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1. Introduction

To an outside observer, a black hole appears to be an ordinary quantum mechanical system with finite entropy

and highly chaotic internal dynamics. According to this picture, the exponential of the Bekenstein-Hawking entropy

eSBH represents the smooth (coarse-grained) leading approximation to the density of states of the black hole Hilbert

space, whose average level spacing is expected to be e−SBH . The near-equilibrium dynamics of a black hole in a pure

microstate is believed to be well-approximated by statistical averages in the canonical or microcanonical ensemble

since the Hamiltonian is chaotic. In the special cases for which an explicit microscopic description is available, these

averages are computed using standard statistical techniques and are found to agree with the predictions of semi-

classical general relativity and Euclidean quantum gravity. When no explicit microscopic description is available (as

is most often the case), the averages can only be performed macroscopically by evaluating the Euclidean gravitational

path integral in a saddle point approximation.

Although black holes are believed to be “ordinary” quantum mechanical systems, their thermodynamics is not

generic. Black holes that spin or carry charge can be very large and very cold, and in the leading order semiclassical

approximation to the black hole density of states there is an enormous ground state degeneracy eS0 for these systems.

In theories with unbroken supersymmetry, the existence of these ground states is sensible due to the huge degeneracy

at zero coupling where there is enhanced symmetry, but in less symmetric models (like the black holes in our universe!)

the degeneracy is surprising and one wants to know if it is merely the consequence of an approximation or not. This

paper addresses this question for Kerr black holes of spin J , which are extremal when J = M2 with entropy 2πJ .

This question is related to another old puzzle about cold back holes [1]. For a black hole near extremality, semiclas-

sical analysis predicts that the thermodynamically accessible energy above extremality EBH scales quadratically with

the temperature of the black hole, while the typical energy EHawk of a quantum of Hawking radiation scales linearly

EBH(T ) ∼ J3/2T 2 , EHawk ∼ T . (1.1)

Below the temperature where these two curves intersect, the emission of a thermal Hawking quantum cannot be

treated as a near-equilibrium process, since the emission of such a quantum would carry away all of the energy

available in the system. In other words, even though the curvature at the horizon is small, the semiclassical analysis

does not seem to apply. This puzzle was resolved in [1] by showing that the leading semiclassical approximation
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receives large corrections below EBH = EHawk and therefore cannot be trusted, but a derivation of the behavior in

this regime was not given.

There are now two proposed behaviors, both of which appear to have realizations in different models. The authors

of [1] suggested that the black hole spectrum might have a gap Egap ∼ J−3/2 above extremality, below which

thermodynamics obviously no longer applies. For black holes with known microscopic descriptions (all of which are

supersymmetric) this gap indeed exists [2–8]. The quantum mechanics that describes these black holes is continuously

connected to a free point with enhanced symmetry and many BPS states which are protected all the way to strong

coupling, so it is not surprising that these models have a large ground state degeneracy in a fixed charge sector. In

the absence of supersymmetry it is less clear what to expect.

The second possibility is that the large ground state degeneracy is an artifact of the leading order calculation, and

that quantum corrections become more relevant at low temperatures and cause these states to spread out over a dense

energy band above the vacuum. This is what one would naively expect for a non-supersymmetric system like the

Kerr black hole, the focus of this paper. Although the exact spectrum of the black hole can only be computed non-

perturbatively (the expected eigenvalue spacings in this part of the spectrum are e−SBH ∼ e−1/GN ), in this scenario

one hopes to compute a perturbative correction to the density of states and determine whether or not ρcorr(E) → 0

as E → 0.

Calculating this correction directly using the full Kerr geometry is a formidable task so far unachieved for any

near-extremal black hole. However, there is another approach for studying the low temperature thermodynamics of

spinning black holes that makes use of the emergent near-extremal throat (NHEK) and its approximate decoupling

from the far region. At exact extremality the throat is infinitely long, and its asymptotic boundary serves as an

effective stretched horizon for the black hole system. In this limit the far region decouples1 and one expects that the

relevant part of the black hole Hilbert space can be equivalently captured by gravitational dynamics in the throat

according to the Kerr/CFT correspondence. The analogous formalism, when applied to spherically symmetric black

holes, has led to precise matches of bulk gravitational calculations and microscopic counts [9].

However, using this approach to study the excited near-extremal microstates is subtle. In particular, due to the

strong backreaction effects present in low dimensional systems with long-range forces, quantum gravity with exactly

AdS2 boundary conditions is believed to only describe ground states [10, 11]. Calculations involving excited states

are beset with infrared (IR) divergences, indicating a failure of the black hole to fully decouple from the far region.

In fact, as first noted by Sen [12], even the ground-state calculations can suffer from subtle divergences. The simplest

IR divergence manifests in the one-loop correction to the Euclidean partition function in the extremal throat. In the

process of calculating logarithmic corrections to extremal black hole entropy, Sen identified a set of normalizable

zero modes in the NHEK throat corresponding to Diff(S1)/SL(2,R) diffeomorphisms with non-compact support.

Since these fluctuations are normalizable they must be integrated over, and since the domain of integration is infinite

dimensional with no suppression the partition function diverges

ZNHEK ∝
ˆ

Diff(S1)/SL(2,R)

[Dh] = ∞ . (1.2)

The dependence of the measure on S0 can be unambiguously determined, so these zero modes contribute a known

logarithmic (in S0) correction to the extremal entropy, assuming that it exists. However, the IR divergence of the

partition function due to the unsuppressed fluctuations of the zero modes signals a subtlety in the calculation. As

we will see, a proper treatment of these zero modes can remove the ground state degeneracy entirely, rendering the

T → 0 limit of the quantum black hole singular. Instead of a system with tremendous entropy at zero temperature,

1 Obstacles to decoupling, not considered here, may arise from superradiant modes.
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one encounters a system with a dense energy band of eS0 states spread out above the vacuum to which standard

thermodynamics applies. The corresponding correction to the thermodynamic energy alleviates the tension inherent

in (1.1).

This resolution to the puzzle raised by (1.2) was first proposed for the analogous problem in the AdS2 throat of

extreme Reissner-Nordström in [7, 13], and our analysis follows theirs closely. The strategy adopted in these papers

amounts to turning on a small but finite temperature T , which necessitates the retention of subleading corrections

to the metric in the near-extremal throat. These metric corrections lift the zero mode degeneracy and lead to log T

corrections to the near-extremal entropy that agree with results derived more indirectly using the Schwarzian model

[14]. Laplace transforming this result to obtain the density of states, one finds that the ground state degeneracy is

actually sub-exponential in S0 (it vanishes at this order in the approximation but presumably receives non-perturbative

corrections). It is this prescription that we adapt for the near-extreme Kerr black hole, as described below.

The standard scaling limit into the throat of the extreme Kerr black hole takes the form

t̂ =
1

2πT
t, r̂ = r+(T ) + 4πr20T (r − 1), φ̂ = φ +

t

4πr0T
− t , T → 0 , (1.3)

leading to the decoupled NHEK metric

ds2 = J(1 + cos2 θ)

(

−(r2 − 1) dt2 +
dr2

r2 − 1
+ dθ2

)

+ J
4 sin2 θ

1 + cos2 θ
(dφ + (r − 1) dt)

2
. (1.4)

Here J is the spin, r+(T ) is the radius of the outer horizon, r0 is the radius of the extremal horizon and we take the

limit in Boyer-Lindquist coordinates (t̂, r̂, θ, φ̂). The Euclidean continuation of this metric has zero modes which lead

to the infrared divergence (1.2). If one retains the leading O(T ) correction to this metric in the scaling limit (1.3),

one obtains a distinct geometry which we will term the “not-NHEK” metric2

gnot-NHEK = gNHEK + δg , (1.5)

with δg ∼ T . Unlike (1.4), this metric is not an exact solution to the four-dimensional Einstein equation, although

one can view it as a perturbative (in T ) approximation to a solution whose nonlinear completion is the asymptotically

flat finite temperature black hole. Indeed, the second term in (1.5) is interpreted as the leading approximation to the

far-region metric as seen by the near-horizon observer, and as such it couples the black hole throat dynamics to the

asymptotically flat spacetime. It is easy to see that the zero-modes of (1.4) that lead to the divergence of (1.2) are

lifted by the perturbation (1.5). The normalizable zero modes identified by Sen are metric deformations generated by

non-normalizable diffeomorphisms with non-compact support, meaning that they can be written

h(n) = Lξ(n)gNHEK (1.6)

for non-normalizable vector fields ξ(n). These vector fields are closely related to Virasoro generators of Kerr/CFT

[15–17]3, possibly as twisted in [19] (a connection we hope to explore further). However, they are not diffeomorphisms

of the not-NHEK metric

h(n) 6= Lζgnot-NHEK . (1.7)

They therefore acquire temperature-dependent eigenvalues at first order in perturbation theory. These perturbed

eigenvalues can be used to obtain an approximation for the small-T (zeta-regularized) Euclidean partition function in

2 The terminology near-NHEK is already commonly used to denote the leading order geometry (1.4), which is really a Rindler patch of

the full global NHEK geometry. It should not be confused with the term “nearly-AdS2” which describes the Reissner-Nordström analog

of the metric (1.5).
3 Similarly the ones appearing in the Reissner-Nordström case are related to those in RN/CFT [18].
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the not-NHEK geometry. Interpreted as a correction to the black hole partition function, these new terms predict a

lifting of the extremal ground state degeneracy for the Kerr black hole and a resolution of the puzzle described in [1].

There are many subtleties both in the calculation of logarithmic corrections to (near)-extreme black hole thermo-

dynamics and in the physical interpretation of the results. There are both gauge and geometric ambiguities in the

“gluing” of the decoupled near horizon geometry to the asymptotically flat region. The superradiant instability of

the NHEK throat leads to travelling waves with imaginary conformal weights and a complex partition function, and

calls into question the exact decoupling of the two regions, as does the nonexistence of a global vacuum for Kerr.

Black holes in asymptotically flat spacetimes have finite lifetimes and are therefore metastable resonances rather than

eigenstates. Since the “eigenvalue” spacing for these black holes is roughly e−S0 while the lifetime is polynomial in

S0, the widths are naively much larger than the spacings and it is not clear whether it is sensible to discuss a discrete

density of states. Another question regards the relationship between (1.5) and the lifting of the zero modes in the

zero temperature throat. One could equally well keep the leading order correction to the NHEK metric in the scaling

limit of an exactly extremal black hole [20]. This potentially allows one to lift the zero modes and define a finite zero

temperature partition function associated to the black hole, in contradiction with the statement that the T → 0 limit

is always singular. There is also the choice of ensemble. While leading order semiclassical results are insensitive to

these subtleties, the situation for subleading effects is still under discussion.

While not all of these issues have been definitively settled, it is nevertheless clear that significant recent progress

has been made in the understanding of logarithmic corrections to near-extreme charged black hole thermodynamics

and extreme Kerr thermodynamics. The purpose of this paper is to fill in the missing analysis of near-extreme Kerr

thermodynamics by simply adopting both the assumptions and methodology used for the Reissner-Nordström case in

the seminal papers [7, 13]. Although the details differ, at the end we interestingly find a numerically identical entropy

shift of 3
2 logT , compatible with Schwarzian dynamics. Our main mathematical results are formulas for the finite

temperature eigenvalues of the NHEK zero modes in the not-NHEK geometry (3.18), whose detailed form leads to

the factor 3
2 in (3.22).

The outline of this paper is as follows. Section 2 reviews Kerr thermodynamics, focusing on the small temperature

expansion and near-horizon limit. Section 3 introduces the corrected “not-NHEK” geometry and calculates the

correction to the NHEK partition function. Appendix A reviews the analogous AdS2 calculations.

As this paper was nearing completion, we became aware that similar results are in preparation by I. Rakic, M.

Rangamani and G. J. Turiaci [21].

2. Near-Extreme Kerr

The Kerr metric in Boyer-Lindquist coordinates takes the form

ds2 = −∆

Σ

(

dt̂− a sin2 θ dφ̂
)2

+
Σ

∆
dr̂2 + Σ dθ2 +

sin2 θ

Σ

[

(

r̂2 + a2
)

dφ̂− a dt̂
]2

, (2.1a)

∆(r̂) = r̂2 − 2Mr̂ + a2, Σ(r̂, θ) = r̂2 + a2 cos2 θ.

The spin of the black hole is given by J = aM , the inner and outer horizons occur at r± = M ±
√
M2 − a2, and the

area of the outer event horizon is

A = 4π(r2+ + a2) = 8πM
(

M +
√

M2 − (J/M)2
)

. (2.2)

The Hawking temperature and angular velocity of the horizon are

T =
1

4πM

√

M2 − (J/M)2

M +
√

M2 − (J/M)2
, ΩH =

a

2Mr+
. (2.3)

In the extremal limit M2 → M2
0 = J , the horizons coalesce at r0 = M0, the temperature vanishes, and ΩH → 1

2r0
.
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At fixed angular momentum J = r20 , we parameterize small deviations from extremality by their temperature T .

The relation (2.3) defines the thermodynamic energy M(J, T ), which has the small temperature expansion

M(T, J) = J1/2 + 4π2J3/2T 2 + 32π3J2T 3 + 264π4J5/2T 4 + . . . (2.4)

Similarly, the horizons r±(T ) at fixed T have the small temperature expansion

r+(T ) = J1/2 + 4πJT + 20π2J3/2T 2 + 128π3J2T 3 + 968π4J5/2T 4 + . . . ,

r−(T ) = J1/2 − 4πJT − 12π2J3/2T 2 − 64π3J2T 3 − 440π4J5/2T 4 + . . .
(2.5)

The near-extremal entropy is then linear in T

S(T, J) = S0 + 8π2J3/2T + O(T 2) , (2.6)

and the average thermodynamic energy above extremality scales quadratically with temperature as

E(T, J) = M(T, J) −M0 = 4π2J3/2T 2 + O(T 3) . (2.7)

2.1. The NHEK Throat

For many purposes one would like to study the dynamics of the black hole as an isolated quantum system, in-

dependent of its embedding in the full asymptotically flat spacetime. Unfortunately, for a generic Kerr black hole,

there is no meaningful geometric separation between the region of spacetime associated to the hole and the spacetime

belonging to the far region: the two systems are coupled and the interactions between them cannot be ignored. The

exception occurs when the black hole is near-extremal, in which case a long throat of length | logT | develops just

outside of the horizon. In the limit of infinite proper depth, this region is believed to approximately decouple from

the far region, although this itself is a subtle statement. This region of spacetime is generally associated to the black

hole.

In practice, it is possible to isolate the extremal throat by taking a scaling limit that zooms into the near horizon

region of a family of cold Kerr geometries. The change of coordinates

t̂ =
2r0
ε(T )

t, r̂ = r+(T ) + r0ε(T )(cosh η − 1), φ̂ = φ +
t

ε(T )
− t , ε(T ) = 4πr0T, (2.8)

followed by the limit T → 0, results in a spacetime that solves the Einstein equation in its own right:

ds2 = J
(

1 + cos2 θ
) (

− sinh2 η dt2 + dη2 + dθ2
)

+ J
4 sin2 θ

1 + cos2 θ
(dφ + (cosh η − 1) dt)2 . (2.9)

This geometry, found by Bardeen and Horowitz in [22], is known as Near-Horizon Extreme Kerr (NHEK).4 It is the

analog of the Robinson-Bertotti universe obtained from the scaling limit of the near-extremal Reissner-Nordström

black hole. The metric has SL(2,R) × U(1) symmetry with generators

L±1 =
e∓t

sinh η
(cosh η ∂t ± sinh η ∂η + (cosh η − 1)∂φ) , L0 = ∂t + ∂φ , W = ∂φ. (2.10)

It is commonly believed that at least part of the quantum mechanics of the Kerr black hole is captured by gravitational

dynamics in this throat in analogy with the better-understood black holes with near-horizon AdS regions.

4 Some references refer to this spacetime as near-NHEK, and reserve the term NHEK for its geodesic completion.
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3. Quantum Corrections to the Throat Thermodynamics

There is to date no top-down microscopic construction of the four-dimensional Kerr black hole.5 However in accord

with the usual assumptions we will identify the analytically continued gravitational path integral in the NHEK throat

with the statistical partition function of the dual quantum mechanics.

Following Sen [12] we analytically continue t = −iτ in (2.9) which gives

ds2 = J(1 + cos2 θ)(dη2 + sinh2 ηdτ2 + dθ2) + J
4 sin2 θ

1 + cos2 θ
(dφ− i(cosh η − 1)dτ)2 . (3.1)

Regularity of the geometry at η = 0 requires the periodicity τ ∼ τ + 2π. The partition function in the near-horizon

region of Kerr is given formally by an integral over metrics subject to a certain set of boundary conditions [12]

Z =

ˆ

[Dg]e−I[g] I[g] = − 1

16π

ˆ

M

d4x
√
gR + Iboundary . (3.2)

The boundary conditions and corresponding boundary terms in the action determine the statistical ensemble computed

by the path integral.

The geometry (3.1) is a classical saddle-point for the integral (3.2) satisfying the appropriate boundary conditions,

and therefore provides the leading approximation Z ≈ exp (−I[gNHEK ]) to the black hole partition function. In

[12] it was shown that this saddle-point approximation, including the correct boundary contributions, reproduces the

semiclassical entropy S0 of the extremal Kerr black hole. However, the path integral (3.2) is not well-defined beyond

the leading saddle point approximation: it is beset with UV divergences, and the instability of the NHEK throat due

to superradiance means that any sensible definition of the integral will necessarily make Z complex. Nevertheless,

in [12] Sen managed to extract some universal information about the dependence of (3.2) on S0 through a careful

analysis of the 1-loop determinant of massless fields on the background (3.1). These logarithmic corrections to the

Kerr black hole entropy provide a stringent test for any proposed microscopic dual to the Kerr black hole.

3.1. Quantum Corrections to NHEK Entropy and Zero Modes

The determination of the logarithmic corrections to the extremal Kerr entropy requires path-integration over the

massless fields propagating on the NHEK throat. Expanding about the saddle-point g = ḡ + h, with ḡ given by (3.1)

and h a normalizable perturbation, the 1-loop approximation is controlled by the linearized kinetic operator for h

Z ≈ exp (−I[ḡ])

ˆ

[Dh] exp

[

−
ˆ

d4x
√
ḡ hD[ḡ]h

]

. (3.3)

Calculations are performed with the gauge fixing term

LGF =
1

32π
ḡµν

(

∇̄αh
αµ − 1

2
∇̄µhα

α

)(

∇̄βh
βν − 1

2
∇̄νhβ

β

)

(3.4)

which, when combined with the Einstein-Hilbert action, yields the linearized kinetic term [25]

hαβD
αβ,µν [ḡ]hµν = − 1

16π
hαβ

(

1

4
ḡαµḡβν�̄− 1

8
ḡαβ ḡµν�̄ +

1

2
R̄αµβν +

1

2
R̄αµḡβν − 1

2
R̄αβ ḡµν − 1

4
R̄ḡαµḡβν +

1

8
R̄ḡαβ ḡµν

)

hµν .

(3.5)

For NHEK this is simply

hαβD
αβ,µν
NHEKhµν = − 1

16π
hαβ

(

1

4
ḡαµḡβν�̄− 1

8
ḡαβ ḡµν�̄ +

1

2
R̄αµβν

)

hµν . (3.6)

5 Although embeddings of nonsupersymmetric Kerr-like rotating black holes in string theory can be found in [23, 24].
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The determinant of this operator cannot be calculated exactly due to the reduced symmetry of the problem, but the

terms contributing logarithmic corrections in S0 can be extracted indirectly through the heat kernel expansion and

the appropriate integrals over curvature invariants. The details of this calculation are not directly relevant for what

follows. What is important for the present discussion is the fact that the operator appearing in (3.6) supports a family

of normalizable zero modes

h(n)
µν dx

µdxν =
1

4π

√

3

2

√

|n|(n2 − 1)(1 + cos2 θ)einτ
(sinh η)|n|−2

(1 + cosh η)|n|
(dη2 + 2i

n

|n| sinh ηdηdτ − sinh2 ηdτ2) , |n| > 1

(3.7)

which are not correctly accounted for by the heat kernel and which must be treated separately.6 These metric

perturbations are zero modes precisely because they are generated by large diffeomorphisms left unfixed by harmonic

gauge (3.4). In other words, they obey h(n) ∝ Lξ(n)gNHEK, with the vector field given by

ξ(n) = einτ tanh|n|(η/2)

(

−|n|(|n| + cosh η) + sinh2 η

sinh2 η
∂τ +

in(|n| + cosh η)

sinh η
∂η +

i(cosh η + 1 + |n| − n2)

cosh η + 1
∂φ

)

(3.8)

and satisfying �ξ(n) = 0. Repackaging these modes ξ =
∑

n fnξ
(n) and defining f(τ) =

∑

n fne
inτ , one finds the

large η behavior

ξ ≈ −f(τ)∂τ + f ′(τ)∂η + if(τ)∂φ . (3.9)

These diffeomorphisms therefore correspond to boundary time reparametrizations that send τ → τ − f(τ), η →
η + f ′(τ), and φ → φ + if(τ) and resemble vector fields appearing in Kerr/CFT [15–17, 19]. The path integral

(3.3) is therefore proportional to an integral over the (infinite-dimensional, non-compact) coset Diff(S1)/SL(2,R).

The quotient by SL(2,R) arises because the n = 0,±1 perturbations, which would correspond to diffeomorphisms

generated by (2.10) (i.e. LL±1,L0 ḡ) vanish due to the isometries of the background metric. This symmetry breaking

pattern, explicated in [14], is known to control many aspects of the near-extremal thermodynamics of spherically

symmetric black holes. Since the mode (3.9) costs no action and has infinite volume, the one-loop approximation to

the path integral therefore suffers from an infrared divergence

Z ∝
ˆ

Diff(S1)/SL(2,R)

[Df(τ)] = ∞ (3.10)

which is totally independent of any UV completion and completely controlled by the low energy fields in the model.

The (ultralocal) measure [Dh] induces a measure on Diff(S1)/SL(2,R) whose dependence on S0 can be determined

exactly. This in turn determines the log S0 correction to the entropy coming from the zero modes as reported in [12].

The NHEK path integral itself is however infrared divergent and ill-defined.

3.2. The not-NHEK Metric

The infinity (3.10) is an infrared divergence, which arises from low energy modes of low energy fields, and is therefore

a physical effect. Its existence calls into question the basic assumption that the NHEK path integral computes the

zero-temperature black hole partition function. One way to settle this question would be to define and compute the

finite temperature partition function for the black hole and then to take the T → 0 limit. In other words, we would

like to know if ZNHEK = limT→0 Z[T ]Black Hole when quantum fluctuations are taken into account.

6 The analysis in [12] proceeds by dimensionally reducing NHEK along the angular directions. The gauge field arising from the ∂φ isometry

is then argued to furnish another set of vector zero modes analogous to the AdS2 perturbations (A.16), although no explicit formula is

presented. The naive guess corresponding to ξ(n)
∝ Φn(τ, η)∂φ with Φn defined in (A.17) does not satisfy the harmonic gauge condition

and is not a zero mode of the operator (3.6). Note that ξ(n)
∝ Φn(τ, η)∂φ already appears as part of the diffeomorphism (3.8) that

generates the tensor zero modes (3.7). A similar twist of conformal transformations by large U(1) gauge transformations in the AdS2

throat is described in [19]. Regardless, as argued in [7], these vector zero modes are only expected to contribute in a specific choice of

ensemble, and so are irrelevant to the universal, ensemble-independent 3
2
log T correction that we compute in this paper.
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The issue is that “Z[T ]Black Hole” is itself difficult to define, let alone compute, at finite temperature in asymptotically

flat space. The most obvious definition would involve a Euclidean path integral with the standard asymptotically

flat boundary conditions and a periodic identification of asymptotic Euclidean time. This computation involves

integrating over fluctuations far from the black hole, whose contributions have to be disentangled from the trace

over the black hole microstates. The calculation cannot be performed explicitly for the Kerr black hole beyond the

leading saddle-point approximation, although Sen was able to derive predictions for the logarithmic corrections to the

entropy of nonextremal black holes in [25, 26] through a careful consideration of the heat kernel and zero modes. To

extract these corrections, Sen utilized a scaling limit where the temperature grows at the same rate as the angular

momentum, so taking the T → 0 limit of his computation at fixed J is ill-defined and there is no way to compare

with the NHEK partition function.7

The authors of [7, 13] adopt a different definition of Z[T ]Black Hole for the low temperature Reissner-Nordström

black hole, and their main conclusion is that in the absence of supersymmetry, limT→0 Z[T ]Black Hole 6= ZAdS2×S2 . We

review these calculations in Appendix A and extend the analysis to the Kerr black hole below.

The main assumption underlying their definition of Z[T ]Black Hole is that, for small temperatures, one can simply

correct the throat geometry (3.1) rather than perform the full asymptotically flat path integral. It is not obvious that

this is mathematically equivalent to taking the small T limit of the full path integral with asymptotically flat boundary

conditions, but it seems physically plausible that the leading corrections to the low temperature thermodynamics arise

from dynamics near the throat. Either way, since the full finite temperature black hole certainly does not support the

infinite set of zero modes (3.7), it is clear that the IR divergence will disappear in either prescription. Whether the

form of the correction is the same is less obvious.

At a technical level, the prescription amounts to performing the diffeomorphism (2.8), and then expanding the

resulting metric in powers of T instead of taking the strict T → 0 limit. The leading term is of course the NHEK metric

(3.1). The subleading term represents a (non-normalizable) gravitational perturbation of NHEK whose nonlinear

completion is the asymptotically flat finite temperature Kerr black hole. This O(T ) correction to the Wick-rotated

metric (denoted by δg in (1.5)) is given by

δgµνdx
µdxν

4πJ3/2T
=(1 + cos2 θ)(2 + cosh η) tanh2 η

2
(dη2 − sinh2 ηdτ2) + sin2 θ cosh η(dη2 + sinh2 ηdτ2) + 2 coshη dθ2

+ 2
sin2 θ

1 + cos2 θ
(cosh η − 1)

(

(sin2 θ sinh2 η − 3) − 4
cos2 θ

1 + cos2 θ
cosh η(cosh η − 1)

)

dτ2

+ 2i
sin2 θ

1 + cos2 θ

(

(sin2 θ sinh2 η − 3) − 8
cos2 θ

1 + cos2 θ
cosh η(cosh η − 1)

)

dτdφ

+ 8 coshη
sin2 θ cos2 θ

(1 + cos2 θ)2
dφ2 .

(3.11)

Note that the last three lines in the correction actually correspond to the O(T ) terms in gφφ(dφ + aτdτ)2 with

aτ = āτ + δaτ = −i(coshη − 1) + iπJ1/2T (sin2 θ sinh2 η − 3) ,

gφφ = ḡφφ + δgφφ = 4J
sin2 θ

1 + cos2 θ

(

1 + 8πJ1/2T cosh η
cos2 θ

1 + cos2 θ

)

.
(3.12)

Importantly, LL0δg = 0 while LL±
δg = g± with g± non-normalizable, so that one is still not integrating over the

n = 0,±1 modes that would correspond to SL(2,R) diffeomorphisms. As noted in (1.7), the NHEK zero modes (3.7)

do not result from diffeomorphisms of this corrected geometry, so we expect their eigenvalues to pick up corrections

of order T .

7 In [27–29], the authors compute an index (which is temperature independent) using the full asymptotic geometry and find agreement

with the results of the near-horizon analysis. In these models supersymmetry actually regularizes the divergence (3.10) so there is no

puzzle to begin with.
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3.3. Eigenvalue Corrections to the Extremal Zero Modes and logT Corrections to the Entropy

The correction (3.11) to the NHEK metric induces a correction δD to the NHEK kinetic operator D̄ in (3.6). This

in turn modifies the extremal eigenfunctions h0 and their eigenvalues Λ0. Expanding everything to first order in T

(D̄ + δD)(h0
n + δhn) = (Λ0

n + δΛn)(h0
n + δhn) (3.13)

and isolating the O(T ) terms, we get

D̄δhn + δDh0
n = Λ0

nδhn + δΛnh
0
n . (3.14)

Taking the inner product with h0
m, using orthonormality of the 0th order eigenfunctions, and restoring indices, the

1st order correction to the eigenvalue takes the form

δΛn =

ˆ

d4x
√
ḡ(h0

n)αβδD
αβ,µν(h0

n)µν . (3.15)

The corrected one loop determinant is therefore

logZ = −1

2

∑

n

log(Λ0
n + δΛn) , (3.16)

with δΛn ∼ T . This makes it clear that modes which have non-zero extremal eigenvalues (Λ0
n 6= 0) produce subleading,

polynomially-suppressed temperature dependence relative to the modes whose extremal eigenvalues vanish. The latter

are precisely the real and imaginary parts of (3.7). The leading order correction to the kinetic operator is

δDαβ,µν = − 1

16π
δ

(

1

4
gαµgβν�− 1

8
gµνgαβ� +

1

2
Rαµβν

)

(3.17)

with gnot-NHEK = ḡ + δg. The operator itself is utterly intractable, but the quantity (3.15) with h0
n given by the real

and imaginary parts of (3.7) simplifies dramatically and takes the form

δΛn =
3nT

64J1/2
, n ≥ 2 . (3.18)

As an aid to readers we record the intermediate result
ˆ

d4x
√
ḡ(h0

n)αβδD
αβ,µν(h0

n)µν = −3n(n2 − 1)T

128J1/2

ˆ ∞

0

dη
[

16(π − 2) coth η csch2η tanh2n
(η

2

)

− (3.19)

csch3η sech4
(η

2

)

((π − 2) cosh 3η + (4(n− 2)n + 7π − 30) cosh η − 2(n− 2π + 4) cosh 2η + 2n(4n + 7) + 4π) tanh2n
(η

2

) ]

.

In this expression the first term is the Riemann contribution and the second term comes from the Laplacian.

The contribution of the extremal zero modes to the not-NHEK partition function is therefore

δ logZ = 2 · (−1/2)
∑

n≥2

log δΛn = log





∏

n≥2

64J1/2

3nT



 , (3.20)

where the factor of 2 comes from including the identical contributions from the real and imaginary parts of the

perturbations. Using zeta function regularization to compute the infinite product

∏

n≥2

α

n
=

1√
2π

1

α3/2
(3.21)

the final answer takes the form

δ logZ = log

( √
27

512
√

2π

T 3/2

J3/4

)

∼ 3

2
logT . (3.22)
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We conclude that at low temperatures

Z[T ]Black Hole ∼ T 3/2eS0 + higher order terms . (3.23)

It remains to understand the regime of validity of this expression and its physical content. Obviously, once the

small temperature dependent prefactor begins competing with the large temperature independent exponential, the

approximation is not valid. This occurs when T 3/2 ∼ e−S0 . Below this temperature, the partition function is so

small that other saddles will begin competing with the computation performed here. Similarly, when T ∼ J−1/2

the linear term in (2.6) competes with the leading S0 term and the near-extremal approximation breaks down.

Equivalently, the correction term (3.11) becomes as large as the NHEK metric (2.9) throughout the throat and the

small-T approximation of the geometry completely breaks down.

The fact that the partition function vanishes as T → 0 means that ρ(E) → 0 as E → 0. There is no expo-

nential ground state degeneracy or thermodynamic mass gap [1]. Rather, the would-be ground states are spread

out over a dense energy band above the vacuum. Hence, standard thermodynamics still applies in the range

Ja1e−a2S0 . T . J−1/2, where a1, a2 are expected to be O(1) numbers.
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A. AdS2 × S
2 Calculations

In this appendix we review the computations of [7, 13] for the extremal Reissner-Nordström black hole. The

Einstein-Maxwell action with Gibbons-Hawking and electromagnetic boundary terms is

I = − 1

16π

ˆ

d4x
√
g(R− FµνF

µν) +
1

8π

ˆ

d3x
√
γ(K − 2nµAνF

µν) , (A.1)

and the Reissner-Nordström metric takes the form

ds2 = −
(

1 − 2M

r̂
+

Q2

r̂2

)

dt̂2 +

(

1 − 2M

r̂
+

Q2

r̂2

)−1

dr̂2 + r̂2(dθ2 + sin2 θdφ2) . (A.2)

The inner and outer horizons are located at the radial coordinates

r± = M ±
√

M2 −Q2 , r−r+ = Q2 . (A.3)

The background electric field and Hawking temperature are given by

A = Q

(

1

r+
− 1

r̂

)

dt̂ , F =
Q

r̂2
dr̂ ∧ dt̂ , T =

r2+ −Q2

4πr3+
. (A.4)

At small temperatures above extremality,

M(T,Q) = Q + 2π2Q3T 2 + 16π3Q4T 3 + 126π4Q5T 4 + . . . (A.5)

r+(T,Q) = Q + 2πQ2T + 10π2Q3T 2 + 64π3Q4T 3 + 462π4Q5T 4 . . . . (A.6)

If we take the scaling limit

t̂ =
t

2πT
, r̂ = r+(T ) + 2πQ2T (coshη − 1) , T → 0 (A.7)
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with Q fixed, then the metric becomes

ds2 = Q2(− sinh2 η dt2 + dη2) + Q2(dθ2 + sin2 θdφ2) , (A.8)

which is AdS2 × S2 with a constant background electric field

A = Q(cosh η − 1)dt , F = Q sinh η dη ∧ dt . (A.9)

The linearized kinetic term on this background is [25, 30]

−16πhαβD
αβ,µνhµν = hαβ

(

1

4
ḡαµḡβν�̄− 1

8
ḡαβ ḡµν�̄ +

1

2
R̄αµβν +

1

2
R̄αµḡβν − 1

2
R̄αβ ḡµν

)

hµν (A.10)

+ hαβ

(

1

8
F̄ 2
(

2ḡαµḡβν − ḡαβ ḡµν
)

− F̄αµF̄ βν − 2F̄αγF̄µ
γ ḡ

βν + F̄αγ F̄ β
γ ḡ

µν

)

hµν .

D has a number of (tensor and vector) zero modes which we treat separately below.

Tensor modes. After Wick rotation t = −iτ , the operator defined in (A.10) admits tensor zero modes of the form

[31]

h(n)
µν dx

µdxν =

√

|n|(n2 − 1)

2π

(sinh η)|n|−2

(1 + cosh η)|n|
einτ (dη2 + 2i

n

|n| sinh η dηdτ − sinh2 ηdτ2) . (A.11)

The one-loop approximation to the partition function is therefore infrared divergent. To regulate this divergence,

the authors of [7, 13] keep the subleading term in the expansion (A.7). The corrected metric has the form

δgµνdx
µdxν

4πQ3T
= (2 + cosh η) tanh2 η

2
(dη2 − sinh2 ηdτ2) + cosh η(dθ2 + sin2 θdφ2) (A.12)

while the correction to the field strength is

δA = 2πiQ2T sinh2 ηdτ , δF = 4πiQ2T sinh η cosh η dη ∧ dτ . (A.13)

Simple power-counting indicates that δDαβ;µν ∼ T/Q5, so that the action for these modes scales like T/Q. Calculating

the coefficient carefully, one finds

δΛn =

ˆ √
ḡd4x (h0

n)αβ
(

δDαβ;µν
)

(h0
n)µν =

nT

16Q
, n ≥ 2 . (A.14)

Including a factor of 2 coming from the real and imaginary parts of the perturbation, and using zeta function

regularization, one finds the following contribution:

δ logZ = 2 · (−1/2)
∑

n≥2

log δΛn = log





∏

n≥2

16Q

nT



 = log

(

1

64
√

2π

T 3/2

Q3/2

)

. (A.15)

Vector modes. There are additional contributions from the vector zero modes of the metric given by [7, 13]

hiµ =
1√
2
ǫij∂

jY m
l (θ)vµ . (A.16)

Here Y m
l are the spherical harmonics, i, j denote the coordinates θ, φ, ǫij is the 2d Levi Civita symbol and

vµ = ∂µΦn Φn =
1

√

2π|n|

(

sinh η

1 + cosh η

)|n|

einτ n = ±1,±2... (A.17)

The eigenvalue correction before integration over η assumes the following form, for each mode

δΛn =
Tn(n + 1)

32Q

ˆ ∞

0

dη
[

csch
(η

2

)

sech5
(η

2

)

tanh2n
(η

2

)

((n− 1) cosh η + 2n + 1)
]

, (A.18)
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which, upon integration, yields

δΛn =
nT

16Q
n ≥ 1. (A.19)

Including a factor of 2 coming from the real and imaginary parts of the perturbation, and using zeta function

regularization, one finds

δ logZv = 6 · (−1/2)
∑

n≥1

log δΛn = 3 log





∏

n≥1

16Q

nT



 = 3 log

(

1√
32π

T 1/2

Q1/2

)

. (A.20)

The combined contribution of vector and tensor modes amounts to

δZ = δZt + δZv = log

(

1

64
√

2π

T 3/2

Q3/2

)

+ 3 log

(

1√
32π

T 1/2

Q1/2

)

. (A.21)

There is also an additional contribution from the vector zero modes of the gauge field. However, as described in [7],

different subsets of the zero modes contribute depending on which ensemble is being considered, but the tensor zero

modes of the metric always contribute the universal factor 3
2 logT .
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