature limit

In the following analytic discussion of Eq. (3), we as-
sume that the Bohr radius is small compared to the ther-
mal wavelength:

a0 ≪ λth, (17)
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FIG. 2. Equilibrium distribution NQ @ 10K for a Bohr radius
a0 ≈ 0.2 nm in momentum space when computed with the full
equation (3) exemplarily for TMDC parameters, in compari-
son to the respective 1s wavefunction φq. The wavefunction
can in very good approximation be estimated as flat in the
momentum region of the exciton dynamics.

i.e., the average particle wavelength is large compared to
its Bohr radius. We can also express this w.r.t. temper-
ature, and assume M ≈ 1.1mel and a0 ≈ 2nm (typical
TMDC values) to get an idea for which temperatures this
approximation is valid e.g. for TMDC excitons:

T ≪ ℏ2

2MkBa20
≈ 98K (18)

This shows that also for experimentally accessible
regimes for instance in TMDCs, at low temperatures, the
analyzed limit remains a good approximation over a large
parameter range. In addition, translated to momentum
space, this approximation implies that the wavefunction
can be considered flat on the momentum scale of the
thermalization dynamics, cp. Fig. 2. This allows to ap-
proximate φq ≈ φq+Q′ in the appearing overlap integrals
in the scattering matrices in Eqs. (6,A1,A2), i.e., we set

∑
q

(φq)
∗φq−βQ′ ≈ 1, (19)

and approximate other overlap integrals accordingly. In
physical terms, this means that we neglect that the over-
lap integrals are slightly smaller than 1, as this is a small
effect in this regime. We carefully checked that in the
limit of Eq. (17), the full numerics [37] give very similar
results with and without this assumption. If we apply
this approximation to all scattering tensors, we can give
analytic expressions depending on a0 for the overlaps.
This allows us to significantly simplify the main equa-
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tion to

∂tNQ

≈ 2π

ℏ
∑
Q′α

∣∣gcαQ′−Q − gvαQ′−Q

∣∣2
×
[(1

2
± 1

2
+ nα

|Q−Q′|

)
δ
(
EQ′ − EQ ± ℏωα

|Q−Q′|
)
NQ′

−
(1
2
± 1

2
+ nα

|Q−Q′|

)
δ
(
EQ′ − EQ ∓ ℏωα

|Q−Q′|
)
NQ

+
(
NQ′NQ − 2n̄ad0Fd

(
NQ′ +NQ

)
+ (n̄ad0)

2Bd
)

×
(
δ
(
EQ − EQ′ + ℏωα

|Q−Q′|
)

− δ
(
EQ − EQ′ − ℏωα

|Q′−Q|
))]

. (20)

Note that we identified the exciton density n̄, Eq. (7).
We have introduced dimension-dependent abbreviations
Fd,Bd, d ∈ {2, 3}, see App. B, that allow us to give a
dimension invariant derivation, making use of the fact
that after the approximation, Eq. (19), the integrals over
the wavefunction give only an analytically computable
factor and a dependence of the Bohrradius a0, for the
fermionic term ad0, and for the exchange term even (ad0)

2.
Note that this approximate form, Eq. (20), is - as the full
equation, Eq. (3) - density conserving, which can be seen
when executing the sum over all momenta (

∑
Q ∂tNQ):

For the nonlinearities, the density is conserved for each
term separately, simply because the sum

∑
QQ′α δ

(
EQ −

EQ′ + ℏωα
|Q−Q′|

)
− δ

(
EQ − EQ′ − ℏωα

|Q′−Q|
)
= 0.

Eq. (20) allows for a better understanding of the de-
rived full excitonic scattering equation, Eq. (3): First
of all, the first two lines represent the classical, linear
case, which at approaching equilibrium drive the exci-
ton distribution into the classical Maxwell-Boltzmann
distribution. The temperature enters here directly via
the phononic occupation number nα

Q(T ), i.e., the phonon
equilibrium Bose distribution, thus the first two lines of
Eq. (20) correspond to the classical thermalization dy-
namics in dilute gases [47, 49, 50]. Above the low density
limit, terms of the order of n̄2 become relevant, leading
to a deviation from the Maxwell-Boltzmann distribution
in equilibrium.

The last three lines of Eq. (20) account for these dif-
ferent nonlinearities induced by quantum effects beyond
the classical gas dynamics. Evidently, all nonlinearities
share the same phonon prefactor and energy-momentum
selection rules. The first term, scaling as NQ′NQ, corre-
sponds to the ideal, bosonic case and is independent of
the unitless parameter η = n̄ad0 (it is dependent on the
density n̄ via the square of the occupation, but not on the
Bohr radius, as we will see in the following). In contrast,
the corrections due to the fermionic substructure of the
excitons are typically scaling in orders of n̄ad0 [31, 33],
and it thus is intuitive that also in the case of Eq. (3)
those terms depend on this unitless parameter, the oc-
curing nonlinearity with negative sign goes linear in η,

FIG. 3. Visualization of the occupation NQ′ of the scattering
partner for the lowest Q = 0 mode, compared to NQ=0, cp.
Eq. (20), (but also in the main equation, Eq. (3)). We show
exemplary values at T = 10K, the lower the temperature, the
lower also the occupation of the scattering partners. We can
see here that for acoustic, rather elastic phonon scattering, the
occupation of the scattering partner is high enough that the
bosonic NL can win over the fermionic term in Eq. (20) For
optical scattering, the occupation of the exciton state that
scatters to the ground mode is almost unoccupied. Thus,
the repulsion will win over the stimulated scattering, as it is
independent of this occupation.

the attractive exchange even with the square, η2.
Eq. (20) also makes a fact visible which will become im-

portant in the following: The bosonic, stimulated scat-
tering, i.e., the first nonlinear term, is dependent not
only on the occupation NQ itself, but also on the occu-
pation of the respective scattering partner NQ′ , with the
momentum Q′ determined by the Fermi selection rules
(last two lines in Eq. (20)). For the stimulated scatter-
ing, especially the scattering to the ground state (the
Q = 0 mode) this is decisive: In the following we treat
the scattering momentum provided by the phonons to
fill the ground state as a key parameter for the classi-
fication of the exciton thermalization as of bosonic or
fermionic tendency. We denote the respective momen-
tum for scattering to the ground state Qphon. Taking
the phonon dispersion into account, for inelastic, opti-
cal phonon scattering, this momentum is comparatively
large, typically in the range of Qphon ≈ 1 nm−1 for
TMDC monolayers, while acoustic phonons show angu-
lar dependent, yet significantly smaller momenta in the
range Qphon ≈ 0.05 − 0.1 nm−1 [42, 43, 48, 51]. As a
consequence, the occupation of the modes that provide
the scattering to the ground state are significantly higher
populated for acoustic phonons than for optical ones, as is
illustrated for a monolayer MoSe2 at T = 10K in Fig. 3.
This is important, since the fermionic Pauli repulsion oc-
curs independent of this specific occupation NQphon

, but
sums over all occupations, and is thus independent of the
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scattering momentum, i.e., the second and third nonlin-
earities in Eq. (3), scaling with n̄ad0 and (n̄ad0)

2, do not
rely on high values of the occupation NQphon

compared
to the occupation of the ground mode, NQ=0. This is the
reason why for dominant optical, inelastic phonon scat-
tering, the excitonic thermalization cannot be bosonic,
as we will show in more detail in the following.

B. Small deviations from classical
Maxwell-Boltzmann limit

In the Boltzmann limit, the occupations for a given
exicton density n̄ read for arbitrary dimension d

NMB
Q ≈ (2π

1
2λth)

dn̄e−λ2
thQ

2

. (21)

We hence look at small deviations δNQ = NQ − NMB
Q

from the occupation NQ. The leading order is identi-
fied, with 1 ≫ NQ ≫ NQNQ ≫ δNQ ≫ NQδNQ ≫
δNQδNQ. This leaves us with

∂t
(
δNQ

)
=

2π

ℏ
∑
Q′α±

∣∣gcαQ′−Q − gvαQ′−Q

∣∣2
×
[(1

2
± 1

2
+ nα

|Q−Q′|

)
δ
(
EQ′ − EQ ± ℏωα

|Q−Q′|
)
δNQ′

−
(1
2
± 1

2
+ nα

|Q−Q′|

)
δ
(
EQ′ − EQ ∓ ℏωα

|Q−Q′|
)
δNQ

+
(
NMB

Q′ NMB
Q

− 2n̄ad0Fd
[(
NMB

Q′

)
+
(
NMB

Q

)]
+ (n̄ad0)

2Bd
)

×
(
δ
(
EQ − EQ′ + ℏωα

|Q−Q′|
)

− δ
(
EQ − EQ′ − ℏωα

|Q′−Q|
))]

. (22)

The inhomogeneous contribution determines the sign of
δNQ, i.e., bosonic (positive at Q = 0) or fermionic (neg-
ative at Q = 0) distributions compared to the classical
case. We thus, after inserting Eq. (21), focus on:

∂t(δNQ)

≈ 2π

ℏ
∑
αQ′

∣∣gcαQ′−Q − gvαα,Q′−Q

∣∣2π2n̄2

×
(
(2π

1
2λth)

2de−λ2
thK

2

e−λ2
thQ

2

− 2(2π
1
2λth)

dad0Fd
(
e−λ2

thK
2

+ e−λ2
thQ

2)
+ (ad0)

2Bd
)

×
(
δ
(
EQ − EQ′ + ℏωα

|Q−Q′|
)

− δ
(
EQ − EQ′ − ℏωα

|Q′−Q|
))

(23)

In Eq. (23), all three terms appear consistently in sec-
ond order in n̄. However, the first term, the ideal bosonic
nonlinearity, is entirely independent of the Bohr radius
a0 and just depends on the thermal wavelength λth, i.e.,
will become important at low temperatures and for small
excitonic masses, as one would expect for ideal bosons.
The fermionic corrections, however, depend on the Bohr
radius a0. In order to predict the sign of the nonlinear-
ity, Eq. (23), w.r.t. the ground state, we compute the
equation for the occupation at Q = 0, which allows us
to eliminate the

∑
Q′ by the Fermi rule delta functions.

This is in principle possible for arbitrary phonon disper-
sions, as long as one has an analytic expression for the
phonon energy ℏωα. To give an example, we illustrate it
here for a monolayer TMDC, where typically, for optical
phonons, one can assume e.g. zeroth order deformation
potential, i.e., ℏωopt ≈ Eopt = const. [48, 51], and thus

Qopt
phon =

√
2M
ℏ2 Eopt, while for acoustical phonons, one

can typically assume first order deformation potential,
thus a linear dispersion ℏωakk ≈ kcakk [48, 51] and hence
Qakk

phon = 2M
ℏ2 cakk. This is however only to give an exam-

ple, in other materials, different phonon modes will be
important and hence the values of the momentum will
also be different. In the following we will only assume
that we obtained a Qα

phon from the Dirac delta and elim-

inated the
∑

Q′ in Eq. (23). This gives

∂t(δNQ=0) =
Ld

ℏπd−2

∑
α

Qα
phon

∣∣gcαQα
phon

− gvαQα
phon

∣∣2n̄2

×
(
(2π

1
2λth)

2de−λ2
th(Q

α
phon)

2

− 2(2π
1
2λth)

dad0Fd
(
e−λ2

th(Q
α
phon)

2

+ 1
)
+ (ad0)

2Bd
)

(24)
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or, in 2d, i.e., for d = 2

∂t(δNQ=0) =
L2

ℏ
∑
α

Qα
phon

∣∣gcαQα
phon

− gvαQα
phon

∣∣216π2n̄2

×
(
λ4
the

−λ2
th(Q

α
phon)

2

− 8

5
λ2
tha

2
0

(
e−λ2

th(Q
α
phon)

2

+ 1
)
+ a40

)
︸ ︷︷ ︸

≡λ4
thf

α
2d(

a0
λth

,λthQα
phon)

. (25)

and in 3d, i.e., d = 3

∂t(δNQ=0) =
L3

ℏ
∑
α

Qα
phon

∣∣gcαQα
phon

− gvαQα
phon

∣∣216π2n̄2

×
(
64λ6

thπe
−λ2

th(Q
α
phon)

2

− 264
√
πa30λ

3
th

(
e−λ2

th(Q
α
phon)

2

+ 1
)
+ a60

4199

8

)
︸ ︷︷ ︸

≡λ6
thf

α
3d(

a0
λth

,λthQα
phon)

. (26)

IV. RESULTS IN UNITLESS PARAMETERS

A. Individual phonon branches

In Eq. (3), typically, both acoustic and optical phonon
modes contribute to the index α. In the following, we

treat the phononic modes individually to determine the
sign of the combined nonlinearities of each phononic
mode on the energetically lowest excitonic state atQ = 0.
The border fα

d (
a0

λth
, λthQ

α
phon) = 0 between fermionic and

bosonic behavior is determined by setting δNQ=0 = 0:

0 =
(
(2π

1
2λth)

2de−λ2
th(Q

α
phon)

2

− 2ad0Fd(2π
1
2λth)

d
(
e−λ2

th(Q
α
phon)

2

+ 1
)
+ (ad0)

2Bd
))

(27)

When divided by (λd
th)

2, we can rewrite Eqs. (25,26)
to:

fα
2d(

a0
λth

, λthQ
α
phon)

= 16e−λ2
th(Q

α
phon)

2

− 32

5

a20
λ2
th

(
e−λ2

th(Q
α
phon)

2

+ 1
)
+

a40
λ4
th

(28)

and for d = 3

fα
3d(

a0
λth

, λthQ
α
phon)

= πe−λ2
th(Q

α
phon)

2

− 33

8

√
π
a30
λ3
th

(
e−λ2

th(Q
α
phon)

2

+ 1
)
+

a60
λ6
th

4199

512
(29)

Interestingly, only the dimensionless parameters a0

λth

and λthQphon (or, as later shown, equivalently a0Qphon)
determine the dynamics. Fig. 4 is a plot of the sign
of Eqs. (28,29) over the unitless parameters a0

λth
and

λthQphon. This plot in principle applies in general for dif-
ferent semiconductor materials, as long as phonon scat-
tering of two- or three dimensional semiconductor exci-
tons dominates the dynamics. For both two and three

dimensional excitons, one can see that as expected, the
excitons become more bosonic with decreasing Bohr ra-
dius a0, with 3d excitons being even more sensitive to-
wards this radius, which makes sense as it enters the
equation in powers of ad0, thus more dimensions d make
the dependency stronger.

In App. C we show that the limiting case of ideal
bosonic behavior is included, which makes sense mathe-
matically, when setting a0 = 0 in Eqs. (28,29), only the
first term prevails, which stands for bosonic stimulated
scattering to the ground state similar to the behavior of
ideal bosons. In the same appendix we also provide log-
plots showing that this limiting case is only approached
very slowly, thus for all realistic Bohr radii we always
have strong contributions from the fermionic corrections.

In order to relate our findings to experimentally rea-
sonable values for the unitless parameters, we exemplar-
ily provide positions in this parameter plane for TMDC
excitons, which we estimate to have a Bohr radius of
a0 = 2nm and a mass of M = 1.1mel. This allows us to
give exemplary lines for temperature (vertical) and for
typical phonon - momenta Qphon (the momentum that
a typical scattering event requires for scattering to the
ground state). It becomes evident from Fig. 4 that opti-
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FIG. 4. Plot of the sign of the nonlinearities deciding the
thermalization occupation of the ground state, as a function
of the unitless parameters a0

λth
and λthQ

α
phon. Blue stands

for a positive sign of fα
d (

λth
a0

, λthQ
α
phon), indicating bosonic

thermalization behavior, and red stands for a negative sign,
respectively indicating fermionic behavior compared to the
classical distribution. a) 2d case, Eq. (28). The gray lines
in the 2d plot show temperatures and λthQphon values for
typical TMDC parameters, i.e., a0 = 2nm and M = 1.1mel,
in order to give an orientation in the parameter plane. b)
Same plot for the 3d case, Eq. (29). (Above a0

λth
> 1 in

principle there is another parameter range with positive sign,
however, the approximations we made require a0 ≪ λth, and
we thus only show the region that is in accordance with this
approximation.)

cal phonon processes require too large momenta to make
bosonic behavior probable, while acoustical phonons are
more likely to favor bosonic thermalization. The fact
that the bosonic first term in Eqs. (28,29) only for very
small scattering momenta dominates the second term, its
fermionic counterpart, is here encoded in the exponential
function we inserted for the occupation of the scatter-
ing partner NQphon

. Large momenta between the exci-
tonic states for optical phonon scattering lead to small
occupation of the scattering partner, as already shown in
Fig. 3. Inelastic, optical phonon scattering therefore hin-
ders bosonic thermalization. This is in very good agree-
ment with our findings from the full numerics [37].

A shortcoming of the plot in Fig. 4 is that it is not

FIG. 5. Plot of the sign of the nonlinearities deciding the
thermalization occupation of the ground state, as a function
of the unitless parameters λth

a0
and a0Q

α
phon. Blue stands for a

positive sign of gαd (
λth
a0

, a0Q
α
phon), indicating bosonic thermal-

ization behavior, and red stands for a negative sign, respec-
tively indicating fermionic behavior compared to the classical
distribution. a) 2d case, Eq. (30). The gray lines show tem-
peratures and a0Qphon values for typical TMDC parameters
for orientation, i.e., a0 = 2nm and M = 1.1mel. b) Same plot
for the 3d case, Eq. (31).

very intuitive to read temperature dependencies from it.
We therefore provide another set of equations, where λth

is only on one axis and thus the temperature dependence
can be seen more directly. We will see that it does not
alter our main finding that optical phonon modes (or,
more general, inelastic phonon scattering) inhibits stim-
ulated scattering effects:
The whole expressions of Eqs. (25,26) divided by (a20)

d

read for 2d

gα2d(
λth

a0
, a0Q

α
phon)

= 16
λ4
th

a40
e
−λ2

th
a2
0

(a0Q
α
phon)

2

− 32

5

λ2
th

a20

(
e
−λ2

th
a2
0

(a0Q
α
phon)

2

+ 1
)
+ 1

(30)
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and for 3d

gα3d(
λth

a0
, a0Q

α
phon)

= π
λ6
th

a60
e
−λ2

th
a2
0

(a0Q
α
phon)

2

− 33

8

√
π
λ3
th

a30

(
e
−λ2

th
a2
0

(a0Q
α
phon)

2

+ 1
)
+

4199

512
. (31)

(Note that we rewrote also the arguments of the expon-
tentials in order to express everything w.r.t. the same
unitless parameters.) Fig. 5 is a plot of the sign of
Eqs. (30,31) as a function of the unitless parameters
λth

a0
and a0Q

α
phon. From the plot we can see that in or-

der to expect bosonic signatures, the temperature has
to be chosen low enough that for the respective particle
mass, λth can compensate the Bohr radius a0. Further-
more, one requires values of Qα

phon ≪ 1
a0

for 2d exci-

tons or Qα
phon ≪ 1

2a0
in the 3d case. Such low scatter-

ing momenta can typically only be provided by acous-
tic, quasielastic phonon scattering. For larger Qα

phon, the

fermionic nonlinearity dominates (to be precise, the +1
next to the respective exponential function wins for too
large values of Qα

phon in Eq. (30)). Interestingly, 3d ex-
citons are even more temperature-sensitive, with only a
comparatively small window of temperatures apparently
allowing for bosonic behavior, if the dominant phonon
process is elastic enough.

For TMDC excitons, we can again estimate a0 = 2nm
and M = 1.1mel and give exemplary lines for tempera-
ture (vertical) and for typical phonon - momenta Qα

phon

(the momentum that a typical scattering event requires
for scattering to the ground state). For the example of
TMDC excitons, temperatures between T = 1−10K look
promising for acoustic phonon branches to give positive
values, i.e., dominant bosonic signatures. As discussed
earlier, optical phonon scattering to the ground state re-
quires much larger momenta, since those scattering pro-
cesses are much less elastic. The Qopt

phon are thus typi-
cally one order of magnitude larger than for the acous-
tic branches, at least in the monolayer [42, 43]. They
will thus contribute with a negative sign, and lead to a
fermionic thermalization behavior.

B. Sum over phonon branches

In the more realistic case of taking all phonon branches
into account that are relevantly contributing to the scat-
tering process, we have to consider the sum over α in
Eq. (24), and thus get prefactors for the contributions
from the different branches, which depend on the Qα

phon
of the respective phonon mode α, which can be written

as

hd(
λth

aB
, λth)

=
∑
α

Qα
phon

∣∣gcαQα
phon

− gvαQα
phon

∣∣2fα
d (

λth

aB
, λthQ

α
phon), (32)

with, for the example of TMDC excitons:

Qopt
phon|g

c,opt
Qphon

− gv,optQphon
|2 ≈ 2000Qakk

phon|g
c,akk
Qphon

− gv,akkQphon
|2

(33)

Due to the mentioned larger values for Qphon and the
fact, that gQc,v

phon
is significantly larger for the optical

phonons, the prefactor Qphon|gcαQphon
− gvαQphon

|2 for in-

stance is around 2000 times larger than for the acoustical
branch in a TMDC monolayer [42, 43, 46]. This also ap-
plies for the linear equation, however, there the acoustic
phonons become important once the nα

Q′ ≫ 1, while the

optical mode freezes out [47–49]. However, the nonlinear
terms are not directly dependent on temperature, thus
for the nonlinearity, optical phonon modes will probably
always dominate, at least in monolayer TMDCs.
Van der Waals heterostructures of TMDCs and exci-

tons in other kinds of semiconductors may show different
behavior, if the optical phonon modes are absent, or less
dominant. Our study suggests that the macroscopic oc-
cupation of the lowest state becomes more probable in
systems with dominating acoustic phonons. This is sup-
ported by the full numerical solution of Eq. (3): If we
simulate the thermalization for only acoustical phonon
branches, the thermalization shows a bosonic behavior
for much larger Bohr radii, far beyond the TMDC limit
of a0 = 2nm, as can be seen in Fig. 2(b) in Ref. [37].

V. CONCLUSION

We analytically discussed a recently derived equation
for the exciton phonon kinetics [37] above the linear zero
density limit. The kinetic equation is microscopically
derived from the electron hole picture, taking the next
order in η = n̄a2B into account, thus going beyond the
bosonic commutator relation for those composite parti-
cles. In a fully analytic approach we discussed the effect
of Bohr radius, thermal wavelength and typical phonon
scattering momentum on the ground state occupation,
to study the question whether the overall thermalization
can be considered bosonic or fermionic, and make general
statements in a framework of unitless parameters, such
as a0

λth
, λthQphon and a0Qphon. Conducting the deriva-

tion in a dimension-independent approach allowed us to
give predictions for both 2d and 3d exciton systems. As
demonstrated before in our numerical study [37], also in
the analytical limit we show drastic deviations from a
purely bosonic behavior, and show that for typical Bohr
radii of around a0 = 2nm for TMDC excitons, the com-
pound particles cannot be considered bosonic and thus
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are not likely to show macroscopic occupation effects for
the ground state, as long as optical phonon scattering
dominates the thermalization dynamics. For significantly
smaller Bohr radii, such as for instance the reported
a0 ≈ 0.6 nm for the antiferromagnet van der Waals ma-
terial NiPS3 [53], or with absent optical phonon modes
at low temperatures, we showed that the respective ex-
citons can be expected to show a bosonic behavior, as
the bosonic stimulated scattering in this regime would
overcompensate the weaker fermionic Pauli blocking.
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Appendix A: Wavefunction overlaps

The wavefunction overlaps for the fermionic tensors,
Eq. (11), read

gF,λν,ν′

Q′Q,K,α =
∑
q

gcαQ′−Q

(
(φλ

q)
∗(φν′

q+β̃K+α̃Q′−Q
)∗φν′

q+β̃(K−Q′)
φν
q−α̃(Q−Q′) + (φλ

q)
∗(φν′

q−α̃(K−Q′))
∗φν′

q−α̃(K−Q′)φ
ν
q+β̃(Q−Q′)

)
− gvαQ′−Q

(
(φλ

q)
∗(φν′

q+β̃(K−Q′)
)∗φν′

q+β̃(K−Q′)
φν
q−α̃(Q−Q′) + (φλ

q)
∗(φν′

q−α̃K−β̃Q′+Q)
)∗φν′

q−α̃(K−Q′)φ
ν
q+β̃(Q−Q′)

)
,

(A1)

and for the exchange tensor, Eq. (13),

gE,λνλ′ν′

QQ′,K,K′,α =
∑
q

(
gcαQ−Q′(φν

q)
∗(φλ′

q+α̃(Q−K′))
∗(φν′

q+β̃K+α̃Q−Q′)
∗φν′

q+β̃K−β̃Q
φλ′

q+α̃(Q−K′)φ
λ
q+α̃(Q−Q′)

+ gcαQ−Q′(φν
q)

∗(φλ′

q−K+β̃K′+α̃Q
)∗(φν′

q−α̃K+K′+α̃Q−Q′)∗φλ′

q+β̃K′−β̃Q
φν′

q−α̃(K−Q)φ
λ
q−K+K′+α̃(Q−Q′)

− gvαQ−Q′(φν
q)

∗(φλ′

q−α̃K′−β̃Q+Q′)
∗(φν′

q+β̃(K−Q)
)∗φν′

q+β̃(K−Q)
φλ′

q−α̃K′+α̃Qφλ
q−β̃(Q−Q′)

− gvαQ−Q′(φν
q)

∗(φλ′

q−K+β̃K′−β̃Q+Q′)
∗(φν′

q−α̃K+K′−β̃Q
)∗φλ′

q−β̃(Q−K′)
φν′

q−α̃K+α̃Qφλ
q−K+K′−β̃(Q−Q′)

)
.

(A2)

Appendix B: Integrals over wavefunctions

In Sec. III A we introduced abbreviations, which es-
sentially give the result of integrals over not only two∑

q |φq|2 = 1, but four or six wavefunctions, to approxi-

mate the integrals of Eq. (A1,A2). In 2d this reads:

Fd=2 =
L2

a20

∑
q

|φq|4 =
4π

5
(B1)

Bd=2 =
L4

a40

∑
q

|φq|6 = π2 (B2)

and in 3d:

Fd=3 =
L3

a30

∑
q

|φq|4 =
33π

2
(B3)

Bd=3 =
L6

a60

∑
q

|φq|6 =
4199π2

8
(B4)

Appendix C: The limit of small Bohr radii

Our theory comprises the ideal case of pure bosonic
particles for vanishing Bohr radius a0 = 0, where e.g. in
Eqs. (28,29), only the nonlinearity for bosonic stimulated
scattering prevails, and the bosonic character occurs in-
dependent of thermal wavelength (and thus of tempera-
ture and particle mass) and independent of the details of
the phonon coupling. This limit is shown in Figs. 6(a,b)
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FIG. 6. Plot of the sign of Eqs. (28,29). Blue stands for a
positive sign of f(a0/λth, λthQphon), and red for a negative
one, respectively. The gray lines for the 2d plots show tem-
perature dependent λthQphon values for TMDC-like values,
i.e., a0 = 2nm and M = 1.1mel, analogous to Fig. 4. The
main point here is that the theoretical limit of a0 = 0 gives
ideal bosons that show stimulated scattering independent of
the phonon scattering momenta. This limit is however not
experimentally accessible, as even for arbitrarily small Bohr
radii the fermionic corrections remain important.

respectively. However, this limit is of pure theoretical
nature; even for arbitrarily small but finite values of a0,
the equation remains highly sensitive towards the phonon
scattering momentum, as can be seen in the logplot,
Figs. 6(c,d). Even for arbitrarily small Bohr radii the
fermionic corrections remain important.

Appendix D: Exemplary material parameters for
MoSe2

For details on the implementation of the parameters,
see also [37, 46–50].

e 1 eC
c 299.7925 nm/fs
ℏ 0.658212196 eVfs
kB 8.61745×10−5eV/K
ϵ0 5.526308×10−2 eC2/(eV nm)
µ0 2.013384742×10−4 eV fs2/(eC2 nm)
mel 5.6856800 fs2 eV/nm2

mP 10439.60413 fs2 eV/nm2

TABLE I. Important constants in semiconductor units.

cLA/10−3nm fs−1 4.1 cTA/10−3nm fs−1 4.1

ℏωΓA′
/meV 30.3 ℏωΓTO/meV 36.1

TABLE II. Phonon Dispersion. Velocity of sound for the
acoustic long range modes ci and phonon energies ℏωi for
optical modes, taken from [43].

a0/nm 0.3319 [54]
d0/nm 0.34371 [54]
ϵ⊥ 15.27 [51]

TABLE III. General Material Parameters. We give the lattice
constant a0 and the distance between the two selenium atoms
d0. Additionally we require the inplane component of the
respective dielectric tensor.

m↑
eK/mel 0.50

m↑
hK/mel 0.60

TABLE IV. Effective masses taken from first principle com-
putations (PBE) [40].

Trans. (Momentum) conduction band valence band
K → K (Γ) Da

1/eV 3.4 Da
1/eV 2.8

Do
0/eV nm−1 52 Do

0/eV nm−1 49

TABLE V. Electron Phonon Coupling. Electron phonon cou-
pling parameters in effective deformation potential approxi-
mation. The electron phonon matrix element is then given

by gi =
√

ℏ
2ρωiA

Vq, with ρ being the mass density of the unit

cell and A being the semiconductor area (which cancels for
all calculations). in the case of acoustic long range phonons,
the coupling is given by the first order deformation potential
Vq = D1q, whereas in the case of optical phonons and zone
edge phonons, the coupling is given by zeroth order deforma-
tion potential coupling Vq = D0. The parameters were taken
from [42, 43].
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