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We consider the square lattice S=1/2 quantum compass model (QCM) parameterized by Jx, Jz , under a

field, h, in the x-z plane. At the special field value, (h⋆
x, h

⋆
z)=2S(Jx, Jz), we show that the QCM Hamiltonian

may be written in a form such that two simple product states can be identified as exact ground-states, below a

gap. Exact excited states can also be found. The exact product states are characterized by a staggered vector

chirality, attaining a non-zero value in the surrounding phase. The resulting gapped phase, which we denote

by SV C occupies most of the in-plane field phase diagram. For some values of hx>hz and hz>hx at the

edges of the phase diagram, we have found transitions between the SV C phase and phases of weakly-coupled

Ising-chain states, Z and X . In zero field, the QCM is known to have an emergent sub-extensive ground-state

degeneracy. As the field is increased from zero, we find that this degeneracy is partially lifted, resulting in

bond-oriented spin-stripe states, L and R, which are each separated from one another and the SV C phase

by first-order transitions. Our findings are important for understanding the field dependent phase diagram of

materials with predominantly directionally-dependent Ising interactions.

Quantum compass models were first introduced as a model

of orbital-orbital interactions arising from a Jahn-Teller distor-

tion [1–4], and both classical and quantum versions have been

extensively studied [5–19] with the main focus on ground-

state properties of two-dimensional models. Interest in com-

pass models intensified with the realization that Kitaev’s hon-

eycomb model [20] with bond-directional interactions, a spe-

cial case of a compass model, potentially can be realized in

materials through a super exchange mechanism [21]. In par-

ticular, iridium- and ruthenium-based systems in which lig-

ands form edge-sharing octahedra surrounding the transition

metal atoms have been proposed as materials which may re-

alize a pseudospin Kitaev model [21], with α-RuCl3 [22–24],

a layered two-dimensional honeycomb material, as one of the

most promising materials. This has given rise to the class of

Kitaev materials [25–30] that one may view as particular re-

alizations of the broader class of quantum compass models.

For Kitaev materials, field-induced spin liquid phases are of

special interest due to the potential presence of anyonic ex-

citations, and intriguing results been observed in theoretical

studies [31–45] and in recent experiments on α-RuCl3 when

an out-of-plane field [46] is applied in the [111] direction, as

well as for an in-plane field [47–51]. The latter case is of

special interest here since we show that for the closely re-

lated square lattice quantum compass model (QCM) a twice

degenerate exact ground-state below a gap can be found un-

der an in-plane field, inducing an extended phase with other

non-trivial phases in proximity. Here, we determine the com-

plete in-plane field phase diagram.

The bulk of our results are focused on the QCM, and we

first note a number of interesting properties of this model.

The QCM, in absence of a magnetic field, has a sub-extensive

ground-state degeneracy of 2×2L [9] and topological soli-

ton excitations which are deconfined in one dimension [52].

Through a duality transformation [8], it has been shown that

the QCM is equivalent to the Xu-Moore model, originally pro-

posed to model interactions between p+ip superconductor ar-

rays [53]. Furthermore, a duality mapping has also been estab-

lished between the Xu-Moore model and the transverse-field

toric code model [54, 55]. Consequently, a duality mapping

exists between the zero field QCM and the transverse field

toric code model, and the latter model has been studied under

an in-plane field [56] as well as a transverse field [55]. Both

classical and quantum QCM models have been studied at fi-

nite temperature [7, 11], in both cases finding a transition in

the 2D Ising universality class to a low temperature ordered

phase. One may also note that, it has been shown in Ref. [57]

that two decoupled copies of the QCM can be mapped to the

model of interacting Majorana fermions of Ref. [57], relevant

to 3D topological insulators with proximity-induced super-

conductivity. Dualities between each of these models demon-

strate how properties of the QCM may be understood in sev-

eral different contexts.

The antiferromagnetic quantum compass model is,

H = J
∑

r

(Ŝx
r
Ŝx
r+ex + Ŝz

r
Ŝz
r+ez )−

∑

r

h · Ŝr. (1)

Here, we set g=~=µB=1. Furthermore, we parameterize the

field term as =h(cosφxz cos θy, sinφxz cos θy, sin θy) and de-

fine |h| = h as the field strength. We use N = Lx × Lz to

denote the number of sites in the model, and we shall refer to

the JŜxŜx coupling as a x-bond and the JŜzŜz coupling as

a z-bond. In zero field, a unitary transformation around the y-

axis on every second site, relates J to −J . However, since our

focus is on ground-states in the presence of a field, the sign of

| x 〉 | z 〉

| z 〉 | x 〉

| x 〉 x
z

| z 〉

| x 〉 | z 〉

| z 〉 | x 〉

| x 〉 | z 〉 hx

hz h∗
xz=

√
2

FIG. 1. Exact ground state of the QCM under in-plane field h∗
xz =

2JS
√
2. Coloured bonds represent Ising interactions.
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J matters, and we exclusively focus on the antiferromagnetic

(AF) model with J>0. We set J=1.

Exact Ground and Excited States: The exact ground-states

for the QCM can be found by the following simple argument.

If we consider the Hamiltonian, Eq. (1) for general S, we can

write the field term in the form −∑

r
(hxŜ

x
r
+ hzŜ

z
r
). Fol-

lowing Ref. [58, 59], we then see that with φxz=π/4, where

hx=hz , we can absorb the field term into the interaction term

at the special field value h⋆
x=h⋆

z=2JS with |h⋆
xz|=2JS

√
2. For

a Lx×Lz lattice with periodic boundary conditions in both di-

rections and both Lx and Lz even, we can then write at h⋆
xz:

H = Hp − 2NJS2

Hp = J
∑

r

[

[

(S − Ŝx
r

)

(S − Ŝx
r+ex)+

(S − Ŝz
r
)(S − Ŝz

r+ez )
]

. (2)

Hp is here positive semidefinite, and it follows that if a prod-

uct state |P 〉 can be found where each site is in an eigen-

state of Ŝα|α〉=S|α〉 (α=x, z) such that Hp|P 〉=0, then |P 〉
is not only an eigenstate, but a ground-state. For the QCM

it is straight forward to see that if Lx and Lz are both even,

and periodic boundary conditions (PBC) are applied, then the

two simple product states with |x〉 on one sublattice and |z〉
on the other, as shown in Fig. 1, are eigenstates of Hp with

eigenvalue 0, and therefore degenerate ground-states with

E0=−2NJS2. This construction trivially generalizes to the

case where Jx 6=Jz where the same ground-states appear at

(h⋆
x, h

⋆
z)=2S(Jx, Jz). It is exact for any finite Lx×Lz torus

under PBC, but does not hold for open boundary conditions

(OBC) nor when Lx or Lz are odd. It is interesting to note

that the above argument is only superficially related to the re-

markable extension of the Lieb-Schultz-Mattis (LSM) theo-

rem for quantum spin chains [60, 61] to the case of an ap-

plied field [62, 63], showing that magnetization plateaus can

appear, associated with a gapped state, when conserved quan-

tities such as the total magnetization
∑

j S
z
j are present. In

contrast, for the QCM, the magnetization is not conserved,

and since we can generalize to the case Jx 6=Jz , any spe-

cial symmetry axis does not appear important. We also note

that similar product states formed with Sα|αm〉=m|αm〉 with

0<m<S will be eigenstates at the field value hx=hz=2Jm,

but not ground-states. In the following, we provide strong nu-

merical evidence for a sizable gap at h⋆
xz and demonstrate that

the two product states are the only ground-states at h⋆
xz under

periodic boundary conditions (PBC) with Lx, Lz even. We

expect that for large systems, lifting these constraints will not

change the physics due to the presence of a gap, and we ex-

plore the full phase diagram using iPEPS, without imposing

PBC.

Methods: For an in-plane field there is no sign problem

and Monte Carlo methods are applicable, but we have found

it advantageous to use iPEPS [64–66] directly in the ther-

modynamic limit for the two-dimensional lattice, to obtain

high precision results for the field dependent phasediagram

of the QCM at zero temperature. For details, see Ref. [67].
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FIG. 2. Results from ED with PBC on a 4×6 lattice, iDMRG with

Lz=10, and iPEPS versus field strength, hxz , for a field in the [101]

direction (φxz = π/4). (a) χe
hxz

ED, iPEPS and iDMRG. (b) |X y |
from ED with a small pinning field 0.005hz on a single site, iPEPS,

and iDMRG. (c) φ and bond correlations from iPEPS. (d) energy

gaps as obtained from ED. Solid vertical lines indicate hc1
xz=0.540

and hc2
xz=1.626 separating the low field LR, SV C, and polarized

(PS) states. The dotted vertical line indicates the exactly-solvable

point, h⋆
xz = 2SJ

√
2.

In addition, we use exact diagonalization of small clusters,

and iDMRG [68–75] on infinitely long cylinders in the x-

direction, of circumference up to Lz=10. Typically, we use

iDMRG with a bond dimension up to D=1000 and ǫ=10−11.

The location of quantum critical points (QCP) are first deter-

mined from the susceptibility of the ground state energy per

spin e0 with respect to a parameter p, defined as χe
p = −∂2e0

∂p2 .
In finite systems, at a quantum critical point, χe is known to

scale as [76–78] χe ∼ N2/ν−d−z , and is therefore likely to

diverge at a QCP, with ν and z the correlation and dynamical

critical exponents and d the spatial dimension. Our numerical

results are for the S=1/2 QCM, and we consider Lx×Lz=N
lattices. In light of our exact solution mentioned previously,

and the natural competition between bond-directional order-

ing of the QCM in zero field, we define the vector bond-
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chirality

X y
α = 〈~Sr × ~Sr+eα

〉y α = x, z (3)

along with a nematic order parameter

φ = 〈Sx
r
Sx
r+ex

− Sz
r
Sz
r+ez

〉. (4)

quantifying the degree of orthogonality and bond-directional

alignment of neighboring spins respectively. We have also

found it useful to denote the vector chirality averaged over

bond directions as X y = 1

2
(X y

x + X y
z ).

Phases Under [101] Field: Our iPEPS, iDMRG and ED

calculations can clearly distinguish two phase transitions

when varying the strength of the in-plane field along the con-

stant angle φxy=
π
4

as shown in Fig.2. The high-field phase is

a trivial polarized state (PS). Upon lowering the field, at the

upper critical field hc2
xz=1.626, the PS transitions into a phase

with substantial vector chirality (SV C). This can be seen in

Fig.2(b), where, at hc2
xz , |X y| increases, seemingly continu-

ously, from zero in the PS, while a divergence in |χe
hxz

| is ob-

served. Within the SV C phase, bond-correlations of the form

〈SαSα〉, with α=(x, y, z) tend to zero as the state approaches

the exactly solved states (shown in Fig. 1), at h∗
xz=2JS

√
2.

ED results for the gaps, in Fig.2(c), show that the SV C phase

is gapped with a twofold degenerate ground state. A second

transition into a low-field region with stripe ordering, occurs

as the field is lowered below hc1
xz=0.540. Within the low field

region, the line hx=hz for hxz<hc1
xz is a first-order critical

line, terminating at hc1
xz , separating phases of x-aligned and

z-aligned stripe states [67] that we denote by L and R (See

Fig. 4). As the field is lowered further to hxz=0, we find that

the nematic order parameter, shown in Fig. 2(c), saturates to

φ = 0.126, in agreement with previous quantum Monte Carlo

calculations [11].

Phases Under [100] Field: Notably, the zero-field QCM

has the 1D gauge-like symmetries,

Pi =
∏

j

Sx
iex+jez and Qi =

∏

j

Sz
jex+iez , (5)

where the Pi and Qi are incompatible. Arguments based on

symmetry analysis imply that the S=1/2 QCM ground state

is at least 2-fold degenerate [79]. However, exact diagonal-

ization calculations indicate that, when Lx=Lz=L, 2×2L-2
low-energy states collapse onto the 2-fold ground states ex-

ponentially fast with increasing L [9], implying an emergent

sub-extensive degeneracy in the thermodynamic limit. Fol-

lowing Ref. [12], we label the eigenstates of the Pi and Qi, as

|R〉 and |L〉, respectively.

We have found that adiabatically evolving the |R〉 and

|L〉 states under a small [100] field, hx, produces an en-

ergy splitting between the two states, with the |R〉-evolved

state, |R(~h)〉, having lower energy than the |L〉-evolved state,

|L(~h)〉, for hx>hz . On the other hand, for a small [001] field,

hz , it is |L(~h)〉 that has the lowest energy. Consequently, as

outlined above, there is a first-order transition between the

0.2

0.3
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χ
e h
x

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 hx

|X y
x |

|X y
z |

0.935 1.3440.410

(a)

(b)

R SV C Z PS

~h || [100]|R〉

FIG. 3. (a) χe
hx

and (b) |X y
x | and |X y

z | as obtained from iPEPS

calculations versus field strength, hx, for a field parallel to [100]

(φxz = 0). Solid vertical lines indicate hc1
x =0.935 and hc2

x =1.344

separating the SV C, Z, and polarized (PS) states. A dashed line

at hx=0.410 indicates the limiting value of the transition between R
and SV C phases as hz → 0.

|L(~h)〉 and |R(~h)〉 states along the line hx=hz [67], reminis-

cent of the first-order transition studied in Ref. [12]. We find

that this line of first-order transitions terminates at the criti-

cal point, hc1
xz=0.540, discussed in the previous section. We

may then view hc1
xz as a multicritical point since the R, L and

SV C phase all meet at this point. Furthermore, our calcula-

tions indicate that, in zero field, the |R〉 and |L〉 states are sub-

extensively degenerate, and that these degeneracies are lifted

when small finite fields are applied [67].

With a field in the [100] direction, the high field PS again

undergoes a transition as the field is lowered below a criti-

cal field hc2
x =1.344. However, in this case, the ground state

consists approximately of alternating linear domains of field-

polarized spins and antiferromagnetically ordered spins per-

pendicular to the field. The vector chirality is therefore non-

zero when evaluated on bonds connected to polarized spins,

as shown in Fig.3(b), but only across bonds in the [100] di-

rection. This phase has an interesting interpretation; columns

of x-polarized spins lowering the energy by aligning with the

field, while columns of z-oriented spins form strongly coupled

antiferromagnetic Ising chains. Due to the nature of the QCM

coupling, the two kinds of columns are not coupled. This

suggests that this state is effectively one-dimensional in na-

ture. For this reason, we refer to this phase as the z-chain (Z)

phase, since the columns of spins polarized along x-direction

are essentially inert, although their presence effectively elimi-

nates the coupling between the z-chains. A sketch of the spin

alignments in the Z phase is shown in Fig. 4. As the field

is lowered further, a second transition from the Z phase to

the SV C phase occurs at hc1
x =0.935. Finally, as hx → 0,

the PEPS approaches the |R〉 state. With hz=0, the transition
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FIG. 4. (a) Phase diagram for the quantum compass model under an in-plane field. The phases are labelled as: z-oriented stripe (R), x-

oriented stripe (L), staggered vector chiral (SV C), z-chain (Z), and x-chain (X). We show iPEPS results (blue squares) and iDMRG (colored

diamonds) for Lz=6,8,10. Solid black lines are contours of constant field strength. (b) |φ| and (c) |X y| as obtained from iPEPS for an in-plane

field. (d) Dominant ordering of states in the labelled phases, the PS state is meant to show alignment in the field direction.

from the SV C phase to the R phase is not directly visible in

χe
hx

, but the dashed line in Fig. 3 indicates the limiting value

of the transition between R and SV C phases as hz → 0, at

hx = 0.410. By symmetry of the model, for a field along the

z-direction an analogous phase, X , appear along the z axis.

The X phase is dominated by rows of spins coupled by anti-

ferromagnetic x-bonds.

Phase Diagram: We have also analyzed the complete phase

diagram for a range of field values, hx, hz>0. The results of

our calculations produce the phase diagram as shown in Fig. 4.

The most apparent feature of the phase diagram is the large

phase surrounding the point h∗
xz, where the product states |P 〉,

from Fig. 1 are exact ground-states. As shown in panel (c) of

Fig. 4, the vector chirality, |X y|, is found to be substantial

throughout this phase, reduced in the Z and X phases, and

approaching zero in the low field L,R regime. The nematic

order parameter, φ, is close to zero in the intermediate-field

regime for field angles near π/4 reflecting a lack of spin align-

ment along bond directions. In the low-field regime, bond-

alignment is found to dominate, with |X y | taking a value near

zero. Remarkably, we find that the transition between the R
and SV C phase is almost independent of hz . Likewise, we

find the transition between the L and SV C phase to be inde-

pendent of hx. The combined R and L phases therefore form

a square in the lower left part of the phase diagram, similar to

what is seen for the toric code [56]. Even though the field is

not applied along an easy axis it is natural to view the SV C
phase as a spin-flopped phase [80], and therefore to expect all

transitions between the R, L X and Z to be first order. As it

turns out, all our calculations are consistent with this [67]. On

the other hand, from our calculations, the transition to the PS

phase appears to be continuous.

Discussion: For the AF QCM we have shown that two ex-

act ground-states exists at the special field value, h⋆
x=h⋆

z=2JS.

This special point has a substantial (staggered) vector chiral-

ity, |X y | and a sizable gap, inducing the SV C phase that dom-

inates a large part of the phase diagram. Although our nu-

merical results clearly indicate a sizable gap at h⋆
xz within the

SV C, establishing a rigorous proof of this gap would be of

considerable interest. Our detailed study of the model under

an in-plane magnetic field shows that, aside from the high field

PS state, there are five distinct phases in the low to intermedi-

ate field regime, the SV C, Z , X , L and R phases. Excitations

in these phases could be non-trivial. For instance, in zero-field

one-dimensional solitonic excitations [52] have been noted,

and it is possible that they remain deconfined in the L and R
phases, as has been observed for the toric code under an in-

plane field [56] and the X-cube fracton model [81]. Perhaps

the most surprising thing about the phase diagram is the fact

that a transition between the SV C phase and the PS phase ex-

ists. After all, since the spins are already partly aligned with

the field at h⋆
XZ , one might expect that the PS state could be

reached without encountering a phase transition. The QCM

at h⋆ would then be at the transition to, or within, the PS

phase. But, as we have showed here, h⋆
xz is in the distinct

SV C phase. In contrast, if we consider similar exact product

states in Kitaev’s honeycomb model (KHCM) [20] with an-

tiferromagnetic couplings, Kx,Ky,Kz, then it is possible to
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again write the Hamiltonian in the same form as Eq. (2), in

terms of a Hp, at the field (h⋆
x, h

⋆
y, h

⋆
z)=S(Kx,Ky,Kz) (note

the factor of 2 difference with respect to the QCM). However,

for the KHCM it is not possible to find an assignment of the

|x〉, |y〉 and |z〉 states to the lattice which is an eigenstate of

Hp with eigenvalue 0. However, one might still expect the

KHCM at the corresponding field value of |h⋆|=KS
√
3 for

the isotropic model, to be in the same phase as the product

state. But, contrary to the QCM, this turns out not to be the

case, since for that value of |h⋆| the KHCM is known to be

in the polarized phase [82, 83] for a field in the [111] direc-

tion. Nevertheless, it seems possible that similar phases can

be found in other materials with predominantly directionally

dependent Ising interactions.
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