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Abstract

Inspired by the notion that physical systems can contain only a finite amount of
information or complexity, we introduce a framework that allows for quantifying
the amount of logical information needed to specify a function or set. We then
apply this methodology to a variety of physical systems and derive the complexity
of parameter-dependent physical observables and coupling functions appearing in
effective Lagrangians. In order to implement these ideas, it is essential to consider
physical theories that can be defined in an o-minimal structure. O-minimality, a
concept from mathematical logic, encapsulates a tameness principle. It was re-
cently argued that this property is inherent to many known quantum field theories
and is linked to the UV completion of the theory. To assign a complexity to each
statement in these theories one has to further constrain the allowed o-minimal
structures. To exemplify this, we show that many physical systems can be for-
mulated using Pfaffian o-minimal structures, which have a well-established notion
of complexity. More generally, we propose adopting sharply o-minimal structures,
recently introduced by Binyamini and Novikov, as an overarching framework to
measure complexity in quantum theories.
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1 Introduction

Over the years, physicists have pondered the idea that physical systems might have
a fundamental limit to their information content or complexity. In simple scenar-
ios, realizing this notion appears straightforward – consider, for instance, a system
characterized by a finite number of qubits. However, the issue becomes much more
involved if one considers more intricate systems. Central to this challenge is the ques-
tion of how one might reconcile such a principle with the formulation of quantum
mechanics, which often posits infinite-dimensional Hilbert spaces, or the vast expanse
of higher-dimensional quantum field theories. This paper introduces a novel approach
that defines the notion of finite complexity within a conceptually clean and general
mathematical formalism. Our focus lies on understanding the geometric or functional
complexity of physical quantities, and the amount of information needed to describe
these quantities in terms of physical parameters. In doing so, we connect with re-
cent mathematical advancements that define complexity for sets and functions within
certain ‘tame’ logical structures.

Tameness, a concept from mathematical logic, introduces a generalized notion of
finiteness [1]. When applied to sets in real Euclidean space, tameness singles out those
sets with finitely many connected components. This seemingly simple requirement
gains depth when also mandating that the collection of tame sets is closed under any
finite combination of the usual set-theoretic operations as well as linear projections.
Consequently, one can define tame functions, having graphs which are tame sets, to
pave the way for a new notion: a tame geometry. The described principle of tameness
is also known as o-minimality and has led to a framework rich with powerful theorems
and analytical tools.

Only recently it was observed [2–4] that tame geometry arises in various physical
settings, ranging from observables in quantum field theories to the landscape of effective
field theories consistent with quantum gravity. The primary objective of this work is
twofold: firstly, to deepen the connection between tame geometry and physical systems
by analyzing simple and extendable examples of tame quantum systems; and secondly,
to present a sharpened notion of o-minimality. This stronger version of o-minimality
captures the idea that sets and functions should admit a well-defined, finite complexity.
Furthermore, the presence of a natural measure of complexity promotes tameness from
a qualitative to a quantitative feature. Remarkably, it turns out to be present in all
the physical examples in which o-minimality has been analyzed so far. This leads
us to suggest that this notion of ‘sharp o-minimality’ introduced by Binyamini and
Novikov [5, 6] is the tameness principle inherent to physics.

Connections between tame geometry and the ideas of complexity have a long history.
For example, Khovanskii’s theory of fewnomials [7] notably influenced foundational
works on o-minimal structures, such as [8]. The focus of this paper’s initial parts
heavily leans on Gabrielov and Vorobjov’s works [9–11], which define complexity for
Pfaffian functions. These functions are polynomials of some variables and a finite
set of analytic functions, termed the Pfaffian chain, which satisfy a system of first-
order differential equations that is again only defined by polynomials. Due to these
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polynomial-based equations, Pfaffian functions possess finiteness properties comparable
to polynomials despite the fact that one can use transcendental functions, such as the
exponential function, as part of the Pfaffian chain. We will describe in detail how to
assign a complexity to Pfaffian functions and how it determines a computational and
topological complexity of the sets generated by these functions.

We will argue that Pfaffian functions have numerous appearances in physics, which
allows us to test this notion of complexity in various physical settings. Firstly, we
consider lattice quantum field theory, where we explicitly compute the complexity of
the correlation functions using contemporary techniques for Feynman integrals [12].
Secondly, we look at simple quantum mechanical systems. In particular, we evaluate the
complexity for states of the harmonic oscillator and comment on the relation to other
notions of complexity for quantum states [13]. Finally, we compute the complexity of
gauge coupling function in Seiberg-Witten theory [14] and discuss how the complexity
depends on the rank of the gauge group.

While the theory of Pfaffian functions provides a straightforwardly computable
measure of complexity that is applicable to several examples, it has a number of short-
comings. From a physics perspective, we find that it is too restrictive when considering
a broader choice of physical systems and observables. From a mathematical point of
view it also does not fully elucidate the connection between tameness and complexity.
The big leap in generalizing the Pfaffian construction was recently made by a refine-
ment of the o-minimality axioms and the introduction of sharp o-minimality [5, 6], or
♯o-minimality. Unlike the theory of Pfaffian functions, sharp o-minimality allows one to
compute the complexity of every tame object and thereby provides a significantly more
general framework of tameness and complexity. It naturally leads us to introduce the
notion of sharp complexity, or ♯complexity, which assigns to each set or function a finite
list of tuples (F,D), measuring their information content in different representations.
This novel notion is compatible with all logical operations, but poses some interesting
interpretational challenges that we will discuss.

Due to the fact that sharp o-minimality was only recently introduced, there are
only few established examples of such structures. Therefore, we will need to rely on
the conjectures of [5] for concrete physical applications. Assuming these conjectures
we study the sharp-ominimality of a broader class of quantum field theories on a finite
lattice and quantum mechanical systems with general polynomial potentials. Asserting
that period integrals are definable in a sharp o-minimal structure [5], we will be able
to discuss general SU(N) Seiberg-Witten theories. Moreover, we will conclude that
the finite-loop amplitudes are not only o-minimal [3], but in fact sharply o-minimal.
These observations imply that physical quantities in all these settings should admit a
well-defined complexity and can be analyzes using the recent strong theorems about
sharp o-minimal structures.

The outline of this work is as follows. In section 2 we give a very brief introduction
to tameness and o-minimal structures, also commenting on some of the main examples
of structures relevant to this work. In section 3 we give a more thorough introduction
to Pfaffian structures and the theory of Pfaffian functions. In this context, we also
introduce a first notion of complexity and discuss several of its important properties.
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We then implement this into physics in section 4, where we compute and analyze the
complexity in three physical settings: quantum field theories on points, quantum me-
chanical systems, and Seiberg-Witten theory. We will observe in each of these examples,
that the Pfaffian structure is too restrictive when aiming at a complete description of
all theories of these types. This leads us to introduce sharply o-minimal structures
in section 5. We will motivate this generalization, introduce the accompanying notion
of sharp complexity, and summarize concrete candidate examples of such structures
following [5]. In the final section 6 we revisit the physical settings and argue that sharp
o-minimality now provides a sufficiently rich setting.

2 Tameness and o-minimal structures

In this section we give a very brief introduction to tame geometry and o-minimal
structures. We will review some elementary concepts and list the examples of o-minimal
structures that are most relevant to this work. The reader who is not familiar with the
subject may additionally consult the basic introduction of van den Dries [1].

2.1 Tame sets and functions

The starting point for tame geometry is to define what it means for a subset of Eu-
clidean space to be tame. For consistency, the collection of tame sets should be closed
under reasonable operations which one can perform on sets, such as taking unions and
intersections. In mathematical terms, this collection should form a structure. We de-
note a structure by S = (Sn), where Sn is a collection of subsets of Rn. The axioms
for a structure are:

(i) Sn is closed under finite intersections, finite unions, and complements1;

(ii) S is closed under Cartesian products: A×B ∈ Sn+m if A ∈ Sn, B ∈ Sm;

(iii) S is closed under any linear projection π : Rn+1 → Rn: π(A) ∈ Sn if A ∈ Sn+1;

(iv) Sn contains the zero sets of all polynomials in n real variables.

The sets inside a structure are called definable, to reflect the idea that they can be
defined by means of simple set-theoretic operations. To ensure that definable sets are
tame, an additional axiom is needed. This axiom defines an o-minimal structure:

(v) the definable subsets of R have a finite number of connected components.2

This simple condition has strong consequences for the geometry of sets inside an o-
minimal structure, and it conspires with axioms (i)-(iv) to create a remarkably con-
strained geometric framework. Even though the o-minimality axiom is only imposed on
subsets of R, the condition that structures are closed under linear projections ensures
that higher-dimensional definable sets are constrained as well.

1Here the complement is taken with respect to Rn.
2In other words, these sets are finite unions of intervals and points.
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Within an o-minimal structure, there is a natural definition for tame functions.
Given two definable sets A and B and a function f : A → B, we will say that f is
definable if its graph Γ(f) is a definable subset of A×B. Because the graph of such a
function is a tame set, definable functions exhibit similar tameness features to those of
definable sets.

The tameness of o-minimal structures can be understood through the lens of var-
ious theorems for definable sets and functions. The most essential of these is the cell
decomposition theorem, which due to its technical nature we only state informally [1].
One first defines a simple type of set, called a cell, which can intuitively be thought
of as a cube whose sides are deformed by means of tame functions. Importantly, one
demands that linear projections of cells are also cells. The cell decomposition theorem
now states that any definable set in an o-minimal structure can be decomposed into
finitely many cells. In this sense, cells provide the elementary building blocks of tame
sets. The power of the cell decomposition comes from the fact that the geometry of
cells is extremely simple to understand, so that any geometric question concerning a
tame set can always be reduced to finitely many simpler question about cells.

2.2 Examples of o-minimal structures

So far we have only discussed o-minimal structures abstractly, so let us provide a few
important examples. Recall from axiom (iv) that every structure contains at least the
algebraic sets, i.e. the zero sets of polynomials. The smallest structure consists of all
the sets which can be obtained by applying the operations in axioms (i)-(iii) finitely
many times, and it is denoted by Ralg.

The most natural way to obtain larger structures is as follows. One starts with
a collection of functions F which one would like to be definable, and then considers
the structure generated by F , denoted by RF . This means that RF should contain
the graphs of all the functions in F , and in general the sets in this structure can
be thought of as all possible sets which can be obtained by applying the basic set-
theoretic operations to these graphs finitely many times. Depending on the tameness
of the functions in F , the resulting structure RF may be o-minimal or not.

The collection of functions F may take many forms. For instance, one can consider
to add a single function, such as the real exponential exp : R → R. This leads to
one of the most central o-minimal structures, denoted by Rexp [8]. Intuitively, the sets
in Rexp can be though of as being generated by zero sets of exponential polynomials,
i.e. equations of the form

P (x1, . . . , xn, e
x1 , . . . , exn) = 0 (1)

for some polynomial P . Another natural class of functions are the restricted analytic
functions, which are defined as analytic functions restricted to compact domains.3 The
structure generated by the exponential function together with the restricted analytic

3This restriction is crucial for o-minimality, since analytic functions defined on unbounded domains
are often not tame (e.g. the sin function).
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functions, denoted by Ran,exp, was proven to be o-minimal in [15]. It plays a substantial
role in tame geometry, most notably because period functions are definable in this
structure [16]. At present there are many known o-minimal structures and some of
these will play a significant role in this work. Deferring a precise definition to later
parts of the paper, let us list some further examples:

• RPfaff . This structure is generated by solutions to certain differential equations,
called Pfaffian functions. This structure is central to this work and will be dis-
cussed in detail in the next section.

• RrNoether. Upon slightly weakening the conditions defining Pfaffian functions,
one obtains the class of Noetherian functions. When restricting the domains to
bounded sets, these functions are tame and generate an o-minimal structure. We
will revisit these functions in section 5.

• RQf . This structure is generated by Q-functions, which arise as solutions to
geometric differential equations with sufficiently regular singularities. These fre-
quently appear in geometry and physics, and will be used in section 5.

One key point of this work is that the listed structures are not only o-minimal, but
admit additional properties that make the definition of a notion of complexity possible;
they are expected to be examples of sharply o-minimal structures, to be defined in
section 5.4 We will find that all considered physical quantities are describable within
these more restricted class of structures. Note that, as suggested in [4], one can also
turn the story around and choose as F a set of functions arising in a physical system.
For example, one can inquire about the tameness of the structures generated by the
set of correlation functions in a given collection of quantum field theories.

3 Pfaffian structures and Pfaffian complexity

The purpose of this section is to introduce a particular class of o-minimal structures
– the Pfaffian structures – and explain how they allow for defining a precise notion
of complexity. After we have defined these structures, we illustrate how the resulting
Pfaffian complexity relates to other notions of complexity, such as topological and
computational complexity.

3.1 Tame structures from Pfaffian chains

Pfaffian chains

As we have seen in the previous subsection, the interesting examples of o-minimal
structures are obtained by extending Ralg by a set of functions of interest. In the

4We will discuss the sharp o-minimality of these structures in section 5.4 referring to recent math-
ematical conjectures.
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following we introduce a special class of o-minimal structures that are obtained by
including solutions to certain differential equations, known as Pfaffian chains. To set
up the definition, let U ⊆ Rn be an open box, i.e. a product of open intervals. A finite
set of functions ζ1, . . . , ζr : U → R is said to form a Pfaffian chain if it satisfies a system
of first-order differential equations of the form

∂ζi
∂xj

= Pij(x1, . . . , xn, ζ1, . . . , ζi) for i = 1, . . . , r, j = 1, . . . , n, (2)

where Pij is a polynomial in n + i variables. Crucially, this system has a certain
triangularity requirement, namely that the differential equations for ζi only involve
the functions ζ1, . . . , ζi, and exclude ζi+1, . . . , ζr. If the box U is bounded, i.e. none
of the intervals extends to infinity, then the Pfaffian chain is restricted. The number
of functions r is called the order of the Pfaffian chain, and its degree α is the highest
degree among the polynomials Pij . We will use the symbol ζ = (ζ1, . . . , ζr) to denote
the entire Pfaffian chain. Given such a chain formed by functions ζ1, . . . , ζr, a Pfaffian
function is a function f : U → R of the form

f(x1, . . . , xn) = P (x1, . . . , xn, ζ1, . . . , ζr), (3)

where P is a polynomial in n+ r variables.

Pfaffian complexity

There are several essential characteristic numbers involved in the definition of a Pfaffian
function. These are

• the number of variables n;

• the order r of the underlying Pfaffian chain r;

• the degree α of the underlying Pfaffian chain;

• the degree β of the polynomial P used to define f .

Together, these numbers define the Pfaffian complexity of a Pfaffian function, and we
write

Cζ(f) = (n, r, α, β). (4)

In case that no confusion can arise, we will often simply refer to this quantity as
the complexity of f . The subscript ζ emphasizes the dependence of the complexity
on the underlying Pfaffian chain ζ. Since there is no unique chain which describes
a given Pfaffian function, we often omit the explicit dependence on the chain. Note
that, unlike certain other measures of complexity, this quantity is not a single number.
Therefore, Pfaffian complexity does not admit a natural order, so that the notion of
optimal complexity is subtle. We will comment on the interpretation of this feature
briefly after the examples and in detail in section 5.

Below we list some examples of Pfaffian functions and their Pfaffian complexities.
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(i) An n-variable polynomial Q of degree β is a Pfaffian function of complexity
(n, 0, 1, β), as it can be defined using an empty Pfaffian chain.5

(ii) The exponential function f(x) = eax is a Pfaffian function of complexity (1, 1, 1, 1),
since it fits into the Pfaffian chain

∂ζ

∂x
= aζ . (5)

(iii) The function f(x) = 1/x, defined on the interval (0,∞), has complexity (1, 1, 2, 1),
since it is a solution to the equation

∂ζ

∂x
= −ζ2. (6)

(iv) The function f(x) = cos(x) defined on the interval (−π, π) can be obtained as a
Pfaffian function as follows. Consider the chain ζ formed by

∂ζ1
∂x

=
1

2

(
1 + ζ21

)
, (7)

∂ζ2
∂x

= −ζ1ζ2,

which has solutions ζ1(x) = tan(x/2) and ζ2(x) = cos2(x/2). Using trigonometric
relations, one may now obtain f as the Pfaffian function

f(x) = cos(x) = 2ζ2(x)− 1, (8)

which shows that Cζ(f) = (1, 2, 2, 1). For any integerm ≥ 1, the function fm(x) =
cos(mx) can be written as a polynomial of degree in m in f(x) = cos(x), and
therefore it has complexity Cζ(fm) = (1, 2, 2,m). These functions frequently
appear in physics, e.g. as vibrational modes of a string and as Kaluza-Klein
modes in a circle compactification.

As already indicated by the notation, the complexity of a Pfaffian function depends
on the underlying chain. To illustrate this, consider the mononomial f(x) = xd. We
consider two ways of constructing f as a Pfaffian function. As in example (i) above,
the most obvious construction is to let the Pfaffian chain be empty, denoted by ζ = ∅,
in which case we have C∅(f) = (1, 0, 1, d). Alternatively, we can construct f by means
of differential equations, and consider the following Pfaffian chain ζ on the domain
U = (0,∞),

∂ζ1
∂x

= −ζ21 , (9)

∂ζ2
∂x

= d ζ1ζ2.

5Note that, even though there is no Pfaffian chain in this example, the degree α is defined to be
greater than or equal to 1 by convention.
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The solutions to this Pfaffian chain are ζ1(x) = 1/x and ζ2(x) = f(x), and the com-
plexity of f is now given by Cζ(f) = (1, 2, 2, 1). More generally, if f is a degree d
polynomial consisting of M monomial terms, we can add each monomial to the set of
differential equations to obtain a Pfaffian chain ζ of length r =M +1. The complexity
of the polynomial f is then

Cζ(f) = (n,M + 1, 2, 1) . (10)

If f is a fewnomial, i.e. a polynomial function withM ≪ d, then the latter parametriza-
tion may be favorable for minimizing the complexity.

In order to account for the dependence of the complexity on the underlying Pfaf-
fian chain, it would be desirable to define an optimal Pfaffian complexity that can be
assigned to a function. Roughly speaking, this should amount to finding the most op-
timal way of formulating a function in the Pfaffian framework, and could, for example,
implement a minimization of the complexity over all Pfaffian chains. However, since
the Pfaffian complexity of a function is measured by four integers, there is no unique
choice to do so. Already for simple examples, such as the fewnomials discussed above,
it can be subtle to find out which Pfaffian chain is optimal. However, as we will see
in the next subsection, the numbers appearing in the Pfaffian complexity play a key
role in the complexity of computations involving Pfaffian functions that we introduce
in section 3.2. A notion of optimal Pfaffian complexity could then be the one which
minimizes this computational complexity. This observation will play a fundamental
role later in section 5.

When performing manipulations on Pfaffian functions, it is useful to keep in mind
that the class of Pfaffian functions is closed under several operations, such as taking
sums, products, derivatives, and compositions. In fact, it is possible to explicitly track
the complexity of the resulting functions:

• If f1 and f2 are Pfaffian with complexity Cζi(fi) = (n, ri, αi, βi) for i = 1, 2, then
the sum f1 + f2 and the product f1f2 are Pfaffian with complexity

Cζ1∪ζ2(f1 + f2) = (n, r1 + r2,max(α1, α2),max(β1, β2)),

Cζ1∪ζ2(f1f2) = (n, r1 + r2,max(α1, α2), β1 + β2).
(11)

Here ζ1 ∪ ζ2 denotes the Pfaffian chain formed by assembling the chains ζ1 and
ζ2 into a single chain. Note that if there is overlap in the chains ζ1 and ζ2, then
the order of the chain for the sum and product is less than r1 + r2.

• If f is Pfaffian with complexity Cζ(f) = (n, r, α, β), then the partial derivative
∂f/∂xj is Pfaffian in the same chain, with complexity

Cζ
(
∂f

∂xj

)
= (n, r, α, α+ β − 1)

• If f1 : U1 → R and f2 : U2 → R are Pfaffian functions of complexity Cζi(fi) =
(1, ri, αi, βi), where U1 and U2 are open intervals such that the image f1(U1) is
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contained in U2, then the composition f2 ◦ f1 is Pfaffian with complexity

Cζ2◦ζ1(f2 ◦ f1) = (1, r1 + r2, α2β1 + α1 + β1 − 1, β2). (12)

This can be shown by using the chain rule for partial derivatives. Here ζ2 ◦ ζ1
denotes a composite Pfaffian chain, which consists of the chain ζ1 together with
the composite of f1 with all the functions in the chain ζ2.

We will refer to these rules several times in the remainder of this work.

Pfaffian structures and tameness

We are now able to introduce the structures of interest for this work. Let ζ be a given
Pfaffian chain. Following the procedure of the previous subsection, we may consider
the structure Rζ which is generated by the functions ζ1, . . . , ζr in the chain. We will call
such a structure a Pfaffian structure. Note that the Pfaffian structure Rζ automatically
includes all Pfaffian functions f(x1, . . . , xn) = P (x1, . . . , xn, ζ1, . . . , ζr) built from this
chain, since polynomials are included in any structure.

Taking a step further, one may consider the set of all Pfaffian functions, i.e. all func-
tions for which there exists an underlying Pfaffian chain. This collection of functions
generates an even larger structure denoted by RPfaff. In fact, since any Pfaffian chain
is contained in this collection, all Pfaffian structures reside inside this larger structure.
As a non-trivial mathematical result, Wilkie has shown that the structure RPfaff is
o-minimal [17], and consequently for any Pfaffian chain ζ the smaller structure Rζ is
o-minimal as well. This means that geometric objects built from Pfaffian chains are
always tame.

It is worth pointing out that the triangularity condition in a Pfaffian chain is crucial
for tameness. To illustrate this, consider the system of equations

∂ζ1
∂x

= ζ2, (13)

∂ζ2
∂x

= −ζ1,

which is not a Pfaffian chain since it is not triangular. The solutions to this system
include the cosine function defined on the whole real line, which is not tame as it
cannot be defined in any o-minimal structure. The cosine function is only tame when
restricted to a finite interval.

Note that this can also be seen from Example (iv) above, where we constructed an
explicit Pfaffian chain for the cosine function on the bounded interval (−π, π). In fact,
we saw that the function x 7→ cos(mx) has a complexity whose degree scales with m.
This allows us to relate complexity to mode expansions of periodic functions. Let us
consider a periodic function f on (−π, π), and assume it has a finite Fourier expansion
of the form

f(x) =

N∑
m=0

(am cos(mx) + bm sin(mx)). (14)

11



The complexity of this function is determined by the highest frequency mode that is
included in the sum.

While section 3 is mainly devoted to physical examples, it is worth noting already
that expansions of this form appear abundantly in physics. For instance, they appear
as waves on a compact space, vibrational modes on a string, or Kaluza-Klein modes
in a circle compactification. The discussion above shows that the complexity of such a
mode is proportional to its frequency.

3.2 Complexity in Pfaffian structures

In the previous section we have assigned a complexity to Pfaffian functions, and be-
low we will shed light on the meaning of this terminology. The objects of interest are
geometric objects built from Pfaffian functions, and one can assign various established
notions of complexity to these objects, such as topological complexity and computa-
tional complexity. There exist several powerful theorems which show that there exist
bounds on these quantities. Crucially, these bounds depend on the Pfaffian complexi-
ties of the underlying Pfaffian functions, which justifies the term ‘complexity’. In the
following subsection we give a brief survey of these complexity theorems.

Complexity of Pfaffian equations

The first geometric object that we will consider is the set of solutions to a system
of equations involving Pfaffian functions. As a prelude, consider a set of n-variable
polynomials P1, . . . , Pn of degrees β1, . . . , βn, respectively. The zero sets of each Pi

defines a hypersurface in Rn, and the intersection of all these hyperplanes is the solution
set to the system of equations

P1 = . . . = Pn = 0. (15)

Assuming that there are no degeneracies, this is a finite set. Bézout’s theorem, a classic
theorem in algebraic geometry, states that the number of solutions to this system of
equations is bounded by the product of the degrees of the polynomials, i.e.

#{x ∈ Rn |P1(x) = . . . = Pn(x) = 0} ≤ β1 · · ·βn. (16)

This theorem has been generalized to the setting of Pfaffian functions by Khovanskii
[7]. Consider a Pfaffian chain ζ on an open box U ⊆ Rn, together with a set of Pfaffian
functions f1, . . . , fn with complexity C(fi) = (n, r, α, βi) for i = 1, . . . , n. We now
consider the set of solutions to the system of equations

f1 = . . . = fn = 0 , (17)

Khovanskii’s theorem now says that the number of non-degenerate solutions6 to this
equation is bounded by

2r(r−1)/2β1 · · ·βn
(
min(n, r)α+ β1 + · · ·+ βn − n+ 1

)r
. (18)

6By non-degenerate, we mean that the Jacobian determinant det(∂fi/∂xj) is non-zero.
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In addition to the factor β1 · · ·βn which appears in Bézout’s theorem, there are now
several factors growing exponentially in the order r of the chain. The number of inter-
section points of the hypersurfaces {fi = 0} gives a rough measure of the complexity
of this system of equations, and this theorem shows that this complexity has a bound
determined by the complexities of the Pfaffian functions.

It is worth noting that the o-minimality of Pfaffian functions already implies that
the solution set of (17) is finite. The fact that we work in a specific structure, namely
the Pfaffian o-minimal structure RPfaff, allows us to give an explicit bound.

Topological complexity

The theorem discussed above extends to a much larger setting. Instead of focusing on
systems of equations where the number of functions and variables is equal, we consider
sets defined by an arbitrary number of equations. In addition, we now also allow for
sets defined by inequalities. An elementary semi-Pfaffian set is a set in Rn which is
defined by solutions to equations and inequalities of Pfaffian functions. More precisely,
it is a set of the form

{x ∈ U | f1(x) = 0, . . . , fI(x) = 0, g1(x) > 0, . . . , gJ(x) > 0}, (19)

where the fi and gj are Pfaffian functions with a common Pfaffian chain defined on
the domain U . A general semi-Pfaffian set is a finite union of elementary semi-Pfaffian
sets, meaning that it can be written as

X =
⋃

1≤i≤M

{x ∈ U | fi1(x) = 0, . . . , fiIi(x) = 0, gi1(x) > 0, . . . , giJi(x) > 0} . (20)

In what follows we will be interested in the complexity of semi-Pfaffian sets. Given
a semi-Pfaffian set X ⊆ Rn, a good way to measure its topological complexity is to look
at the sum of the Betti numbers, i.e. to consider

b(X) = b0(X) + . . .+ bn(X), (21)

where bi(X) = dim(Hi(X;R)). Suppose that X is a semi-Pfaffian set defined using
M equalities or inequalities of Pfaffian functions as in (20), with each function having
complexity (n, r, α, β) and having the same underlying Pfaffian chain. Then, as a
generalization of Khovanskii’s theorem, it was shown in [11] that there is a bound on
the topological complexity given by

b(X) ≤M22r(r−1)/2O(min(n, r)α+ nβ)n+r. (22)

It is interesting to note how the various components of the complexity appear in this
bound. It depends only polynomially on the degrees α and β, but exponentially on the
number of variables n and the length of the chain r.
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Computational complexity of cell decomposition

As mentioned above, the cell decomposition theorem says that every tame set admits
a decomposition into finitely many cells. Since every tame set can be constructed from
these elementary cells, it is natural to ask if there exists an algorithm which explicitly
finds the cells needed to construct a given tame set.7 Whereas for general tame sets such
an algorithm is not available, there does exist an explicit algorithm for semi-Pfaffian
sets [10]. There are various interesting quantities associated to such an algorithm, and
for each of them it is possible to estimate the growth as a function of the complexity
of the underlying Pfaffian functions. To illustrate this, let X ⊆ Rn be a semi-Pfaffian
set of dimension d, defined using M equalities and inequalities of Pfaffian functions as
in (20), all of which have complexity equal to (n, r, α, β). In this setting, the algorithm
which finds the cell decomposition of X has a computational complexity given by

M (r+n)O(d)
(α+ β)(r+n)O(d2n)

. (23)

The dimension d of the semi-Pfaffian set plays a key role in this estimate. The degrees
α and β again appear polynomially, whereas the number of variables n appear double
exponentially. For more details on the computational complexity of these algorithms
we refer to [10].

4 Pfaffian complexity in quantum systems

In this section we discuss how the notion of complexity introduced in section 3 can
be attached to physical quantities in various quantum systems. To accomplish this,
we explicitly identify Pfaffian functions in three rather different settings: (1) corre-
lation functions in simple QFTs evaluated on a point; (2) correlation functions and
wavefunctions in quantum mechanics; (3) coupling functions in Seiberg-Witten theory.
An important common feature of these setups is that we are able to analyze exact,
non-perturbative physical quantities. Let us emphasize that the fact that these theo-
ries admit a tame structure is in itself already remarkable and in accordance with the
observations of [2–4]. Here we find that this structure is actually a Pfaffian structure
and hence allows us to assign a complexity to the arising functions. We find that, de-
spite its appearance in these settings, the Pfaffian framework exhibits some limitations,
which motivates us to extend our discussion to the more general framework of sharp
o-minimality in sections 5 and 6.

4.1 QFTs on a point

In this section we study zero-dimensional QFTs, and in particular those for which
the spacetime consists of a single point. In these rather simplistic settings we are

7This is reminiscent of quantum computing, where one of the main goals is to construct a given
unitary operator from an elementary set of gates.
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able to evaluate the partition function and correlation functions explicitly at a non-
perturbative level and study their behaviour as a function of the parameters of the
theory. The tameness of the partition functions of these theories was already discussed
in [3].8

For simplicity we will consider a QFT with a single scalar field ϕ, whose dynamics
is encoded by an action S. Since the QFT is defined at a single point, the partition
function and the correlation functions are ordinary integrals of the general form

Iν =

∫ ∞

−∞
dϕϕνe−S . (24)

These functions are related among each other through integration-by-parts identities.
Using these relations it is possible to show that there exists a finite basis of integrals,
such that every correlation can be expressed as a linear combination of the basis inte-
grals. More precisely, if J is the power of the highest-order interaction in the theory,
then the set of correlation functions is spanned by the functions I0, . . . , IJ−2 with co-
efficients given by Laurent polynomials in the couplings of the theory. This idea was
recently exploited to set up a system of differential equations satisfied by the basis
correlation functions [12].

Example 1: ϕ4-theory on one point

We first focus on a massive scalar field with a single ϕ4-interaction. The Euclidean
action of this theory, in the standard convention, is given by

S =
m2

2
ϕ2 +

λ

4!
ϕ4 . (25)

The parameters of the theory are the mass m and the coupling λ, but since one is
free to rescale the field ϕ, the theory can be fully specified by a single parameter. In
fact, reparametrizing the theory may also lead to a reduction in the complexity of
computable quantities. This motivates us to rescale the field ϕ and introduce a new
coupling parameter as follows

ϕ→
√

3

2λ
mϕ, g =

3m4

4λ
.

In these variables, the action takes the simpler form

S = gϕ2 +
g

8
ϕ4 , (26)

and the coupling g is now an overall multiplicative parameter. The general theory men-
tioned above tells us that a spanning set of correlation functions is given by {I0, I1, I2}.

8In the language of [4], we investigate the tameness of the structure RT ,S which captures the
observables of a set of theories T formulated on a collection of spacetimes S. Here T is parametrized
by the couplings of the theory, and S only contains a one-point spacetime.

15



However, since I1 = 0 by symmetry, the integrals I0 and I2 suffice. The explicit form
of these basis integrals is

I0 =
√
2egK1/4(g), I2 = −2

√
2eg(K1/4(g)−K3/4(g)) , (27)

where Kα is the modified Bessel function of the second kind.

The correlation functions are related by an integration-by-parts (IBP) identity

Iν =
2(ν − 3)

g
Iν−4 − 4Iν−2 . (28)

By iteratively invoking this identity, it is possible to write any Iν as a linear combination
of the two basis functions I0 and I2, with coefficients given by polynomials in 1/g. The
degree of these polynomials is determined by the amount of times the IBP identity has
to be used. For example, we have

I4 =
6

g
I0 − 4I2 ,

I6 = −24

g
I0 +

(
16 +

18

g

)
I2 ,

I8 =

(
96

g
+

180

g2

)
I0 +

(
−64− 192

g

)
I2 .

In general, the degree of the polynomials appearing in the expansion of Iν is bounded
above by ν/4.

We now claim that all the correlation functions Iν are Pfaffian, enabling us to
compute their complexity. To show this, we construct an explicit Pfaffian chain for I0
and I2. First, note that the derivatives of the correlators are

∂Iν
∂g

= −Iν+2 −
1

8
Iν+4 . (29)

Together with the IBP relation of equation (28) this allows us to write down a second-
order differential equation for I0, namely

∂2I0
∂g2

−
(
2− 1

g

)
∂I0
∂g

−
(
1

g
+

1

16g2

)
I0 = 0 . (30)

Making use of the fact that I0 is non-vanishing, it is possible to reduce this to a first-
order equation by introducing the auxiliary function

h(g) = − 1

I0

∂I0
∂g

, (31)

which fulfills the so-called Riccati equation

∂h

∂g
= h(g)2 +

(
2− 1

g

)
h(g)− 1

16g2
− 1

g
. (32)
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These functions fit together into a Pfaffian chain as follows

ζ1(g) =
1

g

∂ζ1
∂g

= −ζ21 , (33)

ζ2(g) = h(g)
∂ζ2
∂g

= ζ22 + (2− ζ1) ζ2 −
1

16
ζ21 − ζ1 ,

ζ3(g) = I0(g)
∂ζ3
∂g

= −ζ2ζ3 .

Within this chain, I2 can be expressed as a Pfaffian function

I2 = 2ζ2ζ3 −
1

2
ζ1ζ3 , (34)

which follows from the IBP relation and the derivative relation in equation (29). Since
any correlation function Iν can be written as a linear combination of I0 and I2, with
coefficients given by polynomials in ζ1, it follows that all correlation functions in this
theory are Pfaffian functions.

The Pfaffian complexity of the correlation functions are now determined by this
Pfaffian chain. First, consider the partition function Z(g) = I0(g) of the theory. Its
complexity9 can be read off from the chain as

C(Z) = (1, 3, 2, 1) . (35)

Next, the correlator I2 is a Pfaffian function of degree 2 with respect to the given chain
as shown by equation (34), so its Pfaffian complexity is C(I2) = (1, 3, 2, 2). For general
correlation functions, we use the fact that the expansion in terms of I0 and I2 has
coefficients which are polynomial in the function ζ1(g) = 1/g. From this we infer that
the Pfaffian complexity of the correlation function Iν (with ν assumed to be even, since
it vanishes otherwise) is given by

C(Iν) =
(
1, 3, 2,

⌈ν
4

⌉
+ 1
)

(ν even) . (36)

Here ⌈·⌉ denotes the ceiling function. It is natural to expect that the Pfaffian com-
plexity of the correlation function grows with the number of field insertions ν, and
our calculation shows that this growth is (stepwise) linear. Moreover, the degree β is
the only complexity parameter that grows, whereas the other parameters appear to be
fixed by the theory.10

Example 2: ϕ6-theory on one point

A natural continuation is to study the ϕ6-theory on a point. For this theory, we choose
the following parametrization of the action:

S = −g
2
ϕ2 +

1

96
ϕ6 . (37)

9For the convenience of the reader we recall that the complexity is defined to be the 4-tuple
(n, r, α, β), where n is the number of variables, r is the order (or length) of the chain, and α and
β are the degrees of the polynomials involved in the construction.

10This includes the parametrization of the theory; in a different description, the complexity could
take a different value.
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The structure of the theory is similar to the ϕ4-theory, and the main difference is that
the set of basis integrals now consists of the three functions I0, I2, and I4. Note that,
for technical reasons on which we will comment later, the mass term now carries a
different sign than in the previous example. With this normalization, the IBP relation
takes the form

Iν = 16 ((ν − 5)Iν−6 + gIν−4) . (38)

The three basis correlation functions are explicitly given by

I0(g) =
√
2π3/2

(
Ai(g)2 +Bi(g)2

)
,

I2(g) = 4
√
2π3/2(Ai(g)Ai′(g) + Bi(g)Bi′(g)) ,

I4(g) = 8
√
2π3/2

(
Ai′(g)2 +Bi′(g)2 + g

(
Ai(g)2 +Bi(g)2

))
,

where we use a prime to note the first derivative, and where Ai and Bi are the Airy
functions fulfilling the Airy equation

∂2f

∂x2
− xf(x) = 0 . (39)

We now claim that I0, I2 and I4 are Pfaffian, and our strategy to show this will be to
argue that the Airy functions are Pfaffian. To this end, we introduce the logarithmic
derivatives hA = Ai′/Ai and hB = Bi′/Bi which satisfy

∂hA
∂g

= h2A + g ,
∂hB
∂g

= h2B + g . (40)

Note that these are only defined on a domain on which the Airy functions are non-
vanishing. Since these are first-order, we are now able to write down the following
Pfaffian chain:

ζ1(g) = hA(g)
∂ζ1
∂g

= ζ21 + g , (41)

ζ2(g) = Ai(g)
∂ζ2
∂g

= ζ1ζ2 ,

ζ3(g) = hB(g)
∂ζ3
∂g

= ζ23 + g ,

ζ4(g) = Bi(g)
∂ζ4
∂g

= ζ3ζ4 .

It follows that the Airy functions Ai(g) and Bi(g) are Pfaffian on a domain in which
the logarithmic derivatives can be defined. Since the Airy functions are non-vanishing
for g > 0 and have infinitely many zeros11 for g < 0, we restrict to positive g. This
explains the choice of the sign of the mass term in the action in equation (37).

11It is interesting to note that the presence of infinitely many zeros means that the Airy functions
are not tame on the real line, but that the combination appearing in the correlation functions I0, I2,
and I4 is.
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Having set up the Pfaffian chain for the Airy functions, let us calculate the Pfaffian
complexity of the correlation functions, starting with the three basis correlators. Firstly,
the partition function Z(g) = I0(g) is quadratic in ζ1, so its Pfaffian complexity is

C(Z) = (1, 4, 2, 2). (42)

Recalling that the partition function of the ϕ4-theory had Pfaffian complexity (1, 3, 2, 1),
we can already observe that the complexity has increased as a consequence of the higher
order interaction term. The correlators I2 and I4 involve the derivatives of the Airy
functions, which can be written with degree 2 as ζ1ζ2 and ζ3ζ4, respectively. It follows
that

C(I2) = (1, 4, 2, 3), C(I4) = (1, 4, 2, 4) . (43)

For the higher correlation functions Iν , we use that they can be written as a linear
combination of I0, I2 and I4 with polynomial coefficients in g. As in the ϕ4-theory, the
degrees of these polynomials depend linearly on ν. From this we infer that, for ν even,

C(Iν) =
(
1, 4, 2,

⌊ν
4

⌋
+ 3
)

(ν even and ν ̸= 0) , (44)

where ⌊·⌋ denotes the floor function. The degree of the Pfaffian complexity again grows
linearly with the number of field insertions ν. It is interesting to note that the growth
of the degree has the same rate as the complexity of the correlation functions in ϕ4-
theory, whereas the ‘initial’ value of the complexity is higher. Let us also comment on
the fact that the order r and degree α are independent of ν. The reason for this is
that all correlation functions can be expressed using the same Pfaffian chain, which is
a remarkable consequence of the algebraic relations between the correlation functions.
In general, one expects that more complicated physical quantities also require more
involved Pfaffian chains.

Let us close with the observation that the functions appearing in the ϕ4- and ϕ6

theory have also been studied in the context of resurgence [18]. Resurgence techniques
provide a global perspective on the coupling space. The ϕ4 theory is the classic example
with a computable partition function that admits a weak coupling expansion around
λ = 0 which is a transseries rather than a convergent series [19]. This implies that
this function cannot be definable in the o-minimal structure Ran,exp. We have seen,
however, that with real λ and m, and the signs from (25), a Pfaffian structure is large
enough to describe this example. In the ϕ6 case we have observed that the correlation
functions only appear to be Pfaffian for g > 0. If we rotate the coupling in the complex
plane, we cross a Stokes line, which generates a monodromy action on the solution
space. This leads to the addition of the oscillatory solutions on the other sheets. The
Pfaffian structure is no longer rich enough to define this behaviour. However, let us
allude to the fact that the framework of sharp o-minimality, introduced in section 5,
incorporates a much larger class of functions, in which the full coupling space of the ϕ6

theory can be covered.
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4.2 Quantum Mechanics

After a discussion of zero-dimensional quantum field theory, a natural next step is to
consider the addition of one dimension, which leads us to one-dimensional quantum
field theory, or quantum mechanics. Following the previous section, we will begin
by investigating the tameness and complexity of correlation functions. We will then
shift our perspective from quantum fields to quantum mechanics, and consider the
propagator of the harmonic oscillator. This propagator naturally depends on space,
which inspires us to investigate the complexity of the spatial dependence of quantum
mechanical quantities more generally. We will do this by calculating the complexity of
the wavefunction in several examples.

Correlation functions

We consider a single free quantum field x with mass m, living on a spacetime consisting
of a single Euclidean time dimension. As the notation suggests, this field may equiva-
lently be interpreted as the position of a quantum mechanical particle. The theory is
thus described by the harmonic oscillator Hamiltonian. As in the previous subsection,
we rescale the physical coupling so that the Hamiltonian takes the form

H =
1

2
p2 +

1

2
g2x2 . (45)

Note that the coupling g is proportional to the energy scale of the oscillator. The theory
can be solved exactly by standard techniques. In the Heisenberg picture, the field x
depends on time, and the 2-point correlation function with respect to the vacuum can
be computed to be

I2(g; t2, t1) = ⟨0|x(t2)x(t1) |0⟩ =
2

g
e−g(t2−t1) . (46)

With respect to the coupling g, this function fits into the following Pfaffian chain:

ζ1(g) =
1

g

∂ζ1
∂g

= −ζ21 , (47)

ζ2(g) = e−g(t2−t1) ∂ζ2
∂g

= −(t2 − t1)ζ2 ,

so that I2 = 2ζ1ζ2. The Pfaffian complexity of I2 is then given by

C(I2) = (1, 2, 2, 2). (48)

In the free theory, higher-point correlation functions may be obtained using Wick’s
theorem. For instance, the four-point function is given by

I4(g; t4, t3, t2, t1) = ⟨0|x(t4)x(t3)x(t2)x(t1) |0⟩ (49)

=
4

g2

(
2e−g(t4−t3+t2−t1) + e−g(t4+t3−t2−t1)

)
. (50)
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As a consequence of summing over possible pairings, two distinct terms appear. Gener-
ically, both of these terms must be added to the Pfaffian chain separately. Using a
similar Pfaffian chain as the one above, it follows that the complexity of the 4-point
function is

C(I4) = (1, 3, 2, 3) . (51)

Let us now consider a general ν-point function, assuming that ν is even. By Wick’s
theorem, this correlation function will consist of a prefactor 1/gν/2 multiplying a sum
of exponential terms. The number of distinct exponential terms is determined by the
combinatorial problem of distributing plus and minus signs over the times tν−1, . . . , t2
of the operator insertions, and is given by(

ν − 1
ν−1
2

)
. (52)

Each of these terms must be added to the Pfaffian chain separately, so we find that the
order of the chain grows as ν! with the number of field insertions ν. More precisely,
the Pfaffian complexity of the ν-point correlator is

C(Iν) =
(
1,

(
ν − 1
ν−1
2

)
, 3,

ν

2
+ 1

)
. (53)

Let us compare this to the results found for QFTs on a point in the previous subsec-
tion. For the lattice correlation functions, the degree showed a similar linear growth.
However, the order of the chain was fixed, whereas here it grows factorially with the
number of field insertions. The essential reason for this is that the QFT on a single
point eliminates the combinatorics of field insertions.

Harmonic oscillator – propagator

Viewing the free 1d field theory as a harmonic oscillator, there is a more natural
quantity to compute than the correlation functions, namely the propagator

G(g; t2, t1, x2, x1) = ⟨x2| e−(t2−t1)H |x1⟩ . (54)

This propagator can be computed exactly by means of a path integral, and is given by
the Mehler kernel

G(g; t2, t1, x2, x1) =

√
g

2π sinh(g∆t)
exp

(
−g
(
cosh(g∆t)(x21 + x22)− 2x1x2

)
2 sinh(g∆t)

)
, (55)

where ∆t = t2 − t1. The Pfaffian complexity of G as a function of g may be found
by systematically applying the rules for manipulating Pfaffian functions explained in
section 3.1. As a result, one finds that there exists a Pfaffian chain forG with complexity

C(G) = (1, 6, 12, 3). (56)
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This example indicates that the Pfaffian complexity agrees with the intuitive idea of
how complicated a function is. The Mehler kernel (55) involves several non-trivial
functions which are composed in an intricate way, causing the length of the chain to
be 6. This complexity is actually inherent to the physical quantity G(g). While one
might be tempted to find an alternative coordinate to g to simplify the expression, one
quickly realizes that this only leads to a reshuffling of complexity among the factors of
G(g) and that no significant reduction is possible.

Harmonic oscillator – wavefunctions

So far we have investigated physical quantities as a function of the couplings of the
theory, and we regarded the dependence on position as a parameter. In the following
we change our perspective and regard position as the variable of the functions while
viewing the couplings as external parameters. As a starting point, let us consider the
wavefunctions of the eigenstates of the harmonic oscillator. Their spatial dependence
is encoded in the time-independent Schrödinger equation12

− 1

2m
ψ′′(x) +

1

2
mω2x2ψ(x)− Eψ(x) = 0. (57)

Recall that the solutions take the form

ψn(x) =
1√
2nn!

(mω
π

)1/4
e−mωx2/2Hn(

√
mωx) (58)

where Hn is the nth Hermite polynomial. The state with wavefunction ψn has an
energy given by En = (n + 1

2)ω. Let us now show how the functions {ψn} fit into a
Pfaffian structure. Consider the following Pfaffian chain of length one:

ζ(x) = e−mωx2/2 ∂ζ

∂x
= −mω x ζ . (59)

This gives us a Pfaffian chain containing the Gaussian function, which has order 1 and
degree 2. The Hermite polynomial Hn has degree n, so it follows that, for each n, the
function ψn = Pn+1(ζ, x) is a degree n + 1 polynomial in x, ζ and hence a Pfaffian
function. Hence, the complexity of ψn in this chain is given by

C(ψn) = (1, 1, 2, n+ 1). (60)

The function ψn describes a state |n⟩ in the theory, and we may now define the com-
plexity of the state |n⟩ to be the complexity of the underlying wavefunction ψn. This
leads us to the simple observation that the complexity scales with the energy of an
eigenstate.

12Here we consider the complexity of the functional dependence on x, so we restore the physical
parameters m and ω.
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General wavefunctions

Let us now look at the more general setting and consider a one-dimensional quantum
system on an interval (a, b) that is constrained by a general potential V (x). We assume
that V (x) is a polynomial of degree d ≥ 2. The eigenstate wavefunctions now satisfy
the general one-dimensional Schrödinger equation

− 1

2m
ψ′′(x) +

(
V (x)− E

)
ψ(x) = 0 . (61)

Differential equations of this type are special types of Sturm–Liouville equations and
have been analyzed in detail, for example, in reference [20]. The solutions admit a dis-
crete energy spectrum E0 < E1 < E2 < ..., with a finite lowest energy E0 corresponding
to the ground state wavefunction ψ0.

Since this is a second order differential equation, it admits a possible reduction to
the Riccati equation, by means of the substitution f = ψ′/ψ. This substitution is only
valid for non-vanishing wavefunctions ψ. According to the node theorem in quantum
mechanics, the wavefunction of the nth excited state with energy En has exactly n zeros
[20]. In particular, the ground state wavefunction ψ0(x) is non-vanishing. Therefore,
the substitution f0 = ψ′

0/ψ0 is well-defined and satisfies the Riccati equation

ζ ′0 + ζ20 − 2m
(
V (x)− E0

)
= 0. (62)

It follows that ψ0 fits into the Pfaffian chain given by

ζ1(x) =
ψ′
0(x)

ψ0(x)

∂ζ1
∂x

= −ζ20 + 2m
(
V (x)− E0

)
, (63)

ζ2(x) = ψ0(x)
∂ζ2
∂x

= ζ1ζ2 ,

which has order 2 and degree d specified by the degree of the potential V (x). The
Pfaffian complexity of the ground state with respect to this chain is now

C(ψ0) = (1, 2, d, 1). (64)

However, recalling the discussion of fewnomials from the previous section, we note that
if V only has a small number of monomial terms M compared to the degree d, there
exists a Pfaffian chain with a lower complexity. In this chain we include each of the
monomials of V , and the resulting Pfaffian complexity of the ground state wavefunction
is

C(ψ0) = (1,M + 3, 2, 1) . (65)

In general we infer that, in the Pfaffian framework, more complicated potentials lead
to ground states of higher complexity.
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Pfaffian complexity and quantum computational complexity

Within the context of quantum-mechanical states, there exists another well-known
notion of complexity, namely quantum computational complexity (for a detailed review
we refer to [13]), and it is natural to investigate how these two concepts are related. As
we will see, the two notions of complexity differ in a number of fundamental aspects.

The main idea behind quantum computational complexity is to construct a given
target quantum state from a reference state by acting with a unitary operator U , which
is to be constructed as a product of fundamental unitary operators called gates. These
gates represent physical operations which may be performed on the states, and form
a finite set. The connection of the reference state to the target state can be thought
of as a circuit with finitely many nodes. The quantum computational complexity of
this state is then defined to be the minimum number of gates one needs to multiply
to construct U and hence gives a measure of how complex the circuit is. This notion
of complexity initially only captures quantum systems with finite-dimensional Hilbert
spaces. However, generalizations have been proposed which replace a discrete sequence
of gates by a continuous unitary evolution of the reference state. Subsequently, these
ideas have been applied to the harmonic oscillator, with the aim of assigning a quantum
computational complexity to states in quantum field theories [21].13

In order to compare the two notions, we enumerate three essential features of quan-
tum computational complexity.

(i) It is defined relative to another quantum state, and without a fixed reference
state there is no inherent notion of quantum computational complexity;

(ii) Applications require careful generalizations from discrete to continuous complex-
ity. Extending the framework in this way requires making additional choices,
such as picking a distance measure on the space of unitary operators;

(iii) It depends in a natural way on the parameters of the theory. For example, in [21]
it was shown that the complexity of the ground state ψ(x) ∼ e−mωx2/2 of the
harmonic oscillator relative to the ground state ψ0(x) ∼ e−mω0x2/2 of another
harmonic oscillator depends on the frequency ratio ω/ω0.

Let us now comment on the relation of these features to Pfaffian complexity, and point
out a number of open problems in understanding this connection.

To address point (i), we note that Pfaffian complexity measures the complexity
of physical quantities in an absolute sense, encoding the amount of logical information
required to describe a physical quantity. Instead of considering the complexity of a state
relative to another state, the Pfaffian framework is naturally more apt to describing the
complexity of logical statements that involve both states. In particular, it is desirable to
understand how a quantum circuit can be described inside the logical framework, since
we can then determine the Pfaffian complexity of the whole circuit. If one has a notion
of gates that one is allowed to use, then one can try to minimize this Pfaffian complexity

13Similar ideas were implemented in the setting of conformal field theories [22].
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on the space of allowed circuits.14 In the spirit of the example discussed above, one
may for instance calculate the complexity of statements involving ψ(x) = e−mωx2/2,
ψ0(x) = e−mω0x2/2, and all intermediate states connecting them in a circuit. We leave
making this precise as an interesting open problem for the future.

Turning to point (ii), we note that Pfaffian complexity is fundamentally a discrete
quantity, which admits no immediate continuous generalization. In the context of
quantum circuits, one attempt to implement this generalization could be to adopt the
geometric perspective on circuit complexity, replacing the search for an optimal discrete
circuit by the optimization of a path in an operator space. The curve traced out by this
path is a set, which means that one can assign a Pfaffian complexity to it. It would be
interesting to investigate if this quantity can serve as a measure of complexity of the
associated circuit.

Finally, addressing point (iii), we stress that the Pfaffian framework describes the
complexity of the functional dependence on a set of variables. Therefore, the Pfaffian
complexity itself cannot depend on these variables, and only on external parameters.
Following the example above, consider the Pfaffian complexity of the function ψ(x) =
e−mωx2/2 with respect to a Pfaffian chain ζ0 containing the function ψ0(x) = e−mω0x2/2.
Since these are functions of the variable x, the complexity will be independent of x.
However, one may inquire about the dependence on the frequencies ω and ω0. The
function ψ is only Pfaffian in this chain in the special instance that the ratio ω/ω0 is an

integer, so that we have the algebraic relation ψ = ψ
ω/ω0

0 . In this case the complexity
of ψ is given by Cζ0(ψ) = (1, 1, 2, ω/ω0), and the dependence on physical parameters
appears. Generically, ω/ω0 is not an integer, and in order for the wavefunction ψ to be
Pfaffian, the chain must be extended, leading to an increase in the Pfaffian complexity
independent of ω and ω0.

4.3 Seiberg-Witten theory and elliptic integrals

In our third example, we study a four-dimensional supersymmetric quantum field the-
ory, namely the SU(2) Seiberg-Witten theory [14] (for a detailed review we refer to [23]).
Our motivation to consider this theory is that various physical quantities can be com-
puted non-perturbatively due to the N = 2 supersymmetry. Instead of the correlation
functions, we will now consider the coupling function which encodes the coupling of
the gauge fields to the scalars.15

The starting point in constructing the SU(2) theories is an N = 2 Yang-Mills
Lagrangian for a vector multiplet containing the SU(2) gauge field.16 Additionally,
this multiplet contains a number of complex scalars Φ. The kinetic term of the vector

14Note that we do not see that the Pfaffian setting gives a natural notion of ‘gate’. The set of gates
is still a choice that depends on the system under consideration.

15Following the notation of [4], this function is part of the structure Rdef
T ,S which contains the functions

required to define a set of quantum theories T formulated on a set of spacetimes S.
16One can also allow for having a number of charged hypermultiplets. We will not consider this more

general case in this discussion.
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fields is determined by the (complexified) gauge coupling function

τ0 =
θ0
2π

+
4πi

g20
. (66)

In the vacuum the gauge symmetry is spontaneously broken from SU(2) to U(1) by
a vacuum expectation value a of the scalar fields. The possible choices of the scalar a
parameterize the Coulomb branch of the theory. To remove the redundancy a → −a,
we introduce another coordinate u = Tr(Φ2) = 2a2. At sufficiently low energies the
effective theory becomes the theory of a single U(1) N = 2 vector multiplet whose
dynamics is encoded by an effective prepotential F (a). The gauge coupling function in
then reads

τ(a) =
∂aD
∂a

, aD =
∂F

∂a
, (67)

where we have also defined the dual scalar field aD. Remarkably, the effective prepoten-
tial F (a) can be computed explicitly, including all perturbative and non-perturbative
corrections, by geometrizing the problem through the introduction of an auxiliary el-
liptic curve C – the Seiberg-Witten curve. Physically, the weak coupling point is at
u = ∞, while the theory is strongly coupled near the point u = 0, where in the classical
theory the SU(2) gauge symmetry is restored. In the complete quantum-corrected mod-
uli space, the special point u = 0 is replaced by two strong coupling points u = ±Λ2,
where Λ is a dynamically generated quantum scale.

The low-energy effective theory is obtained by integrating out the massive compo-
nents of the SU(2)-vector multiplet and depends on the energy scale Λ. Supersymmetry
protects the effective gauge coupling function τ(u,Λ) from perturbative corrections at
more than one loop, while it generally permits the presence of an infinite sum of non-
perturbative corrections. It takes the general form

τ(u,Λ) = τ0 +
2i

π
log

(√
u

Λ

)
+

∞∑
n=1

an

(
Λ√
u

)4n

, (68)

where the logarithmic term encodes the one-loop correction. In the SU(2) theory,
τ(u,Λ) can be explicitly evaluated. Absorbing Λ, the strong coupling singularities are
at u = ±1. The quantum-corrected fields (a, aD) are computed to be [23]

(
a
aD

)
=

(
4
πkE(k)

4
iπ

E(1−k)−K(1−k)√
k

)
, k =

2

1 + u
. (69)

Here the elliptic integrals E(x) and K(x) are special cases of the Gauss hypergeometric
function 2F1(a, b, c, x), in particular one finds that17

K(x) =
2

π
2F1

(
1
2 ,

1
2 , 1, x

)
, E(x) =

2

π
2F1

(
− 1

2 ,
1
2 , 1, x

)
. (70)

17Throughout this paper we use the elliptic parameter as the argument of the complete elliptic
integrals. This convention is compatible with the ones used in Mathematica.
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Using the properties of the Gauss hypergeometric function, the gauge coupling function
can be expressed as

τ(k) = i
K(1− k)

K(k)
. (71)

We now want to show that, at least on a real slice of the field space, the real and
imaginary parts of τ are Pfaffian functions. Hence, from now on we consider the real
half-line

u ∈ (1,∞) , (72)

and comment on possible generalizations later. Using (69) we infer that this implies
that 0 < k < 1, and hence that we need to evaluate the hypergeometric functions K(x)
for real values 0 < x < 1 (this describes the function K(k) as well as K(1 − k)). The
key point is that on this domain, the function K(x) is actually Pfaffian.

Since K(x) is a hypergeometric function, it satisfies the differential equation18

∂2K(x)

∂x2
=

K(x)

4(1− x)x
+

2x− 1

(1− x)x

∂K(x)

∂x
. (73)

This equation can be transformed into the Riccati equation, as we have done in the
previous examples. Let us set

h(x) =
1

K(x)

∂K(x)

∂x
, (74)

which obeys the first-order differential equation

∂h(x)

∂x
=

1

4(1− x)x
+

2x− 1

(1− x)x
h(x) + h(x)2 . (75)

This enables us to write down the following Pfaffian chain for K(x):

ζ1(x) =
1

x

∂ζ1
∂x

= −ζ21 , (76)

ζ2(x) =
1

1− x

∂ζ2
∂x

= −ζ22 ,

ζ3(x) = h(x)
∂ζ3
∂x

=
1

4
ζ1ζ2 + (2x− 1)ζ1ζ2ζ3 + ζ23 ,

ζ4(x) = K(x)
∂ζ4
∂x

= ζ3ζ4 .

Let us now compute the Pfaffian complexity of the gauge coupling function τ , given
in equation (71). In our chosen domain, τ is purely imaginary. Using the composition
rules for Pfaffian complexity explained in section 3.1, we find that the complexity of
Im τ(k) is given by

C(Im τ) = (1, 7, 4, 2) , (77)

18Note that all Gauss hypergeometric functions 2F1(a, b, c, x) satisfy a second order differential equa-
tion depending on (a, b, c). We only need to consider the special case K(x).
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where we evaluate τ as a function of the coordinate k. A more natural coordinate in
the theory is u, and as a function of u the gauge coupling has complexity

C(Im τ) = (1, 8, 6, 2) . (78)

This follows from applying the chain rule for Pfaffian complexity to the coordinate
change from k to u as given in equation (69). An important observation is that the
Pfaffian complexity, in either choice of coordinates, increases successively from the
classical to the one-loop corrected to the fully non-perturbative expression (71). Hence,
even in our rather restricted analysis we can view the Pfaffian complexity as a measure
of how many quantum contributions have been included.

Let us briefly comment on the fact that the change of coordinate from k to u
leads to an increase in the complexity from (77) to (78). That the Pfaffian complexity
depends on the coordinate choice is expected and we have seen incarnations of this
in section 3.1. In fact, the Pfaffian complexity we computed is not purely intrinsic to
the physical object but also reliant on the description of the object. We can always
increase the complexity by choosing a more involved presentation, but the key point is
that there are minimal presentations of the object and these will feature the minimal
complexities. While a more clever choice of coordinates might reduce the Pfaffian
complexity, it can only reduce it in a limited way if one wants to retain the physical
properties of the objects.

It appears here that the coordinate k allows one to describe the gauge coupling τ
with less information, which seems to suggest that this is the correct coordinate to use.
However, it is likely too naive to take this as a guide. In our analysis we focused on a
single physical quantity in Seiberg-Witten theory, the gauge coupling function, in a real
patch of the moduli space. We believe that a discussion of the coordinates leading to
the presentation of the theory in which it has the smallest complexity should include all
physical quantities of the theory and be more global in nature. Such an analysis goes
beyond the scope of this work and would require to turn to the more general formalism
introduced in section 5 as we discuss next.

An important next step is to generalize the discussion to the full quantum corrected
field space parameterized by a complex u. Here again, as in sections 4.1 and 4.2 we
reach the limitations of what is possible within Pfaffian structures. It is not expected
that the periods of a Riemann surface, even for an elliptic curve, are Pfaffian functions.
One obstruction is the appearance of monodromy symmetries arising when encircling
the singularities in the complex u-field space. Similar to the discussion of resurgence
at the end of section 4.1, we then have to deal with multiple sheets and how they are
connected. Remarkably, this can indeed be done, but one needs to move to more general
sharply o-minimal structures. We will introduce this concept in the next section and
then return to Seiberg-Witten theories in section 6.
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5 Sharp o-minimality and complexity

In the previous sections we have seen how it is possible to assign a complexity to certain
tame objects built from Pfaffian chains, including several physical quantities naturally
arising in quantum theories. However, in each of the studied examples we encountered
limitations in the scope of the Pfaffian framework. The aim of this section is to in-
troduce the concept of sharply o-minimal structures [6], which vastly generalizes the
Pfaffian chain approach to tameness and complexity. Based on this framework, we de-
fine a new notion of complexity which we term ♯complexity. Before giving the technical
definitions, we start by motivating the idea of sharp o-minimality. After reviewing the
basic definitions and properties of the framework, we discuss novel mathematical con-
jectures on sharp o-minimality which may shed light on the role of sharp o-minimality
in physics. This section mostly takes a mathematical perspective, and the application
to physics is deferred to section 6.

5.1 Motivating sharp o-minimality

Let us start by briefly recollecting what we have done so far. Our aim has been
twofold. On the one hand we wish to capture the amount of information contained in
physical quantities, in terms of the complexity of the functional dependence on physical
parameters. On the other hand, we strive to gain a deeper understanding of tameness
in physical theories. The framework of Pfaffian structures, with its notion of Pfaffian
complexity, has proven to be a suitable setting to address both of these points. Let us
summarize the main features of Pfaffian complexity:

(i) We consider the simplest way of describing a tame physical function, in terms of
a Pfaffian system of differential equations;

(ii) The complexity of this description is encoded in a few integers;

(iii) From these integers it is possible to compute bounds on the complexity of log-
ical operations and computations involving these functions, justifying the name
‘complexity’.

The limitations of the Pfaffian framework mostly arise from point (i), since many
tame physical quantities are not Pfaffian functions. As a consequence of tameness,
these functions do have a finite complexity, and this indicates the need for a larger
framework which includes all tame functions arising in physics. From a more technical
point of view, another disadvantage of Pfaffian complexity lies in point (iii). When
considering general Pfaffian sets described using logical statements involving Pfaffian
functions, it turns out that Pfaffian complexity is not compatible with all elementary
logical operations.19

19To be precise, technical challenges arise when using the logical operation of negation (¬), which
geometrically corresponds to taking the complement of a set.
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Inspired by the foundational notion of Pfaffian complexity, and with the aim of ad-
dressing these limitations and generalizing the notion of complexity in tame geometry,
Binyamini and Novikov have introduced the notion of sharp o-minimality [5,6]. This is
a refinement of o-minimality as introduced in section 2, based on an additional number
of axioms. Essentially, these axioms are generalized and abstract versions of points (ii)
and (iii) in the summary above.

Instead of the four numbers appearing in the Pfaffian complexity, sharp o-minimality
is based on two integer numbers, called format F and degree D. This reduction to two
numbers is inspired by the fact that for the Pfaffian complexity C(f) = (n, r, α, β),
the number of variables n and the order r (and respectively, the degrees α and β)
appear on a similar footing. This is evident, for instance, in the formulas for the topo-
logical and computational complexity given in section 3.2. These numbers F and D
are implemented for all definable sets in a sharply o-minimal structure, making it far
more widely applicable than Pfaffian complexity. Moreover, conditions are imposed on
(F,D) to ensure that they are consistent with all logical operations needed in tame
geometry. To axiomatize point (iii), the definition of sharply o-minimal structures in-
cludes a collection of polynomials PF (D), which encode complexity bounds on logical
and computational operations involving definable sets. Crucially, these bounds are
effective, meaning that they can be computed explicitly.

From a physical perspective, we will show in section 6 that sharp o-minimality
allows us to, in principle, compute complexities of physical quantities which we were
not able to address within the scope of the Pfaffian framework. This observation,
combined with mathematical conjectures which roughly state that all tame geometric
functions fit into a sharp o-minimal structure [5], motivates us to think that sharp o-
minimality is the ideal framework for describing complexity in tame physical systems.
An additional advantage is that, whereas o-minimality only implies finiteness, sharp
o-minimality provides computable bounds.

5.2 Sharply o-minimal structures

Format and degree

Let us now turn to the technical definition of sharp o-minimality, starting with the
notion of format F and degree D. As pointed out in the motivational subsection,
the purpose of these numbers is to quantify the complexity of all definable sets in
S. Formally, this is done by introducing for every pair of positive integers (F,D) a
collection ΩF,D which by definition contains all the definable sets of format and degree
(F,D). Together, these collections are assumed to form a filtration Ω = ΩF,D, meaning
that

ΩF,D ⊆ ΩF+1,D and ΩF,D ⊆ ΩF,D+1 . (79)

Note that for a given definable set, the format and degree are therefore not uniquely
defined; we will comment on this ambiguity later.20 Such a filtration Ω is called an

20Note that this is equally true for Pfaffian complexity, since it is always possible to make the Pfaffian
chain for a Pfaffian function more complicated.
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FD-filtration.

Definition of sharply o-minimal structures

In order for the FD-filtration Ω to describe a consistent and meaningful notion of
complexity on an o-minimal structure S we have to impose a number of additional
conditions, and this then leads us to the definition of a sharply o-minimal structure.21

The conditions are as follows:

(i) If A ∈ ΩF,D and A ⊆ Rn, then F ≥ n;

(ii) If A ∈ ΩF,D and A ⊆ Rn, then

π(A), Rn \A ∈ ΩF,D , (80)

where π is any linear projection Rn → Rn−1, and

A× R, R×A ∈ ΩF+1,D . (81)

(iii) If Ai ∈ ΩFi,Di for i = 1, . . . , k and Ai ⊆ Rn, then

k⋃
i=1

Ai,
k⋂

i=1

Ai ∈ ΩF,D , (82)

where F = maxi{Fi} and D =
∑

iDi;

(iv) If P ∈ R[x1, . . . , xn] is a polynomial, then

{P = 0} ∈ Ωn,degP ; (83)

(v) For every F there is a polynomial with positive coefficients PF such that if A ∈
ΩF,D and A ⊆ R, then A has at most PF (D) connected components.

The first axiom puts a lower bound on the format in terms of the ambient di-
mension of a definable set, which may be interpreted as a bound on the number of
variables. Axioms (ii) and (iii) indicate how format and degree behave under elemen-
tary set-theoretical operations. In particular, it shows that for definable sets built by
taking unions and intersections, the format F serves as a bound on the formats of
the constituent sets, whereas the degree is an additive quantity that grows when more
sets are added. Then axiom (iv) constrains the degree and format associated to zero
sets of polynomials. These sets are definable in any o-minimal structure and hence
also in all sharply o-minimal structures. It shows that for algebraic sets, the degree
is the expected notion, namely the degree of the underlying polynomial. Finally, the
fifth axiom tells us how the format and degree of one-dimensional definable sets relate
to the topology of these sets. This axiom is the crux of sharp o-minimality; whereas
standard o-minimality merely places a finiteness condition on subsets of the real line,
sharp o-minimality imposes an explicit upper bound, encoded in the polynomials PF .

21The adjective ‘sharp’ refers to the sharp complexity bounds which objects in such a structure
satisfy.
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Examples and non-examples

To gain some intuition for sharp o-minimality, let us discuss a two examples. First,
recall from section 2 that the simplest o-minimal structure is Ralg. The definable sets
of this structure are generated by algebraic sets of the form {P = 0}, where P is a
polynomial. Let us assign the format and degree (F,D) = (n,degP ) to these sets,
where n is the number of variables in P . The axioms (ii) and (iii) now determine the
format and degree of all sets in Ralg. This gives rise to an FD-filtration on Ralg, and
it was argued in [6] that this makes Ralg into a sharply o-minimal structure. Even
though Ralg is a relatively simple o-minimal structure, this result is non-trivial and
relies on effective cell decomposition algorithms. The computational complexity of
these algorithms encode the polynomials PF (D) needed in the definition of sharp o-
minimality.

The second example is a direct generalization of the framework of Pfaffian struc-
tures. Consider the o-minimal structure RrPfaff generated by restricted Pfaffian func-
tions. In reference [24], a notion of format and degree for the sets in RrPfaff is defined
in terms of the Pfaffian complexity of the underlying functions. Roughly speaking, the
format of a Pfaffian function is given by n+r, and the degree is given by the maximum
among the degrees α and β. For sets constructed from multiple Pfaffian functions, the
format is the maximum of the underlying formats, and the degree is the sum of the
underlying degrees. For the technical details of this construction we refer to [6, 24].
Note that this implies in particular that our computations from the previous section
carry over to the more general framework of sharp complexity.

To show that not every o-minimal structure is sharply o-minimal, let us note that
Ran is the prime example of a structure that cannot be sharply o-minimal. The precise
argument can be found in [6], but it essentially uses the fact that for a general (re-
stricted) analytic function one can choose too many free coefficients in its Taylor series.
A clever choice can then be used to violate the polynomial growth required by sharp
o-minimality. Clearly, this implies that also Ran,exp cannot be sharply o-minimal. The
fact that both Ran and Ran,exp are too large to be sharply o-minimal fits nicely with
the intuition that a general analytic function contains too much information and can
thus be arbitrarily complex.

5.3 Sharp complexity – ♯complexity

Let us now discuss the notion of complexity in the framework sharply o-minimal struc-
tures. As we alluded to earlier, the purpose of the format and degree is to quantify
the geometric complexity of a tame set or function. The interpretation of this idea
is that the format and degree control the various other notions of complexity arising
when performing operations on these sets, such as topological complexity, computa-
tional complexity, and logical complexity. As an example, consider a definable set X
which is obtained by applying unions, intersections, projections, and complements to
some definable sets X1, . . . , Xk of format and degree (Fj , Dj). One may then for in-
stance consider the question of decomposing X into connected components by running
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a geometric algorithm:22

X1, . . . , Xk X connected components of X .
geometric operations algorithm

The framework of sharp o-minimality is now designed such that all data associated to
this operation, e.g. the number of connected components of X, the complexity of the
algorithm, or the amount of information needed to describe the connected components,
are polynomially dependent on the degrees D1, . . . , Dk, where the precise polynomial
dependence is determined by the formats F1, . . . , Fk. This interpretation is made pre-
cise by several theorems pertaining to the fundamental geometric operations of tame
geometry, such as cell decomposition [6].

This leads us to view the format and degree (F,D) as an effective measure of
geometric complexity. However, a striking conceptual challenge is that these numbers
are not uniquely assigned to definable sets. Consider any definable set X ⊆ Rm. This
set may for instance be the graph of a function, or the solution set of a system of
equations and inequalities. The filtration property of Ω implies that there will be
infinitely many pairs (F,D) for which X ∈ ΩF,D. This situation may be visualized
as in figure 1. In fact, this issue is no different than for Pfaffian complexity, where a
Pfaffian function can be represented in many different ways. As a way of obtaining a
uniquely defined complexity, one may consider to first minimize the format F and then
the degree D, or vice versa. However, in the present context, where F and D determine
the complexity of computations applied to definable sets, the optimal choice of (F,D)
will depend in a case-by-case manner on the performed computation.

Instead of viewing the apparent non-uniqueness of format and degree as an obstacle,
one should view this as a fundamental feature of the very notion of complexity: the
complexity of an object is not purely inherent to the object itself, but also determined
by the situation in which the object appears.23 Therefore, it is natural to propose
that the sharp complexity, or ♯complexity for short, of a definable set X should be
defined as the collection of all formats and degrees to which X belongs, i.e. the set
{(F,D) |X ∈ ΩF,D}. This is an infinite set, but in fact only finitely many points are
relevant. These are the ‘extremal’ points (F,D) with the property that

X /∈ ΩF,D−1 and X /∈ ΩF−1,D . (84)

The relevance of these points is that there is no trivial way to reduce (F,D), and hence
one of these points will lead to the optimal computational complexity when performing
an operation on X. With this in mind, we define the ♯complexity of X as the finite set

♯C(X) =
{
(F,D) |X ∈ ΩF,D, X /∈ ΩF,D−1, X /∈ ΩF−1,D

}
. (85)

To illustrate the concept of ♯complexity, let us compute it for a number of elementary
examples. For concreteness, let us focus on the sharply o-minimal structure Ralg, where

22Note that the geometric problem of finding connected components may also be applied to the
problem of finding the number of solutions of system of equations.

23We are grateful to Gal Binyamini for stressing this point to us.
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Figure 1: An example of what the set of points (F,D) for which X ∈ ΩF,D, represented
by the black and red dots, may look like. Together these define the complexity ♯C(X).
There are always finitely many extremal points, illustrated by the red dots in the panel
on the right. The red dots define the ♯complexity of X.

the degrees of sets are determined by the degrees of underlying polynomials. First,
consider a set {a} consisting of a single point in R. This is an algebraic set, namely
the zero set of the polynomial P (x) = x − a. It follows from axiom (iv) of sharp o-
minimality that {a} ∈ Ω1,1, and therefore ♯C({a}) = {(1, 1)}. More generally, consider
a set of N points {a1, . . . , aN} in R. This set can be obtained as the zero set of a degree
N polynomial, i.e. we have

{a1, . . . , aN} =


N∏
j=1

(x− aj) = 0

 . (86)

It thus follows that {a1, . . . , aN} ∈ Ω1,N . In general, whether (1, N) is part of the
♯complexity of this set depends on the underlying sharply o-minimal structure. Since
we are currently focusing on Ralg, the definable sets can only be constructed by poly-
nomials, so in this structure we have (1, N) ∈ ♯C({a1, . . . , aN}). In other structures,
e.g. a Pfaffian structure, there may be parametrizations with lower complexity. Now
let us increase the format F . Depending on the number of points N , there are alterna-
tive ways of obtaining this set by projecting a higher-dimensional set of lower degree.
By Bézout’s theorem, the intersection of n degree d hypersurfaces in Rn consists of at
most dn isolated points. Projecting this down to the real line preserves the format and
degree, so if N ≤ dn we have (n, nd) ∈ ♯C({a1, . . . , aN}). This example shows that even
for the simplest sets, i.e. finite collections of points, the ♯complexity consists of several
optimal pairs (F,D).

As another example, consider a function f definable in a sharply o-minimal struc-
ture. We then define the ♯complexity of f to be the ♯complexity of the graph of f ,
i.e. ♯C(f) = ♯C(Γf ). For instance, if f is a degree d polynomial in n variables, then the
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graph Γf is the zero set of the polynomial

P (x1, . . . , xn, y) = y − f(x1, . . . , xn). (87)

It follows that (n+1, d) ∈ ♯C(f). As a more non-trivial example, for Pfaffian functions
the degree and format can be computed in terms of their Pfaffian complexity using the
results of [6].

5.4 Conjectures: Noetherian functions and periods

In reference [5], it was pointed out that it is expected that all o-minimal structures
which arise naturally in geometric settings should in fact be sharply o-minimal. These
expectations were made precise by the following conjecture:

Conjecture. The structures RPfaff, RrNoether, RQf are sharply o-minimal.

To explain the meaning of this statement, we now review the definitions of the structures
RrNoether and RQf which we have not encountered before. First, let us introduce the
concept of Noetherian functions. The definition is almost identical to that of Pfaffian
functions, the only difference being that the triangularity requirement of a Pfaffian
chain is omitted. Explicitly, given an open box U ⊆ Rn, i.e. a product of open intervals,
a Noetherian chain consists of functions ζ1, . . . , ζr : U → R satisfying a system of
differential equations of the form

∂ζi
∂xj

= Pij(x1, . . . , xn, ζ1, . . . , ζr) for i = 1, . . . , r, j = 1, . . . , n . (88)

Analogous to Pfaffian functions, a Noetherian function is then defined by a polynomial
in the variables x1, . . . , xn and the functions ζ1, . . . , ζr, and a Noetherian function is
called restricted if U is bounded.

The structure generated by the Noetherian functions is denoted by RrNoether. It
is known that the structure of restricted analytic functions is o-minimal, and since
every Noetherian function is restricted analytic it follows that RrNoether is o-minimal.
In [11], it was shown that Noetherian functions exhibit various bounds on topological
quantities. These bounds are analogous to the complexity bounds for Pfaffian functions,
and this idea has led Binyamini and Novikov to conjecture that the structure RrNoether

is sharply o-minimal [5]. This conjecture is under active investigation. Since Noetherian
functions are omnipresent, a consequence of this conjecture would be that the notion
of ♯-complexity extends far beyond the realm of Pfaffian complexity. We will illustrate
in the next subsection, where we revisit the physical examples studied in section 4.

It should be noted that one shortcoming of the class of restricted Noetherian func-
tions is that their domains are bounded. This constraint is crucial, since general Noethe-
rian functions are not necessarily tame (consider, for instance, the sin and cos function
from section 3.1). However, in geometric settings one naturally encounters tame func-
tions on unbounded domains. It is expected that these functions also form a sharply
o-minimal structure, but to make this precise one has to specify the class of functions
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under consideration. A candidate class is given by the so-called Q-functions, whose
exact definition we defer to Appendix B due to their technical nature. Essentially,
they arise as flat sections of connections on punctured polydiscs whose singularities are
sufficiently regular. This class includes all period integrals of algebraic families. It is
known that the structure generated by Q-functions, denoted by RQf, is contained in the
larger o-minimal structure Ran,exp, which implies that they are tame. There are results
which suggest that the functions in this structure obey certain complexity bounds [25],
which has led Binyamini and Novikov to conjecture that the structure RQf is sharply
o-minimal.

6 Sharp complexity in quantum systems

Now that we have reviewed the framework of sharp o-minimal structures and intro-
duced the notion of ♯complexity, we return to the physical theories studied earlier and
reexamine how complexity manifests itself. Since the framework of sharp o-minimality
is under active development, the following section will be more speculative in nature
than our discussion of the more established Pfaffian complexity.

6.1 Lattice QFTs revisited

In section 4, we analyzed lattice quantum field theories, focusing on the extremely
simple case of a one-point lattice and ϕ4- and ϕ6-interactions. We now turn to a
far more general setting, and consider a scalar field theory on a finite lattice with a
generic action. Our aim is to demonstrate, with the help of recent results found in [12],
that there exists a general systematic procedure for constructing a Noetherian chain
containing the correlation functions of the theory. To precisely specify our setting, we
fix a D-dimensional Euclidean lattice Λ consisting of N points, and consider a theory
described by the action

S =
∑
x∈Λ

−
D−1∑
µ=0

ϕxϕx+eµ +Dϕ2x +
J∑

j=2

λj
j!
ϕjx

 . (89)

Here the x labels the lattice sites, ϕx is the value of the scalar field on the site x, and
eµ are basis vectors for the lattice Λ. The action includes the most general polynomial
interaction term, and J indicates the highest order interaction. Note that the nearest
neighbour interactions of the form ϕxϕx+eµ encode the kinetic term of the scalar. The
correlation functions of the theory now take the form of the following lattice path
integral,24

Iν1ν2···νN =

∫
dNϕ

(
N∏
k=1

ϕνkxk

)
e−S . (90)

24The domain of integration is CN , where C is a curve in the complex plane chosen such that the
integrand vanishes at the boundary; this choice of contour enables us to integrate by parts.
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Using techniques of twisted cohomology, it was recently argued in [12] that there exists
a finite basis I1, . . . , In of correlation functions, such that every correlation function
can be written as a linear combination of this basis, with coefficients given by Laurent
polynomials in the couplings λ1, . . . , λJ . Moreover, the number of basis vectors n is
at most (J − 1)N . It was then shown that these basis integrals satisfy a system of
differential equations of the form

∂

∂λj
Ii =

NF∑
k=1

AikIk, (91)

for some square matrix A. The entries of A are Laurent polynomials in the couplings.
This essential fact about the structure of correlation functions in lattice QFTs can
now be used to construct a Noetherian chain for which all correlation functions are
Noetherian functions. Starting with the functions f1, . . . , fJ defined by

fj(λ1, . . . , λJ) =
1

λj
. (92)

The entries of the matrix A are now polynomial in the couplings λ1, . . . , λJ and the
functions f1, . . . , fJ . This means that the system of differential equations in (91) forms
a Noetherian chain. In fact, that I1, . . . , In form a basis implies that all correlation
functions in the theory are Noetherian with respect to this chain. Note that, if the
matrix A were triangular, this chain would in fact have been Pfaffian. In general, A is
rarely triangular, meaning that the Pfaffian framework cannot be implemented.

If we now restrict the space of couplings λ1, . . . , λJ by imposing bounds on each
λj , then the correlation functions Iν1···νN (λ1, . . . , λj) are restricted Noetherian func-
tions and therefore definable in the o-minimal structure RrNoether. As explained in the
previous section, this structure is expected to be sharply o-minimal. A consequence of
this conjecture is that our notion of ♯-complexity can be implemented for any lattice
QFT with an action described by an action of the form in equation (89). In particular,
all correlation functions carry a format F and degree D, whose dependence on the
parameters of the theory such as the dimension and size of the lattice, and the highest
interaction J could be analyzed.

Let us emphasize that the preceding discussion is only valid upon restricting the
space of couplings. This means that, in the restricted Noetherian setting, one loses the
ability to probe potentially interesting infinite coupling limits. In contrast, the Pfaf-
fian framework is globally valid. It would therefore be interesting to analyze whether
the correlation functions reside inside a different structure which includes infinite do-
mains while retaining the sharp complexity bounds. A natural candidate would be the
structure of Q-functions, which is conjectured to be sharply o-minimal as explained
in the previous section. We leave a more detailed analysis of lattice QFTs and sharp
o-minimality for future work.

37



6.2 Quantum mechanics revisited

We now return to the quantum mechanical theories discussed in section 4.2. In par-
ticular, we focus on the complexity of the wavefunctions arising as solutions to the
Schrödinger equation. For a general polynomial potential, we were only able to show
that the ground state is a Pfaffian function. As we will argue below, the structure
RrNoether opens the door to considering the complexity of any wavefunction, as long as
one restricts to a bounded region of space. Since we are interested in bound states which
are localized near the minima of the potential, this provides an adequate description
of the full wavefunction.

More precisely, let V (x) be an even-degree polynomial potential and consider the
Schrödinger equation

− 1

2m
ψ′′(x) +

(
V (x)− E

)
ψ(x) = 0 . (93)

It can directly be transformed to a Noetherian chain as follows

ζ1(x) = ψ(x)
∂ζ1
∂x

= ζ2 , (94)

ζ2(x) = ψ′(x)
∂ζ2
∂x

= 2m(V − E)ζ1 .

This shows that any wavefunction ψ solving the Schrödinger equation, restricted to a
bounded interval (a, b) ⊆ R, is definable in RrNoether. An analysis of the ♯complexity of
wavefunctions would require a better understanding of the sharp o-minimality of the
structure RrNoether, which is currently not known in the literature.

6.3 Scattering amplitudes and effective theories

Many physical quantities are geometric in origin, and the idea that such geometric
functions should belong to a sharply o-minimal structure as conjectured in [5] suggests
that it is possible to assign a ♯complexity to them. Below we comment on a few notable
instances where these functions arise in physics, which provide interesting avenues to
explore in the future.

Scattering amplitudes

It was recently shown in [3] that perturbative QFT scattering amplitudes at finite
loop order are functions definable in Ran,exp, when considering their dependence on
external momenta, the masses, and the coupling constant. This result uses the fact
that these finite-loop amplitudes are related to period integrals [26]. However, it is
not sufficient to assign a complexity, since Ran,exp is not ♯o-minimal. Recalling the
conjectures of section 5.4 we know that the period integrals are also belonging to a
more restricted class of functions which is contained in the structure of Q-functions,
RQf . Thus, similar to the 0-dimensional case, there is a natural complexity associated
to perturbative amplitudes given by the format and degree of the relevant Q-functions.
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Seiberg-Witten theory revisited

To go beyond perturbative QFT, one typically requires more symmetries which render
the theory tractable. As we have seen before, one such example is Seiberg-Witten
theory. In our discussion in section 4.3, we focused on the case where the gauge
group is given by SU(2), but the theory may also be formulated for higher-rank gauge
groups. For instance, in the case of SU(N) the Seiberg-Witten curve is replaced by a
hyperelliptic curve of genus g = N − 1. This curve may be described by the equation

y2 =

(
xN −

N∑
i=2

cix
N−i

)2

− Λ2N , (95)

where ci are the Casimir operators of the gauge group. The coupling functions of
the theory are now described by period integrals of this curve, which are contained in
the class of Q-functions. As a result, the coupling functions of Seiberg-Witten theory
are conjecturally definable in the sharply o-minimal structure RQf, which means that
they have an associated ♯complexity. We expect that the ♯complexity of the coupling
functions of the theory then increases with the rank N .

While we leave a precise analysis of the scaling of (F,D) with N for future research,
let us briefly highlight some facts about periods of Riemann surfaces that are crucial in
this context. Concretely, we want to argue that the format F is expected to grow with
N .25 Clearly the number of periods increases with the genus of the Riemann surface,
since there are more cycles to integrate over. Using the recent theorem [27] one realizes
that at higher g, and hence higher N , more and more algebraically independent periods
arise from the Seiberg-Witten curve.26 Hence, one will not be able to find a universal
basis of functions encoding the corrections for all Seiberg-Witten curves but rather one
will see a growth of F with the rank N of the SU(N).

Effective field theories from type II string theory

It has been shown that Seiberg-Witten theories can be obtained from string theory
on certain non-compact manifolds constructed from the Seiberg-Witten curve [28].
More generally, the geometrization of coupling functions of an effective theory arising
from string theory is present for many string compactifications. For example, the
period functions belonging to the structure RQf feature prominently in effective theories
arising from Calabi-Yau compactifications of type IIB string theory and F-theory. This
suggests that it may be possible to assign a ♯complexity to these effective theories, which
populate a large part of the string landscape. We will comment on this further in the
discussion, and address this idea in an upcoming work [29].

25This should be contrasted with the fact that, for example, for correlation functions studied in
section 4.1, we see no such growth with the number of operator insertions due to the algebraic relations
among correlators.

26We would like to thank Benjamin Bakker for discussions on this argument.
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7 Conclusions and discussion

In this work, we were driven by the foundational premise that physical systems inher-
ently possess a finite degree of complexity or information content. To systematically
encapsulate this idea, we leaned on tame geometry, which is built by using o-minimal
structures, as a mathematically rigorous way to assign complexity. The first concrete
realization of this idea is realized when using Pfaffian functions and Pfaffian sets, both
of which exhibit a well-defined notion of complexity, that we termed Pfaffian com-
plexity. We have shown that several physical systems can be described using these
functions and hence are amenable to this approach. Even without referring to a notion
of complexity, the use of Pfaffian functions turned out to be a hands-on way to prove
the tameness property of physical systems that goes beyond the analysis carried out for
the examples in [3, 4]. Interestingly, any slight generlizations of our physical examples
eventually pointed to the necessity of also generalizing the mathematical description
beyond Pfaffian structures. This led us to consider sharp o-minimal structures, which
were recently introduced [5, 6] as a mathematically well-motivated overarching frame-
work generalizing the Pfaffian setting.

The definition of sharp o-minimality implements a well-defined notion of complexity
by associating sets of two integers, the format F and the degree D, to each set or
function defined in such a structure, which we termed ♯complexity. This notion has
many remarkable properties. In particular, the definition guarantees that whenever
a set of degree D is intersected with the real line, the resulting number of connected
components depends polynomially on D. This implies that at least for fixed format
F , the computational effort to check a logical statement is polynomial in D. This
property is compatible with all logical operations and makes the finiteness statement
of o-minimality a quantitative attribute. It can indeed be understood as introducing a
well-defined notion of the amount of information needed to logically define a function
or a set. The fact that there are generally multiple minimal pairs (F,D) associated to
a set or function should be regarded as a feature instead of a bug; it indicates that the
set admits different equivalent representations, in a similar spirit as dualities.

In order to illustrate the notion of Pfaffian complexity and ♯complexity in physical
systems we focused on three qualitatively different classes of examples. We first dis-
cussed ϕn theories on a finite number of points. For the simplest settings, namely ϕ4

and ϕ6 theories on a point, we showed that both correlation functions and partition
functions can be written as Pfaffian functions, thereby enabling the assignment of a
Pfaffian complexity to them. Interestingly, we observed that the complexity grows lin-
early with the number of field insertions. We also observed an increment in complexity
when transitioning from ϕ4 to ϕ6 theory, leading us to infer a complexity growth for ϕn

as n increases. However, we have seen that beyond the simple ϕ4, ϕ6 a more involved
sharp o-minimal structure seems to be necessary. Using the notion of ♯complexity
(F,D), we expect that for ϕn theories on any number of points, the degree D increases
with the number of insertions in a correlator, while the format increases with n. At least
when restricting the domains of the parameters, we were able to identify a candidate
sharply o-minimal structure, RrNoether, in which one can try to make these statements
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precise.

Another striking observation, which strengthens the statements of [3, 4], was the
fact that Pfaffian structures enable us to treat functions which are not analytic but
rather only admit a transseries expansion and are experiencing resurgence phenomena.
Given the fact that such functions are ubiquitous in quantum field theories [18], we
believe that the broadened scope presented in this work will be instrumental in the
future.

Also in settings of quantum mechanics, Pfaffian functions arise naturally. Specif-
ically, we showed that in a one-dimensional setting, the wave functions are, at least
for simple potentials, Pfaffian functions and admit a Pfaffian complexity related to the
energy level. While for general potentials the ground state remains Pfaffian, one has
to generalize to a sharply o-minimal setting when addressing higher-level wave func-
tions. Clearly, our analysis should be only seen as an initial step of implementing a
new notion of complexity in quantum mechanics. These ideas need to be compared
to existing notions of complexity in this context. We have made some first remarks
on the relationship between Pfaffian complexity and quantum computational complex-
ity, but hope that a more comprehensive study will be carried out in the future. In
addition, it would be worthwhile to explore connections with sharp complexity and
holography, along the lines of the notion of holographic complexity [30, 31]. An in-
triguing facet of the Pfaffian complexity and ♯complexity is that certain information
about a function, such as the coefficients in a polynomial, enters the derived complexity
when representing the function in a specific way. Here one might follow a lesson from
quantum computational complexity and assert that also the coefficients in a polynomial
should inherently possess a complexity and be ‘quantized’ in an appropriate way. To
implement this explicitly remains an interesting open problem.

Finally, we analyzed couplings functions in a special class of quantum field theories,
namely Seiberg-Witten theories, and commented on the complexity of general scat-
tering amplitudes. The Seiberg-Witten example was meant to give a first indication
of how Pfaffian complexity or ♯complexity can be associated to an effective QFT. We
primarily examined the gauge-coupling functions in these theories and used the fact
that, due to supersymmetry constraints, they can be non-perturbatively derived from
an auxiliary geometry. For an SU(2) gauge group without hypermultiplets we found
that the Pfaffian setting suffices to give a partial description, while again the use of
sharply o-minimal structures becomes immediately relevant when trying to generalize
further. Also in this example, we found that the complexity highly depends on the
representation of the physical quantity, e.g. via a choice of coordinates. The challenge
hereby is that a focus on a single physical quantity within an effective theory might
lead to a complexity that is artificially low, since it does not take into account the
intricacies of the complexity minimization problem relevant when considering the full
theory.

Note that our explicit analysis was focused largely on the case where the gauge
group is SU(2). However, we presented first arguments for how the ♯complexity of the
gauge coupling functions of SU(N) Seiberg-Witten theory will grow with N . Deriving
this complexity-growth explicitly and examining the assignments to other coupling
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functions in this setting is left as an important open problem for the further research.
More generally, it will be crucial to investigate ♯complexity of effective field theories
and we hope to return to this in the future.

On the information-theoretic perspective. This work was motivated by setting
the notion of ‘finiteness of information’ as a core principle that needs to be obeyed in a
physical theory. Let us stress that our current understanding is insufficient to present
a full story on this point. The preceding discussion on complexity of coefficients in a
polynomial already highlights the difficulty of this problem. Indeed, even the choice of
a number, say the real exponent α of the functions xα, can contain an infinite amount
of information if α is irrational and not determined by a ‘simple’ equation.27 A general
sharply o-minimal structure does not record all the information in the coefficients
of the defining equations of the sets, even though it is also not independent of it
either. Our current approach can be labelled as setting the focus on the functional
complexity, rather than the complexity of numbers. To give an analogy to recent
studies in mathematics, we note that vast progress on Ax-Schanuel-type theorems,
studying transcendentality properties of functions, has been made using o-minimality,
see e.g. [32]. In contrast, the Schanuel conjecture and the period conjecture [33],
suggesting transcendentality properties of numbers, is still wide open.28 We see the
search for a refined framework within mathematics and physics as the most central
challenge to realize the general principle of ‘finiteness of information’.

On the coupling to gravity. In this work we have considered quantum systems
that are not coupled to gravity. It is an interesting question in how far tameness, with
the sharpened notion discussed in this work, is related to a coupling to gravity. It
was suggested in [2], and further explored in [4, 34], that o-minimality is a necessary
condition for an effective theory to admit a UV completion with gravity. It is not
expected, however, that it is also a sufficient condition. To see this, consider, for
example, SU(N) Seiberg-Witten theories. For very large N we do not expect that
these can arise from a string theory compactification with a finite four-dimensional
Planck mass, and one might be inclined to conclude that such theories can never be
coupled to quantum gravity. However, the o-minimality property of SU(N) Seiberg-
Witten theories, e.g. of their coupling functions, does not seem depend on N and,
in fact, we expect that all these theories are tame. Remarkably, within the context
of sharp o-minimality, we now have a quantity that does depend on N , namely the
♯complexity discussed in section 6.3. Hence, we expect that theories compatible with
quantum gravity will have to obey a complexity bound. In an upcoming work [29] we
will make this more precise.
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A Cell decomposition in tame geometry

In this appendix we briefly describe the cell decomposition theorem, mainly following
[1]. The following discussion holds for any o-minimal structure S, and we will keep this
implicit in the notation.

Let us start by introducing a more basic version of the cell decomposition theorem,
called the monotonicity theorem. Consider a real-valued definable function f defined
on a (possibly infinite) open interval (a, b). The monotonicity theorem states that the
interval (a, b) can be subdivided into finitely many pieces on which f is either monotonic
and continuous or constant. More precisely, there exist points

a =: a0 < a1 < ... < am−1 < am := b , (96)

such that f is either constant, or strictly monotonic and continuous on the open in-
tervals (ak, ak+1) ⊆ (a, b). Consequently, f can change from decreasing to increasing
only finitely many times, thereby ruling out infinite oscillations. Moreover, f can only
have finitely many discontinuities. A stronger version of this theorem ensures that f
is Cp-differentiable on (possibly smaller) open intervals in a finite decomposition. The
subintervals (ak, ak+1), along with the individual points ak, may be thought of as cells
in the interval (a, b) on which the behavior of f is particularly simple.

Next, let us introduce the cell decomposition of Rn. This is done inductively, with
the cell decomposition on the real line R as described above taken as a starting point.
In higher dimensions, cells are defined to be graphs or bands which are delimited by
definable functions in one dimension lower. The details are as follows. For n > 0,
we write Rn = Rn−1 × R. Suppose that Rn−1 is decomposed into cells {Cα}. One
introduces for each cell Cα an integermα > 0 and a set of definable continuous functions

f
(α)
k : Cα → R for 0 < k < mα such that on the entire domain Cα, we have

−∞ =: f
(α)
0 < f

(α)
1 < . . . < f

(α)
mα−1 < f (α)mα

:= ∞ , (97)

From this set of functions, the cells in Rn are given by:

(i) graphs of functions: {(x, f (α)k (x)) ⊂ Rn : x ∈ Cα} for each Cα;

(ii) bands between functions: {(x, y) ⊂ Rn : x ∈ Cα, y ∈ (f
(α)
k (x), f

(α)
k+1(x))}.

The result of this construction is a decomposition of Rn into a finite disjoint col-
lection of definable subsets. The fact that they are constructed in terms of continuous
definable functions ensures that cells have a simple geometry. As with the monotonicity
theorem, there also exists a refined notion of cell for which the functions are assumed to
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be Cp differentiable. A subtle but important technical fact is that, for every n, there is
a preferred projection Rn → Rn−1 along which the boundaries of the cells are straight.
Because of this, the cell decomposition is often called ‘cylindrical’. Figure 2 shows an
example of part of a cell decomposition of R2.

<latexit sha1_base64="eF7y/AgY2yzJ22KlUPucXFve+ls=">AAAB83icbVDLSsNAFL2pr1pfUZduBovgqiSlqMuiG5dV7AOaWCbTSTt0MgkzE6GE/oYbF4q49Wfc+TdO2iy09cDA4Zx7uWdOkHCmtON8W6W19Y3NrfJ2ZWd3b//APjzqqDiVhLZJzGPZC7CinAna1kxz2kskxVHAaTeY3OR+94lKxWLxoKcJ9SM8EixkBGsjeV6E9TgIsvvZY31gV52aMwdaJW5BqlCgNbC/vGFM0ogKTThWqu86ifYzLDUjnM4qXqpogskEj2jfUIEjqvxsnnmGzowyRGEszRMazdXfGxmOlJpGgZnMM6plLxf/8/qpDq/8jIkk1VSQxaEw5UjHKC8ADZmkRPOpIZhIZrIiMsYSE21qqpgS3OUvr5JOveZe1Bp3jWrzuqijDCdwCufgwiU04RZa0AYCCTzDK7xZqfVivVsfi9GSVewcwx9Ynz/tEJGf</latexit>
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Figure 2: An example of cell decomposition of R2 (above), constructed by a cell de-
composition of R (below). The cells of R2 are graphs and bands of continuous definable
functions on the R-cells. The new cells over open intervals in R are shown in purple,
while the new cells over points in R are shown in green. The grey cells should be
thought of as extending to infinity.

The cell decomposition theorem now states that definable cells are sufficient to
describe any definable set. The precise statement is as follows:

(i) For any finite collection of definable sets A1, ..., Ak ∈ Rn there exists a cell de-
composition such that each Ai is a finite union of cells;

(ii) For each definable function f : A→ R, with A ⊂ Rn, there is a cell decomposition
of Rn, partitioning A as in part (i), such that the restriction of f to any cell is
continuous.

The intuition for point (i) is that the geometry of any definable set may be described in
terms of finitely many simple pieces. In technical applications of tame geometry, this
means that geometric problems of a definable set can be reduced to finitely many cells.
Applications of this form rely on the fact that there exist explicit geometric algorithms
which find the cell decomposition of a given definable set. Point (ii) may be seen as a
higher-dimensional analogue of the monotonicity theorem.

The cell decomposition theorem admits a refinement upon specializing to sharply
o-minimal structures [6].29 The crucial difference is that the sharp cell decomposition is
more quantitative in nature, in the sense that the number of cells and the formats and
degrees of the cells are controlled in a polynomial manner by the formats and degrees
of the sets A1, . . . , Ak.

29To be precise, it was shown that any sharply o-minimal structure admits a refined FD-filtration
for which the sharp cell decomposition theorem holds.
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B Q-functions

Here we briefly elaborate on the class of Q-functions, which generate the conjecturally
sharply o-minimal structure RQf. We follow the exposition in [5]. The idea behind this
class of functions is that they are defined on unbounded domains, while still having
sufficiently controlled singularities at infinity. They arise naturally in geometry, for
instance in Hodge theory. The precise definition is as follows.

First, let D ⊆ Cn be a polydisk and let Σ ⊆ Cn be a union of coordinate hyper-
planes. On the vector bundle D × Cl, we consider the connection

∇v = dv −A · v, (98)

where A is a matrix of one-forms with the following properties:

(i) the one-forms in A are holomorphic on D \ Σ, where D is the closure of D;

(ii) the entries of A are algebraic over the field of algebraic numbers Q;

(iii) the connection ∇ has regular singularities along Σ;

(iv) the connection ∇ has quasi-unipotent monodromy.

To eliminate the effects of monodromy, we remove a branch cut from D. In this way,
we obtain a simply connected domain D◦. The Q-functions is now defined as the
component functions of flat connections of ∇, i.e. solutions to ∇v = 0 on D◦. By
construction, Q-functions are holomorphic, and in fact the constraints on A guarantee
that these functions are definable in the o-minimal structure Ran,exp and hence tame.
It was shown that these functions obey certain complexity bounds similar to those in
sharp o-minimality [25], leading to the conjecture that the structure RQf generated by
them is sharply o-minimal [5].
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