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The Stoner instability remains a cornerstone for understanding metallic ferromagnets. This in-
stability captures the interplay of Coulomb repulsion, Pauli exclusion, and two-fold fermionic spin
degeneracy. In materials with spin-orbit coupling, this fermionic spin is generalized to a two-fold
degenerate pseudospin which is typically believed to have symmetry properties as spin. Here we
identify a distinct symmetry of this pseudospin that forbids it to couple to a Zeeman field. This
‘spinless’ property is required to exist in five non-symmorphic space groups and has non-trivial im-
plications for superconductivity and magnetism. With Coulomb repulsion, Fermi surfaces composed
primarily of this spinless pseudospin feature give rise to Stoner instabilities into magnetic states that
are qualitatively different than ferromagnets. These spinless-pseudospin ferromagnets break time-
reversal symmetry, have a vanishing magnetization, are non-collinear, and exhibit altermagnetic-like
energy band spin-splittings. In superconductors, for all pairing symmetries and field orientations,
this spinless pseudospin extinguishes paramagnetic limiting. We discuss applications to supercon-
ducting UCoGe and magnetic NiS2−xSex.

Spin-orbit coupling (SOC) is an essential interaction
in quantum materials. It underlies realizations of the Ki-
taev model1, topological insulators2, electric field control
of ferromagnets and antiferromagnets3, and high critical
fields in Ising superconductors4. SOC typically does not
alter the symmetry properties of the underlying fermionic
Bloch spins. In particular, when time-reversal (T ) and in-
version (I) symmetries are present, the two-fold Kramers’
degeneracy, or pseudospin, that appears when SOC is
present typically behaves as usual spin-1/2 under rota-
tions. An immediate consequence is that a Zeeman mag-
netic field couples to this pseudospin and can be used
to control the quantum states discussed above. Here we
find a remarkable scenario, where the fermionic Bloch
pseudospin does not couple to a Zeeman field, no matter
which direction this field is applied.

This ‘spinless’ scenario is a consequence of two per-
pendicular glide mirror symmetries, preserving Bloch’s
momentum on high-symmetry lines in momentum space.
With SOC, the bands remain doubly degenerate on these
lines, but the pseudospin excitations preserve both mirror
symmetries, preventing coupling to magnetic fields. The
magnetic and superconducting response of Fermi surfaces
near these momentum lines is consequently dominated
by the spinless pseudospin feature. The lack of coupling
to a Zeeman implies that paramagnetic limiting is sup-
pressed for all superconducting states. Moreover, when
we examine Stoner instabilities5 of such Fermi surfaces,
we find that spinless-pseudospin ferromagnets are ener-
getically much more favorable than usual ferromagnets.

Unlike usual ferromagnets, these pseudospin ferro-
magnets preserve all mirror symmetries, lack net mag-
netization, are non-collinear in real space and exhibit
altermagnetic-like spin-textures in the Brillouin zone
(BZ)6. We find they occur independently of any mi-
croscopic electronic details, such as orbital content or

Wyckoff position symmetry, for the orthorhombic space
groups Pbcm, Pbcn, Pbca, Pnma, and the cubic space
group Pa3. While this may seem a small number of space
groups, we note that these five space groups account
for 238 out of the 1011 translation invariant magnetic
materials in the Magndata database7. Remarkably, for
these different five space groups, we find they all exhibit
Stoner instabilities into pseudospin ferromagnetic states
with shared properties. These include a non-zero scalar-

spin chirality χijk = S⃗i · (S⃗j × S⃗k)
8, generating ±π/2

gauge spin flux in each elementary plaquette and symme-
try required Weyl lines in the BZ that imply drumhead
surface states appear at mirror-invariant surfaces9–11.

Here we examine the application of the spinless pseu-
dospin to superconducting magnetic response and mag-
netic instabilities. In UCoGe, we perform DFT calcu-
lations and reveal vanishing magnetic g-factors for all
field orientations, which provides an alternative expla-
nation for the large upper critical field in its supercon-
ducting state12,13. We analyze Stoner’s instability to-
wards unconventional magnetism, providing an itinerant
electron mechanism for stabilizing translation invariant
non-collinear magnetism as observed in NiS2−xSex un-
der chemical pressure14,15.

Symmetries of pseudospin Pauli Matrices: Our key find-
ing is that in the five space groups listed above, SOC
makes spin operators inter-band and forbids pseudospins
to couple to a Zeeman field (Fig.1). Before discussing our
general results, we highlight the symmetry differences be-
tween the usual pseudospins (i.e. electron spins) and the
spinless pseudospins found here.

Central to the spinless property are lines in the BZ
that are invariant under the point group C2v, which con-
sists of the identity E, two mirror symmetries Mx and
My, and their product C2z. At each k on this line, la-
beling the Kramers’ degenerate states as |1⟩ and |2⟩, we
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Class C2v Symmetry σ̃i

spinless pseudospin A1 σ̃x = kzkyσx

A1 σ̃y = kzkxσy

A1 σ̃z = kxkyσz

usual pseudospin B2 σ̃x = σx

B1 σ̃y = σy

A2 σ̃z = σz

TABLE I: Symmetry distinction between spinless pseudospin
Pauli matrices and usual pseudospin Pauli matrices. Since all
spinless pseudospin components belong to a different symme-
try than the usual spin, it cannot couple to a Zeeman field.

can define pseudospin Pauli matrices σ̃x = |1⟩⟨2|+ |2⟩⟨1|,
σ̃y = i|1⟩⟨2| − i|2⟩⟨1|, and σ̃z = |1⟩⟨1| − |2⟩⟨2|. We find
that on these C2v invariant lines, instead of the usual
pseudospin, spinless pseudospin can exist. These two
scenarios differ in their symmetry transformation prop-
erties under C2v. As summarized in Table 1, for usual
pseudospin scenario, the pseudospin Pauli matrices be-
long to the A2, B1, and B2 representations of the group
C2v, same as usual spin-1/2 Pauli matrices denoted by
σi. For spinless pseudospin scenario, all pseudospin Pauli
matrices σ̃i belong to the A1 representation, ensuring no
coupling to a Zeeman field. Spinless pseudospin Pauli
matrices in terms of usual spin-1/2 Pauli matrices nec-
essarily include some momentum-dependent or orbital-
dependent functions. In Table 1, we carry out such a
representative expansion valid near the Γ point.

FIG. 1: At Brillouin zone edges hosting spinless pseudospin,
SOC splits the 8-fold degenerate band into 4 doubly degener-
ate bands, leaving all spin operators inter-band.

To ensure that pseudospin excitations preserve mirror
Mx,y symmetries and belong to the A1 representation,
the Kramers’ degenerate states |1⟩ and |2⟩ = TI|1⟩ need
to share the same Mx (and My) eigenvalues. This is
achievable with non-symmorphic symmetries, for which
mirror and inversion operation generically do not com-
mute. Analysis of the momentum-dependent commuta-
tor across all space groups reveals that pseudospin must
become spinless along specific momentum lines: in Pbcm
(SG 57) along (kx, π, π); in Pbcn (SG 60) along(π, ky, π);
in Pnma (SG 62) along(π, π, kz); in Pbca (SG 61) along
(kx, π, π), (π, ky, π), and (π, π, kz); and in Pa3 (SG 205)
along (kx, π, π), (π, ky, π), and (π, π, kz). The detailed

symmetry analysis is in the supplementary material. No-
tably, in previous studies without considering SOC16–18,
these lines exhibit eight-fold band degeneracy (Fig.1).

FIG. 2: Intra-band g-factors in UCoGe calculated along the
k line (π+k, π+k, 0.2π). These g-factors quantify the energy
splitting between Kramers’ doublets for fields applied along
the x, y, and z directions. The value g = 1 corresponds to
usual spin-1/2. Inset: Fermi surface of UCoGe. The g calcu-
lations are done along the arrow and for the bands producing
the inner (pale red) Fermi surface.

Vanishing g-factors: application to UCoGe: The re-
sponse of pseudospin to a Zeeman field is generally de-
scribed by the Hamiltonian HZ = µB

∑
i,j gijHiσ̃j . For

spinless pseudospin, symmetry requires that gi,j = 0.
This result has implications for pseudospin-singlet super-
conductors occurring on a Fermi surface surrounding the
above high symmetry lines. In particular, since spinless
pseudospin dominates the spin physics on such a Fermi
surface, there is nearly no Pauli suppression of super-
conductivity for the field applied in any direction. This
generalizes the well-known lack of Pauli suppression for
in-plane fields observed in Ising superconductors4,18.
One relevant material is UCoGe. UCoGe has space

group Pnma (SG 62) and exhibits critical fields that ex-
ceed the Pauli limit for all field directions19. DFT shows
that UCoGe exhibits quasi-2D cylindrical Fermi surfaces
near the R-S line consistent with quantum oscillation
measurements20. Along the R-S line, we predict spinless
pseudospin. Figure 1 shows the DFT calculated g-factors
near the R-S line and reveals that they all vanish on this
line. Furthermore, they are small near this line, consis-
tent with the large observed Pauli fields. UCoGe is often
argued to be a pseudospin-triplet superconductor based
on the large observed critical fields. Our results allow
the possibility that this is a pseudospin-singlet supercon-
ductor and further necessitate a more careful analysis of
spin fluctuations in such superconductors.

Stoner spinless-pseudospin ferromagnets: Another im-
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portant finding of our work is that spinless pseudospin
induces Stoner’s instabilities into novel magnetic states.
To understand this, it is useful to revisit the Stoner in-
stability of a single band into a ferromagnet. Central to
this is the local Coulomb repulsion on each lattice site i,
Uni,↑ni,↓ (where ni,s gives the number of electrons with
spin s). Treating this interaction within mean-field the-
ory yields the usual Stoner criterion for a ferromagnetic
instability, UN(0) > 1 where N(0) is the density of states
at the chemical potential. The key observation for more
general pseudospin is that the local Coulomb repulsion is
statistical since it originates from the Pauli exclusion of
the two degenerate spin states that comprise the band.
Consequently, the same argument implies a Stoner insta-
bility into a pseudospin ferromagnet. When the pseu-
dospin symmetry differs from that of usual spin-1/2, the
resulting Stoner-driven magnetic state must have a dif-
ferent symmetry than a usual ferromagnet.

Indeed, our earlier symmetry arguments imply that a
Stoner-driven pseudospin ferromagnet will generally be
non-collinear. To understand this, it is also worthwhile
contrasting the Stoner instability of usual spin with that
of pseudospin in materials with orthorhombic symme-
try (similar arguments apply to cubic symmetry). For
the usual spin, each spin component belongs to a differ-
ent symmetry representation, hence symmetry requires a
usual ferromagnetic transition into a uniaxial state. For
spinless pseudospin, all pseudospin operators belong to
the same symmetry representation, hence symmetry dic-
tates that the resultant pseudospin ferromagnet is a lin-
ear combination of all three components. However, as
Table 1 shows, each of these pseudospin components is
related to real spin components through different mo-
mentum prefactors, implying that the spin quantization
is strongly momentum-dependent and generally contains
all three spin components. In real space, this implies a
generic non-collinear structure.

We note that our general arguments imply that for
a Fermi surface sufficiently close to the high symmetry
line, we must always have a Stoner instability into a non-
collinear magnetic state, independent of the details of
the electronic structure. However, these symmetry argu-
ments do not address what electronic properties deter-
mine the region of momentum space for which a pseu-
dospin ferromagnet is the ground state. To gain more
insight, we perform self-consistent one-loop (RPA) calcu-
lations for space group Pa3. We consider a tight-binding
model with four sites in a unit cell. We include nearest
(with hopping parameter t′), next-nearest neighbor hop-
ping (with hopping parameter t), and nearest neighbor
spin-orbit coupling λ (see Methods). We study on-site
repulsive Hubbard interaction Uni↑ni↓ with i = 1...4.
We compare all possible onsite magnetic orderings, which
are captured by the 16 on-site particle-hole vertices Vi↑↑,
Vi↓↓, Vi↑↓ and Vi↓↑. The corrections between these ver-
tices are V = MV + V0, where V and V0 are vectors
containing the 16 self-consistent and bare vertices, re-
spectively. M is a 16 × 16 matrix including all one-loop

corrections.

FIG. 3: Two types of self-consistent one-loop Feynman dia-
grams, (Top) for output vertex with opposite spins, and (Bot-
tom) for output vertex with the same spin.

We only include intra-band particle-hole contribution
while formulating the calculation within the sublattice-
spin basis, such that the matrix M involves two types of
one-loop diagrams shown in Fig.3. The top type of dia-
gram is relevant for output vertices with opposite spins.
The particular correction shown here is from vertex Vj↑↑
to vertex Vi↑↓. The bottom type of diagram is for output
vertices with the same spins. The particular correction
shown here is from vertex Vj↑↑ to vertex Vi↑↑. The cor-
responding matrix elements are written in Methods.

FIG. 4: Inverse of critical interaction strength in Stoners’
criteria, normalized by the density of states. As the Fermi
surface evolves from a pocket near R-point (π, π, π) to Γ-
point, dominant magnetic instability changes from spinless
pseudospin ferromagnetism (SPFM) to ferromagnetism (Fm).
t = 0.15, t′ = 1, λ = −0.1 are used. Fermi surfaces at
µ = −0.4, 0, and 1.5 are included.

The eigenvalues of M have the form γUN(0), and
Stoners’ criteria is γUcN(0) = 1. The dominant mag-
netic instability thus corresponds to the eigenvector of M
with the largest γ. In Fig.4, we show γ = (UcN(0))−1,
for the ferromagnetic and spinless-pseudospin ferromag-
netic states. By increasing the chemical potential µ, the
Fermi surface evolves from a pocket near R-point (π, π, π)
to a pocket near Γ-point. For a Fermi surface near the
Γ-point, the spinless feature is not present, and Stoners’
mechanism gives a conventional ferromagnetic state.
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As the Fermi surface approaches the zone edges, spin-
less pseudospin dominates the low-energy excitations,
and Stoners’ mechanism gives rise to a non-collinear mag-
netic state, as expected. The exact transition point be-
tween a conventional ferromagnet and the spinless pseu-
dospin ferromagnet depends on the ratio between SOC
and nearest neighbor hopping: λ/t′, in Fig. 4 we use
|λ/t′| = 0.1. All spinless pseudospin representations
break T symmetry but preserve crystal symmetries as in
Table 1. Moreover, as shown in Fig.5, these excitations
are staggered spin excitations, and generically mix into a
non-collinear state. The same states are found to be the
leading instabilities in space group Pbca and Pnma, for
Fermi surfaces near the R-S lines, and the resultant mag-
netic space groups are magnetic type 1 Federov groups
for which all space group symmetries remain and only T
symmetry is broken.

FIG. 5: (Left) Staggered spin excitations with different ori-
entations (denoted in different colors) are the spinless pseu-
dospin excitations on the R-M (kx = ky = π) line of space
group Pa321. (Right) The three excitations share the same
symmetry and generically mix into a non-collinear magnetic
state. Similar states are found in space groups Pbca and
Pnma.

Given that these different space groups all generate
similar magnetic states from the same mechanism, it is
reasonable to ask if they share any common physical
properties. In the following, we discuss two such proper-
ties: π/2 spin gauge flux generated from the non-collinear
magnetic order and symmetry required Weyl line nodes.

Scalar spin chirality: Non-collinear magnetic structures

can give rise to scalar spin chirality χijk = S⃗i · (S⃗j × S⃗k)
which is closely linked to orbital magnetism and Berry
curvature8,22–24. For all the magnetic groups we find
here, χijk = ±4mxmymz for any elementary triangle
of nearest neighbor spins. This non-collinear magnetic
structure implies spin-gauge flux for a spin-1/2 electron
that travels each such triangle. We find this spin gauge
flux is ±π/2 for all the spinless-pseudospin ferromagnetic
states. Such spin-gauge fluxes are known to generate
Berry curvature and an anomalous Hall effect (AHE).
However, due to the presence of mirror symmetries in
spinless-fermion ferromagnets, the total AHE will vanish.
However, the application of a shear strain, which breaks
a mirror symmetry, will allow both an orbital magneti-
zation and an AHE to appear. The link between the
magnetic order we find here for space group Pa3 and or-

bital magnetization has been explored in fcc lattices22.
Our results generalize this to orthorhombic space groups
and provide an electronic mechanism for this magnetic
state.

Weyl lines: We find that spinless-pseudospin ferro-
magnets generically have vanishing energy-band spin-
splitting along lines in momentum space. These Weyl
lines imply drumhead surface states on surfaces oriented
along the mirror planes9–11. Near the Γ point, symme-
try requires that the Hamiltonian for spinless-pseudospin
ferromagnets is (a related Hamiltonian is discussed in
Ref. 25)

H = ϵ0(k) + αxkzkyσx + αykzkxσy + αzkxkyσz (1)

where αi are constants. This yields Weyl lines along the
x, y, and z axes that are each topologically protected
by two of the three orthogonal mirror symmetries. On
any mirror-symmetric loop around a Weyl line, the Berry
phase is π (here the relevant mirror symmetry is orthogo-
nal to the Weyl line). This yields drumhead surface states
on crystal surfaces that are mirror invariant10. Key to
the existence of these states is the position of possible
additional Weyl lines away from the Γ point. Such ad-
ditional Weyl lines can imply that the drumhead surface
states disappear. Generically, using26, we find that such
Weyl lines exist on the BZ boundary for all the spinless-
pseudospin ferromagnets discussed here. The positions
of all Weyl lines are shown in Fig. 3. This implies
that drumhead surface states will appear on all x, y, and
z surfaces for spinless-pseudospin ferromagnets in space
groups Pbca, Pbcn, Pnma, and Pa3, and on the y and
z surfaces for space group Pbcm. In the SM we reveal
these surface states for space group Pa3.

FIG. 6: BZs for (a) primitive cubic and (b) primitive or-
thorhombic space groups. (c–f) Weyl fermion lines (in red) for
the spinless-pseudospin ferromagnetic space groups are found
here.

Materials realizations of spinless pseudospin ferromag-
nets: Using the Magndata database7 we highlight two
material classes that reveal the magnetic states we find
here. One is a group of 11 perovskite materials with
space group Pnma. These have the form RTO3, where R
is a rare earth and T is a transition metal. DFT shows
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that many of these materials are metallic in the normal
state (see for example27). The second is NiS2−xSex with
space group Pa3. Under pressure and doping, the sys-
tem goes through an insulator-metal transition14,28. The
translationally invariant non-collinear state has been re-
ported in both phases under chemical pressure15. The
metallic phase keeps a large density of states close to
the insulator-metal transition14, suggesting the necessity
for an itinerant mechanism to stabilize the non-collinear
magnetic state. DFT calculations on undoped NiS2 show
Fermi surfaces surrounding the R-point and additional
Fermi surfaces surrounding the high symmetry lines29,
suggesting the applicability of our analysis.

Discussion and conclusions:
Our results emphasize Stoner instabilities of Fermi sur-

faces and thus emphasize the lowest energy degrees of
freedom in stabilizing these novel magnetic states. In
principle, inter-band contributions can also generate such
magnetic states30. In these cases, our results show that
SOC plays an important role in further stabilizing these

states.

In conclusion, we have identified a symmetry property
of Bloch pseudospin that forbids it to couple to a Zee-
man field on certain high symmetry lines in space groups
Pbcm, Pbcn, Pbca, Pnma, and Pa3. We have shown
that this spinless property enables field-robust supercon-
ductivity and Stoner instabilities in non-collinear mag-
netic states that have no net magnetization. Finally, we
have shown that these spinless-pseudospin ferromagnetic
states generically have scalar spin chirality with ±π/2
spin gauge flux and Weyl fermion lines that give rise to
drumhead surface states.
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Methods

For RPA calculation with a minimal tight-binding model. We considered s-orbitals on Wyckoff position 4a, given by
(a1, a2, b1, b2) = {(0, 0, 0), (0, 1/2, 1/2), (1/2, 0, 1/2), (1/2, 1/2, 0)}. We use the Pauli matrices τi and ρi to differentiate
between the (a, b) and (1, 2) sublattices respectively, and the Pauli matrices σi for the spin of these fermions. The
tight-binding Hamiltonian that includes all nearest-neighbor interactions is:

H = 2t(cos kx + cos ky + cos kz)− µ

+ t′
(
cos

kx
2

cos
kz
2
τx + cos

ky
2

cos
kz
2
ρx + cos

kx
2

cos
ky
2
τxρx

)
+HSOC1 +HSOC2

HSOC1 = λ

(
sin

kx
2

sin
ky
2
τyρxσx + sin

ky
2

sin
kz
2
ρyσy + sin

kx
2

sin
kz
2
τyρzσz

)
HSOC2 = a

(
cos

ky
2

cos
kz
2
ρyσz + cos

ky
2

cos
kz
2
τzρyσx + cos

kx
2

cos
kz
2
τyσy

+cos
kx
2

cos
kz
2
τyρzσx + cos

kx
2

cos
ky
2
τxρyσz + cos

kx
2

cos
ky
2
τyρxσy

)
(2)

RPA calculation on Pa3 studies the doubly generate band with the highest energy. The top panel of Fig.3 gives

matrix element M(i↑,↓),(j↑,↑) = UN(0)
〈∑II

a,b=I u
a
j↑u

a∗
i↑ u

b
i↓u

b∗
j↑

〉
. Here, uI and uII are the two degenerate eigenvectors

of the Hamiltonian, and uaj↑ is the j ↑ element of the eigenvector ua. The average ⟨...⟩ is over all states on the Fermi

surface. N(0) is the density of states at the Fermi level. The bottom panel gives the matrix element M(i↑,↑),(j↑,↑) =

−UN(0)
〈∑II

a,b=I u
a
j↑u

a∗
i↓ u

b
i↓u

b∗
j↑

〉
.

Mirror symmetries are Mx ∝ τyρxσx, My ∝ ρyσy, and Mz ∝ τyρzσz. Local staggered spin excitations τzρzσx, τzσy,
and ρzσz preserve all mirror symmetries, and are pseudospin excitations on the zone edge. These three states share
the same symmetry as kxkyσz, so they generically mix, giving rise to non-collinear states. The exact mixing ratio
depends on higher order terms in the theory, e.g. HSOC2.
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Supplementary Information

A. Symmetry arguments for spinless pseudospin

Here, we will first review the symmetry arguments for the double nodal line16,17 in the absence of SOC. We then
include SOC to reveal how the nodal eight-fold degeneracy is broken into four Kramers’ doublets.

The eight-fold band degeneracy requires four-fold orbital degeneracy. Consider the symmetry elements that preserve

a momentum point on the nodal line (π, π, kz). They are generated by {E, M̃x, M̃y, IT}, where M̃x is the usual mirror
symmetry x→ −x followed by a translation tx = (txx, t

y
x, t

z
x). The origin is chosen to be the inversion center. We have

M̃x

2
= {0, 2tyx, 2tzx}, M̃xI = {2txx, 2tyx, 2tzx}IM̃x, and I

2 = T 2 = 1. Here {...} denotes translation. The spin is ignored
in the absence of SOC. We show that the four states (below labeled as 1 → 4):

|ψ⟩, M̃xIT |ψ⟩, M̃xM̃y|ψ⟩, M̃yIT |ψ⟩ (3)

are degenerate orthogonal eigenstates. They follow from two two-fold Kramers’ degeneracies. The first Kramers’

degeneracy arises from M̃xIT . This satisfies (M̃xIT )
2 = {2txx, 0, 0} = exp(2ikxt

x
x) = −1, (here we used the fact that

the T commutes with other symmetry operations). This symmetry makes states (1,2) as well as (3,4) orthogonal to

each other. The second Kramers’ degeneracy arises from M̃yIT , which satisfies (M̃yIT )
2 = exp(2ikyt

y
y) = −1. This

makes states (1,4) as well as (2,3) orthogonal to each other. For these two Kramers’ degeneracies to be independent,

states (1,3): |ψ⟩ and M̃xM̃y|ψ⟩ need to be orthogonal. This requires {M̃x, M̃y} = 0, such that |ψ⟩ can be chosen

as an eigenstate of M̃x, while M̃xM̃y|ψ⟩ is an orthogonal eigenstate with the opposite M̃x eigenvalue. In summary,

without SOC, the eight-fold band degeneracy requires exp(2ikxt
x
x) = exp(2ikyt

y
y) = −1 and {M̃x, M̃y} = 0. The

former condition gives txx = tyy = 1/2 and the latter condition restricts (tyx, t
x
y) = (0, 1/2) or (1/2, 0).

We now include the SOC. The time reversal operation now satisfies T 2 = −1. The bands have the usual Kramers’

degeneracy from IT . The mirror operators M̃x,y now include the spin part iσx,y. This leads to [M̃x, M̃y] = 0. There

is now no additional degeneracy arising from other symmetry operators involving T , since M̃x and M̃y commute with
the Hamiltonian and with each other, so define four non-degenerate orthogonal eigenstates. Hence the eight-fold
degeneracy splits into four Kramers’ pairs.

We now prove that each Kramers’ pair shares the same M̃x eigenvalues. The proof for M̃y is similar. Since

M̃x

2
= (iσx)

2{0, 2tyx, 2tzx} = − exp(2ikyt
y
x + 2ikzt

z
x), the eigenvalue of M̃x is ±i exp(ikytyx + ikzt

z
x). Let |ψ⟩ be an

eigenstate of M̃x, then consider its Kramers’ partner TI|ψ⟩:

M̃x|ψ⟩ = ieikyt
y
x+ikzt

z
x |ψ⟩

⇒M̃xTI|ψ⟩ = {2txx, 2tyx, 2tzx}TIM̃x|ψ⟩ = e2ikxt
x
x+2ikyt

y
x+2ikzt

z
xTI(ieikyt

y
x+ikzt

z
x |ψ⟩)

=(−e2ikxt
x
x)ieikyt

y
x+ikzt

z
xTI|ψ⟩ = ieikyt

y
x+ikzt

z
xTI|ψ⟩

(4)

Hence TI|ψ⟩ is another eigenstate with the same M̃x eigenvalue as |ψ⟩. Since the two Kramers’ partners share the
same mirror eigenvalues, Pauli matrices made from these Kramers’ partners must be invariant under the two mirror

operations M̃x and M̃y
18,31. This implies that all the Kramers’ doublets form spinless pseudospin.

B. Tight-binding Hamiltonian for other space groups

For space groups Pbca, Pnma, and Pa3 we considered s-orbitals on Wyckoff position 4a. For space groups Pbca and
Pa3 these are given by (a1, a2, b1, b2) = {(0, 0, 0), (0, 1/2, 1/2), (1/2, 0, 1/2), (1/2, 1/2, 0)}. We use the Pauli matrices
τi and ρi to differentiate between the (a, b) and (1, 2) sublattices respectively, and the Pauli matrices σi for the spin
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of these fermions. The tight-binding Hamiltonian that includes all nearest-neighbor interactions is:

H = 2tx cos kx + 2ty cos ky + 2tz cos kz − µ

+ tab cos
kx
2

cos
kz
2
τx + t12 cos

ky
2

cos
kz
2
ρx + ta1b2 cos

kx
2

cos
ky
2
τxρx +HSOC1 +HSOC2

HSOC1 = λ1 sin
kx
2

sin
ky
2
τyρxσx + λ2 sin

ky
2

sin
kz
2
ρyσy + λ3 sin

kx
2

sin
kz
2
τyρzσz

HSOC2 = a1 cos
ky
2

cos
kz
2
ρyσz + a2 cos

ky
2

cos
kz
2
τzρyσx + a3 cos

kx
2

cos
kz
2
τyσy

+ a4 cos
kx
2

cos
kz
2
τyρzσx + a5 cos

kx
2

cos
ky
2
τxρyσz + a6 cos

kx
2

cos
ky
2
τyρxσy

(5)

For space group Pbca, the coefficients are generically different. For space group Pa3, the following constraints are
imposed by symmetry:

tx = ty = tz =: t, tab = t12 = ta1b2 =: t′, λ1 = λ2 = λ3 =: λ, a1 = a4 = a6 =: a, a2 = a3 = a5 =: a′. (6)

For space group Pnma, we denote the 4a Wyckoff positions as (a1, a2, b1, b2) =
{(0, 0, 0), (1/2, 0, 1/2), (0, 1/2, 0), (1/2, 1/2, 1/2)}. The tight-binding Hamiltonian is:

H = 2tx cos kx + 2ty cos ky + 2tz cos kz − µ

+ tab cos
ky
2
τx + t12 cos

kx
2

cos
kz
2
ρx + ta1b2 cos

kx
2

cos
ky
2

cos
kz
2
τxρx +HSOC1 +HSOC2

HSOC1 = λ1 sin
kx
2

sin
ky
2

cos
kz
2
τxρyσx + λ2 sin

ky
2

sin kzτyσy + λ3 sin
kx
2

sin
kz
2
τzρyσz

HSOC2 = a1 cos
kx
2

cos
kz
2
τ0ρyσy + a2 cos

kx
2

cos
kz
2
τzρyσx + a3 cos

ky
2
τyρ0σz

+ a4 cos
ky
2
τyρzσx + a5 cos

kx
2

cos
ky
2

cos
kz
2
τxρyσy + a6 cos

kx
2

cos
ky
2

cos
kz
2
τyρxσz

+ a7 cos
ky
2

sin
kx
2

sin
kz
2
τyρxσx + a8 cos

kx
2

sin
ky
2

sin
kz
2
τxρyσz + a9 cos

kx
2

sin
ky
2

sin
kz
2
τyρxσy

(7)

C. Drumhead surface states

In this section, we demonstrate the drumhead surface states for space group Pa3. For this purpose, we use the
tight-binding model in Eq. (5) under the conditions (6). Furthermore, additional SOC terms allowed in the space
group symmetry are considered here:

HSOC4 = λ(δ1 cos kx + δ2 cos ky + δ3 cos kz) sin
kx
2

sin
ky
2
τyρxσx

+ λ(δ3 cos kx + δ1 cos ky + δ2 cos kz) sin
ky
2

sin
kz
2
ρyσy

+ λ(δ2 cos kx + δ3 cos ky + δ1 cos kz) sin
kx
2

sin
kz
2
τyρzσz, (8)

which lift accidental degeneracies of the energy bands and enable us to see the existence of the surface states.
To discuss the altermagnetic-like state induced by the Stoner instability for spinless pseudospin, we treat the

magnetic order as a molecular field: h(ρzσz + τzρzσx + τzσy). Figure 7 shows energy spectra on the slice with
kx = π/2. The blue solid lines are obtained by considering periodic boundary conditions (PBCs) for all directions,
whereas the red dashed lines represent the spectra under an open boundary condition (OBC) along the z axis and
PBCs along the other x and y directions. There are several surface bands in the bulk gap, which originate from the
topology of the Weyl lines in Fig. 3(c) of the main text. For example, the drumhead surface states emerging in the
−π < ky < 0 region of the upper bands (the inset of Fig. 7) are characterized by the Zak phase,

γn(kx, ky) =
1

i

∫ π

−π

dkz⟨un(k)|∂kz
|un(k)⟩ (mod 2π), (9)

which is quantized into a Z2 variable by the mirror symmetry M̃z. Here n represents a band index. We calculate the
Zak phase γn(kx, ky) by choosing n as the top band, and confirm that it takes a nontrivial value π for −π < ky < 0,
while it is zero for 0 < ky < π. These results correspond to the presence or absence of drumhead surface states.
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FIG. 7: Weyl-line node driven topological surface states. Parameters are set to (t, t′, λ, a, a′, δ1, δ2, δ3, h, µ) =
(−0.2, 0.2, 1, 1,−1, 0.2, 0.5, 0.5, 1, 2.5). The blue solid and red dashed lines represent the spectrum under the PBC and OBC
along the z axis, respectively. The inset indicates the enlarged energy spectrum in the orange dash-dotted box.
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