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Figure 1. Compression performance versus receiver compute (left) and corresponding rate-distortion curves (right). Bjøntegaard Delta-rate
is calculated with H.265 (FFmpeg, preset fast) as reference. The kMACS/pixel are computed using a full-HD 1080× 1920 input.

Abstract

Neural video codecs have recently become competitive
with standard codecs such as HEVC in the low-delay set-
ting. However, most neural codecs are large floating-point
networks that use pixel-dense warping operations for tem-
poral modeling, making them too computationally expen-
sive for deployment on mobile devices. Recent work has
demonstrated that running a neural decoder in real time on
mobile is feasible, but shows this only for 720p RGB video.

This work presents the first neural video codec that de-
codes 1080p YUV420 video in real time on a mobile device.
Our codec relies on two major contributions. First, we de-
sign an efficient codec that uses a block-based motion com-
pensation algorithm available on the warping core of the
mobile accelerator, and we show how to quantize this model
to integer precision. Second, we implement a fast decoder

*Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

pipeline that concurrently runs neural network components
on the neural signal processor, parallel entropy coding on
the mobile GPU, and warping on the warping core. Our
codec outperforms the previous on-device codec by a large
margin with up to 48 % BD-rate savings, while reducing
the MAC count on the receiver side by 10×. We perform a
careful ablation to demonstrate the effect of the introduced
motion compensation scheme, and ablate the effect of model
quantization.

1. Introduction
Neural video compression has seen significant progress

in recent years. In particular, in the low-delay P setting,
various works [23, 24, 33] have outperformed reference im-
plementations of standard codecs like HEVC (HM) [45]
and VVC (VTM) [56] in compression performance. How-
ever, current neural codecs are computationally expensive
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compared to standard solutions, and reported runtimes are
often measured on powerful desktop or datacenter GPUs.
Additionally, many works assume the availability of pixel-
based [1, 33, 35] or feature-based [18, 22–24] warping op-
erations, which may be hard to efficiently implement on
resource-constrained devices such as mobile phones.

Standard codecs, on the other hand, have fast software
implementations such as FFmpeg [45, 59], or efficient sili-
con implementations specifically designed for fast decoding
on consumer hardware. Although some works design neu-
ral codecs with efficiency in mind [9,26,35,42,54], the only
published work that reports runtime on a mobile device is
MobileCodec [21]. One of the main contributions of Mo-
bileCodec is to replace optical flow warping with a convo-
lutional motion compensation network, avoiding the need to
implement the warping operation on-device. However, this
design has a negative impact on compression performance.

In this work, we build MobileNVC, a neural P-frame
codec architecture designed for deployment to a mobile de-
vice. Instead of replacing warping, MobileNVC introduces
a block-based warping scheme that can be implemented ef-
ficiently using a motion compensation kernel available on
the Snapdragon® 1 8 Gen 2 neural accelerator. Our network
design is based on the model architecture of [33], made
more efficient by using a lean flow extrapolator that pre-
dicts the next flow for blocks of pixels, and by using only
few warping operations.

We improve inference efficiency by quantizing weights
and activations to 8-bit integers. We show that naive quan-
tization of the mean parameter of a mean-scale hyperprior
leads to catastrophic loss in R-D performance, and propose
a solution for low-precision quantization. For the scale pa-
rameter, we use the efficient quantization scheme of Said et
al. [40]. We further increase throughput by implementing
a parallel entropy coding algorithm on GPU, massively in-
creasing parallelism to hundreds of threads [38], compared
to the eight threads used by MobileCodec.

Together, these techniques enable extremely efficient
neural video decoding on a mobile device. We obtain 48%
Bjøntegaard Delta-rate savings compared to MobileCodec,
and a 10× reduction in computational complexity. Ad-
ditionally, where MobileCodec only decodes HD (720p)
video, we enable running >30fps full-HD (1080p) real-time
decoding on mobile. We study the effect of the choice
of warping operator and quantization in careful ablation
studies, allowing us to determine key factors for effective
mobile-friendly design of neural video codecs. Key results
on compression performance and computational efficiency
are shown in Figure 1.

1Snapdragon branded products are products of Qualcomm Technologies,
Inc. and/or its subsidiaries.

2. Related work
2.1. Neural data compression

Neural codecs are systems that learn to compress data
from examples. The most widely adopted model for neural
data compression is the mean-scale hyperprior [5, 29]. This
model is a hierarchical variational autoencoder with quan-
tized latent variables, and can be seen as a specific version
of a compressive autoencoder [50].

After initial success in the image domain [4,29,36], neu-
ral codecs were extended to the video setting [10,12,25]. In-
spired by standard codecs, neural video codecs adopted mo-
tion compensation and residual coding using task-specific
networks [1, 25, 37]. These architectures were further aug-
mented using predictive models that predict the flow, resid-
ual or both [17, 33, 35], leading to improvements in com-
pression performance. Recent works show that condi-
tional coding can be more powerful than residual coding
[23, 24], and perform similarly to the strongest standard
video codecs. However, these architectures require multi-
stage training to prevent aggregating error, and introduce
various custom operations, such as feature-space motion
compensation [18].

2.2. Efficient neural video codecs

Neural codecs are quickly closing the gap with standard
codecs, but improved compression performance typically
comes with an increase in computational cost [64]. For
this reason, many works now report runtime and show the
number of Multiply-Accumulate (MAC) operations. How-
ever, runtime is typically measured on desktop or datacen-
ter GPUs. The deployment of neural codecs to resource-
constrained devices has received relatively little attention.

In the learned image compression setting, early works
improved rate-distortion performance by introducing big-
ger and better prior models [7, 11, 29, 60]. Follow-up work
reduced computational cost by careful prior model design
[14], or via transformer-based architectures, where much of
the efficiency comes from the ability to parallelize computa-
tion across independent sub-tensors [26, 64]. Additionally,
both Galpin et al. [9] and Yang et al. [63] show that highly
asymmetric encoder-decoder architectures allow using a re-
ceiver with much lower MAC count, and EVC [57] shows
that distillation and pruning can also prove effective.

In the learned video compression setting, various works
aim to reduce the computational cost of the receiver [21,35,
42, 54]. For instance, ELF-VC [35] designs a specific con-
volutional block to improve inference speed and BD-rate.
AlphaVC introduces a technique that allows skipping to-
kens during entropy decoding, reducing runtime [42]. Van
Rozendaal et al. [53, 54] show that by overfitting the codec
to the instance to compress, one can drastically reduce com-
putational cost on the receiver side.



Nevertheless, most neural video codecs include opera-
tions that are difficult to implement efficiently on-devices
where the size of the memory is constrained. Examples
include advanced motion compensation algorithms such as
scale-space warping [1, 33, 35] or warping in feature-space
using deformable convolutions [17,18,23,24,34]. To avoid
these operations, some codecs replace motion compensa-
tion entirely, for example by only modeling the relation be-
tween frames via the prior model [27].

The main baseline for our work, MobileCodec [21], is
the only work that demonstrates decoding of video on a mo-
bile device in real-time. It achieves this by replacing the
warping operation by a learned motion compensation sub-
network, quantizing the weights and activations, and by im-
plementing parallel entropy coding on mobile CPU [39,40].

2.3. Quantizing neural codecs

A common methodology for computational cost reduc-
tion is quantization of weights and activations. For neural
image compression, one of the first works [3] studying neu-
ral quantization was mainly motivated by cross-platform re-
producibility, as entropy coding is sensitive and may break
due to non-deterministic floating-point operations. investi-
gated Post-Training Quantization (PTQ) [13,20,41,49] and
Quantization-Aware Training (QAT) [16,46–48] techniques
for both weights and activations, with the aim to close the
rate-distortion gap between the integer-quantized models
and their floating-point counterparts. For instance, Sun et
al. [49] introduce channel splitting, where the convolution
output channels most sensitive to quantization are split up
and quantized using a custom dynamic range, while other
channels are pruned away. Various works [41, 46, 48, 49]
have shown that using per-channel activation quantization
can be effective. However, this requires bit shifts on the ac-
cumulator which is not commonly supported on most fixed-
point accelerators. We therefore use the commonly sup-
ported, but less flexible, per-tensor quantization for the ac-
tivations [30]. Note that all works above perform simulated
quantization. Instead, we implement and benchmark the
performance of the quantized model on a mobile device.

3. Method

We first describe the architecture, block-based warping
scheme, and training losses needed to train a 32-bit floating
point model. We then describe the quantization procedure,
and how we run entropy coding and inference on-device.

3.1. Network architecture

The MobileNVC architecture is a variation of the scale-
space flow [1] architecture of Agustsson et al. Its input
and output heads are modified for YUV 4:2:0 inputs fol-
lowing Pourreza et al. [33]. The motivation for operating
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Figure 2. Architecture of our P-frame model. Due to the overlap
block-based warping, the motion vectors are lower dimensional
leading to reduced compute. The flow encoder is further optimized
by only using the Y-channel of the inputs. 2

in the YUV color space is that distance in this space is bet-
ter aligned with human perception [51], and the 4:2:0 sub-
sampling scheme exploits the difference in sensitivity of the
human eye between luminance and color.

The model consists of three mean-scale hyperprior [29]
autoencoders and a flow extrapolator. The first mean-scale
hyperprior acts as the I-frame model, compressing the first
frame in a Group of Pictures (GoP) independent of other
frames. The model for each subsequent P-frame consists of
the remaining two autoencoders and the flow extrapolator,
as visualized in Figure 2. Compressing a P-frame consists
of three steps. First, the flow extrapolator predicts a flow
fPt based on the previously transmitted flow f̂t−1 (which
we set to zero for frame x1). Using this flow, we use warp-
ing (on the sender-side) to obtain an initial prediction for
the next frame, xP

t . Second, we transmit a flow delta. The
Y-channels of both xP

t and the current ground truth frame
xt are given to the flow autoencoder, which estimates and
compresses the flow residual fPt − f̂t. The reconstruction by
the flow autoencoder is then added to the extrapolated flow
to obtain the refined reconstructed flow f̂t. We warp the pre-
vious predicted frame x̂t−1 with f̂t to form the refined pre-
diction xw

t . Third, the residual autoencoder compresses the
frame residual r = xt − xw

t . The resulting reconstruction r̂
is added to the warped frame on the receiver-side in order to
form the final predicted frame x̂t. Full details on network
architecture can be found in Figure 6 in the Appendix.

2Image data from Tango video from Netflix Tango in Netflix El Fuente.
Video produced by Netflix, with CC BY-NC-ND 4.0 license: https:
//media.xiph.org/video/derf/ElFuente/Netflix Tango Copyright.txt

https://media.xiph.org/video/derf/ElFuente/Netflix_Tango_Copyright.txt
https://media.xiph.org/video/derf/ElFuente/Netflix_Tango_Copyright.txt


3.2. Efficient block-based warping

Motion compensation is an essential component of both
standard and neural video codecs. In this work, we use
a block-based motion compensation scheme that has two
main advantages over pixel-based schemes. First, it is pos-
sible to implement this scheme efficiently on the mobile
neural accelerator. Second, by warping block-by-block,
the flow tensor is of lower spatial dimensionality than the
frame, reducing the computational cost of the flow autoen-
coder and extrapolator networks.

We first describe traditional, pixel-dense optical flow
warping. A frame x is warped using a flow field f , which is
a 2D map indicating horizontal and vertical displacements.
Specifically, for every pixel i, j in the warped frame, the
value is retrieved from the reference frame as follows:

warpdense (x, f)i,j = x[i+ fx[i, j], j + fy[i, j]]. (1)

Here [·] refers to array indexing, x and y sub-indices in-
dicate retrieval of the respective coordinate in the vector
field f . For non-integer motion vectors, bilinear or bicubic
interpolation is typically used to compute the pixel intensity.

The motion vector f often contains large homogeneous
regions, as large objects and the background rarely show
chaotic motion. Therefore, block-based warping can be
used as a computationally efficient alternative to pixel-space
warping. Here, the warped frame is divided into blocks of
size b × b, and all pixels in a block are retrieved from the
reference frame using a single shared motion vector. The
frame is thus warped as follows:

warpblock (x, f , b)i,j =

x

[
i+ fx

[⌊
i

b

⌋
,

⌊
j

b

⌋]
, j + fy

[⌊
i

b

⌋
,

⌊
j

b

⌋]]
. (2)

Block-based warping can be more efficient than dense
pixel warping due to the block-wise memory access. How-
ever, one downside is that artifacts might occur around the
block edges when adjacent blocks have different motion
vectors. This can be solved using overlapped block motion
compensation. Here, each block is warped multiple times
using the N − 1 surrounding motion vectors, and the re-
sults are averaged using a kernel w ∈ Rb×b×N that decays
towards the end of the blocks [31, 32], here a Gaussian:

warpblock-overlap (x, f ,w, b)i,j =

N∑
k=1

wi,j,k · x

[

i+ fx

[⌊
i

b

⌋
+ b ·∆k

x,

⌊
j

b

⌋
+ b ·∆k

y

]
,

j + fy

[⌊
i

b

⌋
+ b ·∆k

x,

⌊
j

b

⌋
+ b ·∆k

y

]]
, (3)

where ∆k defines the relative position of the neighboring
block, e.g. (−1,−1) for the top-left block, (−1, 0) for the
center-left block.

We deploy an overlapped block motion compensation
available in the mobile neural accelerator. As we will
show in Section 5.3, this leads to better compression per-
formance than block warping, matches that of dense pixel-
space warping, and improves computational efficiency.

3.3. Loss functions

Models are trained using a loss consisting of a rate term,
a distortion term, and auxiliary losses for the flow compo-
nents. Similar to previous work, the rate loss is the sum of
negative log-likelihoods of the latents and hyperlatents for
the three auto-encoders [1]. Specific to our setup is that we
use a zero-centered normal distribution with learned vari-
ance as the entropy model for the hyper-latent, instead of
the non-parametric hyperprior from Ballé et al. [4]. This
enables us to use the same entropy coding algorithm for
latent and hyper-latent. We use rounding of latents and
hyper-latents at evaluation time, but use a “mixed” quan-
tization scheme during training: additive noise quantization
when computing the rate loss, and rounding when comput-
ing the distortion losses [11]. We reweigh the mean squared
error (MSE) distortion losses for the Y:U:V channels with
weights 6:1:1, to align with the evaluation metrics [33, 44]:

D(x, x̂) = 6
8 MSEY + 1

8 MSEU + 1
8 MSEV . (4)

One challenge of training small models at lower bitrates
is that frame quality deteriorates over time due to error accu-
mulation. To account for this, we use an exponentially mod-
ulated P-frame loss that places emphasis on later frames, in-
spired by schemes that weigh the loss for each frame in the
GoP differently [23, 35]:

Dmod(x, x̂, τ) =
T∑T−1

i=0 τ i

T−1∑
i=0

τ iD(xi, x̂i) (5)

Additionally, we halve the value of the rate loss mul-
tiplier for I-frames, such that the PSNR value for the cho-
sen operating point of I-frames and P-frames becomes more
similar [22]. Lastly, we use auxiliary flow losses dur-
ing training of our floating point model, to force the net-
work to learn meaningful extrapolated and reconstructed
flow fields. For both flow outputs f ∈ {fp, f̂}, we set
Dflow(f , x̂t−1,xt) = D (warp (x̂t−1, f) ,xt). Our final loss
is then a weighted combination of all loss terms:

L(x) = βR(x0) +D(x0, x̂0) + 2βR(x>0)

+Dmod(x>0, x̂>0, τ) + λDflow(f
P ) + λDflow(f̂). (6)

We train one model for each value of β. We show the val-
ues of λ and τ for different training stages in Tab. 5 in the
Appendix.
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Figure 3. Computational graph of the latent bottleneck and en-
tropy model during training. During floating point training, only
the symbols s are quantized using rounding (hexagonal rounding
operator), and a proxy rate loss R̃ based on additive quantiza-
tion noise u is used (bottom pathway). During quantization-aware
training, quantizers (shown as diamonds) are added to the graph.
Quantizers with the same color and symbol have tied grids.

3.4. Integer Model Quantization

After training a model in 32-bit floating point, we quan-
tize weights and activations to 8-bit integer precision using
the AIMET library [43] in two stages. In the Post-Training
Quantization (PTQ) stage, we estimate the quantizer param-
eters by passing a small amount of data through the network
using a per-layer MSE loss [30]. To improve performance,
we then add a Quantization-Aware Training (QAT) stage,
where we use LSQ [8] to finetune both the network and
quantization parameters using gradient descent. The exact
hyperparameters of each stage can be found in Tab. 5.

We use integer quantization with a learned uniform grid,
defined by a step size and a zero offset parameter. For the
network weights, we learn a grid per output channel without
zero offset, i.e., symmetric per-channel quantization. For
activations, we learn a single quantization grid with a scale
and zero offset, i.e., asymmetric per-tensor quantization.

A few operations require custom quantization grids. As
noted in recent works [20, 41], bottleneck quantization in a
mean-scale hyperprior architecture needs careful consider-
ation when quantizing activations and performing entropy
coding. The computational graph of the entropy model for
the bottleneck of a mean-scale hyperprior is shown in Fig-
ure 3. We will first describe this graph without considering
model quantization and then describe how we set the quan-
tizers (shown as diamonds in this plot).

The latents y are the output of the mean-scale hyperprior
encoder. These are not transmitted directly, rather, we trans-
mit the symbols s = y−µ, which are the latents after mean
subtraction. During inference, symbols are rounded to the
integer grid ŝ = ⌊s⌉. During training, rounding is simulated
in a differentiable manner using uniformly sampled additive
noise u ∼ U [−0.5, 0.5], resulting in s̃ = s + u (Figure 3,
bottom path in grey). A proxy rate loss R̃ is then based on
these noisy latents, while the distortion loss D̂ is based on
the quantized latents [11].

To quantize the model for on device inference, we add
quantizers for each of the variables, indicated by diamonds
in Figure 3. The work of Said et al. [40] shows how to best

quantize the scale σ: let the network predict a pre-scale ρ ∈
(0, 1], which is mapped to the scale using an exponential-
polynomial function σ = T (ρ) by the entropy decoder. As
the domain of this function is fixed, we can fix the quantizer
Qρ to the same grid. At inference, ρ is directly passed to
the entropy coding algorithm in int8.

The remaining question is how to choose quantizers for
the latents, mean and symbols. As symbols are rounded
to the integer grid, we choose their quantizer Qs to have
a symmetric grid with step size 1. For the pre-quantized
latents y and the mean µ, we show experimentally that sub-
integer precision is required for good rate-distortion perfor-
mance, both in the PTQ and QAT setting. Specifically, we
show that this problem can be solved by either using an 8-
bit quantizer with a step size 1

5 ( 13 for the highest four bi-
trates) or by using a 16-bit quantizer for y, ŷ, and µ. We
observed that careful alignment of the grids performs better
than learning a quantization grid via backpropagation. We
emphasize that during the QAT stage, the rate loss is based
on latents perturbed with uniform quantization noise.

3.5. Entropy Coding and Pipelined Inference

Our decoder must reach a throughput of 30+ frames per
second (FPS) for full HD (1080 x 1920 pixels) YUV 4:2:0
videos. To best utilize available compute, we design an in-
ference pipeline that uses different subsystems of the mobile
neural processing unit (NPU). This pipeline is shown in Fig-
ure 4. Data from up to three timesteps are processed in par-
allel by simultaneously using the GPU, NPU, CPU and the
warping kernel. Additionally, where MobileCodec used the
CPU to perform entropy coding [21], our GPU implemen-
tation can easily be set to run entropy coding exclusively,
ensuring stable performance and framerate.

As the mobile NPU and GPU can share memory, there
are no delays caused by copying data between processing
elements. The amount of entropy coding data to be pro-
cessed is minimized by using only 8-bit integers for data el-
ements. Arithmetic coding functions are implemented with
OpenCL, and thanks to the small size of their tables, paral-
lelization is defined mostly by the number of OpenCL work
items, and work group organization is not critical [19].

4. Experiments
Training stages Training consists of two floating point
training stages and two quantization stages. The hyperpa-
rameters for these training stages can be found in Tab. 5 in
the Appendix. The first two stages train the floating-point
model using the loss of Equation 6. In stage one, auxiliary
losses for the flow are used, and stage two removes these
by setting the loss factor λ = 0. In stage three, we per-
form PTQ by fitting the quantizers while keeping the model
parameters fixed. In stage four, we perform QAT, by fine-
tuning the model and quantizer parameters using LSQ [8].
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Datasets We train all models on Vimeo90k [62]. We use
the Xiph-5N dataset [55, 61] as validation set, and tune hy-
perparameters on this set. We evaluate on multiple video
compression benchmarks: HEVC-B test sequences [15],
UVG-1k [28] sequences, and MCL-JVC [58] sequences.

Neural Baselines We compare our models against state-
of-the-art neural video compression methods that report
YUV performance like SSF-YUV and SSF-Pred from Pour-
reza et al. [33] and DCVC-DC from Li et al. [24]. The latter
does not report performance on full video sequences, and
we re-evaluate their multi-rate model, adjusting the quan-
tization scales for the I-frame and context model to obtain
performance at lower bitrates.

The main neural baseline is MobileCodec [21], as it is
the only work to report results from a mobile device im-
plementation. This model was not designed for YUV color
space. We therefore train it on RGB for 1M steps and then
finetune it on YUV 6:1:1 R-D loss for another 500k steps.
We use the best available group of pictures (GoP) size for
every model. This is GoP=32 for Li et al., GoP=∞ for Pour-
reza et al., and GoP=16 for our model and MobileCodec.

Standard Baselines We run H.265 and H.264 using FFm-
peg [52] with the ‘fast’ preset. We also run HM [45] with
default configurations. Note that on-device implementa-
tions of this standard codec are typically less performant
than this reference implementation. We disable B-frames
and use a GoP=∞. We do not include VVC or AV1. De-
tails and exact commands can be found in Appendix A.1.

Metrics To evaluate compression performance, we com-
pute peak signal-to-noise ratio (PSNR) on the Y, U and V
channels separately. In line with common evaluation proto-
cols [44] we average PSNR over the Y:U:V channels with
weights of 6:1:1. We use Bjøntegaard-Delta bitrate [6] (BD-
rate) to summarize rate-distorion performance in a single
metric, based on bits-per-pixel (bpp) and YUV 6:1:1 PSNR.

We discard rate-distortion points where the bitrate is un-
reasonably high (above 1.3 Mb/s). To ensure a fair compar-
ison, we omit outlier points: we keep points only if all other
methods have a point that falls in the same PSNR range.

We compute the MAC count for our models and neural
baselines using DeepSpeed [2]. Details can be found in Ta-
ble 6 in the Appendix. For the MobileCodec-int8 model
[21] we report AIMET [43] simulated rate-distortion re-
sults. To evaluate MobileNVC, we do not rely on simulated
performance, but rather evaluate the actual rate-distortion
resulting from on-device encoding and decoding.

5. Results and ablations

5.1. Rate-distortion and model complexity

Figure 1 shows BD-rate versus receiver complexity
(left), as well as the rate-distortion performance curves
(right). We summarize BD-rate results in Tab. 1. The best-
performing floating-point neural codec, DCVC-DC, also
has the largest model complexity (about 50× more MAC
operations than our MobileNVC model). Our floating-point
model (MobileNVC fp32) has the lowest receiver-side com-
plexity at 24.5 kMACs/pixel, and matches the BD-rate of
the SSF-YUV model, despite having an ∼ 8 times lower
MAC count. Our floating point codec still underperforms
H.265 (FFmpeg). However, compared to MobileCodec,
which was also designed for on-device inference, we im-
prove compression performance by 45 % whilst reducing
model complexity by more than 10×.

Our quantized codec (MobileNVC int8) far outperforms
the quantized MobileCodec int8 – the only other work to
show real-time mobile video decoding – with 48 % BD-rate
savings. The performance gap between quantized models
and state-of-the-art floating point codecs is substantial, but
this is not surprising, as being able to decode on a mobile
device poses tight computational constraints.

As we optimized for receiver inference speed, our re-
ceiver has 25% of the kMACs of our sender, whereas for



BD rate metric YUV:611 PSNR Y PSNR
Dataset HEVC-B MCL HEVC-B MCL

in
t8 MobileNVC 159.2 192.6 124.9 165.2

MobileCodec [21] 396.7 549.0 319.6 570.7

flo
at

32

MobileNVC 50.8 56.4 32.5 41.9
MobileCodec [21] 171.6 294.4 145.2 268.8
SSF-YUV [33] 46.4 44.2 25.7 27.2
SSF-Pred [33] -10.9 -0.1 -24.1 -10.3
DCVC-DC [24] -57.1 - - -

Table 1. BD-rate saving (in %) relative to ffmpeg x.265 for HEVC-
B and MCL-JCV datasets, lower is better. DCVC-DC is excluded
for datasets where PSNR did not overlap with other methods.
More benchmarks can be found in Figure 7 in the Appendix.

other models this is 70-80%. For our model, components
dealing with motion are lower complexity than baselines
due to the low-dimensional flow vectors, and the fact that
motion-autoencoder only uses Y-channels. Warping oper-
ations are not taken into account in the MAC count, but as
we show in Figure 4, it can be executed in parallel with neu-
ral inference, without runtime overhead. More details on
model complexity can be found in Tab. 6 in the Appendix.

5.2. Inference Speed

We measure inference speed on a mobile phone with a
Snapdragon 8 Gen 2 system-on-chip. On HEVC-B, we
achieve an average receiver inference speed of 38.9 FPS.
As our focus is receiver-side complexity, we did not opti-
mize our transmitter pipeline and run all steps sequentially,
resulting in an encoding rate of around 3 FPS. For decod-
ing, Figure 4 shows the approximate duration of each step.
Inference speed is bounded by network inference, and due
to parallelization, the warping operation is not causing any
overhead. Tab. 2 shows the speed of our parallel entropy
coding implementation. The GPU allows us to greatly opti-
mize coding speed by using a large number of threads, at the
cost of using more bits due to the larger header. We choose
to use 512 threads and implement the header naı̈vely, noting
that an optimized implementation could reduce the bitrate
overhead by 2x. All in all, our method not only improves
the compression performance compared with MobileCodec
but also the throughput, allowing us to operate on full-HD
(1080× 1920) instead of HD (720× 1280) resolution.

5.3. Model Ablations

We ablate model design choices in Tab. 3. All models in
this table are unquantized and are trained only for 1M steps.

First, we look into warping. The model with dense
warping (row III) has better R-D performance than our
overlapped block-warp model (row I). However, the gap is
small, with 6 % BD-rate cost, and the dense warp model
has more than 4x more MACs due to the higher flow di-
mensionality. Comparing overlapped block-warp to vanilla

Bitrate overhead [↓]

# Threads Device Decoding time [↓] Naı̈ve Optimized

1 CPU 20 ms 0.0 % 0.0 %
8 CPU 16 ms 0.6 % 0.6 %

256 GPU 18 ms 2.1 % 1.1 %
512 GPU 11 ms 3.9 % 2.0 %

1024 GPU 6 ms 7.0 % 3.6 %

Table 2. Inference speed and rate overhead for different paral-
lelization strategies for entropy coding of the latents. The row in
bold indicates the settings we used in our work.

block warp (II) without overlap, we see the effectiveness of
overlapping, which brings about 19 % BD-rate savings. Al-
ternatively, one could use a flow-agnostic model as is done
in MobileCodec [21]. In row IV, we include a variant of our
network that uses a conditional convolutional network that
can model warping implicitly, as shown in Figure 5 in the
Appendix. With more than 50 % BD-rate increase com-
pared to overlapped block-warp, it is suboptimal both in
terms of compute and compression performance, showing
the importance of warping. An example warped frame for
each of the methods can be seen in Table 7 in the Appendix.

Next, we look into the probability model for the prior.
We train a version of our model with a scale-only prior (V)
instead of a mean-scale prior (I), as in MobileCodec. Com-
pression performance is significantly reduced, with a 9.6 %
increase in BD-rate, while efficiency gains are minimal.

Lastly, we quantify the effect of our second training
stage, which increases GoP size and uses P-frame loss mod-
ulation as described in section 3.3. Row VI shows that
finetuning the main model (row I) for 250K steps with this
scheme results in 14 % BD-rate savings.

5.4. Quantization ablation

Figure 1 shows that moving from floating point to int8
substantially reduces compression performance. We break
down this reduction in Tab. 4. Row I shows the effect of
quantizing symbols s and flow vectors fP , f̂ . This leads to
a 11.9 % increase in BD-rate (i.e., worse compression per-
formance), mainly due to flow quantization, and provides
an upper bound for quantization performance. In row II,
we also quantize the weights using per-channel quantiza-
tion grids, leading to a 14.2 % overall increase. When we
also quantize all activations except for those in the latent
bottleneck (row III), BD-rate increases to 54.2 %.

Due to interaction between rounding of the latent sym-
bols (or adding uniform noise) and activation quantization,
care should be taken when quantizing the latent bottleneck.
Row IV shows that the scale-quantization of [40] allows us
to quantize the scale to 8-bit with no loss in performance.
As described in section 3.4, the symbols s are rounded to



Model architecture Params [M, ↓] kMACs/px [↓]

Model warping prior send recv send recv BD-rate [↓]

Baseline I. MobileNVC, no finetuning overlap block mean-scale 12.42 6.30 64.93 24.52 0.0 %

Warping II. block warp block warp mean-scale 12.63 6.30 64.93 24.52 19.2 %
III. dense warp dense warp mean-scale 12.50 6.23 153.67 113.59 -6.0 %
IV. conditional conv no warp mean-scale 9.77 6.12 80.72 57.35 51.2 %

Prior V. scale-only prior overlap block scale 11.86 5.74 63.84 23.44 9.6 %

Training VI. MobileNVC (+ finetuning) overlap block mean-scale 12.42 6.30 64.93 24.52 -14.0 %

Table 3. Model architecture ablation. All models are floating-point and have been trained for 1M steps, except for model VI, which trains
with stages 1 and 2 (see Tab. 5 for details). Parameters and kMACS/px are shown for the P-frame model only, and are computed for a
1080× 1920 YUV420 input frame. We refer to the Appendix for corresponding R-D-curves (Figure 8, Left).

Quantization Strategy Quantizer setup BD-rate [↓]

W A!+ !*!-+ !,!' !+ !*!-+ !,!' !+ !*!-+ !,!' !+ !*!-+ !,!'!+ !*!-+ !,!' PTQ QAT

I. Symbols and flow only ✗ ✗ ✓ ✗ ✗ ✗ ✗ 11.9 % -
II. + weights ✓ ✗ ✓ ✗ ✗ ✗ ✗ 14.2 % -

III. + activations ✓ ✓ ✓ ✗ ✗ ✗ ✗ 54.2 % -
IV. + scale ✓ ✓ ✓ ✓ ✗ ✗ ✗ 54.2 % -

V. Fully quantized (latent step size=1) ✓ ✓ ✓ ✓ ✓step size 1 243.3 % -
VI. Fully quantized (latent step size= 1

5
/ 1
3

) ✓ ✓ ✓ ✓ ✓step size 1
5

/ 1
3

101.9 % 42.5 %
VII. Fully quantized (latents int16) ✓ ✓ ✓ ✓ ✓int16 54.2 % 25.6 %

Table 4. Quantization ablation. Values with ✗ are unquantized and ✓indicates values are quantized to int8. BD-rate is computed with
respect to the floating point baseline on the Xiph-5N dataset (lower is better). R-D curves can be found in Figure 8 (Right) in the Appendix.

the integer grid, so we use a step size of 1 for their quan-
tization. Using the same integer grid for the latents y and
the mean µ as for the symbols causes a dramatic drop in
compression performance (row V), showing the sensitivity
of the mean-scale hyperprior to quantization.

One way to overcome this large quantization gap is to use
high precision quantization (int16) for the latents and the
mean (row VII), but this would increase on-device runtime.
We show in row VI that a carefully chosen quantization
grid, with a quantization step size of 1

5 for the latents and
mean parameter, and a step size of 1

3 for the highest three
bitrates, results in a big performance improvement as well.
This choice allows us to cover a sufficiently large range of
values, and avoids that points on the sub-integer grid fall
exactly between two points on the coarser grid, thereby re-
ducing “tie-break” issues compared to for example using
step size 1

4 . As this choice only requires int8 activations, it
does not result in a runtime increase.

Lastly, we see in the rightmost column that compression
performance after post-training quantization (PTQ) can be
further improved using quantization-aware training (QAT).
Row VI gives us our final BD-rate overhead of 42.5 % rel-
ative to the floating-point model. Row VII shows that if the
runtime increase were acceptable, mixed precision would
be the better choice from a compression performance per-

spective. For additional analysis, we refer the reader the
rate-distortion curves in Figure 8 (right) in the Appendix.

6. Conclusion

In this work, we introduce a practical neural codec that
performs real-time decoding of full HD video on a mobile
device. This codec (MobileNVC), outperforms the previous
state-of-the-art practical codec by 48% BD-rate, while re-
ducing the Multiply-Accumulate count by 10×. We design
an efficient network architecture using a new block-based
motion compensation algorithm, and show how to pipeline
inference to enable real time decoding on device. Careful
ablations show the effect of the introduced motion compen-
sation and quantization schemes.

Most neural codecs are still too computationally expen-
sive to be adopted in real life settings. We therefore hope
that this work advances the field of practical neural codecs,
and that it encourages future authors to benchmark their
compression algorithms on-device.
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Joint autoregressive and hierarchical priors for learned im-
age compression. Advances in neural information processing
systems, 31, 2018. 2, 3

[30] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yely-
sei Bondarenko, Mart van Baalen, and Tijmen Blankevoort.
A white paper on neural network quantization. arXiv
preprint arXiv:2106.08295, 2021. 3, 5

[31] Satoshi Nogaki and Mutsumi Ohta. An overlapped block
motion compensation for high quality motion picture cod-
ing. In [Proceedings] 1992 IEEE International Symposium
on Circuits and Systems, volume 1, pages 184–187. IEEE,
1992. 4

[32] Michael T Orchard and Gary J Sullivan. Overlapped block
motion compensation: An estimation-theoretic approach.
IEEE Transactions on Image Processing, 3(5):693–699,
1994. 4

[33] Reza Pourreza, Hoang Le, Amir Said, Guillaume Sautière,
and Auke Wiggers. Boosting neural video codecs by exploit-
ing hierarchical redundancy. CoRR, abs/2208.04303, 2022.
1, 2, 3, 4, 6, 14

[34] Linfeng Qi, Jiahao Li, Bin Li, Houqiang Li, and Yan Lu. Mo-
tion information propagation for neural video compression.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6111–6120, 2023. 3

[35] Oren Rippel, Alexander G Anderson, Kedar Tatwawadi, San-
jay Nair, Craig Lytle, and Lubomir Bourdev. ELF-VC: Effi-
cient Learned Flexible-Rate Video Coding. Neural Informa-
tion Processing Systems, 2021. 2, 3, 4

[36] Oren Rippel and Lubomir Bourdev. Real-Time adaptive im-
age compression. In Doina Precup and Yee Whye Teh, ed-
itors, Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 2922–2930. PMLR, 2017. 2

[37] Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson,
Alexander G. Anderson, and Lubomir Bourdev. Learned
video compression. In IEEE International Conference on
Computer Vision, October 2019. 2

[38] Amir Said, Hoang Le, and Farzad Farhadzadeh. Bitstream
organization for parallel entropy coding on neural network-
based video codecs. In IEEE Int. Symp. on Multimedia, Dec.
2023. 2

[39] Amir Said, Abo-Talib Mahfoodh, and Sehoon Yea. Com-
pressed data organization for high throughput parallel en-
tropy coding. In Applications of Digital Image Processing
XXXVIII, volume 9599, pages 528–536. SPIE, 2015. 3

[40] Amir Said, Reza Pourreza, and Hoang Le. Optimized learned
entropy coding parameters for practical neural-based image
and video compression. In 2022 IEEE International Con-
ference on Image Processing (ICIP), pages 661–665. IEEE,
2022. 2, 3, 5, 7

[41] Junqi Shi, Ming-Tse Lu, and Zhan Ma. Rate-Distortion Op-
timized Post-Training Quantization for Learned Image Com-
pression. 2022. 3, 5

[42] Yibo Shi, Yunying Ge, Jing Wang, and Jue Mao. AlphaVC:
High-Performance and Efficient Learned Video Compres-
sion, 2022. 2

[43] Sangeetha Siddegowda, Marios Fournarakis, Markus Nagel,
Tijmen Blankevoort, Chirag Patel, and Abhijit Khobare.
Neural network quantization with ai model efficiency toolkit
(aimet). arXiv preprint arXiv:2201.08442, 2022. 5, 6

[44] J Ström, K Andersson, R Sjöberg, A Segall, F Bossen, G
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A. Appendix
A.1. Commands for standard codecs

The following commands are used to obtain compres-
sion results for standard codecs FFmpeg (x264 and x265)
and HM. For FFmpeg, we disable B-frames and use de-
fault settings otherwise. We use HM-16.25 with default
settings using the LowDelay-P config, for more details see
https://vcgit.hhi.fraunhofer.de/jvet/HM/-/tags/HM-16.25.

# ffmpeg x264
ffmpeg −y − f rawvideo \

− p i x f m t yuv420p \
−s : v <width>x<h e i g h t> \
− i < i n p u t . yuv> \
− r <f r a m e r a t e> \
−c : v l i b x 2 6 4 \
− p r e s e t <p r e s e t > \
− c r f <c r f> \
−x264 −params bf r ames =0 \
<o u t p u t>

# ffmpeg x265
ffmpeg −y − f rawvideo \

− p i x f m t yuv420p \
−s : v <width>x<h e i g h t> \
− i < i n p u t . yuv> \
− r <f r a m e r a t e> \
−c : v l i b x 2 6 5 \
− p r e s e t <p r e s e t > \
− c r f <c r f> \
−x265 −params bf r ames =0 \
<o u t p u t>

# HM−16.25 LowDelayP
. / b i n / T Ap pEn co de r S t a t i c −c \

. / c f g / e n c o d e r l o w d e l a y P m a i n . c f g \
− i < i n p u t . yuv> \
−− I n p u t B i t D e p t h =8 \
−wdt <width> \
− h g t <h e i g h t> \
− f r <f r a m e r a t e> \
− f <numframes> \
−q <qp> \
−o <o u t p u t>

A.2. Source Data

Per-video and per-color channel benchmark results are
included in a csv file in the Supplementary Materials, ex-
amples of videos decoded with our codec can be viewed at
https://www.youtube.com/watch?v=jXH6utaZirU.

A.3. Additional Results

Additional results are shown on the following pages.
Tab. 5 lists the hyperparameters used in the various training
stages of our model. The full model architecture is detailed
in Figure 6. Figure 8 shows the RD performance for the
models discussed in the model and quantization ablation in
the main text of our paper and Figure 5 details the pipeline
for our flow-agnostic model in this ablation. Finally, Fig-
ure 7 shows the benchmark of our model and various base-
lines on the UVG and MCL-JVC datasets.
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Figure 5. Model architecture of our flow-agnostic model. 3

3Image data from Tango video from Netflix Tango in Netflix El Fuente.
Video produced by Netflix, with CC BY-NC-ND 4.0 license: https:
//media.xiph.org/video/derf/ElFuente/Netflix Tango Copyright.txt

https://vcgit.hhi.fraunhofer.de/jvet/HM/-/tags/HM-16.25
https://www.youtube.com/watch?v=jXH6utaZirU
https://media.xiph.org/video/derf/ElFuente/Netflix_Tango_Copyright.txt
https://media.xiph.org/video/derf/ElFuente/Netflix_Tango_Copyright.txt


Stage 1 Stage 2 Stage 3 Stage 4
Training finetuning PTQ QAT

Data Size batchsize 8 16 2 16
gop 4 7 3 4
crop size 256x256 256x384 256x256 256x256

Loss Multipliers β I-frame β β β β
β P-frame 2β 2β - 2β
P-frame loss modulation τ = 1 (no modulation) τ = 1.2 - τ = 1.2
predicted flow fP λ = 0.1 λ = 0 - λ = 0

reconstructed flow f̂ λ = 0.1 λ = 0 - λ = 0

Optim lr 1e-04 5e-05 - 5e-07
lr schedule - - - cosine decay to 1e-9

Quantization datatype float32 float32 int8 int8 (STE)

Training Time steps 1M 250k 30 100k
walltime ∼ 4 days ∼ 3 days ∼ 2 minutes ∼ 1 day

Table 5. Different training stages and their corresponding hyperparameters.
We train a model for each value of β ∈ {0.0001, 0.0002, 0.0004, 0.0008, 0.0016, 0.0032, 0.0064}
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Figure 6. Model architecture for the neural networks inside of our P-frame model. Convolutional layers are displayed as k × k c where
k refers to kernel size and c refers to the number of output channels. Convolutions with stride s are indicated by ↓ s and transposed
convolutions with stride s are shown as ↑ s.



Parameters [M, ↓] kMACs/px [↓]

MobileNVC MobileCodec SSF SSF-Pred MobileNVC MobileCodec SSF SSF-Pred

Sender I-frame AE 5.66 6.68 9.47 9.47 116.11 211.60 118.01 118.01

Motion pred. 0.21 - - 0.75 1.66 - - 6.44
Motion AE 5.59 11.63 9.48 10.10 28.34 175.60 118.70 124.14
Residual pred. - - - 0.75 - - - 6.32
Residual AE 6.82 6.57 10.09 10.09 36.59 183.60 123.45 123.45
Pframe total 12.42 18.20 19.57 21.69 64.93 359.20 242.15 260.35

Receiver I-frame AE 2.94 2.94 5.82 5.82 93.39 130.90 94.64 94.64

Motion pred. 0.21 - - 0.75 1.66 - - 6.44
Motion AE 2.91 5.98 5.83 6.45 9.5 156.20 94.64 100.08
Residual pred. - - - 0.75 - - - 6.32
Residual AE 3.18 2.75 6.44 6.44 13.36 102.90 100.08 100.08
Pframe total 6.30 8.65 12.27 14.39 24.52 259.10 194.72 212.92

Table 6. Model complexity per subnetwork for 1080 × 1920 YUV420 input. AE refers to (hypper-prior) autoencoder components and
pred. refers to predictor models. Models are: MobileNVC (ours), MobileCodec [21], SSF [1], and SSF-Pred [33].
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Figure 7. Rate-distortion performance of all models on UVG and MCL-JCV.
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Figure 8. Model ablation (Left) and Quantization Ablation (Right). The models in these plots are described in more detail in Tab. 3 and 4
respectively.



A.4. Warping Samples

The effect of the different warping strategies is shown
in Table 7. In this experiment, we compress a single P-
frame as usual, but instead of conditioning the model on the
previously reconstructed frame x̂t−1 we use the previous
groundtruth frame xt−1. Doing so allows us focus on the
differences in warping only.

The frame warped with dense warping (III) does not
show any clear artifacts. When we use block-warp (II) in-

stead, we see discontinuities where the edges of the object
to warp do not align with the blocks (i.e. notice the ”gaps”
in the yellow mast pole). We see that for the Block-Overlap
Warp (I) these artifacts have disappeared. Finally, when we
do not use warping but deploy a conditional model (IV) in-
stead, the predicted frame becomes a lot less crisp.

Note that a checkerboard-like pattern can be seen in the
flow for our Block-Overlap warping model. This pattern
arises as the network learns to exploit the merging of neigh-
boring blocks in blending kernel for a better final result.
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Table 7. Visualization of the output of different warping strategies. Numerals respond to the models in Table 3.
Datapoint obtained from https://www.pexels.com/video/sky-blue-boat-sailing-4602958. Crop location:

https://www.pexels.com/video/sky-blue-boat-sailing-4602958
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