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We propose a simple and efficient method to calculate the electronic self-energy in dynamical
mean-field theory (DMFT), addressing a numerical instability often encountered when solving the
Dyson equation. Our approach formulates the Dyson equation as a constrained optimization prob-
lem with a simple quadratic objective. The constraints on the self-energy are obtained via direct
measurement of the leading order terms of its asymptotic expansion within a continuous time quan-
tum Monte Carlo framework, and the use of the compact discrete Lehmann representation of the
self-energy yields an optimization problem in a modest number of unknowns. We benchmark our
method for the non-interacting Bethe lattice, as well as DMFT calculations for both model systems
and ab-initio applications.

I. INTRODUCTION

Quantum impurity models, which generically describe
a quantum impurity interacting with a non-interacting
fermionic bath [1], play an important role in the study of
strongly correlated materials [2]. In particular, they serve
as auxiliary models in quantum embedding techniques
such as dynamical mean-field theory (DMFT) used to
map an interacting lattice problem to a quantum impu-
rity problem subject to a self-consistency condition [3]. A
common choice of quantum impurity solver is continuous-
time quantum Monte Carlo (CT-QMC) using the hy-
bridization expansion algorithm (CT-HYB) [2, 4, 5], in
which observables of the quantum impurity, such as the
impurity Green’s function, the many-body impurity den-
sity matrix, and higher-order correlation functions, are
directly measured via sampling.

In DMFT and its ab-initio extension density functional
theory (DFT) + DMFT, the impurity Green’s function G
and its corresponding electronic self-energy Σ, matrices
with the dimension of the impurity space, are the pri-
mary quantities of interest. Within the DMFT formal-
ism, these quantities are related via the Dyson equation,
formulated in the Matsubara frequency domain as

G(iνn) = G0(iνn) +G0(iνn)Σ(iνn)G(iνn), (1)

or equivalently

Σ(iνn) = G−1
0 (iνn)−G−1(iνn). (2)

Here, νn ≡ (2n + 1)π/β is a fermionic Matsubara fre-
quency at inverse temperature β, and G0 is a bare
Green’s function, which contains the dynamical Weiss
field describing the impurity bath coupling and the non-
interacting part of the impurity Hamiltonian. It is well-
known that computing the self-energy using the direct
formula (2) leads to an amplification of noise, typically
arising from Monte Carlo-based impurity solvers, which
grows with increasing νn [2]. The mechanism of this

phenomenon will be discussed in this article. Since high-
frequency information contributes significantly to quanti-
ties, such as the Weiss field, required to satisfy the DMFT
self-consistency condition, excessive noise ultimately pre-
vents the convergence of the DMFT loop and charge self-
consistency within DFT+DMFT. Several methods are
used to address this issue, the most common of which we
briefly summarize.

An approach referred to as “tail-fitting” attempts to
address the problem directly [6, 7]. The coefficients
of a high-frequency asymptotic expansion Σ(iνn) ≈∑N

j=0 Σj/(iνn)
j of the self-energy are fit from data ob-

tained using (2) in some fitting window (νmin
n , νmax

n ). The
window must be chosen to cover sufficiently high frequen-
cies so that the asymptotic expansion is valid, but not so
high that the data for the fit is overwhelmed by noise.
This asymptotic expansion is then used in place of (2) at
high frequencies. Determining the location and width of
the fitting window, the number of terms to include in the
asymptotic expansion, and the point at which to “glue”
the asymptotic expansion to the representation (2) re-
quires substantial tuning on a case-by-case basis. This
often makes it difficult to obtain well-converged DMFT
results, and represents a significant obstacle to the con-
struction of reliable, black-box DMFT codes.

Another approach is to expand the imaginary time
Green’s function in a basis of orthogonal polynomials,
such as Legendre polynomials [8], constraining the expan-
sion coefficients using the known high-frequency asymp-
totics of the Green’s function (in particular, G(iνn) ∼
1/(iνn) as n → ∞). The expansion coefficients can
be directly measured, at some computational expense,
within the CT-HYB algorithm. Enforcing the correct
leading-order asymptotic behavior of the Green’s func-
tion reduces, but does not eliminate, the amplification of
high-frequency noise in the self-energy. The performance
of this approach is also sensitive to the size of the basis,
which is challenging to select in a manner that fits the
data accurately without overfitting to noise.
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A third approach, based on the equations of motion, is
the method of improved estimators (IE) [9–11], and more
recently symmetric improved estimators (sIE) [12, 13].
These involve the derivation of higher-order correlation
functions related to the self-energy (and vertex) correc-
tions, which can be directly measured within CT-HYB
[9]. While the sIE approach is effective in stabilizing the
self-energy calculation, it requires some implementation
effort and a significant increase in computational cost,
since unlike the impurity Green’s function in CT-HYB,
the sIEs cannot be measured efficiently by partition sum
sampling [12].

Our approach is based on the observation that the
problem of high frequency noise amplification in the self-
energy is simply the result of a numerical instability in
(2): since both G−1

0 (iνn) and G−1(iνn) grow with νn,
but Σ(iνn) does not, the subtraction causes a loss of ac-
curacy due to catastrophic cancellation. To address this,
we therefore avoid (2) and instead obtain Σ by using (1)
to set up a constrained minimization problem: minimize
the residual ∥G−G0ΣG−G0∥, in a suitable norm ∥·∥,
subject to a constraint on the high-frequency behavior of
Σ which can be determined directly within the CT-HYB
algorithm. Discretizing all quantities using the compact
discrete Lehmann representation (DLR) [14] leads to a
quadratic minimization problem with a scalar constraint
in a small number of degrees of freedom, even at very
low temperatures and large spectral widths. The result-
ing constrained residual minimization (CRM) scheme is
simple to implement using existing codes, with a negli-
gible computational cost. In our numerical experiments,
we find robust convergence of the self-energy with no
tuning of parameters, leading to accuracy at the level of
the Monte Carlo noise with the correct high-frequency
behavior.

This paper is organized as follows. After introducing
the required numerical tools in Sec. II and describing our
method in Secs. III A and III B, we validate our method
for the exactly solvable non-interacting single-band Bethe
lattice in Sec. III C. In Sec. IV, we then demonstrate the
full procedure for two representative examples: the inter-
acting Bethe lattice, and an ab-initio DMFT calculation
for Sr2RuO4.

II. PRELIMINARIES

Our method relies on two primary tools: the high-
frequency expansion of the self-energy, and a compact
representation of imaginary time and imaginary fre-
quency quantities called the DLR.

A. High-frequency expansion of the self-energy

A generic quantum impurity model Hamiltonian is
given by

H = H0 +Hint, (3)

with

H0 =
∑
kα

εkαc
†
kαckα

+
∑
kαb

(
V αb
k c†kαdb + h.c.

)
+

∑
ab

Eabd
†
adb

and

Hint =
1

2

∑
abcd

Uabcdd
†
ad

†
bdddc.

Here, c†α and d†a are the fermion creation operators in
the bath and impurity, respectively. Eab captures the
bare energy structure for the quantum impurity, Uabcd

parameterizes the electron-electron interactions, V αb
k de-

scribes the hybridization between the impurity and the
bath, and εkα is the energy-momentum dispersion of the
bath.
The electronic self-energy of the quantum impurity

problem can be expanded in the νn → ∞ limit as

Σ(iνn) = Σ0 +
Σ1

iνn
+O

(
ν−2
n

)
, (4)

where the matrices Σ0 and Σ1 can be obtained from
the high-frequency expansions of the full and non-
interacting Green’s functions. They are formally defined
in terms of expectation values of commutators and anti-
commutators,

Σab
0 = −⟨{[Hint, da], d

†
b}⟩

Σab
1 = ⟨{[Hint, [Hint, da]], d

†
b⟩ − (Σab

0 )2,
(5)

which can be computed to high accuracy within CT-HYB
from the many-body impurity density matrix at no ad-
ditional computational cost [2, 15, 16]. Formally, the full
Hamiltonian (3) should be used in the commutators, but
all non-trivial terms from its non-interacting part cancel
in Σ0 and Σ1.
The high-level abstractions used in the TRIQS soft-

ware library [17] allow for the direct implementation of
the commutators in (5). Such an implementation is gen-
eral, and in particular agnostic to the exact form of Hint.
Further details on the derivation and implementation of
(5) are given in Appendix A.

B. Discrete Lehmann representation

We give a brief overview of the DLR, and refer the
reader to Refs. 14 and 18 for further details.
The DLR of an imaginary time Green’s function is

given by an expansion of the form

G(τ) ≈
r∑

l=1

K(τ, ωl) ĝl, (6)
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where K(τ, ω) = − e−τω

1+e−βω is the analytic continuation
kernel appearing in the spectral Lehmann representation

G(τ) =

∫ ∞

−∞
dωK(τ, ω)ρ(ω) (7)

relating G to its spectral density ρ. The DLR frequen-
cies ωl are obtained by applying a rank-revealing piv-
oted Gram-Schmidt algorithm to the analytic continua-
tion kernel, and are therefore independent of the specific
Green’s function G. They depend only on the desired
accuracy ϵ of the DLR expansion (6), and a dimension-
less cutoff parameter Λ = βωmax, where ωmax is such
that ρ(ω) = 0 outside [−ωmax, ωmax]. Both ϵ and Λ are
user-specified parameters. To determine Λ, typically β
is given, and ωmax can be estimated, or results can be
converged with respect to Λ. For any imaginary time
Green’s function G obeying the cutoff Λ, there are co-
efficients ĝl such that (6) holds to accuracy ϵ; in other
words, the functions K(τ, ωl) span the space of all such
Green’s functions. The existence of the DLR expansion
is derived from a low-rank approximation of the analytic
continuation operator (7), and crucially, it is observed
that r = O(log(Λ) log

(
ϵ−1

)
), yielding an exceptionally

compact representation.
The DLR coefficients ĝl can be determined by fitting

the expansion (6) to data, or by interpolation at a collec-
tion of r DLR nodes τk also obtained using the pivoted
Gram-Schmidt algorithm. The latter requires solving an
r×r linear system obtained by evaluating the expression
(6) at τ = τk. Fourier transform of (6) yields a DLR
expansion

G(iνn) ≈
r∑

l=1

K(iνn, ωl) ĝl (8)

in the Matsubara frequency domain, with K(iνn, ω) =
(iνn − ω)−1 for fermionic Green’s functions. As in imag-
inary time, the coefficients ĝl can be determined by in-
terpolation at a collection of r DLR nodes iνnk

. Once
the DLR coefficients ĝl have been obtained, the DLR ex-
pansion can be evaluated both in the imaginary time and
frequency domains, so the Fourier transform is in effect
performed analytically.

We note that the DLR is a close cousin of the inter-
mediate representation (IR) [19, 20], which uses a sin-
gular value decomposition of the analytic continuation
kernel to obtain an orthogonal expansion in terms of
numerically-represented basis functions, rather than the
DLR’s non-orthogonal expansion in terms of analytically-
known basis functions. The number of terms in the DLR
and IR expansions at given Λ and ϵ is similar, with the
IR containing slightly fewer. An IR expansion can also
be obtained using fitting or a similar interpolation pro-
cedure, with interpolation nodes determined either in
the manner described above [14], or using the sparse
sampling method [21, 22]. Both the DLR and IR have
been effectively used to represent imaginary time and fre-
quency quantities other than Green’s functions, such as
self-energies and hybridization functions [21–27].

III. CONSTRAINED RESIDUAL
MINIMIZATION ALGORITHM

A. Instability in the direct solution of the Dyson
equation

The formula (2) for Σ is numerically unstable, causing
an amplification of noise in G0 and G at high frequencies.
To demonstrate this, suppose we perturb G(iνn) by a

noise function η(iνn), and let Σ̃ be the approximation of
Σ obtained from (2). We find

Σ̃(iνn) = G0(iνn)
−1 − (G(iνn) + η(iνn))

−1

= G0(iνn)
−1 −G(iνn)

−1(I + η(iνn)G(iνn)
−1)−1

= G0(iνn)
−1 −G(iνn)

−1
∞∑
k=0

(η(iνn)G(iνn)
−1)k

= Σ(iνn)−G(iνn)
−1

∞∑
k=1

(η(iνn)G(iνn)
−1)k

as long as η is sufficiently small. We focus on the case
of scalar-valued Green’s function and self-energy for sim-
plicity. Since G(iνn) ∼ (iνn)

−1 as n → ∞, we have
G(iνn)

−1 ∼ iνn, yielding an expansion of the error of the
form

ην2n + η2ν3n + · · · .

Here we have abused notation and ignored the frequency
dependence of η. This error growth can be viewed as
a consequence of catastrophic cancellation: the grow-
ing quantities G−1

0 and G−1 are subtracted to obtain a
bounded quantity Σ, leading to an amplification of noise.
We note that while this explanation assumes roughly uni-
form noise in the Matsubara frequency domain, we do not
claim this is necessarily the correct error model for any
given Monte Carlo-based impurity solver. However, it is
a simple model of the mechanism of high frequency noise
amplification, which reproduces the rate of noise growth
often observed in practice.

B. Constrained residual minimization

To avoid the numerically unstable formula (2), we in-
stead begin with (1), defining its residual as

R = G−G0ΣG−G0. (9)

Here, all quantities are considered to be numerical ap-
proximations, so that R ̸= 0 as it would be if (1) were
satisfied exactly. Given the leading coefficients Σ0 and Σ1

of the asymptotic expansion (4), which can be computed
directly as described in Section IIA, Σ can be obtained
from G and G0 by minimizing ∥R∥ in a suitable norm
subject to the constraint that (4) holds. We refer to this
approach as constrained residual minimization (CRM).
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We discretize (9) by evaluating it at the DLR Matsub-
ara frequency nodes iνnk

. Thus, we define rk ≡ R(iνnk
),

gk ≡ G(iνnk
), g0k ≡ G0(iνnk

), and σk ≡ Σ(iνnk
). As de-

scribed in Section II B, the DLR expansions of R, G, and
G0 can be recovered from the values gk and g0k. For Σ,
we must first subtract its known constant part Σ0 for the
DLR expansion to be valid. Thus, defining Σ ≡ Σ− Σ0,
we can recover the DLR expansion of Σ from the values
σk −Σ0, which gives a method of recovering Σ, and also
implements the constraint on the constant term given in
(4). The discretization of (9) is therefore given by

rk ≡ gk − g0kσkgk − g0k . (10)

We measure the residual (9) in the L2(τ) norm, given
by

∥R∥2L2(τ) ≡
1

β

∫ β

0

dτ ∥R(τ)∥2F , (11)

where ∥·∥F is the Frobenius norm. We show in Appendix
B that (11) can be computed from a simple quadratic
form evaluated at the DLR coefficients r̂l of R, which
can be obtained from the values rk by interpolation.
To implement the constraint on the first decaying term

in (4), we equate the DLR expansion of Σ and the desired
asymptotic expansion:

r∑
l=1

K(iνn, ωl)σ̂l = Σ(iνn)

= Σ(iνn)− Σ0 =
Σ1

iνn
+O(ν−2

n ).

Multiplying both sides by iνn and taking the limit n →
∞ yields the desired constraint

r∑
l=1

σ̂l = Σ1,

since K(iνn, ω) = (iνn − ω)−1.
The discretized CRM problem is therefore given as fol-

lows:

argmin
σk

∥R∥L2(τ) subject to

r∑
l=1

σ̂l = Σ1. (12)

Once it has been solved, Σ is given by the DLR expansion

Σ(iνn) = Σ0 +

r∑
l=1

K(iνn, ωl)σ̂l.

The objective function ∥R∥L2(τ) can be computed from

σk using (10) and the procedure described in Appendix
B, since gk and g0k are given. The DLR coefficients σ̂l are
recovered from the σk by solving the r × r linear system

r∑
l=1

K(iνnk
, ωl)σ̂l = σk.

In our numerical examples, we use the SciPy [28] imple-
mentation of the trust region optimization method [29]
to solve (12). We note that the CRM problem is simply a
quadratic minimization problem with a scalar constraint,
and its solution is therefore given semi-analytically in
terms of simple matrix operations. However, we find that
the trust region optimization tends to perform slightly
better, due to the appearance of ill-conditioned opera-
tions in the semi-analytic formula.
We note that since the CRM scheme seeks a balance

between correctly matching the low-frequency data via
the Dyson equation, and high-frequency asymptotics of
relatively low-order, one might obtain a larger error for
intermediate frequencies in which neither of these lim-
iting representations is sufficiently accurate. In our nu-
merical examples, which include realistic DMFT calcu-
lations, we have not observed a significant contribution
of this effect to the error. A topic of our future work is
the possibility of directly measuring higher-order asymp-
totics, which would push the region of validity of the
asymptotic expansion to lower frequencies. In particular,
we note that the next term of the asymptotic expansion
can be obtained given an approximation of the bath hy-
bridization by a finite number of levels, for which there
exist a variety of algorithms [3, 30–32].

C. Benchmark: non-interacting Bethe lattice

We first test our algorithm on the non-interacting
Bethe lattice, given by (1) with Σ = G/4 and G0(iνn) =
(iνn)

−1. This model can be solved analytically in real
frequency [3], yielding the semi-circular spectral function

ρ(ω) = 2
π

√
1− ω2 on [−1, 1]. G(τ) and G(iνn) can then

be computed from the Lehmann representation (7) and
its Fourier transform (obtained by replacingK(τ, ω) with
K(iνn, ω)) by numerical integration. These are shown in
Figs. 1(a) and 1(b). This directly yields a high-accuracy
reference solution for Σ = G/4.
To simulate the output of a Monte Carlo-based impu-

rity solver in imaginary time, we evaluate G(τ) at a large
collection of random points τ , and perturb the result by
random noise of magnitude η. We then obtain a DLR
expansion of G by least squares fitting this data. This
expansion can be evaluated in the Matsubara frequency
domain using (8). In this case, we have ωmax = 1, so we
use the DLR cutoff parameter Λ = β, and set the DLR
accuracy parameter to ϵ = η. We calculate the leading
coefficients of the asymptotic expansion of Σ analytically:
Σ0 = 0, and Σ1 = 1/4. We then obtain Σ using both
the direct formula (2) and the CRM procedure (12), as
shown in Fig. 1(c) for β = 100 eV−1 and η = 10−4. The
pointwise error of Σ(iνn), computed using the known re-
sult, is shown for both methods at η = 10−4, 10−6, and
10−8 in Fig. 1(d). We observe the O(η ν2n) leading order
error growth derived in Section IIIA for the self-energy
obtained from (2). The CRM approach yields uniform
accuracy at the noise level η until the asymptotic re-
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FIG. 1. (a) G(τ) for the non-interacting Bethe lattice with β = 100 eV−1. (b) ImG(iνn); note ReG(iνn) = 0 by symmetry.
(c) ImΣ(iνn) computed via the direct formula (2) and the CRM method, using data obtained in imaginary time with noise
level η = 10−4, along with the exact solution Σ = G/4. (d) Pointwise error for both methods, for several choices of η, along
with the predicted error for the direct method.

gion, at which point the correctly-captured leading-order
asymptotics yields an error decreasing at the expected
O(ν−2

n ) rate.
We note that even if G were obtained with very little

noise, the high frequency noise amplification eventually
leads to incorrect tail behavior using (2), whereas CRM
yields a DLR expansion of Σ with the correct asymptotic
behavior on the full Matsubara frequency domain.

IV. NUMERICAL EXAMPLES

We demonstrate the CRM method for two prototypical
DMFT calculations: the interacting Bethe lattice and a
three-band Hubbard model of Sr2RuO4.

A. Interacting Bethe lattice

We begin with the half-filled, single-orbital Bethe lat-
tice, for which the non-interacting Green’s function is
determined by a semi-circular density of states (DOS).
The interaction Hamiltonian is of the simple form H =
Un↑n↓, where we have set (in units of the hopping t)
U/t = 4, and the system inverse temperature to βt = 5.
We solve the corresponding quantum impurity problem
using the CT-HYB impurity solver as implemented in
TRIQS/cthyb [33]. In order to simplify the experiment,
we perform only one DMFT cycle, which is sufficient to
test the CRM method for various choices of calculation
parameters. The density matrix ρimp is measured within
CT-HYB, which allows us to compute the expectation
values for the high-frequency expansion coefficients of the
self-energy given in (5).

In TRIQS/cthyb, samples of the imaginary time
Green’s function are averaged within bins of a fixed
width, leading to a bin width parameter and a corre-
sponding binning error. In our experiments, we use 104

equispaced bins, which is sufficient to make the binning

error negligible and to ensure that each bin contains a
sufficient number of samples. We note that properly ad-
justing the number of bins requires some care, and an im-
portant future problem is to design an algorithm which
maintains the efficiency of binning with substantially re-
duced errors, e.g., via projection onto a higher-order ba-
sis. For all experiments, we set the DLR tolerance to
ϵ = 10−6, which is below the Monte Carlo error, and we
use CRM to obtain the impurity self-energy. We compare
our results to a reference self-energy Σleg, obtained using
the well-established Legendre polynomial expansion of
the Green’s function [8], with Legendre coefficients mea-
sured directly within CT-HYB using a total of 1011 QMC
samples, a roughly 6000 core-hour calculation.

Using a CRM calculation with N = 109 QMC sam-
ples, in Fig. 2(a) we plot Im{Σ(iνn)} for several choices
of the DLR cutoff parameter Λ, along with the refer-
ence, and we plot their corresponding absolute point-
wise difference in Fig. 2(b). We observe convergence
to the reference as Λ is increased. We note that although
Σleg was calculated with a larger number of QMC sam-
ples, its accuracy is limited by the presence of Monte
Carlo noise which is somewhat amplified at high fre-
quencies. It is therefore possible that the CRM result
is more accurate at high frequencies. Fig. 2(c) shows the
maximum absolute pointwise difference against Λ (blue
curves) for N = 106 and N = 109 QMC samples. We
also show a “self-convergence” error (red curves), given
by the maximum of |Σ(iνn)− Σlast(iνn)|, where Σ is the
self-energy computed with a given choice of Λ and Σlast

is the self-energy computed with the largest value of Λ
used, which is Λ = 50. Since in practice one does not
have a known reference solution, the choice of a con-
verged Λ parameter can be determined by starting with
a physically-motivated guess (based on an estimate of
ωmax), and plotting the self-convergence error against Λ
in this manner. Both error metrics consistently suggest
convergence to the QMC noise level by Λ = 20, and this
noise level decreases at the expected rate as the num-
ber of QMC samples is increased (by roughly a factor
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FIG. 3. Comparison between constrained residual minimiza-
tion (CRM), improved estimators (IE), and symmetric im-
proved estimators (sIE) for the interacting Bethe lattice ex-
ample. The CT-HYB solvers were run using 108 QMC sam-
ples. For CRM, we used Λ = 20 and ε = 10−6.

of 30 for a 1000-fold increase in the number of sam-
ples). Fig. 2(d) shows the spectral function (interact-
ing DOS) obtained via Padé analytic continuation [34]
for our single-orbital model. We find a spectral width
of roughly ωmax = 4 eV, consistent with the observed
convergence near Λ = βωmax = 20.

We lastly compare the CRM algorithm to the methods
of improved estimators (IE) and symmetric improved es-
timators (sIE), in which the self-energy is obtained by
measuring high-order correlation functions [9–13]. We
use the implementations of IE and sIE provided by the
w2dynamics code [35], and used N = 108 QMC sam-
ples in all cases. Fig. 3 shows the pointwise absolute
difference of Σ(iνn) for each method and the reference

self-energy Σleg, along with that using the direct formula
(2). All methods agree in the low-frequency regime, and
use of the direct formula produces the expected loss of ac-
curacy at high frequencies. All three alternative methods
outperform the direct formula (2), but the error of IE is
still too large to be useful in practical computations. sIE
and CRM outperform the other approaches, and yield
comparable results. However, the sIE results come at a
significant additional computational cost: for the simple
one-band model considered here, the cost of measuring
the sIE was roughly 10 times larger than CRM to achieve
similar accuracy. In particular, the cost of CRM does not
scale with the size of the impurity problem, in contrast
to the IE and sIE methods.

B. Three-band Hubbard model of Sr2RuO4

We next consider an ab-initio-derived three-band Hub-
bard model, a common DFT+DMFT workflow, at
full DMFT self-consistency. We model the correlated
Hund’s metal Sr2RuO4, where the non-interacting low-
energy physics consists of three partially filled t2g ≡
{dxy, dxz, dyz} bands from the Ru(4d) site. We downfold
the Kohn-Sham Hamiltonian onto three maximally lo-
calized Wannier functions, which serve as our correlated
impurity subspace. Our low-energy model is identical to
that discussed in Ref. 26, which contains further details.
Interactions are governed by a local rotationally-

invariant Hubbard-Kanamori Hamiltonian [36] with U =
2.3 eV and JH = 0.4 eV. We solve the impurity
problem using the CT-HYB algorithm implemented in
TRIQS/cthyb [33]. We use the inverse system temper-
ature β = 40 eV−1 (∼290 K). In each step of the self-
consistent DMFT calculation, the CRM method is used
to obtain the self-energy from the impurity solver. We
also perform the same calculation using the standard
TRIQS tail-fitting protocol, which operates according to
the description in Sec. I: an asymptotic expansion of a
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FIG. 4. Comparison between the TRIQS tail-fitting algorithm and CRM for the Sr2RuO4 example. (a,b) Real and imaginary
parts of Σ11(iνn) in the low to mid-frequency regime. The window sizes correspond to (νmin

n , νmax
n ) = (2,4) (window 1), (2,6)

(window 2), and (2, 10) (window 3). The dashed black line corresponds to the directly measured high-frequency expansion
of the self-energy. (c,d) Same as (a,b), at higher frequency. (e,f) Convergence of the chemical potential µ and local Green’s
function G as measured by their differences δµ and δG between subsequent iterations.

few terms is obtained by fitting the data produced by
(2) on a user-specified frequency window, and glued to
the result produced by (2). We produce results for three
different choices of the fitting window.

The real and imaginary parts of the first diagonal el-
ement of the self-energy are shown in Figs. 4(a)-(d), re-
spectively, using CRM and the tail-fitting algorithm im-
plemented in TRIQS, along with the direct formula (2).
The results for the other diagonal elements are similar,
and the off-diagonal elements are zero. The self-energy
produced by the CRM algorithm correctly reproduces
the low-frequency result given by (2), and has the cor-
rect high-frequency asymptotics, ReΣ(iνn) → Σ0 and
ImΣ(iνn) ∼ Σ1/(iνn), as imposed by CRM.

The solutions produced using the tail-fitting method
are highly dependent on the choice of the fitting win-
dow, which must be specified by the user. For too large
of a window (window 3: νmin

n = 2, νmax
n = 10), too

much high-frequency noise is incorporated, leading to
large high-frequency errors. For too small of a window
(window 1: νmin

n = 2, νmax
n = 4), the high-frequency

asymptotics are not correctly captured. In a “Goldilocks
zone” fitting window, it is possible to balance these
competing sources of inaccuracy reasonably well, but in
this experiment even a well-chosen window (window 2:
νmin
n = 2, νmax

n = 6) is outperformed by CRM in re-
producing the correct high-frequency asymptotics. Evi-
dently, the necessity of finely hand-tuning the tail-fitting
parameters—which must ideally be done for each non-
equivalent orbital separately and, in principle, at each

DMFT iteration— represents a significant barrier to pro-
ducing black-box DMFT codes, and CRM eliminates the
need for such a procedure.

We also observe that the use of CRM helps to stabilize
the DMFT loop by eliminating fluctuations in the high-
frequency behavior of the self-energy. In Figs. 4(e,f), we
show the convergence during the DMFT iteration of two
important quantities, the chemical potential µ and the
local Green’s function G, by plotting their differences
δµ and δG between consecutive iterations. The CRM
approach appears to stabilize the DMFT self-consistency,
leading to smoother and more rapid convergence to a
higher-accuracy result.

V. CONCLUSION

We have proposed the CRM algorithm to compute the
electronic self-energy in DMFT calculations using CT-
QMC-based quantum impurity solvers in a stable man-
ner. CRM is agnostic to the quantum impurity solver and
can be used whenever the high-frequency behavior of the
electronic self-energy is known, which includes applica-
tions outside of DMFT. The algorithm is simple to imple-
ment, and can therefore replace otherwise cumbersome
tail-fitting procedures. Furthermore, our results suggest
that CRM yields improved stability and convergence of
physical observables, and thereby improved accuracy of
calculations within DMFT and DFT+DMFT. Combin-
ing the CRM method with the approach of Ref. 26, which
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demonstrated the replacement of dense Matsubara fre-
quency grids with compact grids of DLR nodes, we en-
vision a streamlined and automated implementation of
the DMFT loop with highly efficient discretizations of
all quantities and minimal parameter-tuning.
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Appendix A: High-frequency asymptotics of the
self-energy

The high-frequency expansion of the interacting
Green’s function is given by

G(iνn) =
G1

iνn
+

G2

(iνn)2
+

G3

(iνn)3
+O

(
ν−4
n

)
, (A1)

with

Gn = ∂n−1
τ G(0+)− ∂n−1

τ G(0−).

The first few coefficients are given by [2]

Gab
1 = ⟨{da, d†b}⟩ = δab,

Gab
2 = −⟨{[H, da], d

†
b}⟩,

Gab
3 = ⟨{[H, da], [d

†
b,H]}⟩,

(A2)

where H is defined in (3). The analogous expansion for
the non-interacting Green’s function is obtained using
the Hamiltonian (3) without the interaction term.

To obtain the high-frequency expansion of the self-
energy, we substitute the expansions for the full and non-
interacting Green’s function into (1). Matching terms of
like powers yields

Σ(iνn) = G2 −G02 +
G3 −G03 +G2

02 −G2
2

iνn
+O

(
ν−2
n

)
≡ Σ0 +

Σ1

iνn
+O

(
ν−2
n

)
,

where the coefficients of the asymptotic expansion of G0

are given, in analogy with (A1), by G01, G02, etc. The
expressions for Σ0 and Σ1 in (5) then follow from (A2).
We test our implementation on a simple model: a

dimer coupled to a bath, which can be solved by ex-
act diagonalization. A description of the model, calcula-
tion parameters, and implementation in TRIQS are pro-
vided in Ref. 37. We obtain a reference self-energy using
the exact diagonalization library PyED [38]. We use the
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FIG. 5. Asymptotic expansion Σ0+Σ1/(iνn) of the self-energy
for the dimer example, with coefficients computed from (5) us-
ing the measured many-body density matrix within CT-HYB,
compared with a reference computed using exact diagonaliza-
tion.

TRIQS/cthyb [33] solver to sample the many-body den-
sity matrix ρimp, from which we compute the first two
coefficients of the asymptotic expansion of the self-energy
using (5). Fig. 5 compares an expansion Σ0+Σ1/(iνn) to
the reference self-energy, showing close agreement in the
high-frequency regime. This implementation is available
in latest release of TRIQS/cthyb [39].

Appendix B: L2(τ) norm of a DLR expansion

We show in this Appendix how to compute ||G||L2(τ)

for a DLR expansion G. In the CRM method, the objec-
tive function is given by ||R||L2(τ), with R represented by
its values rk at the DLR Matsubara frequency nodes; the
DLR coefficients r̂l can be recovered via interpolation in
the DLR basis. We focus on the case of scalar-valued G,
since the matrix-valued case follows directly.
Let

G(τ) =

r∑
l=1

K(τ, ωl)ĝl (B1)

be a DLR expansion. We have

||G||2L2(τ) ≡
1

β

∫ β

0

dτ G2(τ)

=
1

β

r∑
k,l=1

ĝkĝl

∫ β

0

dτ K(τ, ωk)K(τ, ωl)

≡
r∑

k,l=1

ĝkMklĝl,

with the last equivalence defining the matrix M . Thus
the squared norm is given by a quadratic form with ma-
trix M , evaluated at the vector of DLR coefficients. M is
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straightforwardly computed, and we write two equivalent
formulas:

Mkl = K(0, ωk)K(0, ωl)
1− e−β(ωk+ωl)

β(ωk + ωl)
(B2)

and

Mkl =
K(0, ωk)K(0, ωl)−K(β, ωk)K(β, ωl)

β(ωk + ωl)
. (B3)

The ωk = −ωl case is given, via the limit, as

K(0, ωk)K(0, ωl). When ωk ≈ −ωl, both formulas suf-
fer from catastrophic cancellation, but this is straightfor-
wardly remedied in (B2), e.g., using the expm1 function
[40] for the stable calculation of ex − 1. On the other
hand, when β(ωk + ωl) ≪ 0, (B2) is vulnerable to nu-
merical overflow, whereas (B3) is numerically stable. We
therefore use (B2), evaluated using the expm1 function,
when 0 < |β(ωk + ωl)| < 1, (B3) when |β(ωk + ωl)| ≥ 1,
and the exact formula when ωk = −ωl.
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arXiv:2307.08566.
[28] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haber-

land, T. Reddy, D. Cournapeau, E. Burovski, P. Pe-
terson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Po-
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