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Abstract

We study post-hoc (e-value-based) and post-hoc anytime valid inference for test-
ing exchangeability and general group invariance. Our methods satisfy a generalized
Type I error control that permits a data-dependent selection of both the number of
observations n and the significance level α. We derive a simple analytical expres-
sion for all exact post-hoc valid p-values for group invariance, which allows for a
flexible plug-in of the test statistic. For post-hoc anytime validity, we derive sequen-
tial p-processes by multiplying post-hoc p-values. In sequential testing, it is key to
specify how the number of observations may depend on the data. We propose two
approaches, and show how they nest existing efforts. To construct good post-hoc
p-values, we develop the theory of likelihood ratios for group invariance, and gener-
alize existing optimality results. These likelihood ratios turn out to exist in different
flavors depending on which space we specify our alternative. We illustrate our meth-
ods by testing against a Gaussian location shift, which yields an improved optimality
result for the t-test when testing sphericity, connections to the softmax function when
testing exchangeability, and an improved method for testing sign-symmetry.

Keywords: permutation test, group invariance test, anytime valid inference, post-hoc valid
inference, e-values, sequential testing.
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1 Introduction

Suppose we observe Xn = X1, . . . , Xn and are interested in testing whether these objects
are exchangeable:

H0 : X
n is exchangeable.

Exchangeability here means that Xn is equal in distribution to any permutation PXn of
its elements. For example, Xn is exchangeable if X1, . . . , Xn are i.i.d.

Traditionally, we want to test this hypothesis at some pre-specified level α. To construct
a so-called permutation test, we select a test statistic T and reject whenever the following
permutation p-value is at most α:

p(Xn) = PPn

(
T (P nX

n) > T (Xn)
)
+ uPPn

(
T (P nX

n) = T (Xn)
)
,

where P n ∼ Unif(Pn) is uniformly distributed on the permutations Pn and u is indepen-
dently uniform on [0, 1]. This p-value can be understood as the proportion of test statistics
calculated from the rearranged (‘permuted’) data that exceed or match the original test
statistic, and a small correction to handle discreteness. The resulting test is well-known to
be exactly valid under the Type I error in finite samples:

sup
n,α

EXn [I {p(Xn) ≤ α} /α] = 1, (1)

or, equivalently, PXn(p(Xn) ≤ α) = α, for all n and α. Permutation tests are a special case
of more general group invariance tests, which are obtained by simply replacing the group
of permutations Pn by another compact group Gn that acts on our sample space.

1.1 Methodological contributions

The first unfortunate feature of this traditional group invariance test is that the significance
level α must be pre-specified. Our first methodological contribution is to introduce a ‘post-
hoc’ p-value p for group invariance that is valid under a much stronger Type I error property
[Grünwald, 2023, Koning, 2024], also called the post-hoc Type I error:

sup
n

EXn

[
sup
α

I{p(Xn) ≤ α}/α
]
≡ EXn [1/p(Xn)] = 1. (2)

This is stronger than the Type I error in (1), because the supremum over α is now inside the
expectation so that α can be selected based on the data. The reciprocal of such a ‘post-hoc
valid’ p-value also known as an e-value [Shafer, 2021, Vovk and Wang, 2021, Howard et al.,
2021, Ramdas et al., 2023, Grünwald et al., 2023].

In particular, we show that every exactly post-hoc valid p-value for group invariance is
of the form

p(Xn) =
EGT (GXn)

T (Xn)
,
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for some non-negative and appropriately integrable test statistic T , where G ∼ Unif(Gn).
A second unfortunate feature is that the number of observations n must also be pre-

specified, or at least specified independently from the data. Our second methodological
contribution is to solve this, by introducing post-hoc anytime valid p-processes (pn)n≥1

for testing group invariance. Such p-processes are a sequential generalization of post-hoc
p-values, which bound the post-hoc Type I error even if n is a potentially data-dependent
stopping time:

sup
n∈N

EXn

[
sup
α

I{pn(Xn) ≤ α}/α
]
≡ sup

n∈N
EXn [1/pn(X

n)] ≤ 1,

where N is a collection of stopping times adapted to the available information at each
moment in time. This is a stronger property than (2), as it allows us to dynamically decide
when we are done with collecting data based on our current information, instead of having
to independently specify a number of observations. The reciprocal of a p-process that
satisfies this property also known an e-process [Ramdas et al., 2022a, 2023].

In particular, we consider invariance of a sequence of data (Xn)n≥1 under a sequence of
groups (Gn)n≥1. We then introduce post-hoc anytime valid p-processes of the form

p(Xn) =
n∏

i=1

EF i
Ti(F iX

i)

Ti(X i)
,

where F i ∼ Unif(Fi), and Fi is a compact subgroup of Gi that is adapted to the available
information at every moment, i ≤ n. Here, the test statistics (Tn)n≥1 can be also chosen
based on the available information. These p-processes can be interpreted as the product of
post-hoc p-values. Their reciprocal also called an e-process, and is a martingale.

Finally, we formulate how the test statistic T can be chosen optimally. For an alternative
P1, a popular post-hoc generalization of power is EP1 log 1/p [Koolen and Grünwald, 2022,
Grünwald et al., 2023]. We argue that under this notion of power, the optimal choice is to
choose T equal to the density under the alternative P1. The resulting post-hoc p-value can
be interpreted as a likelihood ratio between P1 and G invariance. In the sequential setting,
this alternative can be learned based on the previously observed data.

1.2 Technical Contributions

Beyond the methodological contributions, we make several technical contributions to testing
group invariance. To start, we introduce a novel weaker condition under which inference
on group invariance can take place. Rather than the data being invariant, we specify a
condition that merely requires it to be invariant when viewed through a test statistic. To
the best of our knowledge, this generalizes the weakest known condition that appears in
Hemerik and Goeman [2018]. Based on this condition, we develop the theory of for Type
I and post-hoc Type I valid inference for group invariance. Here, we derive the class of all
exactly post-hoc valid p-values for group invariance.

Next, we setup a general framework for sequential testing of group invariance. We then
first develop post-hoc anytime valid p-processes based on martingales for the ‘standard’
filtration. This standard filtration allows us to fully inspect all the available data up until
the present to determine when we want to stop gathering new observations. Moreover,
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our methods permit us flexibly choose the test statistic based on the available data, for
example to learn the alternative as the data comes in.

For the special case of testing sequential exchangeability, Ramdas et al. [2022a] and
Vovk [2021] observe that relying on the standard filtration can be problematic when using
a martingale: the resulting procedure becomes powerless. We give a deep explanation of
why this problem occurs when testing group invariance more generally. To solve this issue,
we consider reducing the filtration. This amounts to only allowing the selection of n and
the test statistic to depend on a statistic of the previous data. We propose two approaches.
The first approach is simplest, and relies on reducing the problem to testing invariance
of a statistic of the data. The second approach is more general, and does not assume we
have a group acting on the codomain of the statistic. Instead, we rely on our previously
mentioned condition that only requires the data to be invariant when viewed through the
statistic. We show how this second approach nests the approaches of Vovk [2021] and
its recent generalizations by Lardy and Pérez-Ortiz [2024]. Given the complexity of this
problem, we view this as our primary technical contribution.

Furthermore, we consider how to construct optimal post-hoc p-values. There are several
competing generalizations of ‘power’ in post-hoc inference. For example, for an alternative
P1, we may either want to maximize EP1 log 1/p or maximize EP11/p [Koolen and Grünwald,
2022, Grünwald et al., 2023, Koning, 2024]. In traditional inference, likelihood ratio tests
are known to yield optimal power by the Neyman-Pearson lemma. Interestingly, likelihood
ratios also play a central role in optimal post-hoc inference under such generalizations of
power. For example, when maximizing EP1 log 1/p, the optimal choice is the likelihood
ratio 1/p = dP1/dP0, for a simple null P0. This choice has the additional benefit that their
reciprocal can simultaneously be interpreted as a post-hoc p-value under the alternative
[Koning, 2024].

For these reasons, we develop likelihood ratio statistics for group invariance. Surpris-
ingly, this is possible, even though group invariance is a highly composite null hypothe-
sis. To accomplish this, we reduce the hypothesis to simple null hypotheses on certain
non-overlapping maximally invariant subsets (orbits) of the sample space, and treat these
separately. We show that such likelihood ratio statistics are easy to construct, by simply
choosing T equal to the density under the alternative.

We find these likelihood ratios come in three distinct flavors, that depend on the space
on which the alternative is specified. The first flavor relies on specifying an alternative on
the sample space, and is inspired by an old proof strategy of Lehmann and Stein [1949]
for Neyman-Pearson optimality in traditional inference. For the second flavor, we instead
specify an alternative on the invariant subsets (orbits). As a side-contribution, we explain
how we can use this second flavor to generalize the optimality result of Lehmann and Stein
[1949] to certain composite alternatives. The third flavor relies on specifying an alternative
on the group itself. For this flavor, we use an inversion kernel (see Ch. 7 in Kallenberg
2017), which was recently introduced in the context of group invariance testing by Chiu
and Bloem-Reddy [2023]. A toy example of these different types of likelihood ratios can be
found in Appendix B.

We illustrate these likelihood ratio statistics to testing invariance on Rd, d ≥ 1, under
an arbitrary group of orthonormal matrices, against a simple alternative that is a location
shift under normality. For the special case of spherical invariance, this is connected to an
example from Lehmann and Stein [1949] regarding the optimality of the t-test, which we
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slightly generalize. We also consider sign-symmetry, which produces a post-hoc p-value
that can be viewed as an admissible version of a post-hoc p-value based on de la Peña
[1999]. Furthermore, we consider exchangeability where we find that the softmax function
is nested as a special case of our likelihood ratio statistic.

We empirically illustrate our methods in two simulation experiments. The first exper-
iment mimics a standard case-control experiment under random treatment allocation. In
the second experiment we compare our sign-symmetry p-process to the one based on de la
Peña [1999], and find that it is dramatically more powerful.

1.3 Related literature

At first glance, our work may seem intimately related to the work of Pérez-Ortiz et al.
[2022]. However, they consider invariance of collections of distributions (both the null and
the alternative), whereas we consider invariance of distributions themselves. Specifically,
a collection of distributions P is said to be invariant under a transformation g if for any
P ∈ P , its transformation gP by g is also in P . In contrast, invariance of a distribution
P means that its transformation gP is equal to P itself. Intuitively, their work can be
interpreted as testing in the presence of an invariant model, whereas we consider testing
the invariance of the data generating process.

As our null hypothesis consists exclusively of invariant distributions it is technically
also invariant, so that one may believe their results may still apply under appropriate
assumptions on the alternative. However, this invariance is of a very strong type which
excludes the transitivity that Pérez-Ortiz et al. [2022] require. In some sense, the strong
type of invariance we consider is the complete opposite of transitivity.

Vovk [2023b] independently derives a permutation test for e-values, or equivalently,
post-hoc valid p-values. However, his work only considers a toy example which tests ex-
changeability of binary data for a single specific alternative hypothesis. Our work gener-
alizes this to invariance under a compact group of locally compact Hausdorff valued data
against arbitrary alternatives and using arbitrary test statistics.

A closely related work is that of Ramdas et al. [2022b], who consider testing sequential
exchangeability. However, they focus primarily on the case where X = X1, X2, . . . is a
binary or d-ary sequence. Their methods rely on taking an infimum over multiple non-
negative supermartingales, which itself is no longer a supermartingale, but is still an e-
process. It is not clear how their methods can be extended beyond d-ary data, nor to
other forms of group invariance. Moreover, Vovk [2023a] argues that this approach does
not generalize beyond “toy situations”.

There is more related work by Vovk [2021], which considers sequential exchangeability.
He exploits the fact that the sequential ranks are independent from the past ranks under
sequential exchangeability. He then converts these ranks into independent post-hoc p-
values, which are multiplied together to construct a post-hoc p-process. Lardy and Pérez-
Ortiz [2024] generalize the approach of Vovk [2021] to sequential group invariance. In
Section 4.2 we propose a more general framework and explain how their approaches are
nested in ours. The key improvement is that our approach does not require the use of
ranks, and more abstractly does not require the test statistic to have the same distribution
on every orbit.

A link between the softmax function and post-hoc p-values for exchangeability was also
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made in unpublished early manuscripts of Wang and Ramdas [2022] and Ignatiadis et al.
[2023], which they call a ‘soft-rank’ e-value. In Remark 4, we explore the connection to our
softmax likelihood ratio statistic, and find that their soft-rank e-value can be interpreted
as a more variable version.

1.4 Notation and underlying assumptions

Throughout the paper, whenever we define a sample space we consider it to be second
countable locally compact Hausdorff, equipped with a Borel σ-algebra. Moreover, the
groups we consider are second countable compact Hausdorff topological groups, which we
will just refer to as ‘compact groups’ that act continuously on the associated sample space.

To avoid ambiguity, we sometimes write expectations E with a superscript and/or sub-
script EP

X to make explicit the measure over which is being integrated (P), and the random
variables over which the integration takes place (X). We use similar subscripts for proba-
bilities.

2 Valid and post-hoc valid group invariance tests

2.1 Group invariance

Let G be a compact group, acting continuously on some sample space Y . Examples of
compact groups acting on Rn include rotations, and permutations and sign-flips that act
on the canonical basis vectors. Such groups can be represented by collections of orthonormal
matrices that are closed under matrix multiplication and inverses, and act on Rn through
matrix multiplication.

The ‘orbit’ of y ∈ Y , denoted by Oy = {z ∈ Y | z = Gy, ∃G ∈ G}, can be interpreted
as the set of all points that can be reached when starting from y and applying an element
of the group to it. We assign a single point [y] on each orbit as the ‘orbit representative’
of Oy. That is, [y] = Gy for some G ∈ G. We use [Y ] to denote the collection of orbit
representatives, and Y/G for the collection of all orbits, and we call the function [·] : Y →
[Y ] that maps y to its orbit representative [y] an orbit selector.

We say that a random variable Y on Y is G invariant if its law remains unchanged after
a transformation by any element of G.

Definition 1 (Invariance). A random variable Y is G invariant if Y
d
= GY, for all G ∈ G.

Alternatively, we can say that the conditional distribution of Y given Y ∈ O is uniform
on O, for (almost) every orbit O. That is, the law of a G invariant random variable is some
mixture of uniform distributions on orbits.

Equivalently, we can say Y
d
= GY , where G is uniform (Haar) distributed on G inde-

pendently from Y . Moreover, it is equivalent to Y
d
= G[Y ], provided that the orbit selector

is measurable. This means that an invariant random variable can be decomposed or de-
convolved into a uniform random variable on the group multiplied (using the group action)
by a random variable that is distributed over orbit representatives (see e.g. Eaton 1989).

Sometimes, we only look at the data through a statistic S, that maps to some space
H. Using such a statistic, we can define the following weaker notion of invariance. The
standard notion of invariance is recovered if S is invertible.
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Definition 2 (Invariance through a statistic). A random variable Y is G invariant through

S if conditional on Y ∈ O, S(GY )
d
= S(Y ), where G is uniform on G independently from

Y , for all O ∈ Y/G.

We illustrate the difference between invariance and conditional invariance in two exam-
ples. In Example 1, the random variable is not exchangeable, but exchangeable through a
statistic. In Example 2, the random variable is exchangeable.

Example 1 (Invariant through a statistic). Suppose we have two bags. We fill one with
the numbers 1 and 2, and the other with numbers 3 and 4. We now first pick a bag with
equal probability, and then sequentially draw both numbers from the bag in an exchangeable
manner. Next, we take the other bag and do the same, after which we arrange the numbers
in the order they were drawn.

While the choice of bag is exchangeable, and the order of the numbers drawn from each
bag is exchangeable, the resulting set of numbers is not exchangeable. For example, the order
1423 cannot occur, since 1 and 4 are not in the same bag and can therefore never be drawn
as the first two numbers. For this same reason, it is also not exchangeable through the
statistic that returns the first two elements. On the other hand, the order is exchangeable
through the statistic that returns the value of the first drawn number, as the probability for
any number to be drawn first is equal.

Abstractly speaking, our group here is the permutation subgroup that permutes within the
bags and permutes the two bags themselves: the permutations that permute numbers between
bags are not in this subgroup. There is a single orbit: {1234, 2134, 1243, 2143, 3412, 3421, 4312, 4321},
and our process draws uniformly from this orbit.

Example 2 (Unconditionally invariant through a statistic). We now consider a different
thought experiment, where we stop after the first bag. Suppose we again have two bags, and
again fill one with the numbers 1 and 2, and the other with numbers 3 and 4. We first
choose a single bag with an arbitrary probability distribution, and put the other bag away.
Then, we sequentially draw the two numbers exchangeably from this bag and arrange them
in the order they were drawn.

Suppose we consider a statistic S that converts the numbers into their ranks: S(12) = 12,
S(21) = 21, S(34) = 12, S(43) = 21. The resulting ranks are certainly exchangeable. More
interestingly, the distribution of the ranks is the same for every bag. As a consequence, the
ranks are not just uniform conditionally on every orbit, but also uniform unconditionally.

Abstractly speaking, our sample space is {12, 21, 34, 43} and our group is the permutation
group on 2 units. The orbits are {12, 21} and {34, 43}, so that the selection of the bag can
be viewed as the selection of the orbit.

2.2 Orbit Independence

In Example 2, the statistic is chosen in such a way that the random variable is identically
distributed on every orbit. That is, the distribution of T (Y ) is independent from the orbit.

More examples of statistics on Rn that have the same distribution for every orbit are
ranks for exchangeability, signs for sign-symmetry, and a normalized vector Y/∥Y ∥2 for
spherical invariance (assuming no ties in the ranks, zeroes for the signs, and excluding
the zero-vector for the spherical invariance). Functions of these statistics give rise to rank
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tests, sign tests and the t-test (see Example 3). These particular statistics are also maximal
choices in some sense: the group actions commute with these statistics. For example,
GY/∥GY ∥2 = G(Y/∥Y ∥2) for any orthonormal matrix G.

A general method to construct statistics with the same distribution on every orbit is
by using an inversion kernel γ : Y → G [Kallenberg, 2017], which maps data to an element
of the group. This effectively makes our sample space equal to the group Y = G, and since
a group acts transitively on itself there is just one orbit to consider. In turn, this means
that the distribution of γ(Y ) is necessarily the same on every orbit, since there is only one.
More detail on such inversion kernels is given in Section 5.3. The previous examples are
closely related to inversion kernels, as the ranks (barring ties) and signs (barring zeroes)
are in bijective correspondence with the groups of permutations and sign-flips. Moreover,
the normalized vector Y/∥Y ∥2 can be formulated as a (non-bijective) function γ(Y )ι of an
inversion kernel for the orthogonal group, where ι is an arbitrary unit vector.

2.3 Traditional test for group invariance

In this section, we consider the traditional Type I error control. It is straightforward to
generalize the permutation test in Section 1 to a so-called group invariance test that also
controls the Type I error exactly. Such a group invariance test tests whether a random
variable is invariant under a compact group, which specializes to exchangeability for the
permutation group.

Formulated in terms of orbits, we wish to test whether the conditional distribution of
the random variable is uniform on every orbit. The way a group invariance test works is
to test whether the random variable is uniform on the orbit in which it landed; if we can
reject this, we can reject that it is uniform on every orbit. Moreover, as we only observe
data on one orbit, this is also all we can do.

Given any test statistic T : Y → R, designed to be large under the alternative, an
exactly valid p-value can be defined as

p(Y ) = PG

(
T (GY ) > T (Y )

)
+ uPG

(
T (GY ) = T (Y )

)
, (3)

where G ∼ Unif(G) is uniformly (Haar) distributed on G, which is well-defined as G is
compact, and u is uniform on [0, 1]. Comparing this p-value to a pre-specified significance
level α ∈ (0, 1] yields a Type I valid test. This test is equivalent to rejecting HG

0 if

T (Y ) > qGα [T (GY )], (4)

and with some appropriate probability in case of equality, where qGα [T (GY )] denotes the α
upper-quantile of the distribution of T (GY ) where Y is considered fixed.

If Y is G invariant, it is well-known that this test and its associated p-value are valid
for any test statistic T . In fact, we show this also holds if Y is G invariant through T , as
in Definition 2. To the best of our knowledge, this aspect is novel. The t-test, which is
an example of a group invariance test, is given in Example 3. Example 4 covers the most
basic form of conformal inference [Shafer and Vovk, 2008].

Theorem 1. If Y is G invariant through T , then p(Y ) is uniform on [0, 1].
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Example 3 (t-test). Suppose Y = Rn and T is defined as T (y) = ι′y/∥y∥2, where ι is some
unit vector. If Y is spherically invariant through T , then T (Y ) is Beta(n−1

2
, n−1

2
)-distributed

on [−1, 1] (see e.g. Koning and Hemerik [2023] for a proof) conditional on every orbit, and
so unconditionally as well. Equivalently,

√
n− 1T (Y )/

√
1− T (Y )2 is t-distributed. The

resulting test for spherical invariance is also known as the t-test.

Example 4 (Conformal inference). Suppose Y = Rn+1 and G is the group of permutations
acting on the canonical basis of Rn+1. Let Y n+1 be an exchangeable random variable, and
let T : Y → R be a test statistic that only depends on the final element Yn+1. Suppose
we only observe Y n and want to test whether the unobserved Yn+1 could be equal to some
hypothesized value y∗. We can then use the permutation test based on T ((Y n, y∗)), which
is also known as conformal inference. Repeating this test for all y∗ ∈ Y and collecting
the values of y∗ for which we do not reject yields the conformal prediction set, which is a
confidence set for Yn+1 on R.

2.4 Post-hoc group invariance tests

In this section, we derive tests for group invariance that are not just valid, but post-hoc
valid, as defined in (2). As with the traditional Type I valid test for group invariance treated
in Section 2.3, we still have great freedom in our selection of the test statistic for post-hoc
testing. In particular, let T : Y → R+ be some arbitrary non-negative test statistic that
is appropriately integrable on every orbit O ∈ Y/G. Namely 0 < EGT (Gy) < ∞ for every
y ∈ Y . Based on this test statistic, we consider as p-value

pT (Y ) =
EGT (GY )

T (Y )
, (5)

where G ∼ Unif(G). The interpretation is that pT (Y ) is small if T (Y ) is large compared
to its average value on the orbit of Y . Moreover, as we shall show in Section 5, pT can be
interpreted as a likelihood ratio for G invariance against a density proportional to T .

In Theorem 2 we not only show that these p-values are exactly post-hoc valid, but also
the converse: any exactly post-hoc p-value can be written as in (5). The result is not
obvious, as G invariance is a large composite hypothesis, and the numerator in (5) only
takes the expectation over the group. Its proof can be found in Appendix D.2.

Theorem 2. pT (Y ) is exactly post-hoc valid if Y is G invariant through T . Conversely,
any exact post-hoc p-value for G invariance through a statistic is of this form for some T .

By Theorem 2, we can use any appropriately integrable test statistic T to construct
an exact post-hoc p-value for G invariance. In fact, as a non-exact post-hoc p-values is a
statistic, we can plug it in for T to transform it into an exact variant. We exploit this
trick in Section 6.6. Moreover, as this class contains all exact post-hoc p-values, we are not
‘missing’ any important post-hoc p-values.

Example 5 (Is there a post-hoc t-test?). Continuing from Example 3, it is unfortunately
not clear how to generalize the t-test to a post-hoc test: there are many possible candidates.
For example, we could derive one using the statistic T (y) = exp{ι′y/∥y∥2}, but any non-
negative strictly increasing function of ι′y/∥y∥2 could reasonably qualify. The key underlying
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problem is that the normalization in (5) is only invariant to scalar-transformations of the
statistic, and not invariant to strictly increasing transformations of the statistic like the
quantile function in traditional tests such as (4).

In Section 6, we offer an alternative generalization of the t-test, by re-interpreting the
t-test as a likelihood ratio test for spherical invariance against a Gaussian alternative.
Another potential generalization is offered by Pérez-Ortiz et al. [2022], who start with a
Gaussian model and integrate out the variance.

Example 6 (Post-hoc conformal inference). Continuing the set-up from Example 4, if T is
a non-negative test statistic that only depends on the final element, then EPT (P (Y n, y∗))/T ((Y n, y∗))
is a post-hoc p-value for conformal inference.

2.5 Obtaining the normalization constant

The main computational challenge when using post-hoc p-values for group invariance is the
computation of the normalization constant EGT (GY ). As the group G is often large, simply
averaging T (GY ) over all G may not be feasible. However, the normalization constant can
be estimated.

We borrow some ideas from traditional group invariance tests, where similar issues
occur. The simplest idea is to use a Monte Carlo approach by replacing G with a random

variable G
M

that is uniformly distributed on a set of i.i.d. draws {G(1)
, G

(2)
, . . . , G

(M)}
of G. Alternatively, we can replace G with H that is uniformly distributed on a compact
subgroup of G [Chung and Fraser, 1958]. As invariance under G implies invariance under
every subgroup, this still guarantees the resulting p-value is post-hoc valid even if the
subgroup is small, which is not clear for the Monte Carlo approach if the number of samples
is small. Such a subgroup may also be easier to work with than G itself. Moreover, Koning
and Hemerik [2023] note that we can actually strategically select the subgroup based on
the test statistic and alternative, and select a subgroup that yields high power. Koning
[2023] observes that this can even yield testing methods that are more powerful than if we
use the entire group G.

Note that in the traditional group invariance test, the goal is to estimate the α-upper
quantile the distribution of T (Y ) given Y ∈ OY , as in (4). The normalization constant
is the mean of this same distribution, which we expect to be much easier to estimate in
practice. Based on simulation results, it seems that roughly 100 draws is usually sufficient.
Moreover, in Appendix C we discuss that we can sometimes very efficiently approximate
the normalization constant analytically. In addition, if T (Y ) is orbit independent if Y is Y
invariant, then the distribution can even be pre-computed, at is it not necessary to know
the orbit OY of Y .

3 Post-hoc anytime valid group invariance testing

3.1 Sequential invariance

We start with describing the sample space. We embed the entire sequential setting in a
latent sample space X . In particular, we assume we have a nested sequence of subsets
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(X n)n≥1 of X : X n ⊆ X n+1, which are tied together through a sequence of continuous
projection maps (projXn)n≥1, projXn : X → X n.

To describe the sequence of data we observe, we assume there is some latent random
variable X on X , of which we sequentially observe an increasingly rich sequence (Xn)n≥1

of projections Xn = projXn(X), n ≥ 1.1 This construction ensures that this sequence of
random variables induces a filtration (σ(Xn))n≥1.

Next, we consider the group structure. Our sequential group structure is embedded into
a compact group G that acts continuously on X . In particular, we consider a sequence of
subgroups (Gn)n≥1 of G. We assume the projection map induces a group action of Gn on X n

through the group action on X : GXn = projXn(GX), for all G ∈ Gn.
2 This assumptions

ensures we can use the groups (Gn)n≥1 and observations (Xn)n≥1 without reference to the
latent G, X and X.

We are now ready to define our notion of sequential invariance.

Definition 3 (Sequential invariance). (Xn)n≥1 is (Gn)n≥1 invariant if Xn is Gn invariant
for all n.

Equivalently, we can define sequential invariance as the conditional distribution of Xn

being uniform on every orbit O ∈ X n/Gn, for each n. As Xn only lands in a single orbit
OXn , we are effectively testing whether each element of (Xn)n≥1 is uniform on the orbit it
lands in.

Adding a sequence of statistics (Sn)n≥1 we can analogously define sequential invariance
through this sequence of statistics.

Example 7 (i.i.d. invariant random variables). Perhaps the simplest setting is when we
observe i.i.d. random variables Y1, Y2, . . . each in some sample space Y. Suppose we are
interested in testing whether their shared distribution is invariant under a group G†. To fit
this into our framework, we can simply choose, Xn = Y1, . . . , Yn, X n = (Y)n and Gn = (G†)

n

for all n. This problem is studied by Chiu and Bloem-Reddy [2023], in a non-sequential
setting.

Example 8 (Sequential exchangeability and i.i.d.). Suppose that Xn = Y1, . . . , Yn for each
n. Let us choose Gn = Pn as the group of permutations on n elements. If (Xn)n≥1 is
invariant under (Pn)n≥1, then we say that (Xn)n≥1 is sequentially exchangeable. This is
often also called exchangeability, but we use sequential exchangeability to distinguish it from
other forms of exchangeability. With regards to the Type I or post-hoc error Type I, testing
sequential exchangeability is equivalent to testing whether the sequence is i.i.d.. This is
because the convex hulls of the distributions of i.i.d. and exchangeable sequences coincide
by de Finetti’s Theorem, and these errors are closed under convex combinations [Vovk,
2021, Ramdas et al., 2022b].

Example 9 (Within-batch exchangeability). Suppose we sequentially observe potentially
unequally sized batches of data Y1, Y2, . . . , where each Yi is exchangeable, i = 1, 2 . . . . We
can choose Gn = P1 ×P2 × · · · ×Pn, where Pi is the group of permutations acting on the

1This latent random variable is introduced for ease of exposition and it needs not be modelled or ‘exist’.
2This is well-defined if and only if projXn(x1) = projXn(x2) =⇒ projXn(Gx1) = projXn(Gx2) for all

G ∈ Gn and x1, x2 ∈ X (see e.g. Theorem 2.4 in Eaton 1989).
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batch Yi. Defining X
n = Y1, . . . Yn, within-batch exchangeability can be viewed as invariance

of (Xn)n≥1 under this group (Gn)n≥1.
If we view the elements of a batch as individual observations, then within-batch ex-

changeability is weaker than sequential exchangeability of the individual observations: we
exclude permutations that swap observations across batches. Specifically, the groups we
consider here are subgroups of the permutations on the set of the individual observations.

3.2 Post-hoc anytime valid p-process for group invariance

In this section, we construct an anytime valid p-process based on martingales. Recall
that in the non-sequential setting, testing invariance comes down to testing whether the
random variable has a conditional distribution that is uniform on its orbit. In the sequential
setup, we must additionally adapt to the filtration (σ(Xn))n≥1. Specifically, when using a
martingale we are effectively testing whether Xn is uniform on OXn given Xn−1 and OXn at
each step n. This means that we are effectively testing under the filtration σ(X1, OX2) ⊆
σ(X2, OX3) ⊆ · · · .

To adapt to this effective filtration, we characterize the conditional distribution of Xn

given Xn−1 and OXn in Proposition 1. A key ingredient is the subgroup that stabilizes the
past data

Kn(X
n−1) = {G ∈ Gn : GXn−1 = Xn−1},

for n ≥ 2 and K1 = G1. In Appendix A, we show that this is indeed a compact subgroup
of Gn, and include a proof of a more general result.

Proposition 1. Suppose that Xn = xn. LetKn be uniform on Kn(x
n−1), xn−1 = projXn−1(xn).

Then, conditional distribution of Xn given Xn−1 and OXn is equal to the law of Knx
n. That

is, the distribution is uniform on the orbit of xn under Kn(x
n−1).

Having defined these subgroups, we can derive a post-hoc p-process. For each n, let
Tn : X n → R be a non-negative test statistic that is designed to be ‘large’ under the
alternative. This sequence of test statistics (Tn)n≥1 is allowed to depend on σ(Xn−1, OXn).

We introduce the following p-process for group invariance, with respect to the filtration
(σ(Xn))n≥1:

pn(X
n) =

n∏
i=1

EKi
Ti(KiX

i)

Ti(X i)
.

Theorem 3 shows that this is indeed an exact post-hoc p-process. This p-process can be
interpreted as a product of p-values for Kn(X

n−1) invariance. That is, we are effectively
testing whether (Xn)n≥1 is (Kn(X

n−1))n≥1 invariant through (Tn)n≥1.

Theorem 3. (pn)n≥1 is an exact post-hoc p-process for (Gn)n≥1 invariance through (Tn)n≥1

with respect to the filtration (σ(Xn))n≥1.

Example 10 (Sequential sphericity). Suppose that X n = Rn so that Xn is a random n-
vector for all n. Let On be the collection of n×n orthonormal matrices. Then, Xn is said to
be spherically distributed if it is invariant under On. Let us consider sequential sphericity,
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where (Xn)n≥1 is invariant under matrix multiplication by the orthonormal matrices in
(On)n≥1.

In this example, the orbit OXn is the hypersphere in n dimensions that contains Xn.
As a consequence, the effective filtration reveals the previous observations Xn−1 and the
length of Xn. Together, these determine Xn up to the sign of its final element. As a result,
Kn contains two elements: diag(1, . . . , 1, 1) and diag(1, . . . , 1,−1), which flip the sign of
the final element. This is equivalent to testing whether Xn is sequentially invariant under
sign-flips.

Example 11 (Post-hoc p-process for sequential exchangeability). Continuing from Exam-
ple 8, suppose we sequentially observe Xn = Y1, Y2, . . . , Yn that are exchangeable.

Here, it turns out that Xn is degenerate conditional on σ(Xn−1, OXn). In particular,
Xn−1 = Y1, Y2, . . . , Yn−1 and OXn equals the multiset {Y1, . . . Yn}. Hence, Y n is simply
the value in OXn that is not accounted for in Xn−1. As a consequence, the conditional
distribution Xn given Xn−1 and OXn is degenerate. Assuming the realizations are distinct,
this means Kn only contains the identity element for each n.

A consequence is that it is impossible to sequentially test sequential exchangeability with
a (super)martingale under the filtration (σ(Xn))n≥1, as previously observed by Vovk [2021]
and Ramdas et al. [2022a].

Example 12 (Post-hoc p-process for within-batch exchangeability). Continuing from Ex-
ample 9, let us again consider Xn = Y1, . . . Yn, where each Yi is an exchangeable batch
of data. Let us assume the realizations are distinct in each batch. Then, Kn(X

n−1) =
{I1} × {I2} × · · · × {In−1} × Pn, where I i denotes the identity permutation acting on
the ith batch. That is, the conditional distribution of Xn is uniform on the final batch.
Interestingly, the stabilizer Kn(X

n−1) does not depend on Xn−1,
As discussed in Example 9, sequential exchangeability implies within-batch exchange-

ability. This means rejecting within-batch exchangeability also rejects sequential exchange-
ability. As a result, we can construct a sequential test for sequential exchangeability by
merging observations into batches. This of course impoverishes the filtration, since we only
look at the data after a batch has arrived. The size of a batch is allowed to depend on the
pre-batch data. Generalizing this reasoning is the topic of Section 4.

4 Modifying the filtration

In the previous section, we considered sequential testing where the number of observations
could depend on the filtration (σ(Xn))n≥1 which reveals the full data Xn at each step n.
While this allows for the number of observations to depend arbitrarily on the data, this
can come at a great cost of statistical power, as highlighted in Example 11. This is because
we are effectively using the filtration (σ(Xn, OXn+1))n≥1, since testing invariance is testing
whether Xn is uniform on OXn , conditional on OXn . This effective filtration can be so rich
that it reveals or almost reveals the next observation Xn+1.

In many practical situations, we may not look at all the data to decide the number of
observations, but only consider certain statistics of the data. Such statistics produce less
informative filtrations. The topic of this section will be to sequentially test group invariance
under such impoverished filtrations.
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We treat two approaches, where the second approach generalizes the first. In the first
approach, we transform Xn through a statistic Hn : X n → Hn into Hn(Xn), and induce
a group action on the codomain Hn. The problem then reduces to testing the induced
invariance of Hn(X

n). Can then directly apply the methodology in Section 3.2 to this
reduced problem. The second approach relies on invariance through a statistic, as specified
in Definition 2. This second approach nests the methodology of Vovk [2021] and its recent
generalizations by Lardy and Pérez-Ortiz [2024]. The key improvement is that our approach
does not require to go through ranks, and more abstractly does not require the distribution
of the statistic to be the same on every orbit.

Remark 1. Ramdas et al. [2022b] offer an alternative approach that uses a post-hoc p-
process which is not the reciprocal of a (super)martingale, in the context of binary and
d-ary data. Unfortunately, it is not clear how to generalize their approach in a useful
manner. Moreover, Vovk [2023a] argues that for sequential exchangeability this approach
only works for “toy situations” such as binary data. In addition, post-hoc p-processes that
do not rely on martingales are generally less flexible [Ramdas et al., 2022b]. A consequence
is that we cannot freely change the test statistic after every observation, based on the past
data.

4.1 First approach: invariance of a statistic

On an abstract level, we reduce the problem from testing Gn invariance of Xn, to testing
Fn invariance of a statistic Hn(X

n), where Fn is a subgroup of Gn. This allows us to
disregard the original data Xn and group Gn, and behave as if we only observe the statistic
Hn(X

n) and subgroup Fn. We can then construct a p-process for this reduced problem
as in Section 3.2. As (Gn)n≥1 of (Xn)n≥1 implies (Fn)n≥1 invariance of (Hn(X

n))n≥1, the
resulting p-process is post-hoc anytime valid for the original problem.

Specifically, suppose we have another spaceH, and a nested sequence of subsets (Hn)n≥1.
Moreover, assume we have a sequence of continuous projection maps projHn : H → Hn.
We assume that our statistics map into these subsets Hn : X n → Hn. Moreover, we
assume that we have a compact subgroup Fn of Gn such that Hn induces a group action
on Hn through the group action of Fn on X n: Hn(FnX

n) = Fn(Hn(X
n)). This ensures Fn

partitions Hn into orbits Hn/Fn. Under these assumptions, the problem reduces to testing
Fn invariance of (Hn(X

n))n≥1 under the reduced filtration (σ(Hn(X
n)))n≥1. The effective

filtration becomes (σ(Hn(X
n), OHn(Xn)))n≥1 where OHn(Xn) is the orbit of Hn(X

n) under
Fn in Hn.

In Example 13, we provide an illustration of this approach. In particular, we show how
we can test sequential exchangeability by reducing the filtration in a way that yields the
within-batch exchangeability approach discussed in Example 9 and Example 12.

Example 13. Suppose Xn = Y1, . . . , Yn, and that (Xn)n≥1 is sequentially exchangeable.
We now consider a statistic Hn that effectively censors (Xn)n≥1 so that we only observe it
in ‘batches’. Let b1, b2, . . . denote the observation numbers at which a batch is completed,
and Bn the number of completed batches at time n. Then, we define the statistic to equal
the most recently arrived batch of data Hn(X

n) = Xbi and similarly define the reduced
sample space Hn = X bi, for all bi ≤ n < bi+1, i < Bn. To induce a group action on Hn, we
pass from the group of all permutations Pn to its subgroup Fn = P1 ×P2 × · · · ×PBn × I,
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where Pi permutes the observations in the ith batch of data, and I acts as the identity on
the yet to be completed batch. It remains to verify that this indeed induces a group action.
For this, we need to check whether Hn(x

n
1 ) = Hn(x

n
2 ) implies Hn(Fxn

1 ) = Hn(Fxn
2 ) for

all F ∈ Fn and xn
1 , x

n
2 ∈ X n. This is equivalent to checking whether xbi

1 = xbi
2 implies

Hn(Fxn
1 ) = Hn(Fxn

2 ), where bi ≤ n < bi+1, i < Bn. This is indeed satisfied, as F only acts
on the already completed batches.

4.2 Second approach: invariance through a statistic

We now generalize the approach in Section 4.1. In particular, we will not induce a group
action on the codomain of a statistic. Instead, we rely on invariance through a statistic, as
introduced in Definition 2. This yields our most general construction of a post-hoc valid
p-process.

In particular, the strategy is to select statistics (Sn)n≥1 and compact subgroups (Fn)n≥1

so that Xn is Fn invariant through Sn, conditional on Sn−1(X
n−1). This can happen even

though Xn is not Fn invariant conditional on Sn−1(X
n−1).

Under this assumption, we can construct a post-hoc p-process for (Gn≥1) with respect
to the filtration (σ(Sn(X

n)))n≥1:

pn(X
n) =

n∏
i=1

EF i
Ti(Si(F iX

i))

Ti(Si(X i))
, (6)

where Ti : X i → R+ may depend on the filtration, i ≤ n. Theorem 4 shows this is indeed a
post-hoc valid p-process, and even exactly so. A proof, as well as other proofs of the results
here can be found in the Appendix.

Theorem 4. Suppose Xn is Fn invariant through Sn, conditional on Sn−1(X
n−1) for all

n. Then, (pn(X
n))n≥1 as in (6) is an exact post-hoc valid p-process.

In Proposition 2, we provide sufficient conditions so that Sn(X
n) is independent from

Sn−1(X
n−1). Under these conditions, we can drop the conditioning on Sn−1(X

n−1) in
Theorem 4 and we need only check whether Xn is Fn invariant through Sn for each n.
Here, the key condition is that Sn is Fn−1 invariant. Indeed, the assumption that Fn−1 is
a subgroup of Fn is only used to ensure the group action of Fn−1 on X n is well-defined.

Proposition 2. Suppose Fn−1 is a subgroup of Fn, and that Sn is a Fn−1 invariant func-
tion. Then Sn(X

n) is independent of Xn−1.

Similar assumptions as in Proposition 2 are made by Lardy and Pérez-Ortiz [2024], who
generalize the work of Vovk [2021]. They make two additional assumptions: Fn = Gn for all
n, and Sn is a certain smoothed-rank-type statistic. Together, their additional assumptions
implicitly ensure that Sn(X

n) has the same distribution on every orbit of X n under Gn.
That is, the distribution of Sn(X

n) is orbit independent, as in Section 2.2. This implies we
need not condition on the orbit of Xn under Fn to construct the p-process.

In Theorem 5, we provide conditions that more tightly nest the assumptions of Vovk
[2021] and Lardy and Pérez-Ortiz [2024]. The main result of Lardy and Pérez-Ortiz [2024]
is recovered by choosing Sn as a specific smoothed-rank-type statistic, which ensures the
fourth condition holds. The approach of Vovk [2021] is recovered by additionally reducing
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to sequential exchangeability. In examples 14 and 15, we detail how their methodology fits
into Theorem 5.

Theorem 5. Suppose the following conditions hold:

• Fn−1 is a subgroup of Fn,

• Xn is Fn invariant through Sn,

• Sn is a Fn−1 invariant function,

• Sn(X
n) has the same distribution on every orbit of X n under Fn.

Then, the conditional distribution of Sn(X
n) given σ(Sn−1(X

n−1), OXn) is equal to the
distribution of Sn(F nX

n), where F n ∼ Unif(Fn).

Remark 2. It is also possible to add external randomization into the statistic Sn, which is
used by Lardy and Pérez-Ortiz [2024]. This can be used, for example, to break ties or get
rid of other discretenesses in order to ensure Sn(X

n) has the same distribution on every
orbit. We use this in Example 15.

Example 14 (Sequential ranks). In this example, we show how the methodology of Vovk
[2021] for sequential exchangeability using ranks fits into our framework.

Suppose we are in the sequential exchangeability setting as in Example 8 and 11. That
is, we have data Xn = Y1, Y2, . . . , Yn, and Xn is exchangeable for each n. Suppose that
we additionally assume that Y1, Y2, . . . can be deterministically ordered. This holds, for
example, if they are real-valued and have no ties. We indeed have that Gn−1 is a subgroup
of Gn here, as the permutations on n − 1 elements are included in the permutations on n
elements. Moreover, Xn is Gn invariant, so that it is Gn invariant through any statistic.

We now consider the sequential rank statistic Sn = lastRankn : X n → {1, . . . , n}. For
a given input Xn, it returns the rank of its nth element Yn among the preceding elements
Y1, . . . , Yn−1. For example, if Xn = 7, 3, 1, 4, then lastRankn(X

n) = 3, as 4 is the 3rd
smallest number.

It remains to verify the final two conditions of Theorem 5. First, as Xn is exchange-
able, the rank of its final element is uniformly distributed on {1, . . . , n}, regardless of the
distribution of Xn. Next, Sn is indeed a Gn−1 invariant function: permuting its first n− 1
elements has no impact on the rank of the final element.

This means we can apply Theorem 5. As a consequence, for any test statistic Tn :
{1, . . . , n} → R+, we have that a post-hoc anytime valid p-process for sequential exchange-
ability is given by

pn(X
n) =

n∏
i=1

EP i
Ti(lastRanki(P iX

i))/Ti(lastRanki(X
i)),

where P n is uniform on the group of permutations on n elements.

Example 15 (Sequential sphericity). Lardy and Pérez-Ortiz [2024] generalize Example 14
to other types of invariance. In this example, we show how their methodology fits into our
framework, by illustrating it on sequential sphericity as in Example 10. As will be shown
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below, the key difference is that our framework does not necessitate the use of (smoothed)
ranks.

We sequentially observe Y1, Y2, . . . , and assume that Xn = (Y1, . . . Yn)
′ is a spherical

random n-vector for each n. Lardy and Pérez-Ortiz [2024] consider the ‘smoothed rank’
statistic Rn : Xn 7→ PGn

[mn(e
′
nGnX

n) > mn(e
′
nX

n)] + uPGn
[mn(e

′
nGnX

n) = mn(e
′
nX

n)],
where mn is some function that can depend on the previous data, u ∼ Unif[0, 1] and en is
the nth canonical basis vector.

We proceed by checking the conditions of Theorem 5. Here, the group Gn is the orthog-
onal group in dimension n, which contains the orthogonal group in dimension n − 1 as a
subgroup. Next, Xn is Gn invariant, so it is indeed Gn invariant through Rn. Furthermore,
e′nG = en for all G ∈ Gn−1 as Gn−1 only acts on the first (n− 1) elements. As a result, Rn

is Gn−1 invariant. Finally, as Xn is Gn invariant, Rn(Xn) ∼ Unif[0, 1] regardless of the
orbit of Xn, as shown in Theorem 1.

Hence, all the conditions for Theorem 5 are satisfied with the statistics (Rn)n≥1 and
groups (Gn)n≥1. Lardy and Pérez-Ortiz [2024] then propose the post-hoc p-process

p∗n(X
n) =

n∏
i=1

EuT
∗
i (u)/T

∗
i (Ri(X

i)),

where T ∗
i : [0, 1] → R+ can depend on the past data in the filtration, u ∼ Unif[0, 1] and

EuT
∗
i (u) < ∞. The u appears, since u

d
= Rn(GnX

n) for all n. Indeed, EuT
∗
i (u) =

EGn
T ∗
i (GnX

n).
To show that our methodology is more flexible, we now construct a post-hoc p-process

based on another statistic. Specifically, let us consider the statistic Sn : X n → [−1, 1],
defined as Sn(X

n) = e′nX
n/∥Xn∥2, where en is the nth canonical basis vector. Is is easy to

verify that Hn(X
n) = S1(X

1), . . . , Sn(X
n) induces a filtration, so we proceed with checking

the conditions of Theorem 5.
The first two conditions of Theorem 5 are easily verified. It remains to check the final

two conditions. First, e′nG = en for all G ∈ Gn−1 and ∥GXn∥2 = ∥Xn∥2 for all G ∈ Gn ⊇
Gn−1. As a result, Sn(GXn) = e′nGXn/∥GXn∥2 = e′nX

n/∥Xn∥2, so Sn is indeed Gn−1

invariant. Second, as Xn is Gn invariant, Xn/∥Xn∥2 is uniform on the unit hypersphere
in dimension n regardless of the orbit of Xn. As a consequence, Sn(X

n) = e′nX
n/∥Xn∥2

has the same distribution for every orbit.
As all its conditions are satisfied, we can apply Theorem 5. As a consequence, for

any test statistic Tn : [−1, 1] → R+, we have that a post-hoc anytime valid p-process for
sequential sphericity is given by

pn(X
n) =

n∏
i=1

EGi
Ti(Si(GiX

i))/Ti(Si(X
i)),

where Gn is uniform on the orthogonal group in n dimensions.

5 Likelihood ratios for group invariance

The post-hoc p-values we derived are highly flexibly in the choice of the test statistic.
Unfortunately, this freedom also comes with the responsibility to select the test statistic
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appropriately. For testing a simple null hypothesis against a simple alternative, likeli-
hood ratios are exact post-hoc p-values with attractive power-like properties [Shafer, 2021,
Koolen and Grünwald, 2022, Grünwald et al., 2023, Ramdas et al., 2022a]. In particular,
for a simple null H0 = {P0} versus simple alternative H1 = {P1} , the post-hoc p-value
that maximizes EP1 log 1/p is the reciprocal of the likelihood ratio: 1/p = dP1/dP0. Such a
post-hoc p-value is also called log-optimal or growth-rate optimal (GRO).

In additional, Koning [2024] notes that the reciprocal of such a post-hoc p-value is
also post-hoc valid under the alternative. This means that it can be interpreted both as
evidence against the null and against the alternative.

For these reasons, we derive likelihood ratio statistics for group invariance, which are
well-specified even though the null hypothesis is highly composite. This is because invari-
ance is equivalent to uniformity on every orbit, so that on each orbit we have a simple null
hypothesis.

It turns out that these likelihood ratio statistics come in three flavors, where the flavor
depends on the space on which we specify our alternative. For the first flavor, we specify
an alternative on the entire sample space Y . This type is inspired by a proof strategy of
Lehmann and Stein [1949], who did not explicitly construct the likelihood ratio statistic
but only derived a test that is equivalent to the likelihood ratio test (see Remark 3). For
the second flavor, we do not specify an alternative on Y , but we specify an alternative on
every orbit. Although the orbits partition the sample space, this strictly generalizes the
first flavor, as we need not specify the mixing distribution over the orbits. For the third
and final flavor, we specify an alternative on the group G. While we do not directly observe
an element on our group, we use a so-called inversion kernel [Kallenberg, 2017] to obtain
such an element.

The ideas in this section are illustrated in Section 6 to testing a location shift under
Gaussianity against various types of invariances. Moreover, we include a toy example in
Appendix B to illustrate the concepts.

5.1 Alternative on the sample space Y
Suppose that PY is our alternative on Y , dominated by some measure λ, so that we can
define the density dPY/dλ. A likelihood ratio statistic for testing this alternative against G
invariance is presented in Theorem 6. Its reciprocal is a post-hoc p-value for G invariance.
A proof is presented in Appendix D.7.

Theorem 6. Let G be uniform G and assume that 0 < EGdPY/dλ(Gy) < ∞ for all y ∈ Y.
Then, the statistic

dPY/dλ(y)

EGdPY/dλ(Gy)
(7)

is a likelihood ratio statistic between G invariance and PY .

Note that this coincides with our post-hoc p-value with the statistic T = dPY/dλ. The
result also holds if T is merely proportional to a density, as the proportionality constant
drops out. Hence, for a statistic T that is proportional to a density on Y , we can interpret
the resulting e-value as a likelihood ratio statistic against this density.

19



Remark 3. The proof of Theorem 6 mimics the proof strategy of Theorem 2 and 2′ in
Lehmann and Stein [1949]. Interestingly, they do not explicitly derive this likelihood ratio
statistic. Instead, they show that the group invariance test based on the statistic dPY/dλ,

dPY/dλ(y) > qGα
(
dPY/dλ(Gy)

)
, (8)

is equivalent to a likelihood ratio test and hence uniformly most powerful for testing G
invariance against PY by the Neyman-Pearson lemma. We suspect that they did not explic-
itly compute the likelihood ratio statistic itself as the test in (8) is a much more efficient
representation of the likelihood ratio test. Indeed, it is equivalent to the test

dPY/dλ(y)

EGdPY/dλ(Gy)
> qGα

(
dPY/dλ(Gy)

EG2
dPY/dλ(G2y)

)
,

but does not require the computation of the normalization constants, as they drop out.

5.2 Alternative on the orbits

In the previous section we defined an alternative on the entire sample space Y . However,
a careful inspection of the proof shows that we only compare the likelihood of y to the
likelihood of other values on its orbit. This implies that the likelihood ratio statistic only
uses the conditional distributions on the orbits, and ‘discards’ the mixing distribution over
the orbits.

As a consequence, we can also define a likelihood ratio statistic by specifying an alter-
native on every orbit. Specifically, let us choose a distribution Pz on each orbit Oz, that is
absolutely continuous with respect to λz: the unique G invariant (uniform) distribution on
Oz, z ∈ [Y ]. Then, we can construct a likelihood ratio statistic for each orbit:

dPz/dλz(y)

EGdPz/dλz(Gy)
= dPz/dλz(y),

where z ∈ [Y ], y ∈ Oz, and the equality follows from the fact that the numerator is equal
to 1 on each orbit, as it is a density on the orbit. This simplification is not possible in (7),
as dPY/dλ is only a density on Y , which needs not integrate to 1 on each orbit.

With this observation, we can actually slightly strengthen the main result (Theorem 2
and 2′) of Lehmann and Stein [1949], by discarding the mixture distribution.

Theorem 7. Suppose that T is an strictly increasing transformation of h on Y. Let us
consider the group invariance test based on the statistic T , which rejects if

T (y) > qGα (T (Gy)),

and with some appropriate probability in case of equality. Then, this test is not just uni-
formly most powerful against the density h (as shown by Lehmann and Stein [1949]), but
against the composite alternative that consists of all distributions with the same conditional
distributions on the orbits as h.
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5.3 Alternative on the group G and inversion kernels

In this section, we define a likelihood ratio statistic based on an alternative P1
G on the group

G. Let P0
G denote the unique Haar measure on the group, so that we can define a likelihood

ratio as

dP1
G/dP0

G(G).

Unfortunately, this likelihood ratio is infeasible, as we do not directly observe an element
of the group but only an element in our sample space Y .3 However, this can be resolved
with use of a so-called inversion kernel (see Chapter 7 of Kallenberg [2017]), which was first
introduced in the context of group invariance testing by Chiu and Bloem-Reddy [2023].

To start, let us assume that G acts freely on Y . This means that Gy = y implies G = I.
In this case, we can uniquely define a so-called inversion kernel γ : Y → G that takes
an element y and returns the element G that carries the representative element [y] on the
orbit of y to y. That is, γ(y)[y] = y. For example, if no element in a vector x ∈ Rd has
duplicated elements, then the group of permutations acts freely on it: any non-identity
permutation of x would yield a different vector.

If the group action is not free, then there may exist multiple elements in G that carry [y]
to y, so that γ(y) is not uniquely defined. For the non-free setting, we overload the notation
of γ so that γ(y) is uniformly drawn from the elements in G that carry [y] to y, which is
well-defined by Theorem 7.14 in Kallenberg [2017]. This gives us γ(y)[y] = y almost surely.
Appendix B contains a concrete illustration of a setting where γ is randomized in this
manner, and an intuition of why it is possible to construct a uniform draw from such
elements.

We can also use γ to obtain an alternative characterization of G invariance of a random
variable:

γ(Y )
d
= G, (9)

where G is uniformly (Haar) distributed on G (see e.g. Chiu and Bloem-Reddy 2023).
Using this map γ, we can define the (randomized) likelihood statistic

dP1
G/dP0

G(γ(y)). (10)

Alternatively, we can induce a distribution on G through a distribution on our sample
space. In particular, we can start by defining an alternative PY on Y and let PY

G denote the

distribution of γ(Ỹ ) if Ỹ ∼ PY . Then, we can also consider the likelihood ratio statistic

dPY
G /dP

0
G(γ(y)),

which can be interpreted as testing against the non-invariance expressed by Ỹ on G.

6 Illustration: LRs for invariance vs Gaussianity

In this section, we illustrate our likelihood ratios to test for invariance under a group of
orthonormal matrices against a normal distribution with a location shift. If we include all

3Unless our sample space Y happens to G.
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orthonormal matrices, this yields clean connections to parametric theory and Student’s t-
test. Moreover, we also consider exchangeability, which reveals an interesting relationship
to the softmax function. In addition, we consider sign-symmetry, where we provide a
relationship to a well-known post-hoc p-value based on de la Peña [1999].

We start with an exposition of the invariance-based concepts for the orthogonal group
O(d) that consists of all orthonormal matrices.

6.1 Sphericity

Suppose that Y = Rd\{0} and G = O(d) is the orthogonal group, which can be represented
as the collection of all orthonormal matrices. The orbits Oy = {z ∈ Y | z = Gy,∃G ∈ G}
of G in Rd are the concentric d-dimensional hyperspheres. Each of these hyperspheres can
be uniquely identified with their radius µ > 0. To obtain a Y-valued orbit representative,
we multiply µ by an arbitrary unit d-vector ι to obtain µι. For example y lies on the orbit
Oy that is the d-dimensional hypersphere with radius ∥y∥2, and has orbit representative
[y] = ∥y∥2ι.

For simplicity, we now first focus on the subgroup SO(2) ofO(2), which exactly describes
the (orientation-preserving) rotations of the circle, and has the same orbits as O(2). The
reason we focus on SO(2), is because its group acts freely on each concentric circle. As
a consequence, every element in the group can be uniquely identified with an element on
the unit circle S2. We choose to identify the identity element with ι, and we identify every
element of SO(2) with the element on the circle that we obtain if that rotation is applied
to ι. We denote the induced group action of S2 on Y by ◦.

We can then define our kernel inversion map γ as γ(y) = y/∥y∥2. To see that γ indeed
conforms to its definition, observe that

γ(y)[y] = [(y/∥y∥2) ◦ ι]∥y∥2 = (y/∥y∥2)∥y∥2 = y, (11)

where the second equality follows from the fact that the action of (y/∥y∥2) on ι, rotates ι
to y/∥y∥2. Invariance of an Y-valued random variable Y under G, also known as sphericity,
can then be formulated as ‘γ(Y ) is uniform on S2’.

For O(2) or the general d > 2 case, the group action is no longer free on each orbit. As a
result there may be multiple group actions that carry ι∥y∥2 to a point y on the hypersphere.
While this may superficially seem like a potentially serious issue, we view γ(y) as uniformly
drawn from all the ‘rotations’ that carry ι∥y∥2 to y. As a result, the only difference is that
(11) will now hold almost surely, which suffices for our purposes.

6.2 Likelihood ratio on Y
This section can be seen as a generalization of the example in the final paragraph of
Lehmann and Stein [1949], who only consider spherical invariance.

Suppose that Y ∼ Nd(µι, I) on Rd \ {0}, µ ≥ 0 under the alternative and G invariance
under the null hypothesis. This distribution is spherical if and only if µ = 0. We start by
considering G = O(d). The Y-based likelihood ratio test is given by

1/(2π)d/2 exp

{
−1

2
∥y − ιµ∥22

}
> qGα

(
1/(2π)d/2 exp

{
−1

2
∥Gy − ιµ∥22

})
,
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where G is uniformly distributed on all orthonormal matrices. This is equivalent to

−y′y + 2µι′y − µ2 > qGα
(
−y′y + 2µι′Gy − µ2

)
and

ι′y > qGα
(
ι′Gy

)
,

which is independent of µ and equal to the t-test by Theorem 6 in Koning and Hemerik
[2023]. As already shown by Lehmann and Stein [1949], the t-test is uniformly most
powerful for testing spherical invariance against Nd(µι, I).

Moreover, this test can also be written as

ι′y/∥y∥2 > qGα
(
ι′Gι

)
,

as qGα
(
ι′Gy

)
= qGα

(
ι′Gι∥y∥2

)
= ∥y∥2qGα

(
ι′Gι

)
. Then, as the rejection event does not change

if we apply a strictly increasing function to both sides, we can even conclude that the t-
test is equivalent to any spherical group invariance test based on a test statistic that is
increasing in ι′y/∥y∥2.

A straightforward derivation shows that the likelihood ratio statistic is

exp {µy′ι} /EG

[
exp

{
µy′Gι

}]
. (12)

To obtain the likelihood ratio for other groups G of orthonormal matrices, we can simply
compute the normalization constant in (12) with G uniform on the group of interest. This
includes the group of permutation matrices for testing exchangeability against normality
(see Section 6.5), and the group of sign-flipping matrices for testing symmetry against nor-
mality (see Section 6.6). The resulting likelihood ratio test is also uniformly most powerful
for testing G invariance against Nd(µι, I). Moreover, the reciprocal of this likelihood ratio
is a log-optimal post-hoc p-value for the same problem.

6.3 Likelihood ratio on orbits

The conditional distribution of Y ∼ Nd(µι, I) on each orbit is proportional to exp(µι′y),
where y is on the orbit with radius ∥y∥2. For ∥y∥2 = 1, this coincides with the von Mises-
Fisher distribution. Notice that this density is uniform on each orbit if and only if µ = 0,
so that the likelihood ratio with respect to sphericity is proportional to exp(µι′y), and
coincides with the one from previous section:

exp {µy′ι} /EG

[
exp

{
µy′Gι

}]
.

Applying our argument from Section 5.2, this implies that the t-test is uniformly most
powerful against the composite alternative of all distributions on Y whose conditional
distributions on the orbits of O(d) are strictly increasing transformations of exp(µι′y).
This generalizes the observation by Lehmann and Stein [1949] who only conclude optimality
against N (µι, I).
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6.4 Likelihood ratio on G
In this section, we reduce ourselves to d = 2 and SO(2), so that the group action is free
and the group will be easy to represent. If Y ∼ N2(µι, I), then γ(Y ) = Y/∥Y ∥2 follows a
so-called projected normal distribution PN2(µι, I). Its density with respect to the uniform
distribution on S2 is

exp{−1
2
µ2}

2π

(
1 + µι′v

Φ(µι′v)

ϕ(µι′v)

)
,

where v ∈ S2, Φ is the normal cdf and ϕ the pdf (Presnell et al., 1998; Watson, 1983). For
µ = 0, this reduces to 1/2π, so the likelihood ratio with respect to the uniform distribution
on S2 is

exp{−1
2
µ2}

(
1 + µι′v

Φ(µι′v)

ϕ(µι′v)

)
.

As a result, the likelihood ratio on Y is

dP 1
G/dP

0
G(γ(y)) = exp{−1

2
µ2}

(
1 + µι′γ(y)

Φ(µι′γ(y))

ϕ(µι′γ(y))

)
= exp{−1

2
µ2}

(
1 + µι′y/∥y∥2

Φ(µι′y/∥y∥2)
ϕ(µι′y/∥y∥2)

)
which is an increasing function in ι′y/∥y∥2 if µ > 0. As the likelihood ratio is increasing in
ι′y/∥y∥2, the likelihood ratio test is also equivalent to the t-test.

6.5 Permutations and softmax

The likelihood ratio in (12) is strongly related to the softmax function. Indeed, if we choose
G to be uniform on permutation matrices (which form a subgroup of the orthonormal
matrices) and ι = (1, 0, . . . , 0) this reduces to

exp {µy1}
1
d

∑d
i=1 exp {µyi}

. (13)

This is exactly the softmax function with ‘inverse temperature’ µ ≥ 0. Hence, the softmax
function can be viewed as a likelihood ratio statistic for testing exchangeability (permu-
tation invariance) against N ((µ, 0, . . . , 0), I). More generally, it is the likelihood ratio
statistic for testing exchangeability on the orbit OY = {PY | P ∈ permutations} against
the conditional distribution of N ((µ, 0, . . . , 0), I) on OY .

Remark 4. A related post-hoc p-value appears in unpublished early manuscripts of Wang
and Ramdas [2022] and Ignatiadis et al. [2023], who consider a ‘soft-rank’ post-hoc p-value
of the type pT as in (5) with

T (y) =
exp(κy1)− exp(κminj yj)

κ
, (14)

under exchangeability, for some inverse temperature κ > 0.
Interestingly, this ‘soft-rank’ p-value for κ = µ is smaller than the softmax p-value (13)

if and only if the softmax p-value is smaller than 1. In fact, the same holds if we replace
exp(κminj yi) by any positive constant c, and the relationship flips if c is negative. For
a positive constant c, we would therefore expect the ‘soft-rank’ p-value to have a higher
variability.
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6.6 Testing sign-symmetry

Suppose Y = R and G = {−1, 1}. Then, invariance of Y under G is also known as

‘symmetry’ about 0, defined as Y
d
= −Y . For testing symmetry against our normal location

model with ι = 1, the likelihood ratio is

exp{µι′y}/EG exp{µι′Gy} = 2 exp{µy}/ [exp{µy}+ exp{−µy}] ,

This can be generalized to Y = Rd and G = {−1, 1}d and ι = d−1/2(1, . . . , 1)′. The
likelihood ratio then becomes

exp{d−1/2µι′y}/Eg exp{d−1/2µg′y} =
d∏

i=1

exp{d−1/2µyi}/Egi exp{d
−1/2µgiyi},

where g is a d-vector of i.i.d. Bernouilli distributed random variables on {−1, 1} with
probability .5.

Remark 5. A related post-hoc p-value can be derived from de la Peña [1999], as the
reciprocal of

exp{Z − Z2/2}.

This object can be connected to our likelihood ratio, by simply normalizing it by Eg[exp{gZ−
(gZ)2/2}]:

exp{Z − Z2/2}/Eg[exp{gZ − (gZ)2/2}] = 2 exp{Z − Z2/2}/
[
exp{−Z − Z2/2}+ exp{Z − Z2/2}

]
= 2 exp{Z}/ [exp{−Z}+ exp{Z}] .

This transformation makes the resulting p-value exactly post-hoc by Theorem 2, so that our
p-value for sign-symmetry can be interpreted as an exact post-hoc variant of the de la Peña
[1999] post-hoc p-value.

Moreover, Ramdas et al. [2022a] characterize the class of admissible post-hoc p-processes
for testing symmetry, and show that the p-process based on de la Peña [1999] is inadmissible.
In our simulations, we indeed see that it is indeed (strongly) dominated by ours.

7 Simulations

7.1 Case-control experiment and learning the alternative

In this simulation study, we consider a hypothetical case-control experiment, where units
are assigned to either the treated or control set uniformly at random. In each interval
of time, we receive the outcomes of a number of treated and control units, where the
number of both units is Poisson distributed with parameter θ > 0 with a minimum of
1. The outcomes of the treated units are N (a, 1)-distributed and the outcomes of the
controls are N (b, 1)-distributed. The true mean and variance are considered unknown, and
are adaptively learned based on the previously arrived data. As a batch of data, we will
consider the combined observations of both the treated and control units that arrived in
the previous interval of time.
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As a result, a batch Xt of n
t outcomes, consisting of nt

a treated and nt
b control units,

can be represented as

Xt ∼
[
1nt

a
a

1nt
b
b

]
+N (0, I) ,

where 1nt
a
and 1nt

b
denote a vector of nt

a and nt
b ones, respectively, where the first n

t
a elements

correspond to the treated units, without loss of generality. We would like to base our test
statistic on the difference of sample means:

1
′
ntXt ∼ N

(
a− b, 1/nt

a + 1/nt
b

)
,

where 1nt = (1nt
a
(nt

a)
−1,−1nt

b
(nt

b)
−1). In particular, we will test the null hypothesis that the

elements of a batch Xt are exchangeable and so a = b, against the alternative hypothesis
that a > b.

We use our post-hoc p-process based on the likelihood ratio for testing exchangeability
against our current estimate of the Gaussian alternative:

pt =
EP exp{(ât−1 − b̂t−1)/σ̂

2 × 1
′
ntPXt}

exp{(ât−1 − b̂t−1)/σ̂2 × 1
′
ntXt}

,

where ât−1 − b̂t−1 = 1
′
ntXt−1 is our treatment estimator at time t− 1 and σ̂2

t−1 is its pooled
sample variance estimator. For the first batch, we can either rely on an educated guess,
or skip it for inference and only use it for estimating these parameters. We estimate
the normalization constant by using 100 permutations drawn uniformly at random with
replacement.

For our simulations, we consider the arrival of 40 batches with θ = 25. Without loss of
generality, we choose a = b = 0 under the null, and a = .2 and b = 0 under the alternative.
To use in the first batch, we choose â0 = .2, b̂0 = 0 and σ̂2

0 = 1.
In Figure 1, we plot the post-hoc p-processes based on 1 000 simulations. The plot on

the left features the setting under the null, and the plot on the right the setting under the
alternative. For convenience, we plot at each time the line which 5%, 50% and 95% of
the p-processes have remained above up until that point. For example, in the right plot,
roughly 50% of the p-processes have dipped below .05 at batch 21, so that the power at
level α is roughly 50% after 23 batches. As expected, left plot shows that the p-processes
stay bounded away from every level under the null, and decrease under the alternative.

7.2 Testing symmetry and a comparison to de la Peña [1999]

In this simulation study, we consider testing sign-symmetric data as in Section 6.6. We
compare our post-hoc p-process to the one based on de la Peña [1999], when testing against
a simple normal alternative Xi ∼ N (m, 1) with m = 1.

We plot 1 000 p-processes of each type in Figure 2. The plot on the left is our likelihood
ratio-based post-hoc p-process, whereas the plot on the right uses the post-hoc p-value
based on de la Peña [1999]. The figure shows that our LR-based p-processes shrink much
faster. This coincides with the observation of Ramdas et al. [2022a] that the post-hoc
p-process based on de la Peña [1999] is inadmissible.
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Figure 1: Plots of 1 000 post-hoc p-processes over the number of arrived batches. The
highlighted lines are running quantiles: x% of the p-processes have not crossed below the
line at the indicated time. The plot on the left is under the null hypothesis, and the plot
on the right is under the alternative.
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Figure 2: Plots of 1 000 post-hoc p-processes over the number of arrived observations under
a normal alternative with mean m = 1. The highlighted lines are running quantiles: x% of
the p-processes have not crossed below the line at the indicated time. The plot on the left
is for our likelihood-ratio based p-process, and the plot on the right is for the one based on
de la Peña [1999].
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A Conditional distributions

The goal of this section is to characterize the conditional distribution of Y given h(Y ) and
its orbit OY . Let Y be our sample space on which our group G acts, and let h be some
continuous function from Y into some Hausdorff space so that it induces a group action on
this codomain h(Gy) = Gh(y).
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Let us consider the subset Kh of G that stabilizes a statistic h of the data:

Kh(y) = {G ∈ G : h(Gy) = h(y)}, where y ∈ Y .

Lemma 1 shows that this set is a compact subgroup of G, henceforth referred to as its
h-stabilizing subgroup. See Appendix D.8 for a proof.

Lemma 1. Kh(y) is a compact subgroup of G.

This subgroup characterizes the conditional distribution of Y given an orbit O and
h(Y ), as described in Proposition 3. In particular, given a draw Y = y, the conditional

distribution of Y given h(Y ) and OY is equal to the distribution of K
h
y, where K

h
is

uniform (Haar) distributed in Kh(y). A proof is given in Appendix D.9.

Proposition 3. Let K
h
be uniform on Kh(Y ). The conditional distribution of Y given

h(Y ) and some orbit O ∈ Y/G, is equal to the distribution of K
h
z, where z ∈ O and

h(Gz) = h(z) for some G ∈ G.

B Example: LR for exchangeability

In this section, we discuss a toy example of permutations on a small and finite sample space.
While not as statistically interesting as the examples in Section 6, it is more tangible as
the group itself is finite and easy to understand.

B.1 Exchangeability on a finite sample space

Suppose our sample space Y consists of the vectors [1, 2, 3], [1, 1, 2] and all their permuta-
tions. As a group G, we consider the permutations on 3 elements, which we will denote by
{abc, acb, bac, bca, cab, cba}. For example, bac represents the permutation that swaps the
first two elements.

The orbits are then given by all permutations of [1, 2, 3] and [1, 1, 2]

O[1,1,2] = {[1, 1, 2], [1, 2, 1], [2, 1, 1]},

and

O[1,2,3] = {[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]}.

As Y-valued orbit representatives, we pick the unique element in the orbit that is sorted
in ascending order: [1, 1, 2] and [1, 2, 3]. Notice that the group action of G is free on O[1,2,3]

but not free on O[1,1,2].
For simplicity, let us restrict ourselves to O[1,2,3] first. On this orbit, the map γ is defined

as the unique permutation that brings the element [1, 2, 3] to z ∈ O[1,2,3]. Moreover, on this
orbit, the null hypothesis then states that γ(Y ) is uniform on the permutations, which in
this case is equivalent to the hypothesis that Y is uniform on O[1,2,3].

Now let us restrict ourselves to O[1,1,2]. On this orbit, there are multiple permutations
that may bring a given element back to [1, 1, 2]. For example, both bac, as well as the
identity permutation abc bring [1, 1, 2] to itself. More generally, any permutation that
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brings [1, 1, 2] to z ∈ O[1,1,2], can be preceded by bac, and the result still brings [1, 1, 2] to
z ∈ O[1,1,2]. Even more abstractly speaking, let S[y] = {G ∈ G : G[y] = [y]} be the stabilizer
subgroup of [y] (the subgroup that leaves [y] unchanged). Then, if G∗ ∈ G carries [y] to y,
so does any element of G∗S[y].

To construct γ on O[1,1,2], let S[y] denote a uniform distribution on {abc, bac}, which
is also well-defined in the general case as S[y] is a compact subgroup and so admits a
Haar probability measure. Moreover, let Gy be an arbitrary permutation that carries [y]
to y, say G[1,1,2] = abc, G[1,2,1] = acb and G[2,1,1] = cba. Then, we define γ(y) = GyS[y].
Concretely, this means that γ([1, 1, 2]) ∼ Unif(abc, bac), γ([1, 2, 1]) ∼ Unif(acb, bca) and
γ([2, 1, 1]) ∼ Unif(cba, cab). If Y is indeed uniform on O[1,1,2], then GY is uniform on
{abc, acb, cba} and so γ(Y ) is uniform on G.

The definition of γ on the sample space Y = O[1,2,3] ∪ O[1,1,2] is obtained by combining
the definitions on the two separate orbits.

B.2 Likelihood ratios

We start with the orbit O[1,2,3]. Suppose that our alternative distribution P 1
Y conditional on

O[1,2,3] is that Y is uniform on {[1, 2, 3], [1, 3, 2]} and all other arrangements happen with
probability 0. As a density on O[1,2,3], we find{

0.5, if y ∈ {[1, 2, 3], [1, 3, 2]},
0, otherwise.

As the density under the null is 1/6 for each arrangement, the likelihood ratio is given by{
3, if y ∈ {[1, 2, 3], [1, 3, 2]},
0, otherwise.

Since the group action is free on the orbit O[1,2,3], γ is a bijection between O[1,2,3] and the
group, so likelihood ratio is {

3, if G ∈ {abc, acb},
0, otherwise.

Now let us consider the orbit O[1,1,2]. Suppose that our alternative P 1
Y conditional on

O[1,1,2] is that Y equals [1, 1, 2] with probability 1. The likelihood ratio on our orbit then
becomes {

3, if y = [1, 1, 2],

0, otherwise.

In this case, the group action is not free, as both abc and bac are permutations that carry
[1, 1, 2] to itself. As a consequence γ([1, 1, 2]) ∼ Unif(abc, bac). This induces the following
likelihood ratio on G: {

3, if G ∈ {abc, bac},
0, otherwise.
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Now let us consider a likelihood ratio on Y . For this, it is insufficient that we have
an alternative on both O[1,2,3] and O[1,1,2], separately. We need to additionally specify the
probability that that Y lands in O[1,2,3] and O[1,1,2] under the alternative. For simplicity,
let us assume that the probability of each orbit is 1/2. The likelihood ratio on Y can then
be derived to be {

3/2, if y ∈ {[1, 2, 3], [3, 2, 1], [1, 1, 2]},
0, otherwise.

The likelihood ratio this induces on G is
3/2, if G ∈ {abc, bac},
3, if G = abc,

0, otherwise,

which is exactly the weighted average of the likelihood ratios on G that were induced on
the individual orbits, weighted by the probability of each orbit.

C Finding the normalization constant analytically

For the likelihood ratio in Sections 6.2 and 6.3, we can easily compute the normaliza-
tion constant under sphericity. The key trick is to use the fact that ι′Gy/∥y∥2 follows
a Beta(d−1

2
, d−1

2
) distribution on the interval [−1, 1]. The normalization constant is then

equal to its moment generating function:

EG exp(µι′Gy) = 1 + µ∥y∥2EGB̃ + µ2∥y∥22EGB̃
2/2! + . . . ,

where B̃ ∼ Beta
(
d−1
2
, d−1

2

)
on [−1, 1]. For this generalized beta distribution, the odd

moments are all 0, since it is symmetric about 0. Moreover, the even moments are given
by

EG(B̃)k+2 = EG(B̃)k(k − 1)/(n+ k − 2),

with EG(B̃)0 = 1 and n the dimension of y. This means the normalization constant can be
easily approximated to high precision, which we exploit in our simulation studies.

Furthermore, it is possible to numerically stabilize the computations by using the fact
that

1/n
n∑
i

Zi = max
i

log(Zi) + log(1/n
n∑

i=1

(exp(log(Zi)−max
i

log(Zi)))).

D Omitted proofs

D.1 Proof of Theorem 1

Proof. The proof strategy is to show the p-value is exact on every orbit, which then implies
that it is exact for any mixture over orbits as well.
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Let O ∈ Y/G be some arbitrary orbit. Let Z be a random variable that is uniform on

O. Let z be some arbitrary element in O. First, observe that GZ
d
= Gz is uniform on O

regardless of the distribution of Z. As a consequence, we have

p(Z) = PG

(
T (GZ) > T (Z)

)
+ uPG

(
T (GZ) = T (Z)

)
= PG

(
T (Gz) > T (Z)

)
+ uPG

(
T (Gz) = T (Z)

)
Then, as Z is G invariant through T , we have T (Z)

d
= T (G

∗
Z), where G

∗
is uniform on G.

This implies

PG

(
T (Gz) > T (Z)

)
+ uPG

(
T (Gz) = T (Z)

) d
= PG

(
T (Gz) > T (G

∗
Z)
)
+ uPG

(
T (Gz) = T (G

∗
Z)
)

d
= PG

(
T (Gz) > T (G

∗
z)
)
+ uPG

(
T (Gz) = T (G

∗
z)
)
,

where the second equality again follows from G
∗
Z

d
= G

∗
z.

Then, it is straightforward to show that PB(A > B) + uPB(A = B) is uniform on
[0, 1] for i.i.d. random variables A and B. As G and G

∗
are independent and identically

distributed, the same holds for T (Gz) and T (G
∗
z). This implies that p(Z) is uniform on

[0, 1]. As this holds for an arbitrary orbit O, it holds for every orbit. Then, as any mixture
of random variables that are uniform on [0, 1] is also uniform on [0, 1], p(Y ) is uniform on
[0, 1].

D.2 Proof of Theorem 2

Proof. We show that it is exact on every orbit, which implies that it is also exact if we mix
over the orbits. Let O ∈ Y/G be some arbitrary orbit. Let Z be a random variable on O
that is uniform on O.

First, observe that GG
d
= G for all G ∈ G, as G is a G invariant random variable. As a

consequence, the map z 7→ EGT (Gz) is G invariant: EGT (Gz) = EGT (GGz) for all G ∈ G.
This implies that EGT (Gz) is constant on O. As Z only takes value on O, this means
EGT (GZ) = EGT (Gz). As a result,

EZ

[
T (Z)/EGT (GZ)

]
= EZT (Z)/EGT (Gz),

Now, as Y is G invariant through T , we have that T (Z)
d
= T (G2Z), where G2 is uniform

on G independently from Z. As a consequence,

EZT (Z)/EGT (Gz) = EG2Z
T (G2Z)/EGT (Gz).

As G2 and Z are independent, Tonelli’s theorem gives

EG2Z
T (G2Z)/EGT (Gz) = EZEG2

T (G2Z)/EGT (Gz).

Then, we can again use the G invariance of the map z 7→ EG2
T (G2z), to argue that

EG2
T (G2Z) = EG2

T (G2z). As a consequence,

EZEG2
T (G2Z)/EGT (GZ) = EG2

T (G2z)/EGT (Gz) = 1.
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As O was arbitrarily chosen, this holds for every orbit in X/G. In turn, this implies that
it also holds unconditionally.

Next, we show that every exact post-hoc p-value is of the form pT . Suppose that p(Y )
is an exact post-hoc p-value for G invariance of Y through p. This means that it is exact
for every random variable that is G invariant through p.

Let us pick an arbitrary orbit O, and take a random variable Z that is uniformly
distributed on this orbit. This random variable is clearly G invariant. As a consequence,
p(Z) is an exact post-hoc p-value through p:

1 = EZ [1/p(Z)] = EZEG[1/p(GZ)].

Now, notice that the map z 7→ EG[1/p(Gz)] is G invariant. As a consequence, it is constant
on the orbit O. As Z only takes value on O, this implies EG[1/p(GZ)] is the same for
any draw of Z. This implies EZEG[1/p(GZ)] = EG[1/p(GZ)], which in turn implies that
EG[1/p(GZ)] = 1.

As the orbit was arbitrarily given, this holds for any orbit. As a consequence, EG[1/p(Gz)] =
1 regardless of the orbit that z is on. This implies EG[1/p(GY )] = 1.

Finally, we have that p(Y ) is indeed of the conjectured form as

p(Y ) = p(Y )/EG[1/p(GY )] = p1/p(Y ).

Hence, if p is an exact post-hoc p-value for G invariance through p, then it must be equal
to some test statistic of the form pT .

D.3 Proof of Theorem 3

Proof. Conditionally onXn−1, we have thatXn isKn(X
n−1) invariant through Tn: Tn(X

n)
d
=

Tn(KnX
n−1) conditional onXn ∈ OXn , whereKn is uniform on Kn(X

n). As a consequence,
by Theorem 2, we have

ETn(Xn)

(
Tn(X

n)

EKn
Tn(KnXn)

∣∣∣ Xn−1

)
= 1.

This means that pn(X
n) is an exact post-hoc p-value conditional on Xn−1, n ≥ 2. More-

over, p1(X
1) is a ‘plain’ exact post-hoc p-value as K1 = G1. Applying the law of iterated
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expectations, we have

E1/pn(Xn) = E

[
n∏

i=1

Ti(X
i)

EKi
Ti(KiX i)

]

= E

[
E

(
Tn(X

n)

EKn
Tn(KnXn)

n−1∏
i=1

Ti(X
i)

EKi
Ti(KiX i)

∣∣∣ Xn−1

)]

= E

[
n−1∏
i=1

Ti(X
i)

EKi
Ti(KiX i)

E

(
Tn(X

n)

EKn
Tn(KnXn)

∣∣∣ Xn−1

)]

= E

[
n−1∏
i=1

Ti(X
i)

EKi
Ti(KiX i)

]

= E

[
T1(X

1)

EG1
Ti(G1X1)

]
= 1,

where the second-to-last equality follows from induction.

D.4 Proof of Theorem 4

Proof. The proof is similar to that of Theorem 3.

Conditionally on Sn−1(X
n−1), we have that Xn is Fn invariant through Sn: Sn(X

n)
d
=

Sn(F
∗
nX

n) conditional on Sn−1(X
n−1) and OFn

Xn , where F
∗
n is uniform on Fn. As a conse-

quence, Theorem 2 implies

ESn(Xn)

[
Tn(Sn(X

n))

EFn
Tn(Sn(F nXn))

∣∣∣ Sn−1(X
n−1)

]
= 1.

This means pn(X
n) is an exact post-hoc p-value conditional on Sn−1(X

n−1), n ≥ 2. More-
over, p1(X

1) is an exact post-hoc p-value, unconditionally. We can then apply the iterated
expectations strategy from the final part of the proof of Theorem 3 in order to conclude
that (pn)n≥1 is an exact post-hoc p-process.

D.5 Proof of Proposition 2

Proof. As Fn−1 is a subgroup of Fn, its action on X n is well-defined. The Fn−1 invariance
of Sn means that Sn(Fxn) = Sn(x

n) for all F ∈ Fn−1 and xn ∈ X n. As a result, Sn is
constant on any orbit in X n/Fn−1.

Next, xn−1 ∈ X n, as X n−1 ⊆ X n. Hence, the orbit of xn−1 under Fn−1 is in X n/Fn−1.
As a consequence, Sn is constant on the orbit of xn−1. In turn, this means that Sn(X

n) is
independent of Xn−1.

D.6 Proof of Theorem 5

Proof of Theorem 5. By Lemma 2, Sn(X
n) is independent of Xn−1. This implies Sn(X

n) is
also independent of Sn−1(X

n−1). Moreover, Sn(X
n) has the same distribution on every orbit

35



in X n/Fn. As a consequence, it is independent of OXn . Hence, the conditional distribution
of Sn(X

n) given σ(Sn−1(X
n−1), OXn) is equal to its unconditional distribution.

Let xn ∈ X n be some arbitrary point. Then, F nx
n is uniform on the orbit of xn. As

Sn(X
n) has the same distribution on every orbit and Xn is Fn invariant through Sn, this

distribution equals that of Sn(F nx
n). Finally, as Xn itself is a point in X n, Sn(X

n)
d
=

Sn(FXn).

D.7 Proof of Theorem 6

Proof. For notational convenience, let us define a function f as f(y) = EGdPY/dλ(Gy).
Observe that f is a G invariant function as

f(Gy) = EGdPY/dλ(Gy) = EGdPY/dλ(GGy) = f(y),

since G
d
= GG as G is a G invariant random variable. As a consequence, f is constant

on the orbit {z ∈ Y : y = Gz, for some G} of y. As 0 < f(y) < ∞, the function f is
proportional to a uniform distribution on every orbit. Now, the statistic integrates to 1 on
every orbit as

EG2

dPY/dλ(G2y)

EGdPY/dλ(GG2y)
= EG2

dPY/dλ(G2y)

EGdPY/dλ(Gy)
=

EG2
dPY/dλ(G2y)

EGdPY/dλ(Gy)
= 1,

where G2 is uniform on G, independently from G. Hence, for every orbit, the statistic is a
likelihood ratio statistic for testing a uniform distribution on an orbit against PY . Finally,
as G invariance is equivalent to being uniform on every orbit, the statistic is a likelihood
ratio statistic for testing PY against G invariance.

D.8 Proof of Lemma 1

Proof. We start with showing that Kh(y) is a subgroup. This follows from the fact that it
a stabilizer subgroup of G that stabilizes h(y), but we prove it for completeness. Then, we
show it is closed, so that by the compactness of G it is also compact.

First observe that the identity element is in Kh(y). Suppose that K1, K2 ∈ Kh(y).
Then,

K1K2h(y) = K1h(y) = h(y),

so that Kh(y) is closed under compositions. Moreover, it is closed under inverses as for any
K ∈ Kh(y)

h(y) = Ih(y) = K−1Kh(y) = K−1h(y) = h(K−1y),

so that K−1 ∈ Kh(y). This means that Kh(y) is closed under inverses. Hence, Kh(y) is a
subgroup of G.

Finally, we show that Kh(y) is topologically closed. Define the map fy : G → Y as the
composition between h and the group action: fy(G) = h(Gy). As both h and the group
action are continuous, the composition fy is also continuous. Since the space in which
{h(y)} lives is Hausdorff, it is also a T1 space so that {h(y)} is closed. Hence, Kh(y) is the
pre-image of the closed set {h(y)} under a continuous map, and so Kh(y) is also closed,
and therefore compact.
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D.9 Proof of Proposition 3

Proof. Let us start by fixing an arbitrary orbit O under G acting on Y .
As Y is G invariant, it is also invariant under any of its compact subgroups. By Lemma

1, S is such a compact subgroup. As a consequence, Y is uniform on the (sub)orbits of S
acting on O.

Let us condition on the suborbit in which Y falls. This suborbit consists of all the points
y for which h(y) = h(GY ) for some G ∈ G. As G acts transitively on O, any point on the
suborbit can be reached by applying a transformation G to Y . Hence, the suborbit of Y
under S consists exactly of those elements y ∈ O for which h(y) = h(Y ). This is exactly
the subset to which we restrict Y by conditioning on h(Y ). As a result, the conditional
distribution of Y given O and h(Y ) is uniform on this suborbit.

This distribution can be characterized as the distribution of Sz, where S is uniform on
S, and z is some element on the suborbit.
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