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Abstract—High precision, lightweight, and real-time respon-
siveness are three essential requirements for implementing au-
tonomous driving. In this study, we incorporate A-YOLOM, an
adaptive, real-time, and lightweight multi-task model designed
to concurrently address object detection, drivable area segmen-
tation, and lane line segmentation tasks. Specifically, we develop
an end-to-end multi-task model with a unified and streamlined
segmentation structure. We introduce a learnable parameter that
adaptively concatenates features between necks and backbone
in segmentation tasks, using the same loss function for all
segmentation tasks. This eliminates the need for customizations
and enhances the model’s generalization capabilities. We also
introduce a segmentation head composed only of a series of con-
volutional layers, which reduces the number of parameters and
inference time. We achieve competitive results on the BDD100k
dataset, particularly in visualization outcomes. The performance
results show a mAP50 of 81.1% for object detection, a mIoU
of 91.0% for drivable area segmentation, and an IoU of 28.8%
for lane line segmentation. Additionally, we introduce real-world
scenarios to evaluate our model’s performance in a real scene,
which significantly outperforms competitors. This demonstrates
that our model not only exhibits competitive performance but
is also more flexible and faster than existing multi-task mod-
els. The source codes and pre-trained models are released at
https://github.com/JiayuanWang-JW/YOLOv8-multi-task

Index Terms—Multi-task learning, panoptic driving percep-
tion, object detection, drivable area segmentation, lane line
segmentation

I. INTRODUCTION

OWING to rapid advancements in deep learning, the
field of computer vision has flourished, particularly in

autonomous driving applications [1]–[3]. Autonomous driving
systems (ADS) provide enhanced convenience for everyday
driving. Detection and segmentation are crucial for ADS,
which encompasses three core tasks: object detection, drivable
area segmentation, and lane line segmentation, as shown in
Figure 1. In autonomous driving tasks, lidar and camera
sensors are often used to acquire environmental information.
However, the camera-based method stands out due to its
low cost. Therefore, combining cameras with a deep learning
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Fig. 1: Multi-task in autonomous driving: object detection,
drivable area segmentation and lane line segmentation

model becomes a formidable solution. Additionally, high pre-
cision, real-time and lightweight are essential in autonomous
driving tasks. In emergencies, ADS must fast and accurately
decide to avoid potential collisions or safely around obstacles.
Accurately and fast estimating the drivable area and lane lines
is important for effective route planning. In fact, maintaining
a frame rate exceeding 30 frames per second (FPS) is im-
perative for ADS [4], [5]. Given the limited computational
capacity of edge devices, employing lightweight models is
necessary. However, achieving both real-time performance and
high precision simultaneously in autonomous driving through
a lightweight model poses significant challenges.

Numerous methods have been proposed for individual tasks
in autonomous driving, and many of them achieve outstanding
results. For object detection tasks, two primary methodologies
are prevalent. The first category is two-stage techniques,
epitomized by Fast R-CNN [6]. While these methods pri-
oritize detection accuracy, they often come at the expense
of computational efficiency. The second category is one-
stage approaches, epitomized by the You Only Look Once
(YOLO) series [7]–[10], ranging from version 1 to the latest,
version 8. YOLOv8 is particularly noteworthy for its real-
time detection capabilities, which have been widely adopted
for various detection tasks. It primarily focuses on detection
rather than segmentation. Although a segmentation head is
introduced for segmentation tasks, the loss functions and
evaluation metrics employed are mainly for the detection
task. Additionally, YOLOv8 can only implement one task per
model. Moreover, YOLOv8 is inherently limited in its ability
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to handle multiple tasks within the context of autonomous
driving. Attempting to apply it under multi-task conditions
necessitates the deployment of multiple models, leading to a
substantial increase in both training and inference time.

For the segmentation task, one of the field’s milestones
is the advent of Fully Convolutional Networks (FCN) [11].
Additionally, U-Net [12] and SegNet [13] are common models
in drivable area segmentation tasks. The drivable area typically
covers a large portion of an image. Therefore, segmenting
drivable areas requires information from high-level features.
However, lane line segmentation differs from drivable area
segmentation because of the distinct elongated and narrow
features of lane lines in road images. Lane line segmentation
needs low-level features for effective analysis. Recently, mod-
els such as PointLaneNet [14] and MFIALane [15] have gained
popularity in the field of lane line segmentation. Although
they achieve remarkable performance in segmentation tasks,
the integration of these tasks with detection tasks into a
single model poses challenges, primarily due to the differing
resolution of features required. Segmentation operates at the
pixel level, whereas object detection employs grid cells in
one-stage methods and utilizes selective search in two-stage
approaches. While their focus differs, both segmentation and
detection tasks necessitate initial feature extraction from input
images. Consequently, it is possible for them to share a
common backbone. Compared to using separate models for
each task, integrating three distinct necks and heads into a
unified model with a shared backbone can significantly save
computing resources and reduce inference time.

Recently, several multi-task models have been proposed for
ADS, such as YOLOP [16], multi-task learning model [17],
Sparse U-PDP [18] and HybridNet [19]. All of these methods
selected three tasks to construct the panoptic autonomous
driving system: object detection, drivable area segmentation,
and lane line segmentation, which are from the public Berke-
ley Deep Drive(BDD100K) dataset. Each of these methods
has yielded outstanding results. Typically, their models are
composed of two components: an encoder and a decoder.
However, several challenges remain to be addressed. First, they
have complex structures in their neck or head components,
which can further impact inference times. For example, Hy-
bridNet [19] achieves outstanding performance in the detection
task due to its use of an anchor-based head. This detection
head performs better than the anchor-free head but tends
to increase the inference time. Second, they often focus on
specialized tasks when designing the loss function [16], [17]
or neck structure [1]. However, this approach may compromise
the model’s generality and necessitate considerable time for
designing the structure and loss functions, as well as tuning
their parameters. Therefore, developing a fast, robust, and
universally applicable model is crucial.

In this work, we propose A-YOLOM, an adaptive model
specifically designed for multi-task. Notably, A-YOLOM can
efficiently handle multi-task using a single model with a
reasonable parameter overhead. This efficiency is due to the
lightweight head we design for segmentation tasks, only built
by a series of convolutional layers. Compared to other state-
of-the-art multi-task methods, our model has fewer total pa-

rameters. Furthermore, by employing consistent loss functions
across the same task types, we maintain a uniform approach to
avoid customizing for specific tasks. Importantly, we introduce
an adaptive module tailored for the segmentation neck. This
is primarily achieved through a learnable parameter, trained to
determine whether to concatenate features of different levels.
This eliminates the need for distinct structural designs for
various scene tasks. To summarize, the primary contributions
of our study are as follows:

• We develop a lightweight model capable of integrating
three tasks into a single model. This is particularly ben-
eficial for multi-task that demand real-time processing,
thereby enhancing the model’s deployability on edge
devices.

• We design a novel Adaptive Concatenate Module specif-
ically for the neck region of segmentation architectures.
This module can adaptively concatenate features without
manual design and achieve a similar or better perfor-
mance than well-design, further enhancing the model’s
generality.

• We design a lightweight, simple, and generic segmenta-
tion head. We adopt a unified loss function for the same
type of task head, meaning we don’t need to custom
design for specific tasks. It is only built by a series of
convolutional layers.

• Extensive experiments are conducted based on publicly
accessible autonomous driving datasets, which demon-
strate that our model can outperform existing works,
particularly in terms of inference time and visualization.
Moreover, we further conduct experiments using real road
datasets, which also demonstrate that our model signifi-
cantly outperformed the state-of-the-art approaches.

II. RELATED WORKS

In this section, we review existing works on detection,
segmentation, and multi-task models in autonomous driving
tasks. We focus our discussion on methods based on deep
learning.

A. Detection

Over the past decade, the swift advancements in computer
vision have significantly bolstered the progress of autonomous
driving. Specifically, autonomous driving tasks can be de-
lineated into two primary parts: detection and segmentation.
The detection task encompasses object detection, identifying
entities such as vehicles, pedestrians, traffic signs, etc. The
current object detection methods can be divided into two
classifications [20]: two-stage and one-stage approaches.

Two-stage methods initiate with a Region Proposal Network
(RPN) to generate Regions of Interest (RoI). Subsequently,
the second phase employs a deep learning network to classify
these RoIs. This latter stage also fine-tunes the bounding
box dimensions and position, bolstering object localization
accuracy. Noteworthy examples of two-stage object detection
methods include Regions with CNN features (R-CNN) [21],
Fast R-CNN [6], and Faster R-CNN [22].
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In contrast, the one-stage detection approach offers an end-
to-end strategy. It simultaneously predicts the bounding box
and classifies the object in a single forward pass. It can be
deployed on mobile devices for real-time operation and is eas-
ily implementable. The representatives of one-stage methods
include You Only Look Once (YOLO) [7]–[10] series, Single-
Shot Multibox Detector (SSD) [23], and RetinaNet [24].

While one-stage methods typically lag behind two-stage
methods in terms of detection performance, their real-time
capabilities have made them increasingly popular in object
detection tasks.

B. Segmentation

The segmentation task, including semantic and instance
segmentation, differs from detection as it typically operates
at the pixel level. Common segmentation tasks in autonomous
driving include drivable area segmentation and lane line seg-
mentation. However, these tasks exhibit notable differences.
The drivable area typically covers a large portion of an image,
but the number of regions is infrequent. As in Figure 1, only
three drivable areas. Lane lines are the opposite: there are
numerous in one image, yet each line is small, elongated, and
narrow.

In 2015, the deep learning model Fully Convolutional Net-
works (FCN) [11] was introduced for semantic segmentation
tasks. With its end-to-end training capability, it achieved a 20%
improvement on the Pascal VOC 2012 dataset compared with
traditional methods. However, its focus on local information
leads to the loss of global details, thereby producing coarse
segmentation results. To address this limitation, the encoder-
decoder architecture model was proposed. Badrinarayanan et
al. [13] proposed SegNet, which preserves the maximum
pooling indices to ensure more accurate detail restoration
during the upsampling process. However, the encoder-decoder
architecture has its own shortcomings. High-resolution details
are often lost during the encoding process, reducing fine-
grained information. This is not ideal for tasks such as lane line
segmentation. Pan et al. [25] proposed SCNN, which employs
spatial convolutions to capture the continuity and structural
information in images across both horizontal and vertical
directions. Due to its ability to capture spatial correlations
in images, it is well-suited for detecting slender objects,
such as lane lines. However, such convolution operations are
computationally intensive and time-consuming.

Given the constraints of edge devices in vehicles, it’s crucial
to integrate multi-tasking into a single model. This not only
conserves computational resources but also meets real-time
performance requirements.

C. Multi-task model

Recently, multi-task models have gained considerable at-
tention in the research community due to their high effi-
ciency. This is particularly important for autonomous driving,
which includes various sub-tasks and often operates under
the constraints of limited computational resources on edge
devices. MultiNet [26] introduced an efficient, unified deep ar-
chitecture capable of simultaneously addressing classification,

detection, and semantic segmentation. YOLOP [16] extended
the YOLOv5 model by introducing two additional segmen-
tation necks and heads to perform both segmentation and
detection tasks simultaneously. They separately designed the
loss function for each segmentation task, which compromises
the generality of the model. Sparse U-PDP [18] proposed a
unified decoding framework that integrates three tasks into
a single model. Notably, they crafted a streamlined multi-
task representation through “dynamic convolution kernels”,
enhanced by a dynamic interaction module which adjusts
feature sampling uniquely for each task. Due to its complex
decoder, it is hard to meet real-time requirements. Shokhrukh
et al. [17] introduced a memory-efficient end-to-end frame-
work that utilizes combinations of customized loss functions,
encompassing the weighted average sum of all tasks to en-
hance performance. The customization and specific weighting
limited the model’s adaptability to new tasks. Additionally,
their approach involved a sophisticated training paradigm,
which could lead to overfitting and suboptimal real-world
performance.

Therefore, the challenge of developing a generic and real-
time multi-task model remains significant. In our work, we
introduce an adaptive concatenation module and use the same
loss function for tasks of the same type, further enhancing the
model’s generality. To decrease parameter count, we employ a
lightweight backbone and a simple yet effective segmentation
head, ensuring the model meets real-time requirements under
limited computing resources.

III. PROPOSED METHODOLOGY

In this section, we present the details of our model, includ-
ing three main components: the backbone, neck, and head.
Additionally, the loss function is also included. As shown
in Fig 2. A-YOLOM model is a one-stage network with a
simple encoder-decoder architecture. The encoder comprises
both the backbone and neck, while the decoder consists of
the head. It’s worth noting that we have three necks in total:
one detection neck for object detection and two segmentation
necks, one for drivable areas segmentation and the other for
lane lines segmentation. Our model boasts an adaptive, simple
and efficient structure, which not only broadens its application
range but also ensures real-time inference.

A. Encoder

In our work, we integrate a shared backbone network and
three neck networks into a single model for the three different
tasks.

1) Backbone: The backbone comprises a series of convo-
lutional layers to extract features from the input data. Due to
the outstanding performance of YOLOv8 in detection tasks,
our backbone network follows YOLOv8. Specifically, they
refine CSP-Darknet53 [27], which serves as the backbone of
YOLOv5. The key difference between this backbone and CSP-
Darknet53 lies in the replacement of the c3 module with the
c2f module. The c2f module combines high-level features with
contextual information, further improving performance. There
are also minor differences, such as using a 3x3 convolutional
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Fig. 2: A-YOLOM structure

in place of the initial 6x6 convolutional, and the removal of
the 10th and 14th convolutional layers. These enhancements
make the backbone more effective than its predecessors in the
YOLO series.

2) Neck: The neck is responsible for fusing the features
extracted from the backbone. After the backbone network,
we use a Spatial Pyramid Pooling Fusion (SPPF) module
to increase the receptive field and reduce computational re-
quirements compared to SPP. These features are subsequently
directed to individual necks.

In our model, we utilize three necks: one for object detection
task and two for segmentation tasks, which are drivable areas
and lane lines. It’s worth noting that in Fig 2, as we have
two segmentation tasks, the value of N in the segment neck
on the left part is equal to 2. This means we have two same
segment necks for different segmentation tasks. The sky-blue
and brown lines, which originate from different neck bottom
layers, lead to separate segment heads.

For the detection neck, we adopt the Path Aggregation
Network (PAN) [28] structure, which includes top-down and
bottom-up two Feature Pyramid Networks (FPN) [29]. This
structure merges low-level details with high-level semantic
features, enriching the overall feature representation. This is
invaluable for object detection, where small objects hinge on
low-level features, while larger entities gain from the broader
context provided by high-level features. In detection tasks,
objects of varying scales are commonly present. This diversity
in object size is the primary reason we selected the PAN
structure for the detection neck.

For the segmentation neck, we adopt the FPN structure,
renowned for its effective handling of multi-scale objects.
Additionally, we introduce an adaptive concatenation module
between the neck and backbone. As illustrated in Algorithm 1,
input includes two feature maps: one from the previous layer

neck and the other from the identical resolution backbone.
Central to this module is a learnable parameter, which aims
to control the concatenation of backbone features, thereby
enabling adaptive modifications to the model’s structure to
accommodate different segmentation tasks. This module op-
erates on each resolution level. This addition enhances the
model’s generality, making it easily applicable across different
segmentation tasks without customization.

Algorithm 1 Adaptive Concatenation Module

Input: List of tensors x includes two feature maps, x[0]
from neck, x[1] from identical resolution level backbone;
channels list ch

Output: One tensor of features: output
1: Initialization:
2: dimension← 1
3: weight← 5.0 # as a learnable parameter
4: sigmoid← nn.Sigmoid()
5: cv ← Conv(sum(ch), ch[0], k = 1, s = 1)
6: Forward:
7: if sigmoid(weight) > 0.5 then
8: concatenated← concatenatex alongdimension
9: output← cv(concatenated)

10: else
11: output← x[0]
12: end if
13: return output

B. Decoder

The decoder processes the feature maps from the neck
to make predictions for each task. This includes predicting
object classes, their corresponding bounding boxes, and masks
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for specific segmented objects. In our work, we employ two
distinct heads: the detection head and the segmentation head.

The detection head adopts a decoupled approach that fol-
lows the YOLOv8 detect head, using convolutional layers
to convert high-dimensional features into class predictions
and bounding boxes without the objectness branch. This is
an anchor-free detector. The structure is shown as Detect
module in Fig 2. Note that the outputs from the detection
head vary among training, validation, and prediction modes. In
validation and prediction mode, three different resolutions are
used as input, and output one tensor encompasses both class
predictions and their respective bounding boxes. In training
mode, the detection head cycle applies convolutional layers to
each input, outputs three tensors in total. Each tensor contains
class predictions and bounding boxes specific to its resolution.
The results are subsequently used to compute the loss function.

Our segmentation head is identical across different segmen-
tation tasks. The structure is shown as Segment module in
Fig 2. Specifically, it comprises a series of convolutional layers
that extract contextual information and one deconvolution
layer to restore the resolution to the original image size.
Ultimately, we obtain a pixel-level binary mask that matches
the size of the original image. 0 represents the background, and
1 represents the object. Algorithm 2 illustrates the processing
of the segment head. Furthermore, the segment head’s stream-
lined architecture, which comprises just 7,940 parameters,
significantly bolsters the model’s deployability.

Algorithm 2 Segment Head

Input: Number of classes nc; channels ch; Feature map x
Output: Segmentation mask: mask

1: Initialization:
2: fd← 32 # intermediate convolutional feature dimension
3: cv1← Conv(ch[0], fd, k = 3)
4: upsample← ConvTranspose2d(fd, fd

2 , 2, 2, 0)

5: cv2← Conv( fd2 , fd
4 , k = 3)

6: cv3← Conv( fd4 , nc+ 1)
7: sigmoid← nn.Sigmoid()
8: Forward:
9: mask ← cv3(cv2(upsample(cv1(x))))

10: return mask

C. Loss Function

We employ an end-to-end training approach with a multi-
task loss function. Specifically, our loss function comprises
three components: one detection and two segmentation. The
formula is shown as follows:

L = Ldet + Lsegda + Lsegll (1)

where Ldet for the object detection task, Lsegda for the drivable
area segmentation task, and Lsegll for the lane line segmenta-
tion task.

For detection tasks, the loss function is divided into two
main branches: the classification branch and the bounding
box branch. The classification branch includes binary cross-
entropy loss, denoted as LBCE. The bounding box branch

includes distribution focal loss (DFL) [30], denoted as LDFL
and complete IoU (CIoU) loss [31], represented as LCIoU.
Thus, the detection loss Ldec can be represented as:

Ldet = λBCELBCE + λDFLLDFL + λCIoULCIoU (2)

where λBCE, λDFL, and λCIoU are corresponding coefficients.

LBCE = − [yn log xn + (1− yn) log (1− xn)] (3)

where xn is the predicted classification of each object. yn is
the ground truth of each object. LBCE measures the classifica-
tion error between the predicted and the ground truth.

LDFL (Si,Si+1) = − ((yi+1 − y) log (Si) + (y − yi) log (Si+1))

Si =
yi+1 − y

yi+1 − yi
, Si+1 =

yi − y

yi − yi+1
(4)

where y is the ground truth of the bounding box coordinate,
which is a decimal. yi+1 is ceiling of ground truth y. yi is floor
of ground truth y. LDFL measures the displacement between
the predicted and ground truth feature locations to make the
predicted bounding boxes close to the actual ones.

LCIoU = 1− CIoU

CIoU = IoU−ρ2 (b, bgt)

c2
− αv

v =
4

π2

(
arctan

wgt

hgt
− arctan

w

h

)2

α =
v

(1− IoU) + v

(5)

where b is the central point of the prediction box, bgt is
the central point of the ground truth box. ρ is the Euclidean
distance between prediction and ground truth points. c is the
diagonal length of the smallest enclosing rectangle of the
two boxes. Both v and α are the coefficients used to control
the ratio. h is the width and height of the prediction box,
wgt and hgt are the width and height of the ground truth
box. LCIoU integrates aspects of overlap, distance, and aspect
ratio consistency to measure the difference between predicted
and ground truth bounding boxes. As a result, it enables the
model to more precisely target the object’s shape, size, and
orientation.

For the segmentation tasks, we utilize an identical loss
function. That means Lsegda has the same formula with Lsegll.
We will collectively refer to them as Lseg. The formula is
shown as follows:

Lseg = λFLLFL + λTLLTL (6)

where LFL and LTL are focal loss [24] and tversky loss [32].
Both are widely used loss functions in segmentation tasks. λFL
and λTL are corresponding coefficients.

LFL = −αt (1− pt)
γ
log (pt) (7)

where pt is the probability of the model predicting the positive
class. y is the ground truth of each pixel. αt is a weighting
factor to balance the importance of positive/negative examples.
γ is a focusing parameter to modulate the contribution of each
example to the loss. Focal loss offers a robust solution for
handling imbalance samples, ensuring that the model doesn’t
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become overwhelmingly biased towards the predominant and
easily learned class. Instead, it places greater emphasis on
challenging and underrepresented areas.

LTL = 1− TP

TP + αFN + βFP
(8)

Tversky loss is an extension of the Dice loss, introducing two
additional parameters (α and β) to assign distinct weights
to false positives and false negatives, thereby enhancing its
capability to handle imbalance tasks.

D. Training Paradigm
Our training paradigm is different from the multi-task learn-

ing methods prevalent in panoptic autonomous driving tasks.
We utilize an end-to-end training mode, performing backward
only once for each batch. This means the entire network
is optimized collectively, without freezing specific layers or
alternating optimization, thus reducing the training time. Al-
gorithm 3 illustrates the step-by-step training process. In each
epoch, the required predicted results list ŷ is obtained through
a single forward propagation, encompassing information such
as detection bounding boxes, classification information, and
segmentation masks. Subsequently, each task loss is calculated
and summed into a single loss L. Then, backward propagation
is performed only once to optimize the model across all tasks.
After completing an epoch of training, the model is evaluated.
If there’s no improvement in performance compared to the
last 50 epochs, training terminates prematurely. Otherwise, the
training will stop after training 300 epochs.

Algorithm 3 A-YOLOM training stage

Input: Target end-to-end network F with parameters Θ;
Training dataset τ ; Validation dataset xval; Threshold for
convergence ϕ; y is the label list

Output: Well-trained network: F (x; Θ)
1: Initialize the parameters Θ
2: for epoch = 1 to 300 do
3: for each batch (x,y) in τ do
4: ŷ ← F (x) # ŷ is a prediction list
5: Ldet ← (y[0], ŷ[0])
6: Lsegda ← (y[1], ŷ[1])
7: Lsegll ← (y[2], ŷ[2])
8: L = Ldet + Lsegda + Lsegll
9: Θ← argminΘ L

10: end for
11: p← F (xval)
12: if p = pepoch−50 then
13: return F (x; Θ) # If the model hasn’t any im-

provements over the last 50 epochs, then training
terminates prematurely.

14: end if
15: end for
16: return F (x; Θ)

IV. EXPERIMENTS AND RESULTS
In this section, we evaluate our model’s performance and

inference time on the BDD100K dataset and compare it

against classical methods used in multi-task autonomous driv-
ing panoptic perception. Additionally, we present extensive
ablation studies and provide an analysis of the experimental
results.

A. Experiment Details

1) Dataset: The BDD100K dataset is a prominent resource
in the study of autonomous driving, including 100k samples
and multi-task annotations. Beyond sheer volume, the dataset’s
significance is underscored by its multifaceted nature, compris-
ing diverse geographies, environmental contexts, and weather
conditions. These advantages ensure that models trained on
BDD100K achieve robustness and versatility, making it an
ideal choice for our research. The dataset is divided into three
parts: a training set with 70k images, a validation set of 10k
images, and a testing set encompassing 20k images. Since the
labels for the testing set are not public, we evaluate our model
on the validation set. Similar to YOLOP, our detection task
focuses solely on “vehicle” detection, encompassing categories
including car, bus, truck, and train.

2) Evaluation Metrics: We utilize recall and mAP50 as the
evaluation metrics for object detection tasks. Both metrics
are widely recognized and accepted in the detection task.
Recall indicates a model’s capability to detect all object
instances from the designated classes accurately. mAP50 is
derived by taking the mean Average Precision for all classes
at an IoU threshold of 0.5. Notably, Average Precision (AP)
quantifies the area beneath the precision-recall curve. For
the segmentation tasks, similar to YOLOP [16], we utilize
mIoU to evaluate the drivable area segmentation task. For the
lane line segmentation task, we employ both accuracy and
IoU as evaluation metrics. However, due to the number of
pixel imbalances between the background and foreground in
lane line segmentation, we adopt a more meaningful balance
accuracy metric for evaluation. Traditional accuracy will skew
results by favouring classes with a larger number of samples.
In contrast, balance accuracy offers a more equitable metric by
considering each class’s accuracy. The formula is as follows:

Line Accuracy =
Sensitivity + Specificity

2
(9)

where Sensitivity = TP
TP+FN and Specificity = TN

TN+FP .
We also compare the FPS between our model and other

methods. All evaluation experiments are conducted on a GTX
1080 Ti GPU.

3) Experimental Setup and Implementation: We compare
our model with several prominent multi-task models. Due to
the scarcity of multi-task models, we also include outstanding
single-task or two-task models in our comparison. YOLOP and
HybridNet represent the state-of-the-art and are open-source
multi-task models in panoptic autonomous driving, specifically
on the BDD100K dataset. Faster R-CNN and YOLOv8 are
exemplary representations of two-stage and one-stage object
detection networks, respectively. Both MultiNet and DLT-Net
could address multiple panoptic driving perception tasks, and
they have demonstrated good performance in object detection
and drivable area segmentation on the BDD100k dataset.
PSPNet [33] excels in semantic segmentation tasks due to its
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unparalleled capability to aggregate global information. Given
the absence of an appropriate multi-task network handling lane
line segmentation on the BDD100K dataset, we compare our
model against Enet [34], SCNN, and Enet-SAD [35], which
are three leading lane detection networks.

In order to enhance the performance, we adopt several
data augmentation techniques. Specifically, we employ mosaic
augmentation, which helps prevent overfitting and augment
the training data. In addition, to address photometric distor-
tions, we modify the hue, saturation, and value parameters of
the images. We also incorporate fundamental augmentation
techniques to handle geometric distortions such as random
translation, scaling, and horizontal flipping.

We train our model using the SGD optimizer with a learning
rate (lr) of 0.01, momentum of 0.937, and a weight decay of
0.0005. Initially, our model undergoes a warm-up training for
3 epochs. During this warm-up phase, the momentum of the
SGD optimizer is set to 0.8, and the bias lr is 0.1. In our
training process, we adopt a linear learning rate annealing
strategy. This strategy helps ensure that the model learns
rapidly in the early stages of training and converges more
stably in the later stages. Additionally, we resize the original
image dimensions from 1280 × 720 to 640 × 640. For
loss function coefficients, we set λFL = 24.0, λTL = 8.0,
λDFL = 1.5, λCIoU = 7.5, and λBCE = 0.5. We adopt α = 0.7
and β = 0.3 in LTL, αt = 0.25 and γ = 2 in LFL. Finally,
we train with a batch size of 120 on three RTX 4090 for
300 epochs. For evaluation, we set the confidence threshold at
0.001 and the Non-Maximum Suppression (NMS) threshold
at 0.6. For prediction, the confidence threshold is set at 0.25,
and the NMS threshold is at 0.45. We follow the confidence
threshold and NMS settings from YOLOP. As a result, the
visualization may slightly differ from the quantitative results.

B. Experimental results

In this subsection, we train our model end-to-end and
compare its performance to other outstanding methods.

1) Inference Time: One of the primary challenges in deep
learning applications is the inference time. Especially in au-
tonomous driving tasks, require deploying models on edge
devices, which usually have limited computational resources.
Thus, ensuring models are both lightweight and real-time
becomes paramount. In Table I, we reproduce and test the FPS
of YOLOP1, HybridNet2, YOLOv83, and our model, all FPS
tests on a GTX 1080 Ti GPU with 1 and 32 batch sizes. The
FPS calculation approach follows HybridNet. Additionally, we
provide the number of parameters for each model as one of
the evaluation results.

The primary difference between A-YOLOM(n) and A-
YOLOM(s) is the complexity of the backbone. A-YOLOM(n)
is our lightweight backbone network designed with reduced
complexity, making it ideal for deployment on edge devices.
A-YOLOM(s) has a more complex backbone, offering more

1https://github.com/hustvl/YOLOP
2https://github.com/datvuthanh/HybridNets
3https://github.com/ultralytics/ultralytics

TABLE I: Comparison of different models in terms of param-
eters and FPS. bs is batch size.

Model Parameters FPS (bs=1) FPS (bs=32)

YOLOP 7.9M 26.0 134.8
HybridNet 12.83M 11.7 26.9

YOLOv8n(det) 3.16M 102 802.9
YOLOv8n(seg) 3.26M 82.55 610.49
A-YOLOM(n) 4.43M 39.9 172.2
A-YOLOM(s) 13.61M 39.7 96.2

powerful performance with increased time overhead, espe-
cially in scenarios with bs=32. Compared to other SOTA multi-
task models and single-task models in panoptic autonomous
driving, A-YOLOM(n) stands out as more lightweight and
offers more efficiency. Specifically, compared to YOLOP, A-
YOLOM(n) has significantly fewer parameters and a higher
FPS. It achieves a speed-up of x1.53 at bs=1 and x1.28 at
bs=32. That indicates our model is more efficient. Compared
to HybridNet, A-YOLOM(n) has a significant advantage in
parameters and speed. Despite having more parameters than
HybridNet, A-YOLOM(s) is faster. HybridNet doesn’t meet
the requirements for real-time performance in both bs=1 and
bs=32. We believe the longer inference time for HybridNet
is due to its being an anchor-based method. Generating nu-
merous anchor boxes will increase computational overhead,
consequently reducing the overall speed of inference. In this
case, we won’t compare its performance with ours in the
subsequent section. YOLOv8 is a single-task model, meaning
it can only implement one task within a single model. This
is the reason we have listed two versions: YOLOv8n(det)
and YOLOv8n(seg). Although both of them are faster than
other models, including ours, they require deploying three
separate models on edge devices, which means combining
one detection model with two segmentation models into one
edge device, amounting to 9.68M parameters. This is x2.18
more than A-YOLOM(n), putting significant pressure on edge
devices. Additionally, YOLOv8’s performance across the three
tasks is much inferior to ours, which we will discuss in the
upcoming section.

2) Multi-task Result: This part presents the results of multi-
task experiment, encompassing object detection, drivable area
segmentation, and lane line segmentation.

We follow the YOLOP settings in the detection task,
combining the car, bus, truck, and train into a “vehicle”
classification. The comparison results are shown in Table II.
Based on the quantitative results, both our models achieve the
best performance in terms of mAP50. This indicates that our
model’s accuracy is excellent in predicting detected targets.
Especially when compared to MultiNet and Faster R-CNN.
Additionally, A-YOLOM(n) has a complexity level for its
backbone, detection neck, and head that is comparable to
YOLOv8n(det). However, A-YOLOM(n) exhibits significant
improvement over YOLOv8n(det) in both recall and mAP50.
This demonstrates that in multi-task learning, various tasks
can implicitly assist and further enhance the performance of
individual tasks. On another note, YOLOv8n(det) outperforms
YOLOv5s because the ’s’ scale model usually has a more
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complex backbone to enhance performance. One issue with
our model is the unsatisfactory recall. YOLOP and DLT-Net
achieve better recall than our model. We believe this is due
to the high weight of bounding box loss in Ldet. This means
our model is more conservative and focuses on achieving a
higher mAP at the expense of recall performance. We believe
that mAP50 better reflects the comprehensive performance
in the detection task. Besides, our model achieves real-time
performance, while YOLOP cannot when the batch size is set
to 1 according to Table I.

TABLE II: Traffic object detection results

Model Recall (%) mAP50 (%)

MultiNet 81.3 60.2
DLT-Net 89.4 68.4

Faster R-CNN 81.2 64.9
YOLOv5s 86.8 77.2

YOLOv8n(det) 82.2 75.1
YOLOP 88.6 76.5

A-YOLOM(n) 85.3 78.0
A-YOLOM(s) 86.9 81.1

For the drivable area segmentation task, Table III provides
the quantitative results. Our model achieves the second and
third-best performances in terms of mIoU. YOLOP outper-
forms our model because they customized the loss function
for the segmentation task. In terms of mIoU, A-YOLOM(n)
and A-YOLOM(s) trail YOLOP by 1% and 0.5% respectively.
We believe this result is acceptable. While our model might
exhibit a slight sacrifice in performance, it is more flexible
and faster. Additionally, our model performs much better than
other models, such as YOLOv8n(seg), MultiNet, and PSPNet.
It’s worth noting that while YOLOv8n(seg) is faster than our
model, its deployment cost is higher, and its performance is
significantly inferior to ours.

TABLE III: Drivable area segmentation results

Model mIoU (%)

MultiNet 71.6
DLT-Net 72.1
PSPNet 89.6

YOLOv8n(seg) 78.1
YOLOP 91.6

A-YOLOM(n) 90.5
A-YOLOM(s) 91.0

For the lane line segmentation task, Table IV provides the
quantitative results. A-YOLOM(s) achieves the best perfor-
mance in terms of both accuracy and IoU. Specifically, A-
YOLOM(s) delivers competitive results in accuracy and higher
2.3% in IoU compared to YOLOP. It’s worth noting that our
model maintains the same structure and loss function across
all segmentation tasks, eliminating the need for adjustments
when encountering a new segmentation task. Additionally,
YOLOv8 (seg) is slightly inferior to ours. Based on results
in Table III and Table IV, we believe that our proposed
neck and head are better suited for the segmentation task
compared to YOLOv8 (seg). Since we use balance accuracy
for evaluation, Enet, SCNN, and ENet-SAD employ different
accuracy calculation approaches. Therefore, we cannot directly

compare our accuracy with theirs. However, our results in
IoU metrics are significantly better than theirs. This alone
sufficiently demonstrates the superior performance of our
model compared to theirs.

TABLE IV: Lane line segmentation results

Model Accuracy (%) IoU (%)

Enet N/A 14.64
SCNN N/A 15.84

ENet-SAD N/A 16.02
YOLOv8n(seg) 80.5 22.9

YOLOP 84.8 26.5
A-YOLOM(n) 81.3 28.2
A-YOLOM(s) 84.9 28.8

3) Visualization: This section presents a visual comparison
between YOLOP and our model. We evaluate performance
not only in favourable weather conditions but also under
adverse conditions, including strong sunlight, nighttime, rain,
and snow. We will analyze each scene one by one.

Figure 3 displays the results from a sunny day. As we
know, strong sunlight can affect a driver’s vision. Similarly, it
impacts image acquisition from the camera, further affecting
the model’s performance. This is a challenge for the drivable
area and lane line segmentation. In this challenging scenario,
our model outshines YOLOP. Specifically, under the condi-
tions of intense sunlight (as seen in the left and right images),
our model delivers accurate lane line predictions and provides
smoother indications of drivable areas. Additionally, our model
exhibits greater accuracy in detecting smaller and farther
vehicles. As observed in the middle and right images, our
model successfully detects vehicles located far in the distance,
both on the road in opposite driving directions and near the
house. We believe that our model outperformed YOLOP in
this scene according to the visualization results.

Figure 4 displays the results from night scenes. In nighttime
scenes, the image quality decreases due to limited lighting
and glare from oncoming vehicles. This is a challenge for
the model to make accurate predictions. Under this chal-
lenge, our model consistently produces more accurate and
smoother predictions for both lane lines and drivable areas. A-
YOLOM(s) excels not only in the segmentation task but also in
the detection task. Specifically, it surpasses A-YOLOM(n) by
accurately detecting vehicles driving in the opposite direction,
even amidst glare, and holds its own against YOLOP. Based
on the detection results from the right image, YOLOP slightly
outperforms our model in detecting distant vehicles at night.
Nonetheless, our model produces significantly better segmen-
tation results compared to YOLOP. Especially in the middle
image, YOLOP mistakenly predicts the opposite lane as a
drivable area. Such mispredictions are extremely hazardous
for autonomous driving tasks.

Figure 5 displays the results from a rainy day. Rain will
increase road surface reflection, thereby impacting the driver’s
judgment. This issue also manifests in deep learning models.
Moreover, raindrops on the windshield, due to their refractive
and scattering effects, can blur the entire image, creating
considerable challenges for the model’s predictions. In the
results from the left image, we can observe that YOLOP
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Fig. 3: Visual Comparison of Results on a Sunny Day
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Fig. 4: Visual Comparison of Results at Night

cannot accurately segment the drivable area due to reflections
on the road surface. A similar situation is evident in the middle
image. YOLOP even struggles to distinguish between the car
hood and the road. However, our model still delivers outstand-
ing performance in this scenario. Especially for A-YOLOM(s),
it is less affected by the reflections on the road surface. Our
model also demonstrates superior lane line detection compared
to YOLOP, as evidenced by the right image. However, in this
scene, YOLOP outperforms us in detection tasks. As observed
in the left image, YOLOP can detect more vehicles at a farther
distance.

Figure 6 displays the results from a snow day. In snowy
conditions, accumulated snow can obscure the road or lanes,

posing additional challenges for models. Some accumulated
snow is cleared into snow mounds on the side of the road,
which poses challenges for the model’s vehicle prediction.
For instance, on the left in the middle image, YOLOP mis-
takenly detects a snow mound as a vehicle. If there’s a
small snow mound on the road, vehicles can typically pass
over it. Misidentifying such little snow mounds as stationary
vehicles could be dangerous. Therefore, a higher recall is
not always better. It’s crucial to strike a balance between
recall and precision. In all three results presented, our model
significantly outperforms YOLOP in the segmentation task,
with A-YOLOM(s) being particularly noteworthy. However,
based on the results from the right image, our model lags
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Fig. 5: Visual Comparison of Results on Rainy Day
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Fig. 6: Visual Comparison of Results on Snow Day

behind YOLOP in detecting distant vehicles, particularly when
using the A-YOLOM(n).

In various weather conditions, our model consistently de-
livers more accurate and smoother segmentation results. How-
ever, our model’s ability to detect distant and small targets falls
slightly compared to YOLOP in adverse weather conditions.

C. Ablation Studies

In this subsection, we present an ablation study to validate
the effectiveness of our adaptive concatenate module. Addi-
tionally, we evaluate the impact of the segmentation neck and
head on the overall model performance.

1) Adaptive concatenation module: To assess the impact of
our adaptive concatenation module, we compare performance
with and without this module. Specifically, YOLOM(n) and
YOLOM(s) as baselines, representing two distinct experiment
groups with different backbones. We have carefully designed
the segmentation neck structure for them to address the
demands of particular segmentation tasks. However, both A-
YOLOM(n) and A-YOLOM(s) include the adaptive concate-
nation module. Their segmentation neck structure is entirely
identical and without well-design. The results are presented in
Table V. When comparing A-YOLOM(n) with YOLOM(n),
we find comparable performance in detection and drivable
area segmentation. However, both lane line accuracy and IoU
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Fig. 7: Real Road Results. Left image: nighttime. Middle image: daytime. Right image: highway.

TABLE V: The ablation study for the adaptive concatenation module

Training method Recall (%) mAP50 (%) mIoU (%) Accuracy (%) IoU (%)

YOLOM(n) 85.2 77.7 90.6 80.8 26.7
A-YOLOM(n) 85.3 78 90.5 81.3 28.2

YOLOM(s) 86.9 81.1 90.9 83.9 28.2
A-YOLOM(s) 86.9 81.1 91 84.9 28.8

show significant improvements. Similarly, when comparing
A-YOLOM(s) to YOLOM(s), we observe the same trend of
improvement. These results indicate that our adaptive concate-
nation module could adaptively concatenate features without
manual design and achieve a similar or better performance
than well-designed segmentation heads, further enhancing the
model’s generality.

2) Multi-task model and segmentation structure: To eval-
uate the influence of the multi-task approach for each indi-
vidual task, as well as our proposed segmentation neck and
head structures, we compare performance and head param-
eters in YOLOv8(segda), YOLOv8(segll), YOLOv8(multi),
and YOLOM(n) within the domain of segmentation tasks.
YOLOM(n) has a similar backbone network with YOLOv8,
making this comparison fair and make sense. The results are
presented in Table VI. YOLOv8(segda) and YOLOv8(segll)
implement the drivable area and lane line segmentation tasks
separately. YOLOv8(multi) is an integrated multi-task learning
model that combines YOLOv8(segda), YOLOv8(segll), and
YOLOv8(det) neck and head structure into one shared back-
bone. We observe there is a significant performance improve-
ment. This indicates that multi-task learning can reciprocally
enhance the performance of individual tasks.

Compared to YOLOv8(multi), YOLOM(n) has our carefully
designed neck structure tailored for segmentation tasks. Addi-
tionally, it boasts a significantly more lightweight head struc-
ture, having only 0.008 times the complexity. This significant
improvement is due to our unique head design, which only

TABLE VI: Results of different Multi-task model and segmen-
tation structure

Model Parameters mIoU (%) Accuracy (%) IoU (%)

YOLOv8(segda) 1004275 78.1 - -
YOLOv8(segll) 1004275 - 80.5 22.9
YOLOv8(multi) 2008550 84.2 81.7 24.3
YOLOM(n) 15880 90.6 80.8 26.7

relies on a series of convolutional layers, directly outputting
a mask without the need for additional protos information.
YOLOM(n) achieves impressive results in both mIoU and
IoU for the drivable area and lane line tasks, respectively.
Furthermore, we deliver competitive accuracy in the lane line
task. These results evidence that our proposed neck and head
innovations have achieved commendable results with minimal
parameters and performance overhead.

D. Real roads experiments

This section primarily discusses the experiments conducted
in real road datasets. Specifically, we capture several videos
using a dash camera and then convert them frame by frame
into images to predict using our model and YOLOP. Each
converted image dataset consists of 1428 images with a reso-
lution of 1280x720. These images encompass three scenarios:
highway, nighttime, and daytime. Figure 7 displays the results
from the real road dataset. However, our model consistently
maintains relatively stable performance, particularly for the A-
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YOLOM(s). In all tasks, A-YOLOM(s) outperforms YOLOP.
Meanwhile, A-YOLOM(n) is slightly inferior only in detection
tasks compared to YOLOP. ADS must be capable of operating
smoothly in unfamiliar scenarios. This is crucial. The results
on real roads demonstrate that our model can meet the needs
of autonomous vehicles on real roads.

V. CONCLUSION

In this study, we primarily introduce an end-to-end
lightweight multi-task model design for real-time autonomous
driving applications. The advantages of the multi-task model
lie in its capacity for each task to implicitly enhance the others,
thereby further improving the performance of all tasks and en-
hancing the model’s deployability on edge devices. To improve
the model’s generality, we integrate an adaptive concatenation
module and propose unified loss functions for each type of
task. This makes our model more flexible. When compared to
other state-of-the-art real-time multi-task methods using the
BDD100k dataset, our model not only demonstrates superior
visualization results but also has a higher FPS. Moreover,
real-road dataset evaluations prove our model’s robustness in
novel environments, positioning it ahead of the competition.
In the future, we aspire to encapsulate more autonomous
driving tasks within our model and optimize it for edge device
deployments.
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