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Shock Waves in Holographic EPR pair
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Abstract

We study real-time correlators for N = 4 super Yang Mill fields coupled to a pair of entangled

quarks using holography, in the setup that energy quanta sent from one quark perturb the quantum

state of the fields and affect the other quark. We make the connection with the ER=EPR conjecture

by considering the situation when two quarks are uniformly accelerating opposite to each other.

The dynamics of quarks, in the gravity dual, is described by the string worldsheet theory, which

in this case has the induced metric describing a two-sided AdS black hole, or a wormhole. Energy

quanta sent by one of the quarks produce the shock wave on the worldsheet. We find the effect

of shock wave on the boundary field correlators and we discuss the consequence for the ER=EPR

conjecture.
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I. INTRODUCTION

The AdS/CFT correspondence is an example of holographic duality saying that the grav-

ity theory in anti de Sitter (AdS) background is equivalent to N = 4 super Yang Mill theory

(a CFT) on the AdS boundary. The correspondence geometrizes the quantities in quantum

mechanics, just like general relativity geometrizes the quantities in classical physics. While

general relativity provides insights into the gravity force and answers questions that are

difficult to explain in Newtonian gravity, we expect the AdS/CFT to guide us to the theory

of quantum gravity, and resolve paradoxes in current understanding of quantum gravity,

in particular the information problem in black hole formation and evaporation. Previous

studies of the information problem have shown a close relation between areas in gravity and

information in quantum theory, and it formed the basis of the holographic principle [1, 2].

The AdS/CFT, in particular, identifies the boundary CFT entanglement entropy with the

area of a certain minimal surface in AdS gravity[3].

ER=EPR is another interesting geomtrization of quantum entanglement, which draws on

an analogy between Einstein-Podolsky-Rosen pairs (EPR pairs) and Einstein-Rosen bridges

(ER bridges or wormholes)[4]. In the gravity theory, wormholes are classical solutions of

general relativity, that some nonlocal connection between two space-time regions is created,

yet allow no superluminal signals transmission (hinge on some energy conditions). Similarly,

in EPR pairs, non-local quantum entanglement correlates two particles. However careful

study of quantum measurement also revealed no superluminal signal transmission. Moreover,

entanglement entropy of EPR pair is related to the throat areas of wormholes. Thus we

expect that when a wormhole’s throat pinches, the EPR pair starts to disentangle. A naive

question to ask in this process is how the entanglement encodes the dynamics of quantum

wormhole. Or we can also ask how different interaction between entanglement pairs changes

the geometry. The current work is motivated by such questions. To make the setting more

precise, we consider a probe string in AdS space with two ends anchored on the boundary,

which in the content of AdS/CFT, is dual to the quark and anti-quark EPR pair moving

through N = 4 super Yang-Mills fields. As two ends of the string are uniformly accelerating

opposite to each other along the boundary, the induced metric on the string worldsheet is

exactly the one for a two-sided AdS black hole (a wormhole) as will be seen later in this

work. It was first noticed in [5] and [6] that in this case, there is also a close relation
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between worldsheet wormhole and the entanglement of the quarks in the spirit of ER=EPR.

For example, the entanglement entropy of the EPR pair is equal to the black hole entropy,

and the quark anti-quark pair creation rate is equal to the onshell string worldsheet action.

In [7], the relation between the EPR pairs and the existence of wormholes has been extended

to more general quark trajectories in this probe string setup. Furthermore, they also argued

that the behind-horizon regions in worldsheet wormholes encodes the information of gluon

radiations from quark pairs. But we still don’t know how the change of trajectories of

the EPR pairs can be detected in the wormhole geometries (and vise versa). The simplest

setup to examine this question is by considering shock waves on the worldsheet wormholes,

which correspond to the energy transfer between entangled quarks in the boundary theory.

These shock waves, in the case when the end points of string are uniformly accelerating were

considered in [8]1, and the field correlators between two wormhole boundaries are derived

using the geodesic approximation in AdS/CFT. They found that the fields coupled to left

and right quark have equal time correlators decaying with time, and the effect of shock wave

is not important at late times.

Certainly it will be interesting to probe the change of wormhole geometries directly by

the entanglement entropy2. One difficulty is that when the classical wormhole description is

valid, the CFT is strongly-coupled and it is ambiguous to separate quarks and gluons degrees

of freedom (see [5, 11–14] for detailed discussion). So unlike the case in [9], where they can

examine the effect of shock waves by calculating the mutual information between fields in

two boundaries regions, using the Ryu-Taganayagi formula [3], here the mutual information

between two quarks is difficult to define. In the current work, we will use the holographic

influence functional method developed in [15] (and references therein) to evaluate the field

correlators that couple to quarks in this shock wave background. The advantage of our

method is that we directly obtain the real-time field correlators. The formalism also makes

it easier to study the quark dynamics, by deriving the Langevin equation for the quark

positions. In [16], the quark correlators derived in this way have been used to calculate

the time evolution of entanglement entropy between the quark and fields, and it was found

1 The setup and method used in this paper is the same as the ones in [9], where they consider shock waves

in two-sided BTZ black holes.
2 It may not be able to completely specify the wormhole geometry by entanglement entropy only. For

example, the complexity is also needed[10].
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that, at late times, entanglement entropy is mainly determined by the field correlators.

Thus we expect the field correlators obtained this way give qualitative behaviors of the

quark dynamics and its entanglement entropy. But for detailed time-dependence, solving

the coupled Langevin equations is still required.

In [19], the method of the holographic influence functional has been extended to the

case of two-end string, which is what relevant for current study. Using this method we find

that the effect of the shock wave on field correlators is perturbatively determined by the

small parameter γ in the double scaling limit to be defined later. The shift of the wormhole

horizon after the shock wave passes is proportional to γ. In particular when γ < 0, the shock

wave renders the wormhole traversable. We find that at late times t ≫ 1
T
, where T is the

temperature of the black hole, the effect of the shock wave on correlators becomes negligible.

When t ≪ 1
T

but larger than the UV cutoff scale3 zm, we find that the cross correlators

between fields coupled to the entangled quark pair behave differently depending on whether

γ is positive or negative. When γ > 0, two ends of the string remain causally disconnected,

and the cross correlators decreases more rapidly comparing to the case with no shock wave.

As γ < 0, two quarks become causally connected from the worldsheet point of view (even

though in boundary two quarks are still out of causal contact), and the cross correlators

increase for a while (of the scale of wormhole throat size, γ
T
) and then decrease eventually4.

The implications of these behaviors on ER=EPR will be discussed in the final section. In

section II, we will review the induced worldsheet backgrounds for probed accelerating string

moving in AdS space. In section III, we patch the worldsheets with different acceleration

together to form a shock wave background. Then in section IV, we use the holographic

influence functional in this shock wave background to derive the backreacted real-time field

correlators and analyze their early-time and late-time behaviors. We also discuss the relation

of these field correlators to the out-of-time-order correlators(OTOCs). In section V, we

consider the case with two shock waves, and then we conclude and point out some future

directions in section VI.

3 The quark mass is also determined by the scale z−1

m
, which is assumed to be large.

4 In the free field theory, the same problem without the shocks can be solved directly using the Gaussian

reduced density matrix[17]. In some parameter regions, they also found the buildups of cross correlators

and entanglement entropy between two objects accelerating opposite to each other.
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II. ACCELERATING STRING

In this section, we review the worldsheet theory of a string moving in AdSd+1 with its two

ends uniformly accelerating opposite with each other in the boundary of AdSd+1. It turns

out that the dimension d will not play any role in the following discussion. We consider the

AdSd+1 metric in the Poincaré coordinates given by

ds2 =
R2

z2
(−dt2 + dz2 + dx2 +

d−2
∑

i=1

dy2i ) , (1)

where R is the curvature radius. The probed string in this background is described by the

Nambu-Goto action

S = −T0

∫

dτdσ
√
−h , (2)

where T0 is the string tension and h = det hab is the determinant of the induced metric.

We choose a worldsheet parameterization, (τ, σ) = (t, z) and the embedding of the string

as Xµ(t, z) = (t, z, x(t, z), 0, · · · , 0) with µ = 0, 1, 2, · · · , d. Then,
√
−h = R2

z2

√
1− ẋ2 + x′2.

The classical equation of motion is given by

∂

∂t

( ẋ

z2
√
1− ẋ2 + x′2

)

− ∂

∂z

( x′

z2
√
1− ẋ2 + x′2

)

= 0 , (3)

where ′ = ∂
∂z

and · = ∂
∂t
. This equation has exact solutions [20],

xb(t, z) = ±
√
t2 + b2 − z2 , (4)

parameterized by a real constant b. Note that later we will impose a boundary cutoff at

z = zm with zm ≪ b, and identify two string end points, xb(t, zm) = ±
√

t2 + b2 − z2m as

the trajectories of the entangled quark pair. These are exactly the trajectories of a point

particle moving with constant acceleration 1√
b2−z2m

in ±x directions5. The induced metric

on the string worldsheet is [19]

1

(t2 + b2 − x2)2
(

(x2 − b2)dt2 − 2txdtdx+ (t2 + b2)dx2
)

. (5)

We call this (x, t)-coordinate the laboratory frame. The remaining discussion in this section

is to relate this laboratory frame to the Kruskal-like frame, in which the calculation of field

correlators is more convenient. But the physical interpretation is in the laboratory frame.

5 This interpretation can also be confirmed by studying the Unruh effect on these quarks[18].
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To do the coordinate transform to light-like coordinates, note that the light rays on the

wordsheet follow the tangent lines to the trajectories of the end points of string. This can

be seen directly from the null geodesics in (5), and those null lines coincide at the string end

points with the boundary (AdSd+1) null geodesics. So we can parameterize the light rays by

t0, which is the laboratory time when they are emitted from or reach the boundaries [5],

x(t) = ± tt0 + b2
√

t20 + b2
. (6)

x(t)’s here are the tangent lines to the quark trajectories on (x, t)-plane. The casual structure

is drawn in figure 1, where we see that two quarks are causally disconnected and there are

horizons at t = ±x. We divide the worldsheet into four regions (I, II, III, and IV) separated

by the horizons. The metric (5) describes a two-sided AdS2 black hole as suggested by the

t0

-b b

IV

III

II I
x

t

FIG. 1: A light ray emitted from the left quark at t0 (solid black lines) in the worldsheet. The

hyperbolic curves (blue) are trajectories of quark and anti-quark(we set zm = 0 here). Two quarks

are causally disconnected with the horizons at t = ±x (dash lines). Two horizons divide the

worldsheet into four regions, where we label I,II,III and IV.

casual structure, and to see this we use the light-like coordinates, u and v (from the inverse

relations in (6)). In region I, we set

u =
b2t + xb

√
b2 + t2 − x2

x2 − t2
, v =

b2t− xb
√
b2 + t2 − x2

x2 − t2
, (7)

with −∞ < v < u < ∞. Then the worldsheet metric becomes

ds2 =
2(−b2 + uv +

√
b2 + u2

√
b2 + v2)√

b2 + u2
√
b2 + v2(u+ v)2

dudv . (8)
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To put the metric in a more standard AdS black hole form, we further set ũ = b sinh u
b
and

ṽ = b sinh v
b
, then we have

ds2 = − dũdṽ

b2 sinh2 ũ−ṽ
2b

, (9)

which is exactly the metric for the outside region of AdS2 black hole with temperature

T = 1
2πb

. We can do the similar coordinate transform in region III, by setting6

u =
−b2t− xb

√
b2 + t2 − x2

x2 − t2
, v =

b2t− xb
√
b2 + t2 − x2

x2 − t2
, (10)

with −∞ < v < u < ∞. Then in ũ and ṽ coordinates, the metric in region III becomes

ds2 = − dũdṽ

b2 cosh2 ũ−ṽ
2b

, (11)

which is the metric for AdS2 black hole interior. The coordinate transforms in region II (IV)

are related to region I (III) by setting x → −x and t → −t. We see that the four regions

cover the whole worldsheet (5) and is exactly the AdS eternal black hole, and its AdS/CFT

interpretation is given in [21]. The relation between (ũ, ṽ)-coordinate and (x, t)-coordinate

is useful later. In region I, we have

t =
b
(

cosh ũ
b
− cosh ṽ

b

)

sinh ũ−ṽ
b

, x =
b
(

sinh ũ
b
− sinh ṽ

b

)

sinh ũ−ṽ
b

. (12)

Thus on the worldsheet, we have

z =
√
b2 + t2 − x2 = b tanh

ũ− ṽ

2b
,

t

x
= tanh

ũ+ ṽ

2b
. (13)

The same relations hold also in region II. In region III and IV, we have the relations

z =
√
b2 + t2 − x2 = b coth

ũ− ṽ

2b
,

t

x
= coth

ũ+ ṽ

2b
. (14)

To see the four regions patched in AdS2 global coordinates, we can make the following

coordinate transforms. First, we can define u′ = 2b tanh ũ
2b

and v′ = 2b tanh ṽ
2b

(thus we still

have −∞ < v′ < u′ < ∞). And in region I and II, we have the metric,

−4du′dv′

(u′ − v′)2
. (15)

6 Note that, here and later, to avoid too many indices, we use the same notation for coordinates in different

regions.
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Here the boundaries are located at u′ = v′ and the black hole horizons are at u′ = 0 and

v′ = 0. In region III and IV, we have the metric

−16b2du′dv′

(−4b2 + u′v′)2
. (16)

And u′ = v′ corresponds to t → ∞ (t → −∞) in region III (region IV). These coordinates

cover the Poincaré patch of AdS2. We can embed the Poincaré patch in the global AdS2

by using the coordinates, u′′ = 2b tan−1 u′

2b
and v′′ = 2b tan−1 v′

2b
, and then we have metric in

region I and II as
−du′′dv′′

b2 sin2 u′′−v′′

2b

, (17)

where now the black hole horizons are at u′′ = bπ
2
and v′′ = − bπ

2
, and the Poincaré horizons

are at u′′ = bπ and v′′ = −bπ. And in region III and IV, we have the metric as

du′′dv′′

b2 cos2 u′′+v′′

2b

. (18)

Finally, we can define the Kruskal-like coordinates U and V that covers all four regions of

the worldsheet. In region I, U = v′′ + bπ
2
, V = u′′ − bπ

2
(thus bπ > U > 0,−bπ < V < 0),

in region II, U = −v′′ − bπ
2
, V = −u′′ + bπ

2
(thus −bπ < U < 0, bπ > V > 0), in region III,

U = v′′+ bπ
2
, V = −u′′+ bπ

2
(thus bπ > U > 0, bπ > V > 0), and in region IV, U = −v′′− bπ

2
,

V = u′′ − bπ
2
(thus −bπ < U < 0,−bπ < V < 0), then two boundaries are at U − V = ∓bπ

and the horizons at U = 0 and V = 0. Note that in all four regions, we have the metric,

−dUdV

b2 cos2 U−V
2b

. (19)

The worldsheet in (U, V )-coordinate is drawn in figure 2.

III. THE SHOCK WAVE BACKGROUND

Here we consider the shock wave configuration and its matching condition in region II. It

can be easily generalized to other regions by the coordinate relations described in previous

section. These shock wave solutions were found in [8] (see[22–24], for the discussion of more

general solutions). For convenience, here we describe the solutions using (ũ, ṽ)-coordinates.

Certainly, the geometry will not depend on the coordinates. However later we will take

the so-called double scaling limit of the shock wave geometry, and it should be noticed
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FIG. 2: The worldsheet metric in (U, V )-coordinate. Both U and V have their ranges from −bπ to

bπ. The left (right) boundary is identified with the left (right) quark trajectory, and is described

by U − V = −bπ (U − V = bπ). We show the constant t and x lines (only schematically) and the

four regions I, II, III, IV of the worldsheet. Here the (blue) dash line is a constant ũ line.

that the double scaling limit does not commute with the coordinate transformation. The

shock wave we consider is emitted from the left quark at the time t = t0 follows the light-

like trajectory(6), and in (ũ, ṽ)-coordinates, the shock wave then follows the constant ũ

trajectory, ũ = ũ0 ≡ −b sinh−1 t0
b
. Note that −ũ0 is exactly the proper time along the quark

trajectory corresponds to the laboratory time t0 and the shock wave trajectory, ũ = ũ0

intersects the left quark trajectory at x = x0 = −b cosh ũ0

b
. After the shock wave passes, for

ũ < ũ0, we assume the worldsheet is described by the embedding in AdSd+1 as

(x− cx)
2 − (t− ct)

2 = b2s − z2 , (20)

where cx, ct and bs are constants. From the boundary point of view, we assume the left

quark orginally with acceleration 1/b (following the trajectory x = −
√
t2 + b2) emmits

energy quanta at the proper time, −ũ0 and changes the acceleration to 1/bs with trajectory

given by x − cx = −
√

(t− ct)2 + b2s. To match the worldsheet solutions for ũ < ũ0 and

ũ > ũ0, we require that the quark trajectory and its first derivative are continuous across

the boundary matching point (x0, t0). These conditions gives,

(x0 − cx)
2 − (t0 − ct)

2 − b2s = 0,
(t0 − ct)

2

(t0 − ct)2 + b2s
=

t20
x2
0

. (21)
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Note that the derivative should be continuous, since the tangent line at the matching point

is just the shock wave trajectory. These conditions uniquely determine cx and ct in region

II,

cx = (b− bs) cosh
ũ0

b
, ct = (b− bs) sinh

ũ0

b
. (22)

From (20), we can also parameterize this trajectory by the proper time ũs, so we have

x(ũs)−cx = bs cosh(
ũs

bs
+cu), and t(ũs)−ct = bs sinh(

ũs

bs
+cu). Notice that the values of proper

times, by definition, are the same at the matching point ũs = ũ = ũ0. Thus the matching

condition also determine the shifting in the origin of the proper time, cu = ũ0(
1
b
− 1

bs
).

Even though the value of ũ is continuous across the shock wave, the value of ṽ across

the shock wave is shifted by some amount determined by the matching condition that the

worldsheet needs to be continuous across ũ = ũ0, that is the value of z coordinate must

match, which gives (see equation (13))

bs tanh
ũ0 − ṽs
2bs

= b tanh
ũ0 − ṽ

2b
. (23)

Here ṽs is defined as in (12) for region II, except using the shifted coordinates, x − cx and

t− ct. Note that the same matching condition is also obtained in [9] for the shock wave in

a BTZ black hole. There, the role of z is played by the radius of circle at the point (ũ, ṽ).

To simplify the expression for the following calculation of correlators, we consider the

matching condition in the double scaling limit, where b− bs → 0 and ũ0 → ∞ but keeping

1

2b
(b− bs)e

ũ0
b ≡ γ (24)

fixed. Physically, we make the shock wave energy, δE ∝ b − bs very small, and let the

proper time (−ũ0) for injecting energy very early. Thus the blue-shift factor of the black

hole, eũ0/b becomes very large and we keep the shock wave effect δEeũ0 finite. In this limit,

the matching condition (23) gives

ṽs = ṽ + bγe−
ṽ
b . (25)

Thus the original horizon at ṽ = 0, is shifted by the amount bγ after the shock wave passes.

It should be also noticed that the double scaling limit is not commuting with coordinate

transformation. In different coordinate systems, the parameter γ gets various kind of blue-

shift (or red-shift) factors. For example, we can do the double scaling limit in the coordinate

system (for region II)

U ′ = −e
ũ
b , V ′ = e

−ṽ
b , (26)
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then we have the discontinuity in V ′ as

V ′
s = V ′ + bγ , (27)

which agrees with the one in [9] and [8]. Here it is more convenient to do the matching

in (U, V )-coordinates defined above equation (19). The matching condition (23)(writing in

this new coordinate system) in the double scaling limit gives

Us = U + bγ(1 + cos
U

b
) . (28)

This relation is not the same as the relation (25) or (27) in (U, V )-coordinate system. How-

ever if we take small γ limit, then to leading order, this procedure gives the same relation

as in (25) or (27). Thus we will take (27) as a definition of γ, and equation (28) only the

relation valid for small γ. In the double scaling limit, we also have cx = ct = −bγ and

cu = 0 (see equation (22) and the following paragraph). The conformal diagrams for the

shock wave backgrounds are drawn in figure 3. We see that for positive γ, the wormhole

remains non-traversable, but some modes starting from t = −∞, which originally (γ = 0)

can reach two quarks, may now go inside the horizon. And for negative γ the shock wave

makes the wormhole one-way traversable.

IV. REAL TIME CORRELATORS WITH A SHOCK WAVE

In this section, we use the method of holographic influence functional developed in [15] to

evaluate the field correlators that couple to quarks in this shock wave background discussed

in previous section. We will first consider the linearized fluctuations on the shock wave

background. The exact solutions of the linearized equation without shock wave have been

found in [19]. Here we will do the matching of these solutions on shock wave surface in

the double scaling limit to obtain the mode functions in the shock wave background. And

then we will calculate the on-shell action and identify it as the generating functional for the

fields that couple to the positions of the quarks. This allows us to derive the real-time field

correlators. We will then discuss the behaviors of the correlators in various cases.

11



(a) Shock wave with positive γ. The

wormhole remains non-traversable

(b) Shock wave with negative γ. The

wormhole becomes traversable

FIG. 3: Shock wave backgrounds in double scaling limit with positive and negative γ respectively.

In both cases, the dash (blue) lines are the trajectories of the shock waves. The shaded regions are

described by shifted coordinates (Us, Vs) (after the conformal transforms to match the values on

the lines of the shock waves), and the unshaded regions are described by (U, V )-coordinate.

A. Modes functions on the shock wave

Here we consider the string worldsheet perturbations of the form Xµ =

(t, z, xb(t, z), q(t, z), 0, · · · , 0) where q(t, z) is small as compared to xb(t, z). And the ex-

pansion of the Nambu-Goto action (2) to the quadratic order gives

Sq = −R2T0

∫

dt dz
1

z2

(

q′2 − q̇2 − ẋ2
bq

′2 − x′2
b q̇

2 + 2ẋbx
′
bq̇q

′

2
√

1− ẋ2
b + x′2

b

)

. (29)

The equation of motion for q(t, z) derived from this action can be solved exactly (see [19] for

details). Here we write the general solutions found in [19] in the (U, V )-coordinate, which is

defined below equation (18).

qi(U, V ) =

∫ ∞

−∞

dω

2π
f i(ω)Qi

ω(U, V ) + gi(ω)P i
ω(U, V ) , (30)

where i = I, II, III, IV , labels the four regions on the worldsheet. And we have

QI
ω(U, V ) =

1− iωz(U, V )

(1− iωzm)e
iωb tanh−1 zm

b

e−iωb ln tan U
2b , (31)

and

P I
ω(U, V ) =

1− iωz(U, V )

(1− iωzm)e
−iωb tanh−1 zm

b

eiωb ln tan −V
2b , (32)
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where z(U, V ) = b
cos U−V

2b

cos U+V
2b

is the value of z in (U, V )-coordinate, and z = zm is the cut-off

surface, where we impose the boundary conditions. Near the horizons U = 0 and V = 0 we

have

QI
ω(U ≪ b, V ) → 1− iωb

(1− iωzm)e
−iωb tanh−1 zm

b

(

U

2b

)−iωb

≡ H(ω)

(

U

2b

)−iωb

, (33)

QI
ω(U, V ≪ b) → H(ω)e−iωb ln tan U

2b , (34)

and

P I
ω(U, V ≪ b) → H∗(ω)

(−V

2b

)iωb

, (35)

P I
ω(U ≪ b, V ) → H∗(ω)eiωb ln tan −V

2b . (36)

For the mode functions in region II, III and IV, we have the relations, QII
ω (U, V ) =

QI
ω(−U,−V ), QIII

ω (U, V ) = QI
ω(U,−V ) and QIV

ω (U, V ) = QI
ω(−U, V ), and similarly for

Pω(U, V )’s. In particular, in region III and IV, we have instead z(U, V ) = b
cos U+V

2b

cos U−V
2b

.

We will now determine qi(U, V )’s by their boundary conditions at the horizons (U = V =

0) and the boundaries z = zm, and thus fix f i(ω)’s and gi(ω)’s uniquely. At the boundaries

we impose,

qI(z(U, V ) = zm) = qR(t), qII(z(U, V ) = zm) = qL(t) , (37)

where qR(t) and qL(t) are identified as the quark positions that source the boundary field

operators, says F̂R(t) and F̂L(t). We write

qa(t) =

∫ ∞

−∞

dω

2π
q̃a(ω)e−iωτa , (38)

where a = L,R labels the right and left quarks. τL and τR are the proper times along

the left and right quark trajectories respectively. They are related to the laboratory time t

by, τR = b tanh−1 t√
t2+b2−z2m

and τL = −b tanh−1 t√
t2+b2−z2m

(they are just the coordinate ũ

(−ũ) evaluated at the right (left) boundary as noticed earlier). Note that the normalization

in (31) and (32) gives precisely QI
ω(z(U, V ) = zm) = P I

ω(z(U, V ) = zm) = e−iωτR and

QII
ω (z(U, V ) = zm) = P II

ω (z(U, V ) = zm) = e−iωτL . Thus the boundary conditions in (37)

give

f I(ω) + gI(ω) = q̃R(ω), f II(ω) + gII(ω) = q̃L(ω) . (39)

In the shock wave background after taking the double scaling limit as discussed in pre-

vious section, we have the shock wave following the line, V = 0 and the coordinate V is

13



continuous across the shock wave, while U is shifted by (28). As the consequence, the match-

ing conditions for the fluctuations qi(U, V )’s across the horizons are, firstly they should be

analytic across U = 0 (or Us = 0), and secondly they need to be matched across V = 0 after

the shifting of U by (28). For example to find the matching conditions between region I and

IV across U = 0, we use the expression in (33) and that QIV
ω (U ≪ b, V ) → H(ω)

(

−U
2b

)−iωb
,

which give

f I(ω) = e−πbωf IV (ω) . (40)

And near U = 0, the similar expression for P i
ω(U, V ) gives the matching condition,

gI(ω) = gIV (ω) . (41)

Note that the mode functions have branch cuts on complex U and V planes. We follow

the prescription in [16] to choose mode functions that are analytic in the upper (lower) half

complex U (V ) plane. Thus to match qi(U, V )’s across the shock wave, V = 0 between

region II and IV, we have

gII(ω) = e−πbωgIV (ω) . (42)

As for the matching of f II(ω) and f IV (ω), we use the expression (34) for region II and IV,

and the shifting in (28), which give

∫ ∞

−∞

dω

2π
f II(ω)H(ω)e−iωb ln tan(−U

2b
+ γ

2
(1+cos −U

b
)) =

∫ ∞

−∞

dω

2π
f IV (ω)H(ω)e−iωb ln tan −U

2b . (43)

Use the small γ expansion, ln tan(−U
2b

+ γ
2
(1 + cos −U

b
)) ≃ ln tan −U

2b
+ γ cot −U

2b
, and note

that in region II and IV, ṽ = b ln tan −U
2b
. This small λ expansion is precisely the matching

condition (27) (see the discussion below equation (28)). Thus to leading order in λ, we can

write (43) as

f II(ω)e−iω(ṽ+bγe−
ṽ
b ) = f IV (ω)e−iωṽ . (44)

Multiply both sides of the above equation by eiω
′ṽ and integrate over ṽ, we obtain

f IV (ω′) = f II(ω′) +
1

H(ω′)

∫ ∞

−∞

dω

2π
f II(ω)H(ω)Γ(ib(ω − ω′))(−iωγ)−ib(ω−ω′) . (45)

The integral is convergent for reasonable source functions. Note that the gamma function,

Γ(ib(ω − ω′)) has poles on ω = ω′ + in
b
for non-negative integers n’s. Thus to avoid the pole

on real ω axis and make the integration well-defined, we use the standard iε-prescription

to make the pole at n = 0 a little bit below the real axis, and after evaluating the integral

14



by closing the integration contour on upper complex ω and picking up the residues of the

poles, we take ε → 0. Using this procedure, we obtain

f IV (ω′) = f II(ω′) +
1

H(ω′)

∞
∑

n=1

f II(ω′ +
in

b
)H(ω′ +

in

b
)
(−iγ)n

n!
(bω′ + ni)n . (46)

This reminds us of the Matsubara frequency summation which reflects the underlying equi-

librium system with temperature T = 1
2bπ

. The inverse Fourier transform of the last term

in the above equation can be written as (after doing the change of variable and the n-

summation),
∫ ∞

−∞

dω

2π
f II(ω)(1− e−iγbωe−

t
b )e−iωt . (47)

In the latter discussion, we will be interested in two limits, t ≫ b and t ≪ b (take t > 0).

Thus, in the first limit, we obtain the matching condition

f IV (ω) = f II(ω) , (48)

which is the same as the one with no shock wave. This agrees with the finding in [9] that in

the late times t ≫ b = 1
2πT

, the effect of shock wave becomes negligible, since the laboratory

frame in this limit is approximately the natural frame for infalling shock wave and there is

no blue shift factor. In the opposite limit, t ≪ b, we have

f IV (ω) = f II(ω)(2− e−iγbω) , (49)

if we can extrapolate the result to order-one γ. However we believe the result is only valid

to leading order7 in γ, then we have

f IV (ω) = f II(ω)(1 + iγbω) . (50)

B. Holographic influence functional of the shock wave

Now we are able to evaluate the on-shell action which we identify as the generating

functional (or the influence functional) of boundary fields, and derive their correlators. From

7 There is another reason to believe that the result is only valid for small |γ|, which is for |γ| > 1, the

equation (28) becomes multi-valued.
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equations (40), (41), (42) and (50), we see that the horizon boundary conditions give (using

the identification b = 1
2πT

)

f II(ω) = e
ω
2T (1− iγω

2πT
)f I(ω), gII(ω) = e−

ω
2T gI(ω) . (51)

Together with the boundary condition at z = zm in (39), we uniquely determine the solutions

of qI(U, V ) and qII(U, V ). We then identify the on-shell action in (29), which contains only

the boundary terms, as the generating function for the boundary fields F̂L and F̂R, sourced

by the quarks qL(t) and qR(t)

lnZ(q̃L, q̃R) = Sq(q
i(U, V ))

=

∫ ∞

−∞

dω

2π
q̃R(ω)

(

ReGR(ω)−
1− iγω

2πT
+ e−

ω
T

1− iγω
2πT

− e−
ω
T

iImGR(ω)

)

q̃R(−ω)

+q̃R(ω)

(

2− iγω
πT

e
ω
2T (1− iγω

2πT
)− e−

ω
2T

iImGR(ω)

)

q̃L(−ω)

+q̃L(ω)

(

2

e
ω
2T (1− iγω

2πT
)− e−

ω
2T

iImGR(ω)

)

q̃R(−ω)

+q̃L(ω)

(

−ReGR(ω)−
1− iγω

2πT
+ e−

ω
T

1− iγω
2πT

− e−
ω
T

iImGR(ω)

)

q̃L(−ω) , (52)

where GR(ω) ≡ R2T0

2b2
b2−z2m
z2m

QI
ω(z = zm)∂zQ

I
ω(z = zm), and is given by

GR(ω) =
R2T0

2b2

(

b2 − z2m
zm

ω2

1 + ω2z2m
+ i

ω + b2ω3

1 + ω2z2m

)

. (53)

It is interpreted as the one-particle retarded Green function [19]. We then have the fields

correlators

Gab(ω) =
δ2

δq̃aδq̃b
Sq(q

i(U, V )) , (54)

where a, b = R,L. It is easy to see that in the case γ = 0, we have the (anti) time-order

Green function for the F̂R (F̂L) field in the thermal state with temperature T . Thus we

regard Gab as the (anti) time-order Green functions in the back-reacted quantum state dual

to the shock wave background. From the definition of the Fourier components in (38), and

note that qL is written in shifted coordinates (20) due to the shock wave, we then have

〈F̂R(t)F̂R(t′)〉 = GRR(t, t′) =
b

√

b2 + t2 − z2m

b
√

b2 + t′2 − z2m

×
∫ ∞

−∞

dω

2π
GRR(ω)e−iω(τ(t)−τ(t′)) . (55)
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And

〈F̂R(t)F̂L(t′)〉 = GRL(t, t′) =
b

√

b2 + t2 − z2m

b
√

b2 + (t′ + bγ)2 − z2m

×
∫ ∞

−∞

dω

2π
GRL(ω)e−iω(τ(t)+τ(t′+bγ)) , (56)

where τ(t) = b tanh−1 t√
b2+t2−z2m

. And GLR(t, t′) and GLL(t, t′) have the similar expressions.

C. Time-dependence of the correlators

The field correlators, Gab(t, 0)’s tell us how the effect of shock wave gets transmitted

between quarks and finally thermalized and makes two quarks disentangled. We study the

behavior of Gab(t, 0) as t ≪ b = 1
2πT

(note that we also take zm as a UV-cutoff, and we

consider t ≫ zm). Then the relevant ω in the integral is for T ≪ ω ≪ 1
zm

. In this limit,

GRR(t, 0) and similarly for GLL(t, 0), reduces to the one for zero temperature time-order

single particle correlator, since we have GRR(ω) = ReGR(ω) − sign(ω)ImGR(ω). In this

limit, the time is too short or the wavelength of the fluctuations is too short to probe

the interior of the black hole and the effect of the infalling shock wave. In this case, the

time-dependent behavior of GRR(t, 0) or GLL(t, 0) has been studied in [16].

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
t

0.5

1.0

1.5

2.0

G
RL(t, 0)

FIG. 4: The behavior of cross field correlator, GRL(t, 0) for various shock wave configurations.

Here t is in unit of 1
T . And GRL(t, 0) is in unit of an overall constant as discussed in the text.

Thus to see the effects of the shock wave in the small γ limit, we need to study the

cross correlators GRL(t, 0) or GLR(t, 0)8. Here we focus on GRL(t, 0). The integral in (56)

is convergent and we can use the residues theorem to evaluate the integral. Note that the

8 Two cross correlators are equal up to leading order in γ as can be seen in (52).
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integrant has the poles at ωn = − nγ
2πb

+ ni
b
(to leading order in γ) for integer n. Then in the

limit t ≪ b = 1
2πT

and also taking zm → 0, we obtain, up to an overall time-independent

constant, the leading time-dependent behavior of GRL(t, 0) in small γ and T t as

GRL(t, 0) ∝ 2− 10πγT t− (2πT t)2 . (57)

We see that the cross correlation between left and right fields is decreasing eventually. This

is expected since the entaglement between two quarks gradually lost, the fields coupled to

them are also getting decoherent. In the case that γ > 0, we can see that the effect of

the shock wave is to increase the decay rate of the cross correlation. This is also expected,

since the energy emitted by quarks disturbed the background further and that back-reacts

to the quarks. An interesting observation is that when γ is negative, equation (57) tells

us that the correlation actually increases for a while (as t < 5γ
2πT

), which is of the order of

wormhole radius. We plot these behaviors of GRL(t, 0) in figure 4(including the ones for

two shock waves configuration discussed in next section). Usually we expect that, in field

theory the energy released scrambles the ground state and decreases the correlation between

two points, rather than builds up the correlation. But for this to happen, we need negative

energy. This can be seen from the definition, γ = b−bs
2b

e
ũ0
b which is proportional to the shock

wave energy (blue-shifted), and negative γ implies negative energy for the shock wave, and it

violates the null energy condition. So this kind of shock waves can’t be produced by normal

local perturbations on the worldsheet. As noted in [25] (and in [26] for the setup similar

to current work), the negative energy shock waves on the worldsheet, for example, can be

produced by introducing the non-local coupling between two quarks in the boundary theory,

δS =

∫

h(t)qL(−t)qR(t)dt , (58)

for some coupling function h(t).

At the late times, when t ≫ 1
T
, the effect from the shock wave is negligible (see equation

(47)), and the proper time τ(t) ≃ b ln t
b
. We then have up to an overall constant

GRL(t, 0) ≃ 1

t2
. (59)

So the cross correlator decrease slower comparing to the one in early times, since the system

is near the thermalized state.
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D. The relation to quantum chaos

It is also interesting to evaluate GRL(0, 0) and ask when the proper time ũ0 is large enough

to produce the order one effect on the cross correlator. This time scale, call it ũ∗
0 is defined

as the scrambled time in [8] and [9]. Here we can write

GRL(0, 0) =

∫ ∞

−∞

dω

2π
GRL(ω) |γ=0 −

iγ

2π

∫ ∞

−∞

dω

2π

ω
T

1− e−
ω
T

GRL(ω) |γ=0 , (60)

to leading order in γ, where GRL(ω) |γ=0 is the correlator evaluate at γ = 0. It is beyond our

approximation here, when γ is of order one. However we can still do the order of magnitude

estimation of the time when the perturbation is of the order of the leading term. This

happens when

γ =
b− bs
2b

e
ũ∗
0
b ≃ δE

E
eEũ∗

0 ≃ 1 , (61)

where δE is the energy of the shock wave and E is the energy of black hole with temperature

T = 1
2πb

. We estimate that E ≃ TS and δE ≃ T . Then we have the scramble time

ũ∗
0 =

1

T
lnS , (62)

which characterizes the thermalization rate of the black hole [27].

The time-dependent correlators found here can be related to the analytic continuation of

the out-of-time-order corelator (OTOC) and used to probe the quantum chaos[9, 28]. This

was noted in [29], and in current setup, it was done in [8, 30–34]. As suggested by the

form of the influence functional in (52), without the shock wave(γ = 0), the left and right

quantum fields that couple to two quarks can be described by the thermofield double (TFD)

state with temperature T ,

|TFD〉 = (ZT )
−1/2

∑

n

e−
En
2T |n〉L ⊗ |n〉R , (63)

where we assume the quantum fields have discrete energy spectrum and ZT is the normal-

ization factor. The emission of the shock wave at the time t0 from the left quark can be

described by some operator ŴL(t0) = Ŵ (t0) ⊗ 1̂ acting on |TFD〉. We can then identify,

for example,

GRL(0, 0) = 〈TFD|Ŵ †
L(t0)F̂

R(0)F̂L(0)ŴL(t0)|TFD〉 . (64)

If we further define F̂L(t) = F̂ (t)⊗ 1̂ and F̂R(t) = 1̂⊗ F̂ T (t), where F̂ T is the transpose of

F̂ , then it is not difficult to see that GRL(0, 0) is equal to an analytic continuation of the
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four-point thermal OTOC,

〈Ŵ †(t0)F̂ (0)Ŵ (t0)F̂ (
i

2T
)〉T , (65)

where 〈Ô〉T = Tr(Ôρ̂T ) with ρ̂T = Z−1
T

∑

n e
−En

T |n〉〈n|. Thus from the expression for

GRL(0, 0) in (60) we can also read off the OTOC, which scales with ũ0 as 1−constant×e
ũ0
b .

Thus it exhibits a chaotic behavior with Lyapunov exponent λL = 2πT , which saturates the

bound in [28]. This agrees with the result in [8]. Noted that −ũ0 is the proper time of the

quark, and it is related to the laboratory time, t0 = b sinh −ũ0

b
. Thus the exponential growth

of the four-point OTOC is only observed in the frame when quarks see the thermal bath,

and there is no such growth in the laboratory frame. Also it should be noted that in current

work, the expression in (60) is only valid in small γ, thus the comparison to the results in

[8, 30–34] is only qualitative. It will be interesting to extend the result to finite γ to see the

general dependence of the OTOCs on ũ0. We will discuss more about this point in the final

section.

V. TWO SHOCK WAVES

We now consider the situation when two quarks emit energy quanta simultaneously from

the far past toward each other. In the double scaling limit and with γ negative, we plot the

worldsheet conformal diagram in figure 5.

In the situation with two shock waves on the worldsheet, by the similar consideration in

previous section, we obtain the following matching conditions in the early limit (t ≪ 1
T
)

f II(ω) = e
ω
2T (1− iγω

2πT
)f I(ω), gII(ω) = e−

ω
2T (1 +

iγω

2πT
)gI(ω) . (66)

Then we have the correlators in Fourier space as

G̃RR(ω) = ReGR(ω)−
1− iγω

2πT
+ e−

ω
T (1 + iγω

2πT
)

1− iγω
2πT

− e−
ω
T (1 + iγω

2πT
)
iImGR(ω) , (67)

G̃RL(ω) =
2(1− iγω

2πT
)(1 + iγω

2πT
)

e
ω
2T (1− iγω

2πT
)− e−

ω
2T (1 + iγω

2πT
)
iImGR(ω) . (68)

And the expressions for LL and LR components are similar. Comparing with (52), we find

that to leading order in γ, G̃ab(ω) is just equal to Gab(ω) by replacing γ by 2γ. In particular,

in the case with two shock waves, we have the time-dependent cross correlator, at the early
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FIG. 5: The worldsheet conformal diagram for two shocks from left and right boundaries in the

double scaling limit. The shock wave trajectories are described by dash (blue) lines. Here we draw

only the case when γ is negative, so a two-way traversable wormhole is formed. The unshaded

region (region IV) is described by (U, V )-coordinate. The shaded regions are described by shifting

one of U and V to Us or Vs. The double shaded region is described by (Us, Vs)-coordinate.

times T t ≪ 1, as

G̃RL(t, 0) ∝ 2− 20πγT t− (2πT t)2 . (69)

Thus when γ > 0 the amount of decreasing in the cross correlation is double comparing to

the case with one shock wave. When γ < 0 we now have a two-way traversable wormhole,

and the time interval for the cross correlation to build up (now for t < − 5γ
πT

) is also double

comparing to the case with one-way traversable wormhole.

VI. DISCUSSION

So far we haven’t discussed the relation between shock wave backreation and its effect

on entanglement entropy of the EPR pair. As we studied in [16], the dynamics of quarks

is largely determined by the field-field correlators 〈F̂ a(t)F̂ b(t′)〉. Thus, there is good reason

to believe that the cross correlator we found in (57) captures qualitatively the interaction

between two entangled quarks and may tell us how the entanglement get changed due to

the shock waves. However the detailed time-dependence can only be obtained by solving the
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coupled Lagenvin equations between two quarks, similar to the formula obtained in [35].

We found that in the limit t ≪ 1
T
, when γ is positive, the cross field correlators decrease

more quickly than the case γ = 0. And in case when γ is negative, the wormhole is

traversable, and we have the cross field correlation builds up for a while, and then after t ≃
γ 1
T
, which is of the order of the wormhole throat size, it starts to decrease. These behaviors

of cross correlators of fields have a natural explanation in the ER=EPR conjecture, if we

assume they also capture qualitatively the quarks dynamics. As γ > 0, even though from

the worldsheet point of view, two quarks remain causally disconnected, more information

(on the initial state) is leaking to the regions behind the horizons and that should make the

correlation between quarks decrease faster. This is also consistent with the interpretation

given in [7], which identified the regions behind the horizons to be the one in gravity theory

to encode the information of gluon fields. So from the boundary point of view, the quanta

sending between the EPR quark pair, dissipate the information to gluons and make the quark

pair less entangled. And as γ < 0, the wormhole is rendered traversable by shock waves. But

from the boundary point of view, two quarks are still casually disconnected. So it looks like

the superluminal communication between quarks is possible, and that communication builds

up the correlation between quarks. This may also relate to the fact that the negative energy

shock waves (γ < 0) is ultimately attributed to the non-local interaction in the theory(for

example the double trace deformation as described in (58)). It will be very interesting to

see if the time evolution of entanglement entropy between two entangled quarks behaves as

expected. We plan to study this in future works.

Another interesting direction for the future works is the study of quantum chaos by

OTOCs as mentioned in section IVD. Comparing to other holographic calculations of

OTOCs which are based on the Euclidean holography, we work on Lorentzian time directly.

Since there is no need to do the analytic continuation to real times, the numerical meth-

ods is more easily implemented in the holographic influence functional. Also as mentioned

in the introduction already, the holographic influence functional method makes it easier

to study the quark dynamics, and we may calculate the correlators in different vacuum

states by changing the boundary conditions of the bulk mode functions at the horizons[15].

However, the difficulty to find the general analytic form of OTOCs in current work is to

go beyond the small γ approximation of the correlators. Also, as can be seen in (47), in

general (not just in the early time and late time limits considered here), the bulk mode
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functions with different frequency coupled together and we have more complicated influ-

ence functional. If this difficulty can be overcome, we can also study the scattering in the

wormhole interior as in [36, 37], which is related to the two shock waves backgrounds dis-

cussed here in section V. From the boundary point of view, the correlators, G̃RL(0, 0), we

found here can be related to an analytic continuation of the six-point OTOC of the type,

〈Ŵ †(t1)F̂ (t2)Ŵ (t3)Ŵ
†(t4)F̂ (t5)Ŵ (t6)〉T , which is the one studied in [36, 37].
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