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Abstract

We study the self-energies of weakly interacting scalar fields in de Sitter space with one field much

lighter than the Hubble scale. We argue that self-energies drastically simplify in this light limit.

We illustrate this in theories with two scalar fields, one heavy and one light, interacting with

one another through either cubic or quartic interactions. To regulate infrared divergences, we

compute these self-energies in Euclidean de Sitter space and then carefully analytically continue to

Lorentzian signature. In particular, we do this for the most general renormalizable theory of two

scalar fields with even interactions to leading order in the coupling and the mass of the light field.

These self-energies are determined by de Sitter sunset diagrams, whose analytic structure and UV

divergences we derive. Even at very weak couplings, the light field can substantially change how

the heavy field propagates over long distances. The light field’s existence may then be inferred

from how it modifies the heavy field’s oscillatory contribution to the primordial bispectrum in

the squeezed limit, i.e. its cosmological collider signal.
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1 Introduction

Light, weakly-coupled scalar fields are ubiquitous in modern high energy physics. Not only do

they often appear in solutions to various theoretical puzzles—for example, in the axion solution

to the Strong CP problem [1–5], as viable dark matter candidates [6–10], in solutions to the

electroweak hierarchy problem [11–15]—they also arise naturally, and often in great numbers,

in low energy theories consistent with quantum gravity [16–18]. If such light scalars exist, they

must be coupled so weakly to the Standard Model to have so far evaded detection. In light of

the substantial theoretical pressure towards their existence, it is important to find new ways of

detecting them and to understand their impact on other more directly observable fields. The

goal, then, of this paper is to study the impact such light, weakly-coupled scalars can have on

primordial cosmological signals, specifically in the very light and very weakly-coupled limit.

It is widely believed that our universe once enjoyed a phase of rapid cosmic inflation at energy

scales far beyond those accessible in terrestrial experiments, with an associated Hubble scale

that could have been as high as H ∼ O(1014GeV). Information about extremely high-energy

processes could then be imprinted upon inflationary correlators which, in turn, would affect future

observations of the cosmic microwave background and our universe’s large-scale structure [19]. In

particular, they would change the inferred primordial bispectrum, or equivalently the three-point

function of the co-moving curvature perturbation ⟨ζk1ζk2ζk3⟩. This may be characterized by a

dimensionless “shape” function S(k1, k2, k3),

⟨ζk1ζk2ζk3⟩ ≡
(2π)4P 2

ζ

(k1k2k3)2
(2π)3δ(3)

(
k1 + k2 + k3)S(k1, k2, k3) , (1.1)

where Pζ ≃ 2 × 10−9 is the amplitude of the scalar power spectrum and ki = |ki|. Unfortu-

nately, because their energy is relatively small during inflation, light and weakly-coupled scalars

often have a very small effect on density fluctuations [20]. Similarly, their effect on the shape

S(k1, k2, k3) is difficult to distinguish1 from the so-called local shape [23, 24], making their impact

on inflationary correlation functions either ambiguous or unobservable.

In contrast, a heavy scalar σ, with mσ >
3
2H, imparts an unambiguous “cosmological collider”

signal [23–33] onto the bispectrum in its so-called squeezed limit, k1 ≈ k2 ≫ k3. Assuming that

σ couples directly to the curvature perturbation ζ, it will contribute to the bispectrum via the

tree-level exchange that can be depicted diagrammatically as

σ

ζk1 ζk3 ζk2 (1.2)

where the top-most grey line denotes the time at which inflation ends. This depicts a process

in which two ζ curvature perturbations (in [red ]) and a σ particle (in [black ]) are spontaneously

1Recent work, however, has shown that the shape function can receive important contributions from isocurvature
modes excited by such light scalars [21, 22]
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created from the vacuum. The σ particle then evolves freely until it eventually decays into a

third ζ, ultimately correlating the fluctuations of ζ at three distinct points. In the squeezed

limit, this σ particle is long-lived and freely propagates over large distances, oscillating at a

frequency determined by its rest mass. It thus acquires a phase proportional to this frequency

and the distance it propagates, which in turn imparts a characteristic oscillatory signature onto

the shape function of the form

S(k1 ≈ k2 ≫ k3) ∼ A
(
k3
k1

)β

sin

[
ω log

(
k3
k1

)
+ δ

]
, (1.3)

where the parameters A, β, ω and δ correspond to the amplitude, rate of decay, frequency, and

phase of these oscillations and are all calculable given a specific model. In particular, for the tree-

level exchange of a heavy scalar σ shown above, the decay rate β and frequency ω are completely

controlled by how σ propagates freely in de Sitter space. The decay rate β = 1
2 is determined by

how quickly fluctuations in σ dilute due to Hubble expansion and is the same for all free scalar

fields, while ω =
√
m2

σ/H
2 − 9/4 is its frequency at “rest” in de Sitter.

Unfortunately, a light particle φ with mass mφ <
3
2H that directly couples to the curvature

perturbation does not impart such an oscillatory signature in bispectrum. However, even in the

absence of a direct coupling to the inflaton, a light scalar φ will modify how the heavy scalar σ

propagates over large distances [34], imbuing it with non-trivial self-energy. Diagrammatically,

in the presence of φ the process (1.2) becomes

σ σ

ζk1 ζk3 ζk2 , (1.4)

where we use a hatched blob to denote the exact σ propagator. Specifically, interactions with φ

will cause σ to decay faster than any free field [35], and so β > 1
2 . Interestingly, these effects

are seemingly enhanced as the field becomes lighter and lighter, causing a massive suppression

of the cosmological collider signal as mφ → 0. This enhancement, as we show in the main text,

is directly tied to the behavior of the light scalar in the infrared, which is known to fluctuate

violently in the limit of light mass [36–50].

To leading order in the slow roll parameter, we can extract this induced decay by studying σ’s

self-energy in pure de Sitter space. The main goal of this paper is to understand how to compute

the self-energies of both the heavy scalar σ and light scalar φ in the limit mφ/H → 0. Interacting

quantum field theory in de Sitter is a notoriously rich2 subject, and many treatments are plagued

by infrared divergences. We choose to work first in Euclidean de Sitter [35, 39, 51–54] in which

correlations functions are free of infrared divergences and then analytically continue to Lorentzian

signature. This analytic continuation is subtle [55] but can be done via the Froissart-Gribov

inversion formula [56–61] and we explain how to take advantage of the small parameter mφ/H in

2This may be interpreted as a euphemism for “complicated.”
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making cosmological predictions. We explain how to efficiently extract physical predictions from

this formula, and find that the self-energies induced by cubic and quartic interactions drastically

simplify in the limit mφ → 0, though our methods are straightforwardly applicable to any two-

vertex loop diagram. Furthermore, we explain how to efficiently extract the singularity structure

of, and thus physically meaningful information from, these diagrams. This is especially useful

as the complete analytic expressions can be exceedingly complex (see, e.g. [35]). We will argue

that, in this light limit, only a few of these singularities are needed to determine the infrared

behavior of two-point functions in de Sitter. We also explain how to extract the ultraviolet

divergences of these contributions, and do so for the two-loop “sunset” diagram. Our perturbative

approximations can only be trusted at suitably weak couplings, in a sense that we make precise

in the main text, and so our results only apply to light fields that are also very weakly coupled.

Outline In Section 2, we review the basic properties of free scalar fields in de Sitter space.

Specifically, in §2.1, we first describe the geometry of D-dimensional de Sitter space in Euclidean

and Lorentzian signatures. Free fields in Euclidean de Sitter space permit a useful momentum

space representation in terms of the hyperspherical harmonics, which we review in §2.2. There,

we use this representation to derive the free field propagator and discuss its analytic continuation

from Euclidean signature to Lorentzian signature, via the Watson-Sommerfeld transformation.

This transformation requires that one use the “correct” momentum space representation of a

correlator, and we explain in §2.3 how this is provided by the Froissart-Gribov or Lorentzian

inversion formula, illustrating its use by applying it to the free field propagator.

Our main results appear in Section 3. After reviewing general aspects of two-point functions

of interacting quantum fields in de Sitter, we derive the self-energy of a heavy scalar σ induced

by a cubic interaction with a light scalar φ in §3.1 and explain how it simplifies in the limit

mφ/H → 0. This section is meant to illustrate the techniques we use, and so we only study a

particular contribution to the self-energy, the so-called bubble diagram. In §3.2, we study the

most general (renormalizable) theory of a heavy scalar σ interacting with a light scalar φ, with

a Z2 × Z2 global symmetry σ → −σ and φ → −φ. We derive the self-energies of both σ and φ

to leading order in perturbation theory. These are determined by the so-called sunset diagram

which we study in the limit mφ → 0. Finally, we present our conclusions and mention some

future directions in Section 4.

In Appendix A, we have collected various definitions and conventions for the special functions

we use in the main text. In Appendix B, we discuss the uniqueness of the interpolations used

in the analytic continuation of two-point functions from Euclidean to Lorentzian signature. Ap-

pendix C computes the UV divergences for both the bubble and sunset diagrams in dimensional

regularization via the Mellin-Barnes representation of the self-energy and contains several new

results. These are used in §3.1 and §3.2 to set the kinetic and mass counterterms for σ and φ.

Finally, in Appendix D, we analyze the ultraviolet contributions to the self-energies and argue

that they are subleading to the infrared contributions as mφ → 0.
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2 Free Fields in de Sitter Space

We will study interacting quantum fields in D-dimensional de Sitter space and, in particular, how

interactions with a light field φ affect the long-distance propagation of a heavy field σ. These

theories we consider will have Euclidean actions of the form

Se =

∫
dDx

√
g
[
1
2(∂σ)

2 + 1
2m

2
σσ

2 + 1
2(∂φ)

2 + 1
2m

2
φφ

2
]
+ Sint (2.1)

with (∂σ)2 = gµν∂µσ∂νσ while Sint encodes the interactions between the two fields. As discussed

in [35, 51, 52], we may define the de Sitter correlation functions of these fields by first computing

them in Euclidean signature and then appropriately analytically continuing them to Lorentzian

signature. The goal of this section is to review how free fields in de Sitter behave and explain

how this analytic continuation works as a way of setting the stage for our loop calculations. We

first review the geometry of de Sitter space in both signatures in §2.1, and then discuss basic

properties of de Sitter free fields in §2.2. There exists a useful “momentum space” representation

of observables in terms of the hyperspherical harmonics—their analytic continuation to Lorentzian

signature requires the use of the Froissart-Gribov inversion formula, which we discuss in §2.3.

2.1 The Geometry of de Sitter Space

In Lorentzian signature, D-dimensional de Sitter space is defined as the maximally symmetric

space with positive constant curvature, and has isometry group SO(D, 1). In global coordinates,

its metric is given by

ds2 = ℓ2
[
−dt2 + cosh2 t dΩd

]
(2.2)

where dΩ2
d = dθ21 + sin2 θ1 dΩ

2
d−1 is the standard round metric on the d-dimensional sphere,

with θ1, . . . , θd−2 ∈ [0, π] and θd−1 ∈ [0, 2π), while t ∈ R [35, 62, 63]. We will find it extremely

convenient to introduce the shorthand α = d/2, as it will simplify many expressions. The radius

of curvature ℓ is determined by the Hubble constant ℓ = H−1. It will also be convenient to

measure all quantities in terms of this radius of curvature, and so we thus set ℓ = 1.3 Of course,

dimensions can be restored in any expression by restoring appropriate powers of ℓ.

The main goal of this paper is to compute loop corrections induced by a light scalar φ on a

heavy scalar σ. However, such corrections are plagued by IR divergences in Lorentzian signature

which make it difficult to extract physical predictions. As discussed in [35, 51], we can instead

compute these loop corrections in Euclidean de Sitter space, which is simply the sphere SD

equipped with the standard round metric

ds2 = dΩ2
D = dτ2 + sin2 τ dΩ2

d . (2.3)

Generally, we will parameterize a point x in this (d + 1)-dimensional sphere in terms of its τ

coordinate and a unit vector x on the d-dimensional sub-sphere, x = (τ,x), with |x|2 = 1. All

3This also has the effect of setting our renormalization group scale (often denoted µ) to the Hubble scale
H = ℓ−1, as we only analytically continue dimensionless quantities that are made so by multiplying by appropriate
factors of ℓ.
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potential IR divergences are automatically regulated by the finite volume of the sphere, and

so—up to UV divergences that can be renormalized away—these loop corrections are finite and

physical. We may then analytically continue the loop-corrected Euclidean correlation functions

to a Lorentzian correlation function4 by taking τ → it+ π
2 with an appropriate iε-prescription to

specify an operator ordering [35]. It is particularly natural to use Euclidean de Sitter to study

the dynamics of light fields since it explicitly isolates the mode that causes physical results to

diverge in the massless limit.

Any function of two points on the sphere that is invariant under the SO(D + 1) isometry

group, and thus any de Sitter-invariant two-point function, may be written in terms of the so-

called embedding distance,5

ξ12 ≡ ξ(x1, x2) = cos τ1 cos τ2 + sin τ1 sin τ2 (x1 · x2) , (2.4)

where x1 ·x2 is the standard dot product in RD. Specifically, if we embed the SD into RD+1, the

embedding distance ξ is the cosine of the angle subtended by the great arc connecting the two

points. We will drop the subscripts ξ12 → ξ when there is no chance of ambiguity.

In Euclidean signature, this embedding distance is constrained to the interval ξ ∈ [−1, 1] while

upon analytic continuation to Lorentzian signature, τi → iti +
π
2 , it takes values on the entire

real line ξ ∈ R. The coincident limit x1 → x2 corresponds to ξ → 1, and this is also true for

points connected by a null geodesic in Lorentzian signature. Furthermore, |ξ| < 1 or ξ > 1 if the

two points are connected by a spacelike or timelike geodesic, respectively. Finally, points with

ξ < −1 are not connected by a geodesic. This limit is particularly important for cosmological

observations, as taking two points to future infinity with fixed spatial separation corresponds to

the limit ξ → −∞.

Finally, we will find it convenient to simplify many expressions like (A.12) by instead working

in terms of the variable6

ζ =
2

ξ − 1
, (2.5)

in which the limits ξ → ±∞ correspond to ζ → 0±. Because of its relationship to the long-time

or long-distance limit, we will refer to the region |ζ| ∈ [0, 1) as the “infrared.” Likewise, we will

call |ζ| ∈ [1,∞) the “ultraviolet.”

4Euclidean-signature Feynman diagrams will converge to define an interacting SO(D+1)-invariant state on the
sphere as long as the linearized field theory admits an SO(D + 1)-invariant propagator, which will be the case as
long as our scalar fields both have non-zero mass. The correlators in this state will thus be invariant under the
isometries of Euclidean de Sitter space and will satisfy the Euclidean Schwinger-Dyson equations. Upon analytic
continuation to Lorentzian signature, these correlators will automatically be SO(D, 1)-invariant and satisfy the
Lorentzian Schwinger-Dyson equations, thus defining a consistent de Sitter-invariant state and correlators.

5This embedding distance is also called Z by [35], σ by [57], and s by [58].
6Not to be confused with the comoving curvature perturbation ζk.
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2.2 Free Fields from Euclidean to Lorentzian

One very nice feature of Euclidean de Sitter space is that there exists a useful momentum space

representation of scalar fields in terms of the hyperspherical harmonics,

σ(x) =
∑
J

σJYJ(x) . (2.6)

These harmonics are the D-dimensional analogs of the familiar spherical harmonics. They are

labeled by an integer vector J = (J,m1, · · · ,md), where J ∈ N is a non-negative integer (J =

0, 1, . . .) and m = (m1,m2, . . . ,md) ∈ Zd are a set of integers such that J ≥ m1 ≥ m2 ≥ · · · ≥
|md|. Most importantly, they diagonalize the Laplacian on the sphere SD,

∇2YJ(x) = −J(J + d)YJ(x) , (2.7)

where we call J and m the total angular momentum quantum number and magnetic quantum

numbers, respectively. We will not need the explicit forms for these harmonics, though a special

role will be played by the zero mode with J = 0,

Y0(x) =

√
Γ(α+ 1)

2πα+1
=

1√
vol SD

(2.8)

which is just a constant profile on the sphere with amplitude determined by the volume of SD.

These hyperspherical harmonics are orthonormal and complete,∫
SD

dΩD YJ(x)Y
∗
K(x) = δJK and

∑
J

YJ(x)Y
∗
J(y) = δ(D)(x− y)/

√
g , (2.9)

and so the momentum space representation of a function of a single point on the sphere can be

easily found by computing, for example, σJ =
∫
dΩD σ(x)Y

∗
J(x). Usefully, the sum over magnetic

quantum numbers ∑
m

YJm(x)Y
∗
Jm(y) =

Γ(α)

2πα+1
(J + α)Cα

J (ξ) , (2.10)

Since any de Sitter-invariant two-point functionH(x, y) is necessarily a function of the embedding

distance ξ(x, y), by completeness its harmonic decomposition will only depend on the total angular

momentum J ,

H(x, y) =
∑
J

[H]JYJ(x)Y
∗
J(y) =

Γ(α)

2πα+1

∞∑
J=0

(J + α)[H]JC
α
J (ξ) . (2.11)

For integer J , the coefficients [H]J may be extracted by the “Euclidean” inversion formula,

[H]J =
(4π)αΓ(α)Γ(J + 1)

Γ(J + 2α)

∫ 1

−1
dξ

(
1− ξ2

)α− 1
2Cα

J (ξ)H(ξ) . (2.12)

Strictly speaking, the expansion (2.11) only converges when the inversion formula (2.12) does.
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Analogously, since Cα
J (−1) ∼ J2α−1 as J → ∞, these expansions only converge if [H]J decays

faster than 1/J2α+1 as J → ∞. Generally, these conditions will not be satisfied for most of the

functions we work with in four dimensions, α = 3
2 . We will instead keep α = 1

2(3 − ϵ) arbitrary

throughout our calculations and use dimensional regularization to remove any ϵ-divergences,

defining these functions via analytic continuation in α.

The hyperspherical harmonics can allow us to easily determine the propagator G(x, y) for a

free field with mass m. This propagator obeys the Klein-Gordon equation

(−∇2 +m2)G(x, y) = δ(D)(x− y)/
√
g , (2.13)

which, using (2.7) and (2.9), can be solved to find

G(x, y) =
∑
J

YJ(x)Y
∗
J(y)

J(J + 2α) +m2
=

Γ(α)

2πα+1

∞∑
J=0

J + α

J(J + 2α) +m2
Cα
J (ξxy) . (2.14)

The propagator in momentum space is thus

[G]J =
1

J(J + 2α) +m2
=

1

(J +∆)(J + ∆̄)
, (2.15)

the poles of which are determined by the so-called scaling dimension of the field,

∆ =

{
α+ i

√
m2 − α2 , m ≥ α

α−
√
α2 −m2 , m < α

(2.16)

and its conjugate or shadow dimension ∆̄ ≡ d−∆. A “heavy” scalar field, with mass m ≥ α is

said to belong to the principal series with dimension ∆ = α+iν, ν ∈ R. Likewise, a “light” scalar

field, with m < α, is said to belong to the complementary series with ∆ ∈ (0, α). Specifically,

the single-particle states created by these fields fall into irreducible representations of de Sitter’s

SO(D, 1) isometry group, of which there are two continuous families called the principal and

complementary series.7

Unfortunately, this representation is useless if we are interested in the propagator in Lorentzian

signature, since each term in the sum diverges as ξJ as |ξ| → ∞. To analytically continue this

expression to ξ ∈ R, we can make use of the Watson-Sommerfeld transform, in which we rewrite

a sum
∑∞

J=0 s(J) as a contour integral over the product of a “kernel” k(J) = −eiπJΓ(−J)Γ(J+1)

with unit residue poles at the non-negative integers and a meromorphic “interpolation” s̃(J) ∝
(J + α)[G]J which agrees with s(J) at the integers and continues it to complex J . For (2.14),

this takes the form

G(ξ) =
(−1)
2πα+1

Γ(α)

Γ(2α)

∫
C

dJ

2πi
Γ(−J)Γ(J + 2α)(J + α) [G]J 2F1

[
−J, J + 2α
α+ 1

2

∣∣∣∣ 1 + ξ

2

]
. (2.17)

7There is a third series, the discrete series, with non-negative integer dimension ∆ ∈ N, which includes ex-
actly massless and tachyonic fields. Since we always work with fields of finite (albeit potentially small) and
non-negative m2, we will not consider discrete series fields here.
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The contour C sandwiches the positive real axis, enclosing the poles at the non-negative integers

J ∈ N in a counterclockwise fashion. This integral representation again only converges for

ξ ∈ [−1, 1], but we can derive a convergent integral expression for ξ ∈ C/[−1,∞) by deforming

the contour C to lie parallel to the imaginary axis, cf. Appendix B. Crucially, the integrand (2.17)

is well-behaved as |J | → ∞, decaying as exp(−π|Im J |) as |Im J | → ∞, and analytic away from

the real axis, so we do not pick up any additional contributions as we deform the contour in this

way as long as we do not shift it too far to the left. Thus, (2.17) defines an analytic continuation

of the series (2.14) to Lorentzian signature.

The integrand in (2.17) has poles at J ∈ N, J ∈ −2α − N, and at the poles of (2.15). It is

also odd under J → −(J + 2α), so by deforming C so that it passes through the fixed point of

this transformation J = −α [35], we can make use of this antisymmetry to force the integral to

vanish. However, to do this we must always encircle one of the poles of (2.15), and so the free

field propagator reduces to the residue of this pole,

G(ξ) =
Γ(∆)Γ(∆̄)

(4π)α+
1
2Γ

(
α+ 1

2

) 2F1

(
∆, ∆̄;α+ 1

2 ;
1
2(1 + ξ)

)
. (2.18)

The free field propagator (2.18) is analytic for all ξ aside from a branch cut along ξ ∈ [1,∞) or,

in terms of our ζ variable (2.5), ζ ∈ [0,∞). It will be helpful to rewrite the propagator in the

form

G(ζ) = G∆(ζ) + G∆̄(ζ) = A(∆)(−1/ζ)−∆2F1

[
∆, ∆− α+ 1

2
2∆− 2α+ 1

∣∣∣∣−ζ ]+ (∆ → ∆̄) , (2.19)

with coefficient

A(∆) =
1

(4π)α+
1
2

Γ(∆)Γ(2α− 2∆)

Γ
(
α+ 1

2 −∆
) . (2.20)

It is clear from this expression that the dimension ∆, and thus the field’s mass, controls the

asymptotic behavior of the free propagator for very large separations ζ → 0 or as ξ → ±∞.

2.3 The Lorentzian Inversion Formula

While the momentum space representation in Euclidean signature is an extremely useful tool,

it can be nontrivial to extract physics in Lorentzian signature from it. As we saw for the prop-

agator (2.14), the core issue is that these momentum space expressions cannot be analytically

continued term-by-term, but we must instead rely on the Watson-Sommerfeld transformation to

continue the entire sum away from ξ ∈ [−1, 1]. As we discussed, this transformation proceeds

by first identifying a meromorphic interpolation s̃(J) that agrees with the summand s(J) at all

positive integers and extends it to arbitrary complex values. We then recast the sum as a contour

integral over J , deforming the contour so that the resulting expression is absolutely convergent for

Lorentzian separations. There are infinitely many such interpolations but, fortunately, there is

only one well-behaved enough as |J | → ∞ to enable this analytic continuation. Given a function

H(ξ), how do we determine this correct momentum space representation [H]J? How do we invert

expressions like (2.17)? This is the role of the Lorentzian inversion formula, which we describe

and illustrate in this section.
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The ambiguity in the interpolation is easy to see—given any interpolation s̃(J) of the summand

s(J), we can add to it an arbitrary analytic function multiplied by sinπJ and it will still agree

with the summand s(J) at the integers. However, this will always mess up the behavior of s̃(J)

as |J | → ∞, causing it to diverge at least as fast as ∝ eπ|J |. As we describe in more detail in

Appendix B, this would make the interpolation completely useless for analytic continuation from

Euclidean to Lorentzian signature. So, if we also require that the interpolation s̃(J) does not

diverge as |J | → ∞, Carlson’s theorem8 guarantees that this interpolation is unique, see e.g. [61].

Thus, while there may be infinitely many interpolations of the summand s(J), there is only one

which should be used to analytically continue the sum beyond its domain of convergence.

Thus, we should understand how to compute this correct interpolation given a function H(ξ)

defined, aside from possible singularities and branch cuts, on ξ ∈ C. The Euclidean inversion

formula (2.12) cannot work because the Gegenbauer-C functions behave very poorly away from

the real J-axis, growing exponentially as |Im J | → ∞. For instance, Cα
J (−1) ∝ exp(π|Im J |) as

Im J → ∞, cf. (A.8), and so the [H]J provided by (2.12) behave very poorly for complex J and

thus yields one of the wrong interpolations. Instead, the appropriate interpolation is provided by

the Froissart-Gribov formula [56, 57, 59, 61], which defines [H]J as

[H]J =
(4π)αΓ(α)Γ(J + 1)

Γ(J + 2α)

∮
C

dξ

2πi

(
ξ2 − 1

)α− 1
2Qα

J (ξ)H(ξ) . (2.21)

The contour C is taken to wrap the interval ξ ∈ [−1, 1] counterclockwise, while the Qα
J (ξ) are the

Gegenbauer Q-functions defined in (A.12).

Let us justify this expression. The Gegenbauer Q-functions Qα
J (ξ) satisfy the same differential

equation (A.5) as the Gegenbauer C-functions Cα
J (ξ) and have a branch cut along ξ ∈ [−1, 1].

While we could have chosen any linear combination of Cα
J (ξ) and Qα

J (ξ) and written a formula

analogous to (2.21) that agrees with (2.12) for non-negative integer J , the trick is that Qα
J (ξ) are

the unique solutions to the Gegenbauer differential equation which decay as ξ−J−2α as ξ → ∞,

and so the interpolation defined by (2.21) necessarily decays as ReJ → ∞. By Carlson’s theorem,

(2.21) is then the unique well-behaved extension of (2.12) from the integers to complex J , and is

the one relevant for physics in Lorentzian signature.

The functions we work with will all have a discontinuity along ξ ∈ [1,∞), and so we may

deform the contour9 in (2.21) so that it becomes an integral over the discontinuity of H(z),

[H]J = − 2πα+1Γ(J + 1)

4JΓ(J + α+ 1)

∫ ∞

0

dζ

2πi
ζJ−1

2F1

[
J + α+ 1

2 , J + 1
2J + 2α+ 1

∣∣∣∣−ζ ] discH(ζ) , (2.22)

8Carlson’s theorem states that, if f(z) is regular in the right half plane Re z > 0 and |f(z)| ≤ Cek|z| with C > 0
and k < π, and if f(z) = 0 for z = 0, 1, 2, . . ., then f(z) ≡ 0 is identically zero.

9Technically, (2.21) only applies to functions which are analytic in a region around the interval ξ ∈ [−1, 1]. This
is not the case for the functions we consider, which have a discontinuity along ξ ∈ [1,∞), and is related to the
fact that (products of) the propagator diverge in the coincident limit ξ → 1, causing their spectral representations
to converge poorly. As is clear from (A.8), the convergence of these series is strongly dependent on α, and so we
will work at small enough α so that (2.22) applies and then define the [H]J at α = 3

2
by analytic continuation.

Of course, these will often diverge as α → 3
2
, but these are the typical divergences one encounters in any loop

calculation and may be absorbed by local counterterms.

9



with the discontinuity defined as

discH(ζ) = lim
ϵ→0+

H(ζ + iϵ)−H(ζ − iϵ) . (2.23)

The inversion formula (2.22) is the main tool we will use in this work—it defines the momentum

space representation of H(ξ) as long as Re J is large enough and α is small enough so that the

integral converges at its endpoints ζ → 0 and ζ → ∞, respectively.

It will be useful to illustrate the inversion formula (2.22) by applying it to the propagator

(2.19). The discontinuity of the propagator along ζ ∈ [0,∞) is given by

discG(ζ) = − 2πi

(4π)α+
1
2

ζα−
1
2

Γ
(
3
2 − α

) 2F1

[
α+ 1

2 −∆, α+ 1
2 − ∆̄

3
2 − α

∣∣∣∣−1

ζ

]
. (2.24)

The integral (2.22) can be explicitly evaluated by a computer algebra system to again yield (2.15),

[G]J =
1

(J +∆)(J + ∆̄)
, (2.25)

extending (2.22) to arbitrary complex J and arbitrary α. However, it will be more helpful to

evaluate (2.22) in a way more readily applicable to cases in which an exact answer is not known,

or is too complicated to be useful.

For example, throughout this paper we will be interested in expanding integrals like (2.22)

order-by-order in the mass of a field or, analogously, order-by-order in ∆. Already from (2.25), it

is clear that this expansion can be complicated by the fact that singularities of [H]J may depend

on the dimension ∆, and an expansion in ∆ may depend sensitively on J . It will thus be helpful

to rewrite (2.22) in a way that both analytically continues it to arbitrary J and identifies any

potential singularities.

By use of a Kummer relation, the discontinuity (2.24) can be written in a form that evokes (2.19),

discG(ζ) = − 2πi

(4π)α+
1
2

Γ(2α− 2∆)

Γ(1−∆)Γ
(
α+ 1

2 −∆
) ζ∆2F1

[
∆, ∆− α+ 1

2
2∆− 2α+ 1

∣∣∣∣−ζ ]+ (∆ → ∆̄) . (2.26)

The benefit of this form is that it makes it clear why (2.22) generates a pole at both J = −∆ and

J = −∆̄. We have

[G]J = NJ,∆

∫ ∞

0
dζ ζJ+∆−1

2F1

[
J + α+ 1

2 , J + 1
2J + 2α+ 1

∣∣∣∣−ζ ] 2F1

[
∆, ∆− α+ 1

2
2∆− 2α+ 1

∣∣∣∣−ζ ]+ (∆ → ∆̄)

(2.27)

where we have defined the coefficient

NJ,∆ =
1

22J+2∆+1
Γ

[
J + 1, α−∆

J + α+ 1, 1−∆

]
. (2.28)

When J = −∆, the integrand in (2.27) behaves as ζ−1 as ζ → 0 since 2F1(a, b; c;−ζ) ∼ 1+O(ζ),

and so the integral diverges in the infrared. Indeed, we can analytically continue (2.22) to

10



arbitrary J by splitting the integral into an infrared contribution sensitive to the long-distance

|ξ| → ∞ (ζ → 0) behavior of the propagator and an “ultraviolet” contribution sensitive to the

short-distance ζ → ∞ behavior,

[G]irJ = NJ,∆

∫ 1

0
dζ ζJ+∆−1

2F1

[
J + α+ 1

2 , J + 1
2J + 2α+ 1

∣∣∣∣−ζ ] 2F1

[
∆, ∆− α+ 1

2
2∆− 2α+ 1

∣∣∣∣−ζ ]+ · · · (2.29)

where the · · · denotes the contribution from the shadow ∆ → ∆̄, while the UV contribution

[G]uvJ = [G]J − [G]irJ has the same integrand but is instead integrated over ζ ∈ [1,∞).

Since the integrand is a regular function for all J and ζ ∈ (0,∞), the only way the integral

could develop a singularity in J is if the integrand diverges in a J-dependent way at one of its

endpoints, ζ = 0 or ζ = ∞. As we also discuss in Appendix D, the integrand is regular in J

as ζ → ∞ if we include the coefficient (2.28), and so the only way a singularity can develop

is if the integrand diverges as ζ → 0. It is then trivial to isolate the singularities of [G]J and

compute their residues by series expanding the integrand in [G]irJ about ζ = 0 and then integrating

term-by-term. This is a technique that we will rely on throughout this work.

Since the integral (2.29) is over ζ ∈ [0, 1], we have no problem in replacing the integrand with

its series expansion around ζ = 0 since it has radius of convergence |ζ| = 1,

ζJ+∆−1
2F1

[
J + α+ 1

2 , J + 1
2J + 2α+ 1

∣∣∣∣−ζ ] 2F1

[
∆, ∆− α+ 1

2
2∆− 2α+ 1

∣∣∣∣−ζ ] =
∞∑
k=0

ck(J,∆)ζJ+∆+k−1 . (2.30)

The series coefficients are explicitly given by

ck(J,∆) =
(−1)k4∆−α

√
π

Γ

[
∆+ k, ∆− α+ 1, ∆− α+ 1

2 + k
k + 1, ∆, 2∆− 2α+ 1 + k

]
× 4F3

[
J + 1, −k, J + α+ 1

2 , 2α− 2∆− k

2J + 2α+ 1, 1−∆− k, α+ 1
2 −∆− k

∣∣∣ 1] . (2.31)

Integrating term-by-term we find that [G]irJ has a infinite number of potential poles at J = −∆−k
and J = −∆̄− k, for positive integer k ∈ N,

[G]irJ = NJ,∆

∞∑
k=0

ck(J,∆)

J +∆+ k
+ (∆ → ∆̄) , (2.32)

but since ck
(
−[∆+ k],∆

)
= δk,0, the only poles with non-vanishing residue are those at J = −∆

and J = −∆̄, with residues N−∆,∆ = 1/(2α−∆) and N−∆̄,∆̄ = 1/(2α− ∆̄) respectively. The rest

are then “spurious” in the language of [59]. Since [G]uvJ is necessarily regular in J , we may then

write

[G]J =
1

(J +∆)(J + ∆̄)
+ f(J) (2.33)

with f(J) is some entire function. But since [G]J → 0 as Re J → +∞, this entire function must

also vanish as |J | → ∞ and thus f(J) = 0. [G]J is thus completely determined by its singularities,

which can be easily extracted from (2.29).
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In the next section, we will find that a similar structure appears when analyzing the self-energy

of a heavy field σ in the presence of a light field φ. Fortunately, corrections to the long-distance

behavior of the two-point function ⟨σ(x)σ(y)⟩ will be dominated by only one singularity (and its

shadow) and thus the strategy outlined above provides an extremely efficient way of extracting

corrections in the limit mφ → 0.

3 Loop Corrections from a Light Scalar

Having reviewed the basics of free de Sitter quantum field theory in both Euclidean and Lorenztian

signatures, we are now ready to include interactions. The main goal of this paper is to determine

how an interaction with a light scalar field φ, with mass mφ, corrects the two-point function

⟨σ(x)σ(y)⟩ of a heavy scalar field σ, with mass mσ, in the limit that mφ → 0. Specifically, we

will work with actions of the form

Se =

∫
dDx

√
g
[
1
2(∂σ)

2 + 1
2m

2
σσ

2 + 1
2(∂φ)

2 + 1
2m

2
φφ

2 + Lint + Lct

]
, (3.1)

where Lint is the interaction Lagrangian and Lct is the counterterm Lagrangian. We consider

cubic and quartic interactions in §3.1 and §3.2, respectively, though it will be helpful to discuss

general aspects of perturbation theory first.

We organize corrections to the two-point functions ⟨σ(x)σ(y)⟩ and ⟨φ(x)φ(y)⟩ diagrammat-

ically. We denote the free-field propagators of σ and φ by Gσ(ξ) and Gφ(ξ), respectively, and

their dimensions as ∆σ and ∆φ. We represent σ by black lines and φ by blue lines,

x y
= Gσ(ξ)

x y
= Gφ(ξ)

= −J(J + 2α)δZσ− δmσ

= −J(J + 2α)δZφ− δmφ

(3.2)

with associated counterterm vertices from Lct ⊃ 1
2δZσ(∂σ)

2 + 1
2δZφ(∂φ)

2 + 1
2δmσσ

2 + 1
2δmφφ

2,

which account for mass and wavefunction renormalization and whose Feynman rules we display

in momentum space. In position space, each vertex is associated with an integral over the D-

dimensional unit sphere which we write in shorthand as
∫
SD dDzi

√
g(zi) ≡

∫
dDzi suppressing

the metric factor, with zi always representing integration dummy variables. Finally, open circles

like represent external legs at coordinates labeled by xi or, when there are only two, x and y.

As usual, corrections to the two-point function can be organized in terms of the self-energy Πσ(J),

which is defined by the sum over all one-particle irreducible (1PI) diagrams. We denote the self-

energy as

= Πσ(z1, z2) =
∑
J

Πσ(J)YJ(z1)Y
∗
J(z2) , (3.3)

and it can be computed order-by-order in perturbation theory in Euclidean signature and then

appropriately analytically continued to non-integer J , or Lorentzian signature, by using (2.22).10

10Strictly speaking, we only require that inversion of the full two-point function [σσ]J be well-behaved as J → ∞
to be able to perform the Watson-Sommerfeld transform and analytically continue the Euclidean de Sitter result

12



Diagrammatically, the exact two-point function is then given by

⟨σ(x)σ(y)⟩ = + + + · · · , (3.4)

which forms a geometric series that can be subsequently summed to yield

⟨σ(x)σ(y)⟩ = (−1)
2πα+1

Γ(α)

Γ(2α)

∮
C

dJ

2πi

Γ(−J)Γ(J + 2α)(J + α)

(J +∆σ)(J + ∆̄σ)−Πσ(J)
2F1

[
−J, J + 2α
α+ 1

2

∣∣∣∣ 1 + ξ

2

]
. (3.5)

Following [35], the asymptotic behavior of (3.5) at future infinity and fixed spatial separation,

ξ → −∞, and thus the physical mass of the field,11 is controlled by the pole J∗ of the integrand,

(J∗ +∆σ)(J∗ + ∆̄σ)−Πσ(J∗) = 0 , (3.6)

with maximal real part.

For a weakly interacting heavy field σ, there is a pair of poles with largest real part, one the

complex conjugate of the other, which we denote as J∗ and J̄∗. At future infinity, the heavy field

propagator thus behaves as ⟨σ(x)σ(y)⟩ ∼ C1(−2ξ)J∗ + C2(−2ξ)J̄∗ as ξ → −∞ for some constants

C1 and C2. For free fields, Πσ(J) = 0 and so J∗ = −∆σ and J̄∗ = −∆̄σ, while at leading order in

perturbation theory the non-zero self-energy shifts the pole to

J∗ ≈ −∆σ − Πσ(−∆σ)

∆σ − ∆̄σ
, (3.7)

with J̄∗ given by the conjugate of this expression, or by taking ∆σ → ∆̄σ. Specifically, decom-

posing the pole into its real and imaginary parts,

J∗ ≈ −
[
α+

ImΠσ(−∆σ)

2
√
m2

σ − α2

]
− i

[√
m2

σ − α2 +
ReΠσ(−∆σ)

2
√
m2

σ − α2

]
. (3.8)

we find that the real part of the self-energy affects the physically-measured mass of σ, while

its imaginary part changes the decay of the correlator at long distances. We will work in an

“on-shell” mass renormalization scheme in which mσ is σ’s physically-measured mass, and so we

adjust our counterterms so that

Im J∗ = −
√
m2

σ − α2 , (3.9)

or equivalently, to first order in perturbation theory, ReΠσ(−∆σ) = 0. The shift in J∗’s real part
is a purely physical effect that cannot be mimicked in free field theory. Furthermore, to ensure

that the two-point function is properly normalized in the long-distance limit, we require that the

residue of this pole is unchanged and thus Π′
σ(−∆σ) = 0.

to Lorentzian signature. However, the same should be true for the self-energy Πσ(J), which should also be well-
behaved as J → ∞, since there is an order-by-order equivalence between in-in perturbation theory and Euclidean
perturbation theory [52].

11This is familiar from quantum field theory in flat space, where the poles of the momentum space propagator
G(k) = 1/(k2 +m2 − Π(k2)), with Π(k2) the self-energy, control the long-distance behavior of the position space
propagator, and thus provides a physical notion of mass in the interacting theory.
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A weakly interacting light field φ only has one pole with largest real part, which we again

denote as J∗. As for the heavy field, J∗ = −∆φ in the free theory, while at leading order in

perturbation theory a non-zero self-energy Πφ(J) corrects this to

J∗ ≈ −∆φ − Πφ(−∆φ)

∆φ − ∆̄φ
. (3.10)

We will find that Πφ(−∆φ) is purely real. If we define the physically-measured mass of a light

field by J∗ ≡ −α+
√
α2 −m2

φ, thus working in an on-shell renormalization scheme, this requires

that we choose our counterterms such that Πφ(−∆φ) = 0. So, unlike the heavy field, a non-zero

self-energy Πσ(J) does not result in a measurable effect as ξ → −∞.

Finally, before we move on to our specific examples, it will be useful to discuss the general

strategy we will use for simplifying self-energy corrections in the limit mφ → 0. The self-energies

we study will be expressed in terms of the inversion formula (2.22) applied to products of σ and φ

propagators. As discussed in §2.2, the free field propagator can be decomposed into a sum (2.19)

of terms with definite scaling behavior in the infrared,

G(ζ) = G∆(ζ) + G∆̄(ζ) ∼ A(∆)(−1/ζ)−∆ +A(∆̄)(−1/ζ)−∆̄ , ζ → 0 , (3.11)

where A(∆) ∝ Γ(∆) ∼ ∆−1 as ∆ → 0 is given by (2.20). Our self-energies will then be sums of

terms like [G∆φG∆σ ]J and [G∆̄φG∆σ ]J . As we will show in this section, and as we might expect

from our analysis of the propagator in §2.3, a term like [G∆φG∆σ ]J contributes “potential” poles

to the self-energy at J = −(∆φ + ∆σ + k), with k ∈ N, whose residues may be zero (i.e. the

so-called “spurious poles” of [59]) but are proportional to A(∆φ)A(∆σ) ∝ Γ(∆φ)Γ(∆σ).

Since we are interested in how the light scalar φ affects the long-distance behavior of the heavy

scalar σ, we want to approximate Πσ(J) near the free-field pole J∗ = −∆σ. As mφ → 0, the

dimension of φ also vanishes, ∆φ ∼ m2
φ/(2α) → 0, and so we find that there are two simplifications

of the self-energy in this limit. The first is that the terms with factors of G∆φ ∝ Γ(∆φ) ∝ m−2
φ are

enhanced compared to those with Ḡ∆φ , whose amplitude does not diverge asmφ → 0. The second

is that only terms with factors of G∆φ can contribute poles that approach the free-field pole at

J∗ = −∆σ as ∆φ → 0, and there are only finitely many that do. Such poles are further enhanced

by a factor of ∆−1
φ ∝ m−2

φ compared to other poles or regular terms in the self-energy. We thus

find that the self-energy near the free-field pole, and thus the correction to σ’s long-distance

behavior, is governed by a single easily-calculated term as mφ → 0.

We will first illustrate this procedure in the so-called “bubble” diagram in §3.1, which is the

leading correction in a theory with a cubic interaction Lint = 1
2gφσ

2. Here, there are exact

analytic results we can use to check our approximations. Then, in §3.2, we study the general

theory with quartic interactions with Lint =
1
2gσ

2φ2 + 1
4!gφφ

4 + 1
4!gσσ

4, computing the leading

order physical corrections to the two-point functions in the limit mφ → 0. Throughout, we will

regulate UV divergences by first working with α = 1
2(3− ϵ) and then taking ϵ→ 0.
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Figure 1: The analytic structure of the bubble diagram [GσGφ]J for α = 3
2 . In [black ], we denote

the free-field poles at J = −∆σ = −(α + iνσ) and J = −∆̄σ = −(α − iνσ) at which [GσGφ]J is
regular. It instead has singularities at J = −(∆σ+∆φ+2k) and J = −(∆̄σ+∆φ+2k), with k ∈ N,
in [blue]. These singularities encroach upon the free-field poles and dominate the self-energy as
∆φ → 0. The bubble also has singularities at J = −(∆σ + ∆̄φ + 2k) and J = −(∆̄σ + ∆̄φ + 2k),
with k ∈ N, pictured in [red ], which remain well-separated from the free-field poles as ∆φ → 0.

3.1 The Bubble

We begin by studying the theory with a cubic interaction, Lint = 1
2gφσ

2, which we denote

diagrammatically as

= −g . (3.12)

We should also include the relevant vertex counterterms, i.e. Lct =
1
2δgφσ

2 + · · · , but since the

goal of this section is to compute σ’s self-energy Πσ(J) to leading order in perturbation theory,

these counterterms will not contribute to the final answer and so we will not include them.

The first correction to σ’s self-energy appears atO(g2), and is generated by the bubble diagram

= + , (3.13)

or equivalently,

Πσ(J) = (−g)2[GσGφ]J − J(J + 2α)δZσ − δmσ , (3.14)

where [GσGφ]J is determined by the inversion formula (2.22) applied to the collection of propa-

gators appearing in the loop, H(ζ) = Gσ(ζ)Gφ(ζ). An exact expression for [GσGφ]J was found

in [35], which we present in (A.15). As we illustrate in Figure 1, they found that the bubble has

poles at J = −∆σ−∆φ−2k, J = −∆σ− ∆̄φ−2k, J = −∆̄σ−∆φ−2k and J = −∆̄σ− ∆̄φ−2k,

for all non-negative integer k ∈ N. Physically, these correspond to the appearance of long-lived

two-particle states with non-zero momenta. Our goal is to see this structure directly from the

inversion formula (2.22) and to extract the self-energy’s mφ → 0 behavior.
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Using (2.19), we can expand the bubble into its constituents with definite scaling as ζ → 0,

[GσGφ]J = [G∆σG∆φ ]J + [G∆̄σG∆φ ]J + [G∆σG∆̄φ ]J + [G∆̄σG∆̄φ ]J . (3.15)

We will focus on the first term, [G∆σG∆φ ]J , and recover the behavior of the others by simply inter-

changing the dimensions ∆σ and ∆φ with their shadows ∆̄σ and ∆̄φ. The relevant discontinuity

is then given by

discG∆σG∆φ(ζ) = − 2πiA(∆σ)A(∆φ)

Γ(∆σ +∆φ)Γ(1−∆σ −∆φ)

× ζ∆φ+∆φ
2F1

[
∆σ, ∆σ − α+ 1

2
2∆σ − 2α+ 1

∣∣∣∣−ζ ] 2F1

[
∆φ, ∆φ − α+ 1

2
2∆φ − 2α+ 1

∣∣∣∣−ζ ] (3.16)

and so the inversion formula reads

[G∆σG∆φ ]J = NJ,∆σ∆φ

∫ ∞

0
dζ ζJ+∆φ+∆σ−1

2F1

[
J + α+ 1

2 , J + 1
2J + 2α+ 1

∣∣∣∣−ζ ]
× 2F1

[
∆σ, ∆σ − α+ 1

2
2∆σ − 2α+ 1

∣∣∣∣−ζ ] 2F1

[
∆φ, ∆φ − α+ 1

2
2∆φ − 2α+ 1

∣∣∣∣−ζ ] , (3.17)

with

NJ,∆σ∆φ =
2πα+1A(∆σ)A(∆φ)Γ(J + 1)

4JΓ(J + α+ 1)Γ(∆σ +∆φ)Γ(1−∆σ −∆φ)
. (3.18)

The coefficients A(∆) are defined in (2.20), and crucially diverge A(∆) ∝ ∆−1 as ∆ → 0. This

implies that, barring any enhancements coming from singularities in J , the terms that depend

on G∆φ will be enhanced over those that depend on G∆̄φ
in the limit that ∆φ → 0 and ∆̄φ → α.

Following our analysis of the propagator in §2.3, it is convenient to treat the infrared and

ultraviolet regions of (3.17) separately, writing [G∆σG∆φ ]J = [G∆σG∆φ ]
ir
J + [G∆σG∆φ ]

uv
J with

[G∆σG∆φ ]
ir
J = NJ,∆σ∆φ

∫ 1

0
dζ ζJ+∆φ+∆σ−1

2F1

[
J + α+ 1

2 , J + 1
2J + 2α+ 1

∣∣∣∣−ζ ]
× 2F1

[
∆σ, ∆σ − α+ 1

2
2∆σ − 2α+ 1

∣∣∣∣−ζ ] 2F1

[
∆φ, ∆φ − α+ 1

2
2∆φ − 2α+ 1

∣∣∣∣−ζ ] . (3.19)

We will focus on this infrared contribution first since we can use it to immediately read off

where [GσGφ]J ’s singularities are. As ζ → 0, the integrand behaves as ζJ+∆φ+∆σ−1 and so it

diverges when J = −∆φ −∆σ. Technically, this integral representation is only well-defined for

Re J > −Re∆φ − Re∆σ, but we may derive an analytic continuation by series expanding the

integrand about ζ = 0,

2F1

[
J + α+ 1

2 , J + 1
2J + 2α+ 1

∣∣∣∣−ζ ] 2F1

[
∆σ, ∆σ − α+ 1

2
2∆σ − 2α+ 1

∣∣∣∣−ζ ]
× 2F1

[
∆φ, ∆φ − α+ 1

2
2∆φ − 2α+ 1

∣∣∣∣−ζ ] =
∞∑
k=0

ck(J,∆σ,∆φ)ζ
k , (3.20)
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and then integrating (3.19) term-by-term to find

[G∆σG∆φ ]
ir
J = NJ,∆σ∆φ

∞∑
k=0

ck(J,∆σ,∆φ)

J +∆σ +∆φ + k
. (3.21)

Immediately, we see that the deep infrared ζ → 0 of the integral (3.19) generates a family of

potential singularities at J = −∆σ −∆φ − k, with k ∈ N. However, some of their residues may

vanish and so some of these poles may be spurious.

Ignoring the coefficient NJ,∆σ∆φ for the moment, the residue around each pole ck(∆σ,∆φ) ≡
ck(−[∆σ +∆φ + k],∆σ,∆φ) takes a relatively simple closed form, with non-zero even coefficients

c2k(∆σ,∆φ) =
1

24kk!

Γ(∆φ + k)

Γ(∆φ)
Γ

[
α+ k , ∆σ + k , α−∆σ − k , α−∆φ − k

α , ∆σ , α−∆σ , α−∆φ

]
×Γ

[
∆σ +∆φ − 2α+ 1 + 2k , ∆σ +∆φ − α+ k
∆σ +∆φ − 2α+ 1 + k , ∆σ +∆φ − α+ 2k

] (3.22)

and vanishing odd coefficients, c2k+1(∆φ,∆σ) = 0. From this, we find that the bubble indeed

has poles at J = −∆σ − ∆φ − 2k, with k ∈ N. Furthermore, there is a hierarchy in residues

as ∆φ → 0, with c0(∆σ,∆φ) = 1 while the rest are O(∆φ). We can understand this hierarchy

as follows. Since the integral (3.19) is constrained to ζ ∈ [0, 1], we may approximate the last

hypergeometric function as

2F1

[
∆φ, ∆φ − α+ 1

2
2∆φ − 2α+ 1

∣∣∣∣−ζ ] = 1 +
1

2
∆φ (−ζ) 3F2

[
1 , 1 , 3

2 − α
2 , 2− 2α

∣∣∣∣−ζ ]+O(∆2
φ) (3.23)

and so, to leading order in ∆φ, the integral in (3.19) reduces to that of (2.29), except that the

factor of ζJ+∆−1 there is now a factor of ζJ+∆σ+∆φ−1, which as we argued there only has a single

non-vanishing residue.

Since we are primarily interested in the behavior of the bubble near the free-field pole J = −∆σ,

to leading order in ∆φ we can approximate

NJ,∆σ∆φ ∼ Γ(α)

4πα+1

NJ,∆σ

∆φ
, ∆φ → 0 , (3.24)

with NJ,∆σ the coefficient appearing in the inversion of the propagator (2.28), and thus (3.19) as

[G∆σG∆φ ]
ir
J ≈ Γ(α)

4πα+1

1

∆φ

NJ,∆σ

J +∆σ +∆φ
. (3.25)

Near the free-field pole J = −∆σ, the terms we have dropped are suppressed by a factor of ∆2
φ

compared to the one we have kept.

The analysis of the UV contribution [G∆σG∆φ ]
uv
J is more involved because it diverges as α→ 3

2 .

We leave its analysis in Appendix D, but the upshot is that [G∆σG∆φ ]
uv
J is regular in J and is
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well-approximated by

[G∆σG∆φ ]
uv
J ≈ Γ(α)

4πα+1

NJ,∆σ

∆φ

∫ ∞

1
dζ ζJ+∆σ−1

2F1

[
J + α+ 1

2 , J + 1
2J + 2α+ 1

∣∣∣∣−ζ ]
× 2F1

[
∆σ, ∆σ − α+ 1

2
2∆σ − 2α+ 1

∣∣∣∣−ζ ]+ · · ·
(3.26)

as ∆φ → 0, where the · · · denote terms that diverge as ϵ → 0. These divergences simplify

drastically only once we sum over dimensions and their shadows, i.e. only in [GσGφ]J and not

in expressions like [G∆σG∆φ ]J . Regardless, aside from the UV divergence, (3.26) is subleading in

∆φ compared to (3.25) near J = −∆σ and so we may drop it.

A similar story applies to [G∆̄σG∆φ ]J , which dominates near the free-field pole at J = −∆̄σ,

and to compute it we only need to replace ∆σ with ∆̄σ in (3.25). The other terms in (3.15)

are neither singular near the free-field poles J = −∆σ or J = −∆̄σ, nor are they enhanced by

diverging factors of A(∆φ). Thus, at leading order in ∆φ, we can approximate the bubble as

[GσGφ]J ≈ [GσG∆φ ]
ir
J + · · · ≈ Γ(α)

4πα+1

1

∆φ

1

(J +∆σ +∆φ)(J + ∆̄σ +∆φ)
+ · · · , (3.27)

where the · · · denote the UV divergences from [GσGφ]uvJ . Specifically, as α→ 3
2 , this becomes

[GσGφ]J ≈ 3

8π2
1

m2
φ

1

(J +∆σ +∆φ)(J + ∆̄σ +∆φ)
+

1

8π2ϵ
, (3.28)

where the 1/(8π2ϵ) is the divergence of the bubble in dimensional regularization (C.13). We

compare this approximation to the exact result (A.15) in Figure 2, where we find excellent

agreement as mφ → 0. To leading order in ∆φ, we thus find that the self-energy reduces to

Πσ(J) ≈
g2

8π2∆φ

1

(J +∆σ +∆φ)(J + ∆̄σ +∆φ)
+

g2

8π2ϵ
− J(J + 2α)δZσ − δmσ (3.29)

in the regions of J which are relevant for σ’s propagation over long distances. This allows us to

determine our counterterms as

δZσ =
g2

32π2ν2σ∆
3
φ

and δmσ =
g2

8π2ϵ
+

g2m2
σ

32π2ν2σ∆
3
φ

, (3.30)

where νσ ≡
√
m2

σ − α2. Furthermore, the free-field pole at J∗ = −∆σ = −(α+ iνσ) is shifted to

J∗ = −3

2

(
1 +

3

16π2
g2

ν2σm
4
φ

)
− iνσ . (3.31)

As noted in [35], the heavy field σ’s interaction with the light field φ causes it to decay faster

than any free field since σ’s coupling to φ provides it with another decay channel in addition

to the standard dilution due to Hubble expansion. On the other hand, as explained in [34], the

enhancement of this decay of σ with respect to mφ can be interpreted as the washing out of σ
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Figure 2: Plots of the relative error ρ ≡ |exact − approx|/|exact| between the approxima-
tion (3.28) to the exact result (A.15), with α = 1

2(3 − 10−8). On the left, we plot this relative
error as a function of J , along a line in the complex plane that is parallel to the real axis and
passes through the free-field pole J = −∆σ, for m

2
φ = 10−2 and various values of mσ. On the

right, we plot this relative error at the free-field pole J = −∆σ as a function of mφ. It can be
seen that the relative error between the approximate (3.28) and exact (A.15) results is O(m2

φ).

correlations at long distances due to the enhanced fluctuations of φ in the infrared. In this way,

we can make contact with in-in perturbation theory wherein the enhanced fluctuations of φ are

tied to the dynamics of the super-horizon modes [41, 42].

We have argued that [GσGφ]J ’s singularity structure in J can be extracted from the IR

contribution [GσGφ]J alone since the UV contribution is regular in J . We may then write

[GσGφ]J =
∞∑
k=0

[R(∆σ +∆φ + 2k)

J +∆σ +∆φ + 2k
+

R(∆σ + ∆̄φ + 2k)

J +∆σ + ∆̄φ + 2k
+
(
∆σ → ∆̄σ

)]
+ f(J) , (3.32)

where R(J∗) denotes the residue of this function at J = −J∗ and f(J) is an analytic function.

Unlike the propagator in §2.3, the bubble does not necessarily decay as |J | → ∞ because the

product Gσ(ξ)Gφ(ξ) is too singular as ξ → 1, ultimately leading to the UV divergence [GσGφ]J ∼
1/(8π2ϵ). Analytically continuing our Euclidean results defined on ξ ∈ [−1, 1] to Lorentzian

signature with ξ ∈ R requires that these coefficients decay sufficiently rapidly to use the Watson-

Sommerfeld transform, and we ensure this is possible by adjusting our counterterms, subtracting

off the constant—or the J(J + 3) terms in cases where the kinetic counterterm is needed—as

J → ∞. Once this is done, the self-energy Πσ(J) vanishes as J → ∞ and thus we can conclude

that f(J) = 0. The full self-energy can thus be recovered from the IR contribution [GσGφ]J
alone. This agrees with (3.28), where we have truncated the sum in (3.32) to only its dominant

poles at J = −(∆σ +∆φ) and −(∆̄σ +∆φ) and approximated their residues in the ∆φ → 0 limit.

Before we proceed to study quartic interactions, it will be helpful to understand how the

approximation (3.28) arises in Euclidean signature as in [34]. Here, the analysis is much more
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straightforward since we can use the Euclidean inversion formula (2.12) for non-negative integer J ,

[GσGφ]J =
(4π)αΓ(α)Γ(J + 1)

Γ(J + 2α)

∫ 1

−1
dξ

(
1− ξ2

)α− 1
2Cα

J (ξ)G
σ(ξ)Gφ(ξ) , J ∈ N . (3.33)

Since this integral is restricted to the finite interval ξ ∈ [−1, 1], we may expand the light field

propagator into its harmonics (2.14),

Gφ(ξ) =
Γ(α+ 1)

2πα+1

1

m2
φ

+
Γ(α)

2πα+1

∞∑
J=1

J + α

J(J + 2α) +m2
φ

Cα
J (ξ) , (3.34)

where the first term is the Euclidean zero mode (2.8) propagator. As mφ → 0, we find that the

Euclidean zero mode dominates the bubble [GσGφ]J , and (3.33) may be approximated as

[GσGφ]J ∼ Γ(α+ 1)

2πα+1

[Gσ]J
m2

φ

∼ Γ(α+ 1)

2πα+1

1

m2
φ

1

(J +∆σ)(J + ∆̄σ)
. (3.35)

This agrees with (3.28) as ∆φ → 0 when J ∈ N, and so we can interpret the enhancement factor

as the Euclidean zero mode of the light field φ which becomes strongly coupled [38] as mφ → 0.

3.2 The Sunset

Having studied the bubble diagram, we now focus on sunset diagrams. Specifically, we will study

the theory with interaction and counterterm Lagrangians

Lint + Lct =
1
2gσ

2φ2 + 1
4!gφφ

4 + 1
4!gσσ

4 + 1
2δZσ(∂σ)

2 + 1
2δZφ(∂φ)

2 + 1
2δmσσ

2 + 1
2δmφφ

2

+ 1
2δgσ

2φ2 + 1
4!δgφφ

4 + 1
4!δgσσ

4
(3.36)

and associated interaction vertices

= −2g , = −gφ , = −gσ , (3.37)

To these, we add the analogous counterterm vertices, with g → δg, gφ → δgφ and gσ → δgσ , which

we distinguish with a crossed circle, e.g. . Specifically, we will compute the self-energies of σ

and φ, Πσ(J) and Πφ(J) respectively, in the limit mφ → 0 with g, gφ, and gσ all ≪ 1. We will

work perturbatively in each of these couplings to second order, which we will collectively denote

O(g2) as shorthand—this includes terms that are O(ggσ), O(g2σ). This is the first order at which

physical corrections arise and they will be generated by so-called “sunset” diagrams.12

At first order in the couplings, σ’s self-energy is given by

= + + , (3.38)

12The sunset diagram in de Sitter has also been studied using the Schwinger-Dyson equations for the O(N)
scalar field theory in [64].
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where we exclude terms associated with vertex renormalization that are not needed to this order

in perturbation theory. Specifically, we have

Πσ(J) = −gGφ(1)− 1
2gσG

σ(1)− J(J + 2α)δZσ− δmσ , (3.39)

where G(1) ≡ limξ→1G(ξ) ≡ limy→xG(x, y) represents the coincident limit of the propagator.

These diagrams are UV divergent and, as before, we regularize them via dimensional regular-

ization by working in α = 1
2(3 − ϵ) and taking ϵ → 0 with masses held fixed. We define the

coincident limit of the free-field propagator in general dimensions as

G(1) =
1

(4π)α+
1
2

Γ

[
1
2 − α , ∆ , 2α−∆

1
2 + α−∆ , 1

2 − α+∆

]
(3.40)

which, as ϵ→ 0, behaves as

G(1) ∼ −(∆− 1)(∆̄− 1)

16π2

[
2

ϵ
− ψ

(
∆− 1

)
− ψ

(
∆̄− 1

)
+ log 4πe−γe + 1

]
− 1

8π2
, (3.41)

with γe ≡ −ψ(1) the Euler-Mascheroni constant and ψ(z) = Γ′(z)/Γ(z) the digamma function. In

our renormalization scheme, this contribution is completely absorbed by the mass counterterm,

such that δZσ = O(g2) and δmσ = −gGφ(1) − 1
2gσG

σ(1) + O(g2). The same is true for the

self-energy of φ to first order, which is given by

= + + , (3.42)

or equivalently

Πφ(J) = −gGσ(1)− 1
2gφG

φ(1)− J(J + 2α)δZφ − δmφ . (3.43)

For a light field, there is only one pole with maximal real part, and ensuring this pole yields the

physically measured mass forces us to choose δZφ = O(g2) and δmφ = −gGσ(1) − 1
2gφG

φ(1) +

O(g2). Physical corrections to the propagation of both σ and φ instead occur at O(g2).

At second order in perturbation theory, σ’s self-energy Πσ(J) is given by

= + + + +

+ + + + + + .

(3.44)

It is clear that the diagrams on the second line of (3.44) all cancel in our renormalization scheme,

while the two diagrams associated with the O(g2) vertex counterterms can be absorbed into the

O(g2) part of the δmσ counterterm, as they yield just a constant factor −1
2δgσG

σ(1)− 1
2δgG

φ(1).
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So, to O(g2) σ’s self-energy is given by the sum of sunset diagrams,

= + + (3.45)

or

Πσ(J) =
1

2
(−2g)2[GφGφGσ]J +

1

3!
(−gσ)2[GσGσGσ]J − J(J + 2α)δ(2)Zσ

− δ(2)mσ
(3.46)

where we use δ(2)Zσ
and δ(2)mσ to denote the counterterms at O(g2), having absorbed the vertex

counterterms. The logic is identical for the O(g2) corrections to Πφ(J), and so we have

= + + (3.47)

or, equivalently,

Πφ(J) =
1

2
(−2g)2[GφGσGσ]J +

1

3!
(−gφ)2[GφGφGφ]J − J(J + 2α)δ(2)Zφ

− δ(2)mφ
. (3.48)

We see that the leading order corrections to the self-energies of σ and φ are determined by sums

of sunset diagrams, and our goal is to approximate how they correct the long-distance behavior

of the propagators in the limit mφ → 0.

We begin by considering σ’s mixed sunset diagram, which we may decompose (2.19) as

∝ [GσGφGφ]J = [GσG∆φG∆φ ]J + 2× [GσG∆φG∆̄φ ]J + [GσG∆̄φG∆̄φ ]J . (3.49)

Given our experience with the bubble diagram in §3.1, we already know which terms in (3.49) will

dominate as ∆φ → 0. The first term, [GσG∆σG∆σ ]J , will contain two factors of A(∆φ) ∝ ∆−2
φ and

have two families of integer-spaced poles at J = −(∆σ + 2∆φ + 2k) and J = −(∆̄σ + 2∆φ + 2k),

for k ∈ N.13 As ∆φ → 0, the right-most poles with k = 0 will encroach on the free-field poles at

J = −∆σ and J = −∆̄σ and dominate the self-energy.

This does not happen with the other two terms in (3.49). By the same logic, [GσG∆φG∆̄φ ]J will

only contain one factor of A(∆φ) and have two families of poles at J = −(∆σ +∆φ+∆̄φ+2k) =

−(∆σ +2α+2k) and J = −(∆̄σ +2α+2k), neither of which encroach upon the free-field poles as

∆φ → 0. Similarly, [GσG∆̄φG∆̄φ ]J has no factors of A(∆φ) and poles at J = −(∆σ + 2∆̄φ + 2k)

and J = −(∆̄σ +2∆̄φ+2k). Thus, the terms [GσG∆φG∆φ ]J , [GσG∆φG∆̄φ ]J and [GσG∆̄φG∆̄φ ]J will

be of order ∆−3
φ , ∆−1

φ and ∆0
φ, respectively, near the free-field poles as ∆φ → 0 and so we will

13From the representation (3.52), it is trivial to see that [GσG∆φG∆φ ]
ir
J potentially has poles at J = −(∆σ+2∆φ+

k) and J = −(∆̄σ + 2∆φ + k), for k ∈ N. Unfortunately, it is not so easy to see from this form that the residues of
the poles vanish for all odd k, and we do not have a proof of this. These residues are trivial to compute—one simply
sets J = −(∆σ + 2∆φ + k) and series expands the integrand about ζ = 0 to find the coefficient of the ζk term. In
practice, we have confirmed that residues of the odd k poles vanish up to k = 15, though whether or not this is
true does not affect our results. Physically, that these odd poles vanish follows from momentum conservation—the
pole at J = −(∆σ + 2∆φ + k) is generated by a long-lived state of a ∆σ “particle” and two ∆φ “particles,” with
k units of integer-quantized momentum distributed among them. Since momentum must be conserved, we cannot
add momentum along one leg without adding the opposite momentum along the other, and so k must be even to
correspond to a long-lived physical state.
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only need to keep the first. By similar logic, the other sunset diagram ∝ [GσGσGσ]J will be of

O(∆0
φ) as ∆φ → 0, and so we need not consider it.

The dominant contribution to σ’s self-energy as ∆φ → 0 is then given by

[GσG∆φG∆φ ]J = NJ,∆σ2∆φ

∫ ∞

0
dζ ζJ+∆σ+2∆φ−1

2F1

[
J + α+ 1

2 , J + 1
2J + 2α+ 1

∣∣∣∣−ζ ] (3.50)

× 2F1

[
∆σ, ∆σ − α+ 1

2
2∆σ − 2α+ 1

∣∣∣∣−ζ ] 2F1

[
∆φ, ∆φ − α+ 1

2
2∆φ − 2α+ 1

∣∣∣∣−ζ ]2 + (∆σ → ∆̄σ) ,

where we have introduced the coefficient

NJ,∆σ2∆φ =
2πα+1

4J
A(∆σ)A(∆φ)A(∆φ)Γ(J + 1)

Γ(J + α+ 1)Γ(∆σ + 2∆φ)Γ(1−∆σ − 2∆φ)
∼

∆φ→0

Γ(α)2NJ,∆σ

16π2α+2∆2
φ

. (3.51)

Following the same strategy we used with the bubble diagram, the self-energy near the free-field

pole J = −∆σ is dominated by the IR part of this integrand,

[GσG∆φG∆φ ]
ir
J ≈ Γ(α)2

16π2α+2

NJ,∆σ

∆2
φ

∫ 1

0
dζ ζJ+∆σ+2∆φ−1

2F1

[
J + α+ 1

2 , J + 1
2J + 2α+ 1

∣∣∣∣−ζ ]
× 2F1

[
∆σ, ∆σ − α+ 1

2
2∆σ − 2α+ 1

∣∣∣∣−ζ ]+ (∆σ → ∆̄σ)

, (3.52)

which is well-approximated by the first term in the series expansion of the integrand about ζ = 0,

[GσG∆φG∆φ ]
ir
J ≈

[
Γ(α)

4πα+1∆φ

]2 1

(J +∆σ + 2∆φ)(J + ∆̄σ + 2∆φ)
. (3.53)

To this, we must add the UV contribution [GσG∆φG∆φ ]
uv
J . This is subleading as ∆φ → 0, albeit

UV divergent. We regularize the general sunset diagram in Appendix C, finding (C.18) as α→ 3
2 .

We find that as ∆φ → 0, the sunset diagram (3.49) is well-approximated by

∝ [GσGφGφ]J ∼ 1

64π4∆2
φ

1

(J +∆σ + 2∆φ)(J + ∆̄σ + 2∆φ)

− J(J + 3)

2(4π)4ϵ
− 1

64π4ϵ
+ U(∆σ) + 2U(∆φ)

(3.54)

where U(∆) is defined in (C.19). Since [GσGσGσ]J is subleading, (3.54) determines the self-energy

Πσ(J) to leading order in ϵ and ∆φ. Imposing our renormalization conditions, ReΠσ(−∆σ) = 0

and Π′
σ(−∆σ), we find second-order corrections to the kinetic and mass counterterms to be

δ(2)Zσ
= − g2

(4π)4

[
1

ϵ
− 1

2ν2σ∆
4
φ

]
δ(2)mσ

= − 8g2

(4π)4ϵ
+

g2

2(4π)4
m2

σ

ν2σ∆
4
φ

+ 2g2 U(∆σ) + 4g2 U(∆φ)

(3.55)

at leading order in ∆φ → 0. The imaginary part of the self-energy is unaffected by these real
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counterterms and is simply

ImΠσ(−∆σ) ∼
2g2

(4π)4νσ∆3
φ

, ∆φ → 0 . (3.56)

Using (3.8), we find that the free-field pole is shifted by

J∗ ≈ −3

2

(
1 +

9

128π4
g2

ν2σm
6
φ

)
− iνσ . (3.57)

As with the bubble diagram of §3.1, coupling to the light scalar φ causes the heavy scalar σ to

decay faster than any free field in de Sitter.

This shift of the free-field pole translates into a clear observable in the context of the cosmolog-

ical collider signal [34]. Ultimately, given any operator which couples to the scalar mode during

inflation, it is the leading exponent of this operator in the infrared (i.e. in the late time limit)

which fixes the decay of the three-point function ⟨ζk1ζk3ζk3⟩ in the squeezed limit [28]. Therefore,

the pole J∗ contains all the necessary information to characterize the scaling exponents in the

shape function. Recalling (1.3), in the interacting theory the decay parameter corresponding to

a σ exchange in the cosmological collider precisely becomes

β =
1

2

(
1 +

27

128π4
g2

ν2σm
6
φ

)
, (3.58)

thereby resulting in a clear suppression of the signal.

We can also compute the leading-order corrections to the light scalar φ’s self-energy (3.48).

This is dominated by the sunset diagram involving three internal φ legs,

∝ [GφGφGφ]J = [G∆φG∆φG∆φ ]J + 3× [G∆φG∆φG∆̄φ ]J

+ [G∆̄φG∆̄φG∆̄φ ]J + 3× [G∆φG∆̄φG∆̄φ ]J .

(3.59)

By the same logic we used for (3.49), the first term [G∆φG∆φG∆φ ]J scales14 as ∆−2
φ and has

poles at J = −(3∆φ + 2k), the second [G∆φG∆φG∆̄φ ]J scales as ∝ ∆−2
φ and has poles at J =

−(2∆φ+∆̄φ+2k), the third [G∆̄φG∆̄φG∆̄φ ]J scales as∝ ∆−1
φ and has poles at J = −(∆φ+2∆̄φ+2k),

while the last term [G∆φG∆̄φG∆̄φ ]J scales as ∆0
φ and has poles at J = −(3∆̄φ + 2k), with k ∈ N.

We thus see that only the poles of the first term [G∆φG∆φG∆φ ]J encroach on the free-field pole

at J = −∆φ and so dominates over the others—it is of order ∆−3
φ while the others are of order

∆−2
φ , ∆−1

φ and ∆0
φ, respectively. However, if we are interested in the behavior of the self-energy

near the other free-field pole J = −∆̄φ, then [G∆φG∆φG∆̄φ ]J is of order ∆−3
φ and dominates over

the others.

14From (3.61), we see that even though this term is proportional to A(∆φ)
3 ∼ ∆−3

φ , the discontinuity in the

inversion formula (2.22) introduces an extra 1/Γ(3∆φ) that causes this term to scale as ∆−2
φ as ∆φ → 0. This still

matches with the Euclidean picture—if we replace every internal leg with a zero mode propagator as in (3.34), we
find that this diagram should scale as m−6

φ ∝ ∆−3
φ when J = 0. At non-zero J , atleast one internal leg must be a

non-zero mode, and so this diagram scales as m−4
φ ∝ ∆−2

φ when J ̸= 0.
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Focusing on Πφ(J) near J = −∆φ, we argued that this is dominated by

[G∆φG∆φG∆φ ]J = NJ,3∆φ

∫ ∞

0
dζ ζJ+3∆φ−1

2F1

[
J+α+ 1

2
, J+1

2J+2α+1

∣∣∣−ζ ] 2F1

[
∆φ, ∆φ−α+ 1

2
2∆φ−2α+1

∣∣∣−ζ ]3 (3.60)

with

NJ,3∆φ =
2πα+1

4J
A(∆φ)

3Γ(J + 1)

Γ(3∆φ)Γ(1− 3∆φ)Γ(J + α+ 1)
. (3.61)

As with (3.50), this integral is dominated by its IR contribution near J = −∆φ, and we may

approximate it by the closest pole,15

[G∆φG∆φG∆φ ]
ir
J ≈ 3

2α

[
Γ(α)

4πα+1∆φ

]2 1

J + 3∆φ
. (3.62)

To this, we must add its UV divergence (C.18) and so we find that, as ∆φ → 0,

∝ [GφGφGφ]J ∼ 1

64π4∆2
φ

1

J + 3∆φ
− J(J + 3)

2(4π)4ϵ
− 1

64π4ϵ
+ 3U(∆φ) (3.63)

near J = −∆φ. Since this diagram also dominates over the other, φ’s self-energy is well-

approximated by

Πφ(J) ≈
g2φ
3!

[
1

64π4∆2
φ

1

J + 3∆φ
− J(J + 3)

2(4π)4ϵ
− 1

64π4ϵ
+ 3U(∆φ)

]
− J(J + 3)δ(2)Zφ

− δ(2)mφ
. (3.64)

This self-energy is completely real, and so its effect on the free-field pole J = −∆φ can be

completely absorbed by the counterterms. Requiring ReΠ(−∆φ) = Π′(−∆φ) = 0, we find that

δZφ ∼ −
g2φ

12(4π)4ϵ
−

g2φ
18(4π)4∆4

φ

δmφ ∼ −
2g2φ

3(4π)4ϵ
+

g2φ
6(4π)4∆3

φ

+
1

2
g2φ U(∆φ) ,

(3.65)

as ∆φ → 0. Of course, this is not to say that quantum fluctuations do not change the long-

distance behavior of ⟨φ(x)φ(y)⟩, as the self-energy

Πφ(J) ∼
g2φ

3(4π)4∆3
φ

[
2∆φ

J + 3∆φ
+
J(J + 3)

6∆φ
− 1

2

]
, ∆φ → 0 , (3.66)

is still non-trivial in this limit.

Before we conclude, it will be helpful to discuss the conditions under which these perturbative

results are valid, concentrating on φ’s self-energy. There are a host of diagrams we can draw at

15When J = 0, we can easily evaluate (3.59) by decomposing the propagator into its zero mode and non-zero
mode contributions, cf. (3.34). Using the definition of [GφGφGφ]J given in (2.11), we have that (3.59) reduces to
the product of three zero mode propagators multiplied the inverse square of the zero mode profiles (2.8).
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O(g3), though the only ones that yield physical effects are what we call the “Homer” diagrams,

⊃ + + + · · · . (3.67)

Specifically, the first dominates as ∆φ → 0 and is given in position space by

= H(z1, z2) ≡
1

4
(−gφ)3

∫
SD
dDz3 [Gφ(z1, z3)]

2 [Gφ(z3, z2)]
2Gφ(z1, z2) . (3.68)

We can easily compute this Homer’s leading ∆φ-dependence at J = 0 by replacing each internal

leg with a zero-mode propagator, cf. (3.34), and then multiplying by the inverse-square of the

zero mode profile (2.8), yielding

[H]0 ∼ −
g3φ
8α

[
Γ(α)

4πα+1∆φ

]4 1

∆φ
, ∆φ → 0 . (3.69)

Our perturbative expansion is valid as long as the Homer is subleading to the sunset (3.59), and

their ratio at J = 0 is

[H]0
[S]0

= −3gφ
2

[
Γ(α)

4πα+1∆φ

]2
∼

α→ 3
2

−3gφ
2

[
3

8π2m2
φ

]2
. (3.70)

We thus require that gφ ≪ 128
27 π

4m4
φ to maintain perturbative control and ensure that [H]0 ≪ [S]0.

Equivalently, our results only apply to light and very weakly-coupled fields, and our perturbative

expansions break down when φ becomes very light with mφ ≲ g
1/4
φ . Similar logic holds for the

self-energy for σ which has its own dominant Homer diagram with four internal φ legs. Ensuring

that this Homer is subleading to the sunset (3.49) similarly requires that g ≪ 128
27 π

4m4
φ. This

is the familiar breakdown of perturbation theory for light fields in de Sitter [38, 41, 45]. In

Euclidean signature, this breakdown is tied to the fact that the zero mode becomes strongly

coupled as mφ → 0 [38], and we will discuss how to restore control by rearranging perturbation

theory around this strongly coupled zero mode in a follow-up work.

4 Conclusions

A heavy scalar σ, with mσ >
3
2H, that is excited during inflation will freely propagate, oscillating

in phase at a frequency that depends on its mass, until it eventually decays. This, in turn, will

impart an oscillatory signal onto the primordial bispectrum in the squeezed limit—the cosmolog-

ical collider signal—which cannot be easily mimicked by other local processes, and so it serves

as a “smoking gun” inflationary signature of the field σ, from which we can determine its mass

(and spin). Unfortunately, a light field φ does not generate a similar oscillatory signal in the

bispectrum, but it will modify how σ propagates over long distances, causing it to decay more

rapidly. We can thus infer the presence of such light fields via the cosmological collider signal by
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their impact on σ. These effects grow larger the lighter φ is, and the goal of this paper was to

study these corrections in the limit mφ/H ≪ 3
2 .

Specifically, we described how to compute the self-energies of σ and φ in de Sitter space,

using the Froissart-Gribov or Lorentzian inversion formula (2.22) to analytically continue from

Euclidean to Lorentzian signature. We found that these self-energies drastically simplified in

the limit mφ/H → 0, and described how to appropriately leverage the small parameter mφ/H

to make physical predictions. These techniques should apply straightforwardly to any diagram

with only two vertices, regardless of the number of internal legs or loops. We first used them in

§3.1 to analyze the bubble diagram, in which σ and φ interact via a cubic interaction gφσ2. We

did not consider all possible interactions in this theory, as we mainly used it as an illustrative

test case to understand how self-energies behaved in the light limit. We then analyzed the fully

interacting theory of σ and φ invariant under σ → −σ and φ → −φ, whose physical corrections

were determined by various sunset diagrams. We regulated these sunset diagrams in Appendix C,

fully determining the mass and kinetic counterterms in this theory and computed how interactions

affect the long-distance behavior of both fields in the limit mφ/H → 0. These results apply for

light, weakly-coupled fields with couplings g, gφ ≪ 128
27 π

4m4
φ.

Given the ubiquity of such light scalar fields in modern high energy physics, there are several

future directions worth pursuing:

• As mentioned previously, our techniques are easily and straightforwardly applicable to any

diagram with only two vertices. It would be interesting to study diagrams with more internal

vertices, like the Homer diagrams of §3.2. Can we easily infer their analytic structure using

(2.22), and do they also simplify in the mφ/H → 0 limit?

• Similarly, do other correlators like ⟨σ(x)σ(y)σ(z)⟩ also simplify in the limit mφ/H → 0?

• Given that de Sitter correlators are uniquely sensitive to the quantum fluctuations of light

fields, are there other inflationary observables that can be used to detect them?

• Finally, how do these correlators behave away from very weak coupling, g, gφ ≳ 128
27 π

4m4
φ?

We hope to return to some of these questions in the future.
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A Formulary

In this appendix, we collect various definitions and conventions of the special functions we use in

the main text as well as several useful formulas.

Many of our expressions will contain large ratios and products of gamma functions, and so we

adopt the common shorthand

Γ

[
a, b, c, · · ·
d, e, f, · · ·

]
=

Γ(a)Γ(b)Γ(c) · · ·
Γ(d)Γ(e)Γ(f) · · · and Γ[a, b, c, · · · ] = Γ(a)Γ(b)Γ(c) · · · , (A.1)

though we will also use actual products and ratios when they look better. For arguments with

large imaginary parts, the magnitude of the gamma function is exponentially suppressed,∣∣Γ(x+ iy)
∣∣ = √

2π |y|x− 1
2 e−π|y|/2 , y → ±∞ , (A.2)

with both x and y real. The digamma function ψ(z) is defined as ψ(z) = d
dz log Γ(z) and usefully

obeys the functional equation ψ(z + 1) = ψ(z) + 1/z. Furthermore, −ψ(1) = γe ≈ −0.577216 is

the Euler-Mascheroni constant.

The Gaussian or ordinary hypergeometric function is defined in the disc |z| < 1 by the series

2F1(a, b; c; z) ≡ 2F1

[
a, b
c

∣∣∣∣ z ] =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

zn

n!
. (A.3)

This can also be defined through the Mellin-Barnes integral [65]

2F1(a, b, c; z) =
Γ(c)

Γ(a)Γ(b)

∫
γ

ds

2πi

Γ(s)Γ(a− s)Γ(b− s)

Γ(c− s)
(−z)−s , (A.4)

in which the contour γ runs along the imaginary s-axis and separates the so-called “left poles”

generated by Γ(s) from the “right poles” generated by Γ(a− s)Γ(b− s).16 For certain values of

a, b, and c, the contour γ may need to be deformed to separate these families of poles and may

not always be strictly parallel to the imaginary axis, as illustrated in Figure 3. This integral

representation converges as long as z is not on the positive real axis, z /∈ [0,∞).

Any function of two points on the Euclidean sphere that is invariant under its isometries

must be a function of the embedding distance ξ ∈ [−1, 1], and so admits a decomposition into

any complete set of orthogonal polynomials on the interval. An especially useful set for our

purposes are the Gegenbauer polynomials. These can be defined in terms of the Gegenbauer-C

functions [66], which are solutions to the differential equations[
(ξ2 − 1)

d2

dξ2
+ (2J + 1) ξ

d

dξ
− J(J + 2α)

]
Cα
J (ξ) = 0 , (A.5)

16This is typically written with s → −s, but this form it will be slightly more convenient for our purposes.
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and can be expressed in terms of the hypergeometric function as

Cα
J (ξ) ≡

Γ(J + 2α)

Γ(J + 1)Γ(2α)
2F1

[
−J, J + 2α
α+ 1

2

∣∣∣∣ 1− ξ

2

]
. (A.6)

The Gegenbauer polynomials are then defined as the Gegenbauer-C functions restricted to non-

negative integer J . Furthermore, for large argument, these behave as

Cα
J (ξ) ∼ Γ

[
J + α
α , J + 1

]
(2ξ)J + Γ

[
J + 2α , −(J + α)
α , −J , J + 1

]
(2ξ)−(J+2α) , (A.7)

as |ξ| → ∞. In particular, at the endpoints of the interval

Cα
J (1) =

Γ(J + 2α)

Γ(J + 1)Γ(2α)
and Cα

J (−1) =
cosπ(J + α)

cosπα

Γ(J + 2α)

Γ(J + 1)Γ(2α)
, (A.8)

and so both grow as J2α−1 for large integer J . However, Cα
J (−1) grows exponentially as ImJ →

±∞. The Gegenbauer C-functions are thus very poorly behaved for non-integer J .

Any smooth function H(ξ) can then be decomposed as

H(ξ) =
∞∑
J=0

(J + α)[H]J C
α
J (ξ) , (A.9)

where the coefficients [H]J can be extracted via

[H]J =
(4π)αΓ(α)Γ(J + 1)

Γ(J + 2α)

∫ 1

−1
dξ

(
1− ξ2

)α− 1
2Cα

J (ξ)H(ξ) (A.10)

for integer J . As discussed in the main text, they may also be extracted via a contour integral

over the Gegenbauer Q-function

[H]J =
(4π)αΓ(α)Γ(J + 1)

Γ(J + 2α)

∮
C

dξ

2πi

(
ξ2 − 1

)α− 1
2Qα

J (ξ)H(ξ) , (A.11)

where C wraps the interval ξ ∈ [−1, 1] in a counter-clockwise fashion. The Gegenbauer-Q are the

other solution to (A.5) and may be defined as

Qα
J (ξ) ≡

21−J−2απΓ(J + 2α)

Γ(α)Γ(J + α+ 1)
(ξ − 1)−J−2α

2F1

[
J + α+ 1

2 , J + 2α
2J + 2α+ 1

∣∣∣∣ 2

1− ξ

]
. (A.12)

Importantly, Qα
J (ξ) is the unique solution to (A.5) which decays as ξ−J−2α as |ξ| → ∞. This im-

plies that, as long as the integral (A.11) converges, it defines the appropriate analytic continuation

of [H]J to non-integer J that is well-behaved in the right-half J-plane.

The functions we work with will have a discontinuity along ξ ∈ [1,∞), and so we may write

[H]J = − 2πα+1Γ(J + 1)

4JΓ(J + α+ 1)

∫ ∞

0

dζ

2πi
ζJ−1

2F1

[
J + α+ 1

2 , J + 1
2J + 2α+ 1

∣∣∣∣−ζ ] discH(ζ) , (A.13)
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where ζ ≡ 2/(ξ − 1). The discontinuity

disc (−1/ζ)−∆ = −2iζ∆ sinπ∆ = − 2πiζ∆

Γ(∆)Γ(1−∆)
, ζ > 0 , (A.14)

will be particularly useful throughout the text.

In our notation, the inversion [GσGφ]J of the bubble diagram was found in [35] to be

[GσGφ]J =
Γ(∆φ)

16πα
cosπ∆φ

sinπ(α−∆φ)
Γ
[
2− 2α , J + 1 , 1

2(J + 1− α+∆φ)
]
×

Γ
[
J + 2− α+∆φ ,

1
2(J + 2α+∆φ −∆σ) ,

1
2(J +∆φ +∆σ)

]
× (A.15)

7V6

[
J + 1− α+∆φ ; 1− α , 1− 2α+∆φ , J + 1 , 1

2(J + 2α+∆φ −∆σ) ,
1
2(J +∆φ +∆σ)

]
+ (∆φ,∆σ) → (∆̄φ,∆σ) + (∆φ,∆σ) → (∆σ,∆φ) + (∆φ,∆σ) → (∆̄σ,∆φ)

where

7V6[a; b, c, d, e, f ] =
7V6[a; b, c, d, e, f ]

Γ
[
1
2a, 1 + a− b, 1 + a− c, 1 + a− d, 1 + a− e, 1 + a− f

] (A.16)

is a regularized 7V6, the so-called very well-poised 7F6 hypergeometric function [65],

7V6[a; b, c, d, e, f ] = 7F6

[
a , 1 + 1

2a , b , c , d , e , f
1
2a , 1 + a− b , 1 + a− c , 1 + a− d , 1 + a− e , 1 + a− f

∣∣∣∣ 1 ] , (A.17)

with

pFq

[
a1 , a2 , · · · , ap
b1 , b2 , · · · , bq

∣∣∣∣ z ] = Γ

[
b1 , b2 , · · · , bq
a1 , a2 , · · · , ap

] ∞∑
n=0

Γ

[
a1 + n , a2 + n , · · · , ap + n
b1 + n , b2 + n , · · · , bq + n

]
zn

n!
(A.18)

for |z| < 1 is the generalized hypergeometric function. Such regularized hypergeometric functions

are entire in all of their parameters, while a hypergeometric function is said to be well-poised if

p = q + 1 and 1 + a1 = b1 + a2 = b2 + a3 = · · · = bq + aq+1. Such functions are very well-poised

if they are well-poised and a2 = 1 + 1
2a1.

B Uniqueness of the Interpolation

In the main text, we defined Lorentzian de Sitter two-point functions on ξ ∈ R via the analytic

continuation of their Euclidean counterparts defined on ξ ∈ [−1, 1]. These Euclidean correlation

functions were expressed as sums over integer momenta J of weighted Gegenbauer polynomials,

which only converge17 when |ξ| < 1. To analytically continue these expressions to |ξ| ≥ 1, we rely

on the Watson-Sommerfeld transformation to convert the discrete sum into a contour integral over

the product of a meromorphic “interpolation” of the summand and a “kernel” with unit residue

poles at non-negative integers. As we have discussed, there are infinitely many interpolations that

17Strictly speaking, α also needs to be small enough for these sums to converge, as the propagator is too singular
when α ≥ 3

2
to be faithfully represented by a Gegenbauer polynomial interpolation.
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match the summand at the integers, but Carlson’s theorem guarantees that there can be only one

with sub-exponential growth as |J | → ∞. In this appendix, we give a pedagogical explanation

for why this well-behaved interpolation, given by the Lorentzian inversion formula (2.22), is the

correct one to use for analytically continuing two-point functions to ξ ∈ R.
We can illustrate this simply by applying the Watson-Sommerfeld transformation to (A.3) to

derive the Mellin representation (A.4) for 2F1(a, b; c; z). The most obvious interpolation is

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

zn

n!
→ Γ(a+ s)Γ(b+ s)

Γ(c+ s)Γ(s+ 1)
(−z)se−iπs , (B.1)

and so, with the kernel k(s) = −eiπsΓ(−s)Γ(s+ 1), we can rewrite the sum as

2F1(a, b; c; z) = − Γ(c)

Γ(a)Γ(b)

∫
C

ds

2πi

Γ(a+ s)Γ(b+ s)Γ(−s)
Γ(c+ s)

(−z)s (B.2)

where the contour C sandwiches the positive real axis, coming from s = ∞+iϵ to s = iϵ, enclosing

the pole at s = 0, and then going off to s = ∞− iϵ.

Unfortunately, the integral in (B.2) still is only absolutely convergent for |z| < 1, and so

nothing has yet been accomplished. To analytically continue to |z| ≥ 1, we must deform C into

a contour along which the integral decays more rapidly as |s| → ∞. The main factor to pay

attention to is

|(−z)s| = ρke−ϑt , (B.3)

where we have written −z = ρeiϑ and s = k + it. This tells us that the integrand is additionally

exponentially suppressed if we approach the point s = ∞ in the upper (lower) half-plane when

ϑ > 0 (ϑ < 0). Ideally, we could take advantage of this exponential suppression and arrive at an

absolutely convergent integral representation for 2F1(a, b; c; z) by deforming C into a contour γ

that lies parallel to the imaginary axis. However, this would also require that the interpolation

decays quickly enough in the opposite direction—the lower or upper half-plane when ϑ > 0 or

ϑ < 0, respectively—that we can ignore the resulting arcs at infinity.

Using (A.2), the integrand behaves as∣∣∣∣Γ(a+ s)Γ(b+ s)Γ(−s)
Γ(c+ s)

(−z)s
∣∣∣∣ ∼ 2πρk tRe(a+b−c)−1e−tϑ−π|t| , |t| → ∞ , (B.4)

we see that the integrand is always exponentially suppressed as t→ ±∞ as long as ϑ ̸= −π. This
is where Carlson’s theorem comes in: any entire function that vanishes on the positive integers

and grows slower than eπ|s| as |s| → ∞ must be identically zero. So, if we instead modify the

interpolation by adding to it an arbitrary regular function f(s) multiplied by sinπs, designed

to vanish at all positive integers, this ruins the interpolation’s asymptotic behavior as |s| → ∞
and it instead grows exponentially at least as fast as eπ|s| as |s| → ∞. This interpolation is thus

useless for defining an analytic continuation for |z| ≥ 1 whereas (B.1), unique in its asymptotic

behavior, is the one that must be used to go beyond the original domain of convergence |z| <
1. An analogous discussion applies to the Gegenbauer polynomial expansions like (2.17), since

asymptotically (A.7) they have the same polynomial dependence on their argument.
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C UV Divergences of de Sitter Self-Energies

Both the bubble and sunset diagrams are UV divergent and, in this appendix, we regularize them

via dimensional regularization. Specifically, we first evaluate these diagrams at an α = (3− ϵ)/2

for which they converge. For the bubble and sunset diagrams, this naively requires that Reα < 1

and Reα < 5
6 , respectively. We then analytically continue these results to α = 3

2 and ϵ → 0,

keeping the masses mφ and mσ fixed. That they diverge when α = 3
2 is represented by a set of

poles in ϵ, which we then subtract with our mass and kinetic counterterms.

Unfortunately, while we can efficiently extract the self-energies’ singularities in J from the

representations derived in the main text (3.19) and (3.52), there is a sort of conservation of

trouble and it is quite difficult to extract their ϵ → 0 behavior for α = 3
2 , or in any even

spacetime dimension with D > 2. To see the essence of this problem, we can consider the free

field propagator in the form

G(ζ) =
Γ
(
α− 1

2

)
(4π)α+

1
2

(
−1

ζ

) 1
2
−α

2F1

[
1
2 + α−∆, 1

2 − α+∆
3
2 − α

∣∣∣∣−1

ζ

]
+

Γ(∆)

(4π)α+
1
2

Γ

[
1
2 − α , 2α−∆

1
2 + α−∆ , 1

2 − α+∆

]
2F1

[
∆, 2α−∆
α+ 1

2

∣∣∣∣−1

ζ

] , (C.1)

which is useful for constructing a series expansion in the deep UV, ζ → ∞. Unfortunately, both

terms in (C.1) are individually singular as α → 3
2 , even though their sum is well-defined. These

cancellations are necessary in order for the series expansion of (C.1) to the logarithms of ζ that

appear in (C.1) when α = 3
2 . To make matters worse, these cancellations occur between terms

at different orders in the series expansion around ζ = ∞, which makes it exceedingly difficult to

track which terms in (C.1) dominate the bubble and sunset diagrams as ϵ→ 0, and to efficiently

extract their divergences.

Instead, we will rely on the Mellin representation of these self-energies to extract their UV be-

havior. Such representations have found wide use in the study of flat space Feynman diagrams—

for instance, see [67] for a pedagogical review—but also the study of de Sitter correlation functions

in the flat slicing [68–71], though it will be helpful to also review them here in the context of

Euclidean de Sitter correlation functions. We will first illustrate these techniques using the prop-

agator (2.27) and the bubble diagram, where we have exact results to which we can compare.

Finally, we apply them to the sunset diagram.
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sα− 1
2 −∆

γ′γ

s

−iν
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2

γ

Figure 3: Mellin-Barnes integration contours for the G∆(ζ) for a light [left ] and heavy [right ]
fields. For light fields, the original integration contour γ′ must snake around the “left” pole at
s = α− 1

2−∆ in order to completely separate the left and right poles. We will deform this contour
to one that runs parallel to the imaginary s-axis, denoted γ, by including the contribution from
this pole. This is unnecessary for both heavy fields and the Mellin-Barnes representation of G∆̄.

C.1 The Propagator

Let us consider one-half of the propagator (2.27)

[G∆]J = NJ,∆

∫ ∞

0
dζ ζJ+∆−1

2F1

[
J + α+ 1

2 , J + 1
2J + 2α+ 1

∣∣∣∣−ζ ] 2F1

[
∆, ∆− α+ 1

2
2∆− 2α+ 1

∣∣∣∣−ζ ] (C.2)

with the coefficient NJ,∆ given by (2.28) and the full propagator [G]J = [G∆]J + [G∆̄]J given by

this contribution plus its shadow ∆̄ = 2α − ∆. This integral can be evaluated exactly and is

singular when α = (3− ϵ)/2 → 3
2 , with pole

[G∆]J ∼ − tanπ∆

π(J + 1)(J + 2)

1

ϵ
, ϵ→ 0 . (C.3)

Of course, [G]J is regular as ϵ→ 0, and (C.3) cancels against an equal and opposite contribution

from its shadow [G∆̄]J .

Our basic strategy is to replace the hypergeometric function from the propagator in (C.2)

with its Mellin representation (A.4), which we write as

2F1

[
∆, ∆− α+ 1

2
2∆− 2α+ 1

∣∣∣∣−ζ ] =

Γ

[
2∆− 2α+ 1
∆ , ∆− α+ 1

2

] ∫
γ

ds

2πi
Γ

[
∆− α+ 1

2 + s , −s , α− 1
2 − s

∆− α+ 1
2 − s

]
ζα−∆− 1

2
−s .

(C.4)

We can then integrate over ζ. As pictured in Figure 3, the integrand of (C.4) has a set of “left”

poles at s = α− 1
2 −∆− k and two sets of “right” poles at s = k and s = α− 1

2 + k, with k ∈ N
a non-negative integer. The contour γ is chosen such that it separates these left and right poles.

For a heavy field, this means that the contour γ can be chosen to run parallel to the imaginary
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s

ϵ→ 0

γ

s

γ

Figure 4: A singularity may develop in (C.5) if the contour γ is “pinched” between left and right
poles as ϵ→ 0 [left ]. We can compute the resulting singularity by moving the contour γ past the
pinching pole and picking up its residue [right ]. The resulting integral is regular as ϵ→ 0, so the
ϵ singularity is fully contained within this residue and may be easily calculated.

axis in the strip −1
2 < Re s < 0, from Im s = −∞ to Im s = +∞. The same is true for light fields

with dimensions α− 1
2 < ∆ < α, though here the strip is reduced to α− 1

2 −∆ < Re s < 0. For

light fields with dimensions below ∆ < α − 1
2 , the right-most left pole is actually to the right

of the left-most right pole, and so the contour can no longer be purely parallel to the imaginary

axis and separate the left and right poles. However, we can deform this contour to be parallel to

the imaginary axis and lie in the strip −3
2 +

√
α2 −m2 < Re s < 0, at the cost of including the

residue of the pole at s = α − 1
2 − ∆, which is thankfully just 1.18 The upside is that we will

always choose the contour γ to be parallel to the Im s axis, with a small negative real part.

With (C.4) inserted (C.2), we can perform the integral over ζ to find

[G∆]J =

∫
γ

ds

2πi
Γ
(
3
2 − α+ s

)
Γ(−s)F(s) (C.5)

with

F(s) =
sinπ∆

2π sinπ(α−∆)
Γ

[
1 + s , α− 1

2 − s , ∆− α+ 1
2 + s , J + α− 1

2 − s
J + α+ 3

2 + s , ∆− α+ 1
2 − s

]
. (C.6)

The integral over ζ converges when Re s > α − 3
2 and Re (J − s + α) > 1, which is satisfied by

the contour γ as long as α < 3
2 , or for ϵ > 0.19

The integral (C.5) is well-defined and thus non-singular as long as the contour γ separates the

left poles from the right poles. The only way a singularity can develop is if the contour γ gets

18We will not consider “conformally-coupled” scalar fields with m2 = α2− 1
4
or equivalently dimension ∆ = α− 1

2
.

In this case, the left-most right pole and right-most left pole overlap, and the Mellin representation is not so useful.

However, in this case, the propagator takes such a simple form G(ζ) = (−1/ζ)
1
2
−αΓ

(
α − 1

2

)
/(4π)α+ 1

2 that the
inversion formula (2.22) can be done exactly, and so this more complicated analysis is unnecessary.

19We will assume throughout this analysis that Re J is always large enough to avoid any potential J singularities.
Relaxing this assumption would not change our conclusions but only make the analysis more tedious, and it is
easier to extract the singularity structure in J using the techniques presented in the main text.
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“pinched” by the left-most right pole at s = 0 and the right-most left pole at s = α− 3
2 = −ϵ/2,

as illustrated in Figure 4. As ϵ → 0, we can extract this singularity by deforming the contour

past it, at the price of picking up its residue,

[G∆]J = res
s=−ϵ/2

[
Γ
(
ϵ
2 − s

)
Γ(−s)F(s)

]
+

∫
γ

ds

2πi
Γ/{0}( ϵ

2 − s
)
Γ(−s)F(s) , (C.7)

where we use Γ/{0}(z) to denote that the contour γ is deformed to avoid the z = 0 singularity of

Γ(z). Similarly, we will use Γ/{0,−1,...}(z) to denote that the contour γ avoids the z = 0,−1, . . .
singularities of Γ(z). The remaining integral in (C.7) is completely regular as ϵ → 0 and so the

only divergence comes from the residue in (C.7),

[G∆]J ∼ − secπα sinπ∆

2 sinπ(α−∆)
Γ

[
J + 1 , ∆− 1

J + 2α , ∆− 2α+ 2

]
∼ − tanπ∆

π(J + 1)(J + 2)

1

ϵ
, (C.8)

as ϵ→ 0, which recovers the UV divergence (C.3) from the exact result.

C.2 The Bubble

A similar strategy works for the bubble diagram, though it will be more convenient to sum over

the dimensions and their shadows at the outset. For instance, using (C.4) in (3.17), we have

[GσGφ]J =

∫
ds1
2πi

ds2
2πi

Γ
(
2− 2α+ s1 + s2

)
Γ
(
3
2 − α+ s1 + s2

)
× Γ

[
−s1 , −s2 , α− 1

2 − s1 , α− 1
2 − s2

]
F(s1, s2)

, (C.9)

where the s1 and s2 contours (which we denote γ1 and γ2, respectively, but will suppress in our

expressions going forward) are chosen to run parallel to the imaginary s1 and s2 axes, with small

negative real parts, as described in the previous section. Here, we have also defined the function

F(s1, s2) =
(4π)−α− 3

2 sinπ(∆σ +∆φ)

sinπ(α−∆σ) sinπ(α−∆φ)

Γ(J + 2α− 1− s1 − s2)

Γ(J + 2 + s1 + s2)

× Γ

[
∆φ − α+ 1

2 + s1 , ∆σ − α+ 1
2 + s2

∆φ − α+ 1
2 − s1 , ∆σ − α+ 1

2 − s2

]
+ · · ·

, (C.10)

where the · · · denote the three other permutations under ∆σ → ∆̄σ = 2α−∆σ and ∆φ → ∆̄φ =

2α−∆φ. This Mellin representation is valid (for large enough Re J) as long as α is such that the

contours can sit to the left of the right poles generated by Γ(−s1) and Γ(−s2), and to the right

of the left poles generated by Γ(2− 2α+ s1+ s2) and Γ
(
3
2 −α+ s1+ s2

)
. This is possible as long

as α < 1, and we will need to analytically continue this result from α < 1 to α → 3
2 to extract

the bubble’s UV divergences.

As illustrated in Figure 5, the “right” singularities generated by the factor Γ
[
−s1 , −s2 , α −

1
2 − s1 , α − 1

2 − s2
]
form horizontal and vertical lines in the Re s1 – Re s2 plane (in red and

blue), while the “left” singularities generated by Γ(2 − 2α + s1 + s2)Γ(
3
2 − α + s1 + s2) form

diagonal lines (green and purple) that move towards the upper right as α → 3
2 . As they move,
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s

γ

Re s2

Re s1

1 < α < 3
2

Figure 5: As α → 1 [left ], the right-most left pole [green] traps the integration contour, here
shown as a crossed circle in [yellow], between the right poles [red/blue]. These poles form lines in
the Re s1–Re s2 plane, with Im s1 = Im s2 = 0. To analytically continue beyond α = 1, we again
move the contour around the pinching poles, picking up the residue at that pole. As described
in the text, this happens again as α→ 3

2 [right ] for two sets of poles in [green/purple].

they trap the integration contour (in yellow) between the lines of the right singularities and pinch

it. As α → 3
2 from α < 1, the contour is first pinched by the 2− 2α+ s1 + s2 = 0 singularity of

Γ(2 − 2α + s1 + s2). As before, we need to move the contour past this singularity. We do this

first by replacing the s1 integral with its residue and singularity-subtracted integral, and then

similarly the s2 integral. Fortunately, the residue at s1 = −(2 − 2α + s2) vanishes identically

when we include the sum over shadows in (C.10), so we may write

[GσGφ]J =

∫
ds1
2πi

ds2
2πi

Γ/{0}(2− 2α+ s1 + s2
)
Γ
(
3
2 − α+ s1 + s2

)
× Γ

[
−s1 , −s2 , α− 1

2 − s1 , α− 1
2 − s2

]
F(s1, s2)

. (C.11)

We can now continue this expression to α → 3
2 . The integration contour is first pinched by the

3
2 − α + s1 + s2 = 0 singularity and then the 2 − 2α + s1 + s2 = −1 singularity. Treating each

pinch in turn, we find that the residue again vanishes for the 2 − 2α + s1 + s2 = −1 singularity

and so we are left with a single contribution from the 3
2 − α+ s1 + s2 = 0 singularity,

[GσGφ]J = −π secπαΓ
(
1
2 − α

)
F
(
0, α− 3

2

)
+ · · ·

= −Γ
(
1
2 − α

)
cscπ∆σ cosπ(α−∆σ) cscπ(2α−∆σ)

4(4π)α−
1
2Γ(2−∆σ)Γ(2− 2α+∆σ)

+ · · ·
(C.12)

where the · · · denote the remaining integral terms that are regular as α→ 3
2 . Taking α = (3−ϵ)/2

and ϵ→ 0, we are left with a suprisingly simple result for the full bubble diagram,

[GσGφ]J ∼ 1

8π2ϵ
, (C.13)
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which agrees with the divergence extracted from the exact result (A.15).

Before we move on, we should note that this derivation treated φ as if it had massm2
φ > α2− 1

4

so that we did not need to “straighten out” the s1 contour to lie parallel to the imaginary axis.

If the field is light enough, m2
φ < α2 − 1

4 , we need to include a 1 in our resolution (C.4) of

the ∆φ-dependent hypergeometric function that appears in [G∆φG
σ]J . We are then left with an

additional Mellin-type integral with an integrand that is proportional to Γ
(
s2+

3
2−α−∆φ

)
Γ(−s2).

As α→ 3
2 −∆φ = 3

2 − 1
3m

2
φ+ · · · , the left-most pole of Γ

(
s1+

3
2 −α−∆φ

)
and the right-most pole

of Γ(−s1) pinch the integration contour. However, this does not contribute to the ϵ-divergence

of [GσGφ]J for two reasons. First, while the residue of [G∆σG∆φ ]J at this pole is non-zero, it is

exactly canceled by its shadow contribution from [G∆̄σG∆φ ]J . Second, even if this residue did not

vanish, this contribution is necessarily regular as ϵ→ 0, even if it diverges as ϵ→ 2m2
φ/3. Thus,

(C.13) applies when φ is either light or heavy. Similar logic holds for other diagrams with light

fields. Intuitively, this is obvious—straightening out this contour represents a modification in the

deep IR, which should not affect the UV structure of these diagrams. We now turn our attention

to the sunset diagram.

C.3 The Sunset

Finally, let us turn our attention to the sunset diagram. It will be helpful to consider an arbitrary

sunset diagram with fields φ1, φ2, and φ3 with dimensions ∆1, ∆2, and ∆3 and propagators Gφ1 ,

Gφ2 and Gφ3 , respectively,

[
Gφ1Gφ2Gφ3

]
J
=

∫
ds1
2πi

ds2
2πi

ds3
2πi

Γ
(
5
2 − 3α+ s1 + s2 + s3

)
Γ
(
2− 2α+ s1 + s2 + s3

)
× Γ

[
−s1 , −s2 , −s3 , α− 1

2 − s1 , α− 1
2 − s2 , α− 1

2 − s3
]
F(s1, s2, s3) ,

(C.14)

where we have defined the function

F(s1, s2, s3) =
(4π)−2α−2 sinπ(∆1 +∆2 +∆3)

2 sinπ(α−∆1) sinπ(α−∆2) sinπ(α−∆3)
Γ

[
J + 3α− 3

2 − s1 − s2 − s3

J − α+ 5
2 + s1 + s2 + s3

]

× Γ

[
∆1 − α+ 1

2 + s1

∆1 − α+ 1
2 − s1

]
Γ

[
∆2 − α+ 1

2 + s2

∆2 − α+ 1
2 − s2

]
Γ

[
∆3 − α+ 1

2 + s3

∆3 − α+ 1
2 − s3

]
+ · · ·

,

(C.15)

where the · · · denote the other 7 permutations generated by taking ∆i → ∆̄i = 2α − ∆i for

i = 1, 2, 3. The integral over ζ from which this is derived naively converges only when α < 5
6 ,

and so we must analytically continue (C.14) from α < 5
6 towards α → 3

2 in order to extract its

singularity structure as ϵ→ 0.

The first singularity we encounter is at at 5
2 − 3α + s1 + s2 + s3 = 0 as α → 5

6 . Fortunately,

like with the bubble diagram, the residue of the integrand at s1 = 3α − 5
2 − s2 − s3 vanishes

identically once we include the shadow contributions and so [Gφ1Gφ2Gφ3 ]J is actually regular as

α → 5
6 . The first true singularity we encounter is from 2 − 2α + s1 + s2 + s3 = 0 as α → 1, in
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which we can write[
Gφ1Gφ2Gφ3

]
J
= Γ(2− 2α)Γ

(
α− 1

2

)2
Γ
(
3
2 − α

)
Γ
(
1
2 − α

)
F(0, 0, 2α− 2)

+

∫
ds3
2πi

Γ/{0}(2− 2α+ s3
)
Γ
(
3
2 − α+ s3

)
× Γ

[
−s3 , α− 1

2 − s3 , α− 1
2 ,

1
2 − α

]
F(0, 2α− 2− s3, s3)

+

∫
ds2
2πi

ds3
2πi

Γ/{0}(2− 2α+ s2 + s3)Γ
(
3
2 − α+ s2 + s3

)
× Γ

[
−s2 , −s3 , α− 1

2 − s2 , α− 1
2

]
F
(
2α− 2− s2 − s3, s2, s3

)
+

∫
ds1
2πi

ds2
2πi

ds3
2πi

Γ/{0}(5
2 − 3α+ s1 + s2 + s3

)
Γ/{0}(2− 2α+ s1 + s2 + s3

)
× Γ

[
−s1 , −s2 , −s3 , α− 1

2 − s1 , α− 1
2 − s2 , α− 1

2 − s3
]
F(s1, s2, s3)

. (C.16)

The next relevant singularity is from 5
2 − 3α+ s1 + s2 + s3 = −1 as α→ 7

6 , but fortunately there

the residue at s1 = 3α− 7
2 − s2 − s3 also vanishes identically. Finally, there are four singularities

that become relevant as α→ 3
2 , those from

5
2 −3α+ s1+ s2+ s3 = −2, 2−2α+ s1+ s2+ s3 = −1,

and 3
2 −α+s2+s3 = 0 or 3

2 −α+s3 = 0. Luckily, the residue of the fourth line in (C.16) vanishes

identically at s1 = 3α− 9
2 − s2− s3 after including the shadows, and so we end up with six terms

[Gφ1Gφ2Gφ3 ]J = Γ
(
3
2 − α

)
Γ
(
α− 1

2

)
Γ
(
1
2 − α

)2 [F(
0, α− 1

2 , α− 3
2

)
+ F

(
α− 1

2 , 0, α− 3
2

)]
− Γ(3− 2α)Γ

(
5
2 − α

)
Γ
(
α− 3

2

)
Γ
(
α− 1

2

)
Γ
(
1
2 − α

) [
F
(
0, 1, 2α− 3

)
+ F

(
1, 0, 2α− 3

)]
+ Γ

(
3
2 − α

)
Γ
(
α− 1

2

)2
Γ
(
2− 2α

)
Γ
(
1
2 − α

)
F
(
0, 0, 2α− 2

)
(C.17)

− Γ(3− 2α)Γ
(
−α− 1

2

)
Γ
(
5
2 − α

)
Γ
(
α− 1

2

)2F(0, 0, 2α− 3) + · · ·

where the · · · again denote the remainder integral terms that are regular as α→ 3
2 . In the limit

ϵ→ 0, we have

[Gφ1Gφ2Gφ3 ]J ∼ −J(J + 3)

2(4π)4ϵ
− 1

64π4ϵ
+ U(∆1) + U(∆2) + U(∆3) (C.18)

where we have defined

U(∆) = −2(∆− 1)(∆̄− 1)

(4π)4ϵ

[
1

ϵ
− ψ

(
∆− 1

)
− ψ

(
∆̄− 1

)
+ log 4πe−γe +

3

2

]
. (C.19)

Clearly the first divergence in (C.18) will be absorbed by the kinetic counterterm, while the

remaining divergences will be absorbed by the mass counterterm.

As a check, it will be helpful to compare (C.18) to its flat space limit. For simplicity, we

consider the sunset diagram of the 1
4!gφφ

4 theory, which behaves as [72]

=
1

3!
(−gφ)2

[
− k2

2(4π)4ϵ
−

6m2
φ

(4π)2ϵ

[
1

ϵ
+ log 4πe−γe + logµ2/m2

φ +
3

2

]]
(C.20)

with D = (4 − ϵ), with k2 the square of the external four-momentum. The same diagram in de
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Sitter yields

=
1

3!
(−gφ)2

[
−J(J + 3)

2(4π)4ϵ
− 1

64π4ϵ
+ 3U(∆φ)

]
. (C.21)

Throughout this paper, we have worked in Hubble units H = 1. We can restore dimensions by

multiplying the sunset by a factor of H2. The flat space limit then corresponds to taking H → 0.

All fields are “heavy” in this limit, and so ∆φ = α + i
√
(mφ/H)2 − α2 and ∆φ∆̄φ = (mφ/H)2.

With H2J(J + 3) → k2, since both are eigenvalues of the Laplacian, we find that

−J(J + 3)

2(4π)4ϵ
− 1

64π4ϵ
+3U(∆φ) → − k2

2(4π)4ϵ
−

6m2
φ

(4π)2ϵ

[
1

ϵ
+ log 4πe−γe + logH2/m2

φ +
3

2

]
(C.22)

and so (C.21) exactly reproduces the flat space divergence (C.20) when the renormalization scale

is taken to be Hubble µ = H. This, however, is an automatic consequence of working in Hubble

units, and so (C.21) exactly matches (C.20) in the flat-space limit H → 0.

D UV Contributions in the Light Limit

In the main text, we argued that the UV contributions to the bubble and sunset diagrams were

subleading as mφ for all J , and we justify that statement in this appendix. As an example, we

will study the UV contribution to the bubble diagram, given by

[GσGφ]uvJ = [G∆σG∆φ ]
uv
J + [G∆̄σG∆φ ]

uv
J + [G∆σG∆̄φ ]

uv
J + [G∆̄σG∆̄φ ]

uv
J (D.1)

in the limit ∆φ → 0, where

[G∆σG∆φ ]
uv
J = NJ,∆σ∆φ

∫ ∞

1
dζ ζJ+∆φ+∆σ−1

2F1

[
J + α+ 1

2 , J + 1
2J + 2α+ 1

∣∣∣∣−ζ ]
× 2F1

[
∆σ, ∆σ − α+ 1

2
2∆σ − 2α+ 1

∣∣∣∣−ζ ] 2F1

[
∆φ, ∆φ − α+ 1

2
2∆φ − 2α+ 1

∣∣∣∣−ζ ] (D.2)

and the other terms in (D.1) are just (D.2) with the dimensions appropriately replaced with their

shadows. A similar analysis holds for the sunset diagrams, though since it is virtually identical

to the bubble we will not repeat it.

The main trouble with naively expanding (D.2) in ∆φ is that, as ζ → ∞, all three hyperge-

ometric functions conspire so that the integrand behaves as ζ2α−3 as ζ → ∞. Of course, this

integral diverges as α → 3
2 but, as discussed in the previous section, we will assume that we

have already regularized these integrals using dimensional regularization. But, it is important

to expand this integral in a way that does not disturb its structure as ζ → ∞. This can be
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accomplished by writing the integral as

N−1
J,∆σ∆φ

[G∆σG∆φ ]
uv
J =

Γ

[
1
2 − α , 2∆φ − 2α+ 1

∆φ − α+ 1
2 , ∆φ − 2α+ 1

] ∫ ∞

1
dζ ζJ+∆σ−1

2F1

[
J + α+ 1

2 , J + 1
2J + 2α+ 1

∣∣∣∣−ζ ]
× 2F1

[
∆σ, ∆σ − α+ 1

2
2∆σ − 2α+ 1

∣∣∣∣−ζ ] 2F1

[
∆φ, 2α−∆φ

α+ 1
2

∣∣∣∣−1

ζ

]
+

Γ

[
α− 1

2 , 2∆φ − 2α+ 1
∆φ , ∆φ − α+ 1

2

] ∫ ∞

1
dζ ζJ+∆σ+α− 3

2 2F1

[
J + α+ 1

2 , J + 1
2J + 2α+ 1

∣∣∣∣−ζ ]
× 2F1

[
∆σ, ∆σ − α+ 1

2
2∆σ − 2α+ 1

∣∣∣∣−ζ ] 2F1

[
1
2 −∆φ + α, 1

2 +∆φ − α
3
2 − α

∣∣∣∣−1

ζ

]
.

(D.3)

Both integrals are now well-behaved if we expand in ∆φ and the second line is clearly subleading

to the first as ∆φ → 0, since in this limit 1/Γ(∆φ) ∼ ∆φ.

To leading order in ∆φ, we can thus approximate this UV contribution as

[G∆σG∆φ ]
uv
J ≈ NJ,∆σ∆φ

∫ ∞

1
dζ ζJ+∆σ−1

2F1

[
J + α+ 1

2 , J + 1
2J + 2α+ 1

∣∣∣∣−ζ ] 2F1

[
∆φ, ∆φ − α+ 1

2
2∆φ − 2α+ 1

∣∣∣∣−ζ ] ,
(D.4)

which is indeed the original expression (D.2) with ∆φ = 0. The benefit of (D.3) is that it makes

this approximation well-controlled, as the subleading terms are clearly of order O(1) and we can

use it to construct a controlled series expansion in ∆φ.

Combining this with the IR contribution, [G∆σG∆φ ]J = [G∆σG∆φ ]
ir
J + [G∆σG∆φ ]

uv
J yields

[G∆σG∆φ ]J ≈ Γ(α)NJ,∆σ

4πα+1∆φ

∫ 1

0
dζ ζJ+∆σ−1

(
ζ∆φ − 1

)
2F1

[
J + α+ 1

2 , J + 1
2J + 2α+ 1

∣∣∣∣−ζ ]
× 2F1

[
∆σ, ∆σ − α+ 1

2
2∆σ − 2α+ 1

∣∣∣∣−ζ ]
+

Γ(α)NJ,∆σ

4πα+1∆φ

∫ ∞

0
dζ ζJ+∆σ−1

2F1

[
J + α+ 1

2 , J + 1
2J + 2α+ 1

∣∣∣∣−ζ ] 2F1

[
∆σ, ∆σ − α+ 1

2
2∆σ − 2α+ 1

∣∣∣∣−ζ ] .
(D.5)

To this we add [G∆̄σG∆φ ]J , which is of the same order as ∆φ → 0, and find with (C.13) that

[GσGφ]J ≈ Γ(α)

4πα+1

1

∆φ

∞∑
k=0

[ NJ,∆σck(J,∆σ)

J +∆σ +∆φ + k
+

NJ,∆̄σck(J, ∆̄σ)

J + ∆̄σ +∆φ + k

]
+

1

8π2ϵ

+
Γ(α)

4πα+1

1

∆φ

[
1

(J +∆σ)(J + ∆̄σ)
−

∞∑
k=0

[NJ,∆σck(J,∆σ)

J +∆σ + k
+

NJ,∆̄σck(J, ∆̄σ)

J + ∆̄σ + k

]] (D.6)

where ck(J,∆σ) are the series coefficients (2.30). Since ck
(
−[∆σ + k],∆σ

)
= δk,0, the second

term is purely analytic in J , and thus subleading near J = ∆σ. Furthermore, this also implies

that ck
(
−[∆σ +∆φ + k],∆σ

)
= δk,0 + O(∆φ) and so, to leading order in ∆φ ∝ m2

φ, the bubble
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drastically simplifies to

[GσGφ]J ≈
[
Γ(α+ 1)

2πα+1

1

m2
φ

]
1

(J +∆σ +∆φ)(J + ∆̄σ +∆φ)
+

1

8π2ϵ
. (D.7)

A similar story applies to the sunset diagram discussed in §3.2.
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