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Lightweight Regression Model with Prediction
Interval Estimation for Computer Vision-based

Winter Road Surface Condition Monitoring
Risto Ojala, Alvari Seppänen

Abstract—Winter conditions pose several challenges for au-
tomated driving applications. A key challenge during winter is
accurate assessment of road surface condition, as its impact on
friction is a critical parameter for safely and reliably controlling
a vehicle. This paper proposes a deep learning regression model,
SIWNet, capable of estimating road surface friction properties
from camera images. SIWNet extends state of the art by including
an uncertainty estimation mechanism in the architecture. This is
achieved by including an additional head in the network, which
estimates a prediction interval. The prediction interval head is
trained with a maximum likelihood loss function. The model was
trained and tested with the SeeingThroughFog dataset, which
features corresponding road friction sensor readings and images
from an instrumented vehicle. Acquired results highlight the
functionality of the prediction interval estimation of SIWNet,
while the network also achieved similar point estimate accuracy
as the previous state of the art. Furthermore, the SIWNet
architecture offers a more favourable balance of accuracy and
computational load than previous state-of-the-art models.

Index Terms—Computer vision, convolutional neural networks,
intelligent vehicles, vehicle safety

I. INTRODUCTION

FRICTION between the road and vehicle tyres plays a key
role in defining how a vehicle should be controlled and

manoeuvred in winter conditions. The impacts of friction on
driving safety are substantial, directly affecting factors such
as braking distance and slip angle. The friction between a
vehicle tyre and the road depends on both the tyre and road
surface properties. Whereas the tyre properties remain mostly
static, the road surface properties can greatly vary, especially
during winter in countries with below-freezing temperatures.
It has been explicitly noted in the literature that accident rates
are strongly affected by road surface condition [1]. In winter
conditions, the road surface friction properties are mainly
dependent on the amount of snow, ice, and water on the
road. Quantifying these road friction properties is essential
for modelling, estimating, and predicting the friction between
the tyre and the road. Consequently, vehicle control needs to
adapt to the prevailing road surface conditions to ensure safe
operation. As the availability and development of automated
driving features is on the rise, the estimation methods for road
surface friction properties have an increasingly important role.
Automated driving solutions must be capable of adapting to
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different friction conditions, modifying their control based on
the environment.

Road surface condition can be analysed with several on-
board methods [2], [3]. A common approach has been to
utilise wheel dynamics information for the estimation task.
However, these methods generally have difficulties quantifying
the road surface friction properties before severe slippage has
occurred. Special optical sensors have also been developed
for analysing road surface condition, yet these are generally
too expensive for consumer vehicle applications. Recently,
computer vision solutions with typical visible light cameras
have been a popular approach for the task. Computer vision
approaches offer the convenience of utilising the existing
windshield camera equipment. Additionally, they have the
potential of assessing the road surface condition in front of
the vehicle, which enables predictive actions.

This paper expands computer vision-based road surface
condition monitoring in winter conditions by presenting a
deep learning model, SIWNet, for the task. The regression
model was developed to predict a scalar estimate for the
road surface friction properties, summarising the effects of
visible snow, ice, and water on tyre-road friction. Hence the
name of the model, SIWNet (Snow, Ice, Water Network).
Additionally, the model estimates the uncertainty of the pre-
diction by providing a prediction interval with a multi-head
architecture. Such feature has not been previously proposed for
regression-based road surface condition monitoring models.
Furthermore, SIWNet has been designed with practical on-
board deployment in mind, with the model being computation-
ally lightweight, yet achieving similar accuracy as previous
state of the art. Similarly to [4], SIWNet was trained in an
automated manner by matching images and corresponding
friction information. However, the work presented here utilised
the SeeingThroughFog-dataset [5], where the friction values
have been acquired with an optical road friction sensor.

The novel contributions of this work can be summarised as:
• SIWNet is the first road surface friction regression model

to feature prediction intervals in the estimates.
• SIWNet is computationally lightweight, with better ac-

curacy and computational load trade-off than previous
models.

• This paper is the first work training a road surface friction
estimation computer vision model for winter conditions
based on optical road friction sensor data.
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II. RELATED WORK

A. Road surface condition monitoring

Road surface condition monitoring is essential for different
vehicle applications, and the topic has been studied in the
past with several approaches. Current interest in automated
driving solutions has increased the importance of the field, as
vehicle control algorithms require information of road surface
condition to properly assess the situation. Road surface con-
dition monitoring is especially important in winter conditions,
where the road surface friction properties greatly vary. The
existing methods can be divided to contact and non-contact
based methods.

Contact methods are not analysed here in-detail, as this
work is focused on computer vision methodology. For a more
thorough overview of contact-based methods, the review by
Acosta et al. [2] is recommended. Fundamentals of contact-
based estimation methods are still briefly presented here.
Contact-based methods generally measure the actual friction
between the tyre and the road. Road surface condition can be
consequently estimated from this information.

Of the contact-based methods, slip-based methods are the
most common. Measuring wheel rotation information and
inertial measurement unit readings, friction between the tyre
and the road can be estimated [6]. Utilising this information,
the road surface condition can be defined based on the friction
characteristics. In a commercial vehicle, this information is
readily available in the anti-lock braking unit and electronic
stability control. However, slip-based methods typically cannot
accurately estimate the road surface conditions until severe
slippage has already occured. The review by Acosta et al. [2]
notes that slip-based approaches are typically considered in-
adequate for reliably improving the functionality of advanced
driver assistance systems. Other contact-based methods for
road surface monitoring are based on vibration. Low frequency
methods can utilise signals such as the vehicle rotation speed
[7]. However, the approaches rely largely on slip-slope as-
sumptions, and consequently lack robustness. High frequency
methods have yielded impressive results, yet these methods
rely on additional sensor equipment. Works on the topic have
utilised microphones installed on the vehicle to monitor the
tyres [8]. This might not be a commercially feasible solution
due to the burden of additional sensor installations.

To enable alternative means for estimating road surface con-
dition, a number of non-contact methods have been developed.
Non-contact methods typically exhibit different operation
characteristics and attributes compared to the contact-based
methods. They offer alternative ways for the measurement, or
they could be fused with contact-based methods. Review of
non-contact friction estimation has been presented by Ma et
al. [3]. The non-contact approaches can be roughly divided
into methods that utilise special optical sensors, and methods
which utilise computer vision algorithms to process images
captured with traditional visible light cameras. Additionally,
there have also been some studies exploring road surface
condition monitoring with automotive radars [9].

With dedicated optical sensors, non-contact approaches
commonly utilise infrared spectroscopy [10]. The approach is

based on the different reflectance characteristics of water, ice,
and snow. This measurement approach is commonly utilised,
and multiple commercial products applying the method are
available on the market [11]–[13]. Another optical technique
for road surface condition monitoring is based on analysing
polarisation of light [14].

Computer vision applied on regular visible light cameras
has been a popular topic for non-contact road surface condition
estimation. The approach is lucrative from a practical point-
of-view, since modern vehicles are equipped with forward-
facing cameras. Review of computer vision-based estimation
has been prepared by Wu et al. [15]. Generally, computer
vision approaches utilise machine learning models such as
convolutional neural networks (CNNs) to analyse images of
the road.

Several works utilising computer vision have applied clas-
sification techniques to assess the road surface condition.
Nolte et al. [16] proposed applying CNNs to perform this
classification task. They trained ResNet50 [17] and Incep-
tionV3 [18] models to recognise six distinct categories of
road surface: asphalt, dirt, grass, wet asphalt, cobblestone,
and snow. Similar studies have been conducted by Šabanovič
et al. [19], who developed a CNN capable of classifying
the road pavement type (asphalt, cobblestone, gravel) as well
as the surface condition (dry, wet). The effectiveness of the
developed road surface monitoring system was demonstrated
with vehicle braking tests. The tests highlighted that the
stopping distance was shorter when utilising an adaptive anti-
lock braking system control strategy, which was tuned based
on the classification results. To extend the capabilities of road
surface classification, Wang et al. [20] proposed applying a
segmentation CNN to perform the classification task. Their
classification task featured a total of nine different pavement
and road surface condition combinations, including categories
from winter conditions.

To further enhance the development of computer vision-
based road surface monitoring in summer conditions, Cordes
et al. [21] published an open classification dataset called
RoadSaw. They collected the dataset in an automated manner,
mounting an optical road surface monitoring sensor on a
vehicle, as well as a forward-facing camera. As a result, a large
dataset of images in realistic road conditions was captured,
along with the corresponding road surface condition readings
from the sensor. For further processing, the images were
transformed to bird’s-eye-view and differently sized patches
(2.56 m2, 7.84 m2, 12.96 m2) of the road were cropped.
The optical road surface monitoring sensor readings were
synchronised to the image patches by utilising timestamps and
vehicle velocity information. The dataset featured three differ-
ent pavement types (asphalt, cobblestone, concrete), which had
four different surface conditions (dry, damp, wet, very wet).
The authors evaluated the performance of a MobileNetV2 [22]
classifier on the data. They also proposed adding deterministic
uncertainty quantification [23] functionality to the network,
allowing assessment of the uncertainty of the classification
predictions.

Classification-based road surface monitoring has also been
extended to model the road surface in finer spatial detail. In the
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camera view, several road surface conditions may be visible
simultaneously, such as patches of snow on an asphalt road.
Providing a single classification for the entire visible road
may result in inadequate assessment of the prevailing situation.
Roychowdhury et al. [24] proposed a two-stage approach for
detailed analysis of the road surface in winter conditions. After
classifying the overall road surface condition with a CNN, they
split the image of the road into a grid, in which each cell was
classified separately.

The resolution of road surface condition estimation has
been also extended by applying regression models to the task,
instead of utilising classification models. In terms of friction-
related information, regression models allow for more accurate
representation of the road surface properties. This is due the
model predicting a continuous value, instead of utilising a
discrete number of categories labelled with certain values.
Vosahlik et al. [4] proposed automated training of a CNN
regression model based on corresponding friction information
derived from a slip-based contact method. Based on data
acquired with a 1:5 scale car model, they created a dataset of
matching friction values and images, which included samples
from winter conditions. Their contact-based method estimated
the friction between the road and the tyres, which was used
to label the images. From the images, they cropped out a
region of 1.5x1.5 metres in front of the vehicle, which was
transformed to bird’s-eye-view for processing. Known vehicle
speed and timestamps were utilised to synchronise the friction
readings and the image patches. They trained a ResNet50
network on the data to perform the regression task. Regression-
based road surface friction estimation was also developed by
Du et al. [25], who studied the problem in summer conditions.
They collected road surface condition information with a
commercial contact-based monitoring system, which utilised
two measurement wheels for estimating the tyre-road friction
coefficient. The measurement system was equipped on a truck,
which was followed by a vehicle equipped with a camera
gathering image data of the road. The test route was divided
into 50 metre long sections, in which the captured images
were labelled with the mean of the friction readings within
the specific section. For image processing, smaller patches of
the road were cropped from the road area between the regions
through which the measurement wheels had traversed. In their
work, they trained different CNN regression models to predict
the road surface friction. The vision-based estimators were
fused with another machine learning model, which processed
the vehicle dynamics information. The fusion model seemed
to offer clear benefits, as several key performance metrics were
improved.

B. Prediction intervals for deep learning regression models

Uncertainty assessment has been a key topic in deep learn-
ing due to the obscurity of the data-driven the models. In
order to evaluate the reliability of the estimates produced by
deep learning models, several approaches have been proposed
to quantify related uncertainties. An extensive review on the
topic has been written by Abdar et al. [26]. Most extensive un-
certainty quantification methodologies include Bayesian neural

networks and ensemble techniques. Bayesian neural networks
model the network weights as distributions, allowing the pre-
dictions to be accurately modelled as posterior distributions.
Ensemble models rely on utilising multiple neural network
models to process the input, and determining the uncertainty
based on the outputs of the networks. Bayesian and ensemble
methods have been proven to generally provide reliable uncer-
tainty information. However, these methods typically require
immense computational resources to operate, and applying
them is often not practically feasible.

A common approach for assessing uncertainty in regression
problems is the estimation of prediction intervals [27]. Sev-
eral approaches have been proposed for generating prediction
intervals with deep learning regression models, including the
previously mentioned Bayesian and ensemble methods. How-
ever, more lightweight approaches for estimating prediction
intervals have also been developed. Typically this has been
achieved by modifying the neural network architecture to fea-
ture an additional output node. In order to quantify uncertainty,
Nix and Weigend [28] proposed adding a separate output
node with its own hidden layers to a fully connected network
architecture. The additional output node was responsible for
estimating the variance of each prediction on each forward
pass, whereas the other output node remained responsible
for producing the point estimate. Modelling each network
prediction as a probability distribution, the network could be
trained with a maximum likelihood loss function. In such
architecture, uncertainty is quantified by the value of the
variance output, which can also be used to generate prediction
intervals. Somewhat similar prediction interval estimation has
been proposed by Khosravi et al. [29]. Their approach was
based on two output nodes, which were responsible for pre-
dicting the lower and upper bound of the prediction interval. A
special loss function was used for training, which determined
the target coverage of the prediction interval.

C. Research gap

This paper aims to enhance the existing state of the art
of winter road surface condition evaluation. A novel CNN
architecture, SIWNet, is proposed for the task of computer
vision-based estimation of road friction properties. Similarly
to the work of Vosahlik et al. [4], SIWNet is implemented as
a regression model. SIWNet was trained and tested based on
an optical road friction sensor ground truth. Such approach
has not been previously applied in the literature in winter
conditions, and therefore this study presents unique results
highlighting the functionality of the chosen approach.

SIWNet expands state of the art by including uncertainty
quantification in the regression architecture. This is achieved
by including an additional prediction head, which enables
representation of the model output as a prediction interval. The
approach is based on the work of Nix and Weigend [28]. Un-
certainty quantification is a vital feature for computer vision-
based road surface monitoring systems, as visual estimation
of road surface friction properties is bound to feature varying
levels of uncertainty. For example, some surface conditions
may be difficult to detect with computer vision, or other road
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users may be partially blocking the view of the road. Cordes
et al. [21] have previously proposed an uncertainty estimation
approach in their classification-based work. However, studies
developing regression models for the prediction task have not
proposed methods for uncertainty quantification.

In addition to including an uncertainty quantification mech-
anism, SIWNet is also designed to feature a computationally
lightweight architecture. The findings of this paper highlight
that computer vision-based winter road surface friction regres-
sion is not dependent on an extensively large neural network
architecture. Previous research [4] on the topic has applied a
relatively large model for the task. This finding is therefore a
notable improvement, considering the generally limited vehicle
on-board computational resources.

III. METHODS

A. Problem formulation and dataset

The goal of the research was to develop a model capa-
ble of accurately assessing the winter-related road surface
friction properties based on images captured from a typical
vehicle windshield camera. Additionally, the work aimed
to enhance the robustness of computer vision-based road
friction regression by introducing uncertainty quantification
methodology to mitigate the natural inaccuracies of visual
road friction estimation. Simultaneously, the developed model
must be lightweight to allow for on-board deployment with
limited computational hardware. These goals were pursued by
formatting the computer vision problem as a task of predicting
a ground truth road friction value from a corresponding image
of the road.

To acquire relevant data for the research, the publicly avail-
able SeeingThroughFog dataset [5] was utilised. The dataset
has been gathered by driving an instrumented vehicle in central
European and Nordic countries during winter. Part of the
dataset has also been recorded in the springtime, to include
summer-like conditions. The instrumented vehicle contained
a forward-facing camera, as well as an optical road friction
sensor. The sensor setup is illustrated in Fig. 1. In this paper,
the camera images and corresponding road friction sensor
readings were utilised for developing a neural network model,
SIWNet, for assessing the road surface condition. SIWNet is
trained to process an image of the road, and predict a value
corresponding to the road friction sensor reading.

The optical friction measurement unit used in the dataset is
a prototype from a widely recognised manufacturer, seemingly
similar to those of the manufacturer’s other models [11]–[13].
Similarly to the commercial equivalents of the sensor, the unit
measures the amount of snow, ice, and water on the road
surface. By manufacturer software, these road surface friction
properties are summarised into a single factor, grip factor,
within range 0.09...0.82. This factor effectively indicates the
slipperiness of the road. Here, this grip factor was normalised
to a range 0.00...1.00, and called friction factor, f . It should
be noted that the friction factor is not the friction coefficient
between the tyre and the road, as determining this value
depends on the tyre properties. The friction factor represents
a value that can be used to estimate slipperiness of the road,

Camera

Road friction 
sensor

Fig. 1. Illustration of the sensor installations, with the camera at the
windshield and the road friction sensor at the bumper.

and consequently the actual friction coefficient in case relevant
tyre parameters are known.

The images in the dataset had a resolution of 1920x1024
pixels. To focus the analysis on the most relevant portion of
the images, the road directly ahead of the vehicle, a predefined
static section of all images was cropped and transformed
to bird’s-eye-view. Similar pre-processing steps were utilised
in [21] and [4]. The cropped section was here defined to
approximately represent a short section of the lane ahead of the
vehicle. A single image with clearly visible lane markings was
used to find the boundaries for the cropped area. This process
is presented in Fig. 2, with the cropped area represented
by a red quadrilateral in the original camera image. The
quadrilateral corresponds to the outline of the bird’s-eye-view
representation, as highlighted in the visualisation. Based on
knowledge of the dimensions of lane markings in Finland, in
which the selected image was captured, the cropped section
was inferred to represent an area with approximate dimensions
of 11x4 metres. The consecutive bird’s-eye-view transforma-
tion of the cropped section was achieved by stretching the
image to a rectangle and reshaping it into a square. The chosen
boundaries for the crop operation were utilised to similarly
crop each of the images in the dataset. All further processing
steps were carried out on the cropped image sections.

The used dataset contained a total of 4330 samples, as this is
the number of measurements in the SeeingThroughFog-dataset
which contain readings from the road friction sensor. These
samples were collected in different locations on 12 different
days. Fig. 3 displays the number of samples collected on each
date. The distribution of the friction factor values in the dataset
is visualised in Fig. 4. Image samples from the dataset with
corresponding friction factor readings are provided in Fig. 5. In
addition, the overall road surface state reported by the friction
sensor is presented for each sample.

B. Model architecture

The SIWNet model was developed with the main goal of
presenting a lightweight model featuring uncertainty quantifi-
cation for the friction factor prediction task. The architecture



5

Fig. 2. Transformation of the area in front to bird’s-eye-view.
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Fig. 3. Number of samples per date in the dataset.

of SIWNet consists of a feature backbone, as well as a point
estimate head and a prediction interval head. SIWNet archi-
tecture is presented in detail in Fig. 6. The feature backbone is
responsible for processing relevant features from the images.
Based on this information, the point estimate head outputs
the predicted friction factor f̂ . The prediction interval head is
responsible for assessing the uncertainty related to the point
estimate. Based on the features and the point estimate, the
prediction interval head outputs a predicted standard deviation
σ̂, which is utilised to establish a prediction interval around
the point estimate.

The feature backbone is based on the ResNet [17] architec-
ture, applying the same basic residual building blocks. Con-
trary to typical ResNet implementations, each block is used
only once. This design resulted in an extremely lightweight
architecture, facilitating practical applicability in embedded
on-board systems. The residual blocks were utilised as the
ResNet models are widely known for their excellent accuracy
and generalisablity.
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Fig. 4. Friction factor values in the dataset, with a zoomed view
providing a clearer depiction of the under-represented values.

In the point estimate head, a single fully connected layer
is applied, which is typical for regression tasks. A sigmoid
activation function was added to the final output, as the
friction factor values were bound between 0 and 1. The
prediction interval head is also constructed of fully connected
layers. These layers analyse the features provided by the
feature backbone, as well as the prediction provided by the
point estimate head. The prediction interval head analyses the
friction factor prediction process, and quantifies the related
uncertainty. At the end of the prediction interval head, a
sigmoid activation was added to enhance the stability of
the output. This conveniently limited the predicted standard
deviation σ̂ to positive numbers. The upper limit of 1 for σ̂
was deemed reasonable, since with the probabilistic model
applied to train the network, this corresponded to a nearly
uniform distribution within the range 0...1.

C. Loss function for prediction interval head

The prediction interval head of SIWNet is trained to quan-
tify the uncertainty related to the prediction of the point
estimate head. Based on the quantified uncertainty, a prediction
interval can be generated. In order to perform this task,
the output of SIWNet is modelled as a truncated normal
distribution. The goal of the training process is to maximise



6

f = 0.19, ice f = 0.38, snow f = 1.0, dry f = 0.67, wet

f = 0.69, slush f = 1.0, dry f = 0.94, wet f = 0.50, snow

f = 0.38, snow f = 0.98, wet f = 0.81, wet f = 0.39, snow
Fig. 5. Samples from the utilised data, featuring images, summary of road surface state, and corresponding ground truth friction factor values.

the likelihood of the training labels with regard to the predicted
distributions. Previous work has applied similar methodology
with a regular normal distribution [28]. A truncated normal
distribution of a random variable x has a probability density
function (PDF) of the form [30]

p(µ, σ, a, b;x) =
ϕ(x−µ

σ )

Φ( b−µ
σ )− Φ(a−µ

σ )
(1)

where µ and σ denote the mean and standard deviation of the
underlying normal distribution, respectively. The lower and
upper truncation bounds are denoted by a and b, respectively.
The truncated normal distribution PDF representation is based
on the underlying normal distribution PDF, defined as

ϕ(
x− µ

σ
) =

1

σ
√
2π

e−
(x−µ)2

2σ2 (2)

as well as the underlying normal distribution cumulative
distribution function, defined as

Φ(
b− µ

σ
) =

1

2
(1 + erf(

b− µ

σ
√
2π

)), (3)

where erf(·) is the error function. Consequently, the negative
log-likelihood of the truncated normal distribution has the form

− ln p(µ, σ, a, b;x) = lnσ +
(µ− x)2

2σ2

+ ln (erf(
µ− b

σ
√
2
)− erf(

µ− a

σ
√
2
)). (4)

The training process of the prediction interval head of
SIWNet is based on maximising the likelihood of the cor-
responding ground truths and predicted truncated normal dis-
tributions. Consequently, this means minimising the negative
log-likelihood with the predictions. The utilised loss function
for a training batch has the form

L =

n∑
i=i

− ln p(f̂i, σ̂i, a, b; fi) (5)

where n denotes the number of samples in the batch and f
denotes the ground truth friction factor. The underlying normal
distribution mean is the predicted friction factor f̂ from the
point estimate head, whereas the predicted standard deviation
σ̂ is the output of the prediction interval head. To improve
stability, σ̂ is thresholded to a minimum value of 1 · 10−4

when computing the loss.
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 Notation

 conv 3x3: convolutional layer with kernel size 3x3

 /2: stride of two

 BN: batch normalisation

 fc: fully connected layer

 dropout 0.5: dropout with probability of 0.5

 ReLU: rectified linear unit
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Prediction
interval head

Fig. 6. SIWNet architecture, with tensor sizes reported for processing a single image of 324x324 pixels. Each block shows the number of
features in the output.

D. Training and testing

For training SIWNet and conducting the presented exper-
iments, the following steps were taken. The utilised dataset
was randomly divided into train-validation-test sets with a
respective 70%-15%-15% split. When splitting the data, times-
tamps were utilised to ensure that data samples gathered
from the same location were not included in different sets.
Hyperparameters were optimised by training the network on
the training set and finding the best result on the validation set.
For the evaluation on the test set, the model was re-trained on
a combination set containing both the training and validation
sets.

During the training, the feature backbone and point estimate
head were first trained for 60 epochs utilising regular mean
squared error as the loss function. After these parts of the
network were trained, their weights were frozen. Afterwards,
the prediction interval head was trained for 60 epochs with
the loss function presented in Equation 5. Dropout with
a probability of 0.5 was applied when feeding the feature
backbone output to the prediction interval head during training.

Training was carried out with a batch size of 32, and
stochastic gradient descent with a momentum of 0.9 was used
as the optimisation method. During training, the learning rate
was decayed with a step-based scheduler. Every twenty epochs
the learning rate was reduced to one tenth of the previous
value. As for data augmentation during training, the images
were randomly flipped horizontally as well as rotated with
a value from [-4,4] degrees. Furthermore, the pixel values
were slightly scaled by random color jitter in the range [0.9,
1.1]. For both training and testing, images were reshaped to
324x324 pixels before being fed to the network. Additionally,
the pixel values were normalised with the mean and standard
deviation of the pixel values in the training set.

The presented experiments demonstrate comparison of SI-
WNet to regression models applied in the previous litera-
ture. ResNet50 [17] has been previously applied for winter
condition road friction estimation [4], whereas ResNet50v2
[31], VGG19 [32] and EfficientNet-B0 [33] have been applied
in summer conditions [25]. The same training and testing
procedures used with SIWNet were applied with these models,
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except for steps related to the prediction interval head, which
the other models do not include. A sigmoid activation was also
added to the output of the these models, since this was noted
to boost performance. All models were implemented on the
PyTorch deep learning framework [34]. Number of trainable
parameters in the models as well as floating point operations
(FLOPs) executed during inference were analysed with the
ptflops-tool [35].

In order to benchmark the prediction intervals and the
probabilistic properties of the predictions in the experiments,
interval score and continuous ranked probability score (CRPS)
were utilised [36]. The 90% prediction interval was used for
defining the interval score. For constructing the prediction
interval based on the truncated normal distribution output of
SIWNet, the 90% interval of the distribution with the highest
likelihood was used. Since the compared models produce
only point estimates, there was no straightforward approach
to define interval scores for the models. Thus, the compared
models were given static prediction intervals surrounding their
point estimates. The boundaries were set at a distance from the
point estimate, which corresponded to the 90% error threshold
e90% of the model on the validation set. The 90% error was
defined as the value below which 90% of absolute errors on the
validation set were located. The prediction interval boundaries
were clamped by the plausible friction factor values, 0 to 1.

IV. RESULTS

SIWNet was evaluated with several experiments, to assess
the efficacy of the model in the task of predicting road surface
friction properties. The computational demands of SIWNet
were also analysed to determine the applicability of the model
in embedded on-board usecases. The accuracy of SIWNet
was evaluated on the test set in terms of point estimates, as
well as prediction intervals. Samples of SIWNet predictions
plotted next to corresponding test set images are presented in
Fig. 7. Each prediction plot features the point estimate of the
friction factor f̂ , as well as the truncated normal distribution
and prediction interval estimated by the prediction interval
head. Results of SIWNet were compared to those of other
models, which have been applied for similar regression tasks
in previous literature.

A. Model size and computational load

The neural network models were evaluated in terms of
computational load by analysing the number of trainable
parameters in the architectures, as well as the FLOPs required
to perform inference on a single input image. The SIWNet
architecture was designed to require minimal computational
resources, as evident from the results presented in Table I.

Overall, SIWNet featured the lowest number of parame-
ters of all compared models, yet utilised more FLOPs dur-
ing inference than EfficientNet-B0. Compared to ResNet50,
ResNet50v2, and VGG19, SIWNet featured several times
fewer parameters. Additionally, compared to these models
SIWNet also required notably fewer FLOPs to process an
image.

TABLE I
MODEL SIZES AND COMPUTATIONAL LOADS.

Method
Number of

parameters (·106)
Inference load

(GFLOPs)
SIWNet (ours) 5.04 4.23

EfficientNet-B0 [25], [33] 5.29 1.82
ResNet50v2 [25], [31] 23.5 18.2

ResNet50 [4], [17] 23.5 18.3
VGG19 [25], [32] 144 81.2

TABLE II
POINT ESTIMATE ERRORS ON THE TEST SET.

Method MAE RMSE
SIWNet (ours) 0.078 0.132

EfficientNet-B0 [25], [33] 0.100 0.160
ResNet50v2 [25], [31] 0.078 0.137

ResNet50 [4], [17] 0.079 0.132
VGG19 [25], [32] 0.082 0.144

B. Point estimate head performance

Training the feature backbone and point estimate head was
the initial step for training SIWNet. Hyperparameters were
tuned with grid search, resulting in the initial learning rate and
weight decay values of 0.1 and 1 ·10−3, respectively. Identical
hyperparameter tuning was performed on the compared mod-
els. Table II reports the point estimate accuracies achieved
by the networks when predicting friction factors on the test
data. Accuracies are reported in terms of mean absolute error
(MAE) and root-mean-square error (RMSE).

The presented results highlight that SIWNet achieved a
nearly identical point estimate accuracy as ResNet50 and
ResNet50v2. VGG19 performed slightly worse, whereas
EfficientNet-B0 was clearly the least accurate model. Consid-
ering the minimal size of the SIWNet architecture, the model
clearly demonstrated a favourable combination of accuracy
and computational load.

C. Prediction interval head performance

The key feature of SIWNet is its capability of assessing
the uncertainty of the friction factor prediction, enabled by
the prediction interval head. The prediction interval head
was trained while keeping the feature backbone and point
estimate head frozen. Hyperparameters were optimised with
grid search, tuning the initial learning rate, weight decay, as
well as number of neurons in the fully connected layers of
the prediction head. Based on the optimisation, the initial
learning rate and weight decay were set at values of 5 · 10−4

and 1 · 10−3, respectively. Acquired average interval score
results are presented in Table III for SIWNet and the compared
models. As described previously, the prediction intervals of the
compared models were formulated based on the 90% error on
the validation set.

Based on the comparison, SIWNet clearly achieved a more
favourable average interval score. This indicates that the pre-
diction interval head was capable of assessing the uncertainty
related to the friction factor predictions of the point estimate
head.
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Fig. 7. SIWNET predictions on the test set with corresponding image samples, ground truth friction factor values, and road surface state.
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TABLE III
AVERAGE INTERVAL SCORES OF THE NETWORKS ON THE TEST SET.

Method *Average interval score
SIWNet (ours) 0.482

EfficientNet-B0 [25], [33] with e90% 0.826
ResNet50v2 [25], [31] with e90% 0.722

ResNet50 [4], [17] with e90% 0.677
VGG19 [25], [32] with e90% 0.780

*Lower is better

TABLE IV
AVERAGE CRPS VALUES OF THE NETWORKS ON THE TEST SET.

Method *Average CRPS
SIWNet (ours) 0.060

EfficientNet-B0 [25], [33] 0.100
ResNet50v2 [25], [31] 0.078

ResNet50 [4], [17] 0.079
VGG19 [25], [32] 0.082

*Lower is better

As another test to evaluate the performance of the prediction
interval head, the CRPS metric was used to assess the quality
of the distributions predicted by SIWNet. The point estimates
of the other detectors were also scored on the metric for
comparison. For point estimates, the average CRPS is equal
to the MAE score.

The acquired results highlight that the probabilistic forecasts
of SIWNet were more representative predictions than the
point estimates of the other detectors. This indicates that the
prediction interval head of SIWNet did learn a functional
strategy for assessing the uncertainty of the friction factor
estimates.

D. Ablation study

In order to ensure that the design decisions behind the
SIWNet architecture were sensible and beneficial for the
performance, an ablation study was carried out. Similarly to
the previously presented results, the ablation study analysed
the point estimate head and prediction interval head separately.

The point estimate head was modified by removing the sig-
moid activation, and the related training and testing procedures
were repeated. Identical actions were taken with the compared
models, removing the sigmoid activations from their outputs.
During testing, the outputs of the networks were clamped
between 0 and 1. Resulting accuracies on the test set are
presented in Table V. Based on the results, it is evident that the
sigmoid activation was a beneficial addition for all networks.

TABLE V
ABLATION STUDY OF THE POINT ESTIMATES.

Method MAE RMSE
SIWNet (ours) w/o sigmoid 0.099 0.151

EfficientNet-B0 [25], [33] w/o sigmoid 0.289 0.309
ResNet50v2 [25], [31] w/o sigmoid 0.110 0.152

ResNet50 [4], [17] w/o sigmoid 0.144 0.190
VGG19 [25], [32] w/o sigmoid 0.096 0.153

TABLE VI
ABLATION STUDY OF THE PREDICTION INTERVAL HEAD.

Method *Average interval score
SIWNet w/o dropout 0.621
SIWNet with e90% 0.710

SIWNet w/o pretrain & freeze 0.748
SIWNet w/o PI Sigmoid 0.904

*Lower is better

Ablation study of the SIWNet prediction interval head
also investigated the effect of the sigmoid activation. The
sigmoid activation was removed from the prediction interval
output, and training and testing were repeated. In another test,
the prediction interval head was trained and tested without
using dropout regularisation on the feature backbone output.
Additionally, the SIWNet model was studied by training
the model without the proposed technique of pretraining the
feature and backbone and point estimate head, and freezing
their weights. Instead the whole network was optimised simul-
taneously utilising the loss function presented in Equation 5.
Finally, the overall efficacy of the prediction interval head was
evaluated by formulating a static prediction interval around the
point estimates based on the 90% error on the validation set,
similarly to the prediction intervals used for the predictions of
the compared models. The ablations were evaluated with the
interval score, and results from the tests are presented in Table
VI. All tests concluded that the originally proposed SIWNet
architecture was capable of scoring higher interval scores.

V. DISCUSSION

SIWNet was capable of producing point estimates with
equivalent accuracy as ResNet50 and ResNet50v2, and more
accurately than the other compared models. This is an im-
pressive result, considering that the model has approximately
79% fewer parameters than the ResNet models, and required
roughly 77% fewer FLOPs to process an input image. This in-
dicates that SIWNet offers a favourable combination of speed
and accuracy, being well-fitted for on-board utilisation with
limited embedded hardware. The presented experiments also
highlight that SIWNet was capable of successfully assessing
the uncertainty related to its friction factor predictions. This
was evident in the CPRS as well as interval score results
in Tables IV and III. However, exact quantification of the
prediction interval capabilities of SIWNet is difficult, since
only a naive method was used for comparison. The static
prediction intervals applied with the point estimates of the
other methods was not an optimal strategy for uncertainty
quantification. However, since no previous works applying
uncertainty quantification to road surface friction regression
exist, there were no clear alternatives for comparison. The
implementation of SIWNet is published as open source, and
future works on the topic are encouraged to compare their
approaches to SIWNet.

Concerning the training procedure of SIWNet, the chosen
approach was likely not optimal. During training of the
prediction interval head with the loss function presented in
Equation 5, the point estimate head as well as the feature
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backbone were frozen. This was done to stabilise the learning
process, as the loss function can produce quite extreme values.
The result of a direct training approach was demonstrated in
the ablation study. However, the training stability comes at the
cost of not finding optimal weights in the feature backbone for
the uncertainty estimation. Finding a strategy to optimise the
feature backbone accordingly might result in better uncertainty
quantification and prediction interval estimates.

Regarding the validity of the presented results overall, some
unreliability was likely caused by the used dataset and its
characteristics. Notably, the included summer data in the used
dataset was temporally limited to a single day, resulting in
limited variance in this specific part of the dataset. The winter
data was however collected on several different days, ensuring
that different winter road conditions were comprehensively
included in the dataset. Since the focus of the work was in
road friction estimation in winter conditions, the limitations
of the summer data should not affect the implications of
this study. Overall, a larger and more varied dataset would
provide more definitive results, as the models could learn
richer representations from data, and the testing would provide
a more thorough and decisive investigation of the prediction
capabilities. Future work should focus on expanding the
amount of data available for the development of visual road
surface friction estimation. This would be a key enabler for
the development of increasingly robust prediction models.
Different real world conditions and limitations, such as other
road users partially blocking the visibility of the road, would
be more accurately learned and addressed by the models
with an increased number of training samples. The models
should have the learning capacity to address these issues,
especially SIWNet with the included uncertainty quantification
methodology. In addition, the used dataset contained a clear
over-representation of certain values, as visible in Fig. 4. A
more balanced dataset would likely result in better learning
results of the models, as an unbalanced dataset can result in
bias in the models. These factors may have contributed to
most models achieving such similar point estimate accuracies.
Increased variation in the used dataset might have resulted in
more notable differences in the prediction results.

Another disadvantage of the used dataset was the fact that
the road friction sensor readings did not exactly correspond
to the visible road in the camera view. This can be seen
in Fig. 1, which illustrates the sensor placement. The road
friction sensor was measuring the road area directly below
the bumper of the vehicle. This specific road area was not
actually visible in the camera view simultaneously, as the
camera was monitoring the road slightly ahead of the bumper.
Based on camera calibration information, the distance between
the sensor and the closest edge of the monitored road area was
inferred as roughly 4.6 metres. Consequently, in order to carry
out the presented analysis, an assumption had to be made that
the road friction properties were the same below the bumper
and in the visible road area. This issue could be mitigated by
matching the sensor reading to a previously captured image,
and such approach has been adopted in some previous related
studies [4], [21]. This type of time series analysis was not
possible here, as the utilised dataset contained temporally

sparse samples. To the best of the authors’ knowledge, the used
dataset was the only openly available dataset featuring images
and friction sensor readings in winter conditions. However,
assumption of uniform road condition below the bumper and
slightly ahead in the camera view should generally hold. This
was also indicated by the point estimate accuracy results of
the different networks, as the achieved prediction errors can
be considered fairly low. Classification-based studies typically
cluster the road surface conditions to a single digit number
of clusters, e.g. in the review of Ma et al. [3] a total number
of seven clusters were identified. Since the MAE and RMSE
values scored by the networks were roughly around 10% of
the total range of the friction factor value space, the errors
were on average smaller than the resolution of classification
approaches in general. Therefore, the friction sensor reading
not perfectly matching the image should not have had too
drastic an impact. The importance of the sensor placement
is further diminished by the fact that a single friction sensor
reading was used to label an entire image, which in any case
demands an assumption of uniform road surface conditions.

Since the road friction sensor measured only a small area of
the road, whereas the camera image captured a large portion of
the road ahead, there were clear spatial limitations in the used
data. Similar limitations can be found in previous studies in the
field [4], [21], [25], as generally entire images are labelled with
a single ground truth value acquired from a friction sensor or
derived from wheel slip. Consequently, the ground truth only
partially covers the spatial range of the source image. In some
scenarios, the visible road conditions may vary greatly within
the image. For example, in winter conditions the road may be
partially covered in snow, while also featuring tyre tracks with
clear asphalt or water. This naturally leads to a certain degree
of ambiguity and noise in the data, as the ground truth value
does not fully represent the information in the image. This
likely affected the accuracy as well as general applicability of
the models used here. As a result, the models likely learned op-
timal weights which attempted to ignore as much of the noise
as possible. However, the presented results still indicate that
the models were able to predict friction properties consistently,
despite the noise and spatial limitations of the data. An optimal
dataset for road surface friction estimation purposes should
include several ground truth labels for the visible road area,
allowing more fine-grained estimation. This could be achieved
by for example mounting a vehicle with several measurement
units. To the best of the authors’ knowledge, no such public
dataset unfortunately exists. Future studies are encouraged to
investigate this topic with more advanced sensor setups.

It should also be noted that the utilised dataset, and
consequently the trained models, only consider road friction
properties related to snow, ice, and water. In winter conditions,
these factors largely determine the overall friction properties of
the road, resulting in drastic differences in tyre-road friction.
This study focused on these conditions due to their critical
impact on vehicle dynamics. In summer conditions, road
friction properties are most notably affected by water on the
road, as well as the road surface pavement type. Analysis
of the road surface pavement type was ignored here, which
slightly limits the generalisability of the results. For improved
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generalisability, future development of SIWNet could aim to
include the road pavement type as a factor in the analysis.

VI. CONCLUSION

This work enhanced camera-based winter road condition
monitoring by presenting the SIWNet model. Based on an
image of the road, the deep learning regression model predicts
a friction factor, which summarises the friction properties
of the visible road. The main goal of this study was to
advance previous state of the art by including uncertainty
quantification in the prediction model, as well as designing the
model to require minimal computational resources. SIWNet is
computationally lightweight, and features a built-in uncertainty
quantification mechanism, allowing the model to generate
prediction intervals instead of traditional point estimates. Due
to these characteristics, SIWNet advances robustness of road
condition monitoring via computer vision. This is a key
advancement, as reliable road condition monitoring is vital for
proper tuning of controllers in automated vehicle applications.

Future research efforts on the topic should focus on more
fine-grained spatial analysis of winter road surfaces. Computer
vision solutions for road condition monitoring could be ex-
tended to pixel-level analysis of the road surface. Furthermore,
spatio-temporal data analysis might also provide clear benefits
to the accuracy at which road condition can be monitored.
Integrating such features to the SIWNet architecture could
allow for even more reliable modelling and estimation of the
road surface conditions in the future. Considering the wide
variety of winter road conditions and their effect on optimal
automated driving strategies, additional research efforts should
be concentrated on developing increasingly robust solutions
for these demanding circumstances.

In order to improve the reliability of automated driving
solutions, the technology must be capable of operating in
all weather and road conditions. Proper situational awareness
of vehicles in adverse conditions is a key factor in enabling
safe and robust future automated vehicle solutions. SIWNet
advances the road condition monitoring capabilities of vehicles
in winter conditions, potentially enhancing the operation of au-
tomated driving functionalities and bringing reliable automated
driving functions closer to reality.
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