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Abstract

Real-valued parameters of quantum field theory, such as Planck constant ~, the coupling con-
stants g−2, θ, . . ., temperature β−1 and spacetime metric gµν , chemical potentials or background
gauge fields Aa

µ, can be made complex. In perturbative string theory, the worldsheet metric is
sometime Lorentzian, somewhere Euclidean, and likely complex in between. Less often, integral,
or quantized, parameters, such as the number n of flavors or species (as in replica method), the
number of colors N (as in matrix models, master field), spacetime dimension D (dimensional reg-
ularization), or angular momentum l (Regge poles) are continued to complex values. We observe
that many, if not all of these analytic continuations can be realized with conventional supersym-
metric quantum field (or M-) theory. The supersymmetry is softly broken near a defect supporting
the theory being analytically continued in some of its parameters.

Somewhat abridged talk at Strings-Math’2022 in Warsaw.

1 Introduction

It is interesting to study analytic continuations. It is especially interesting to study analytic con-
tinuations of quantum field theory. Usually the real-valued parameters, such as Planck constant ~,
the coupling constants g−2, θ, . . ., temperature β−1 and spacetime metric gµν , chemical potentials or
background gauge fields Aa

µ, can be made complex. For example, to a quantum mechanical system

with discrete spectrum Hamiltonian Ĥ we associate the thermal partition function

Z(β) = Tr e−βĤ =

∮

C

dze−βz TrGĤ(z) (1)

where GĤ(z) is the resolvent [39], and C is the contour circling around the spectrum σ(Ĥ). Using
path integral

Z(β) =

∫

LP

Dp(t)Dq(t) ei
∮
pdq−

∮
H(p(t),q(t))dβ , (2)

we represent the partition function as an integral over the space LP of loops on a phase space, with
the measure defined using a complex-valued one form dβ = β′(t)dt on S1. If we eliminate momentum
by its equations of motion, e.g. for H which is quadratic in p, the saddle point dominating (2), does
not, typically, fit in P , since

psaddlei (t) =
1

iβ′(t)
gij
dqj

dt
, gij =

∂2H

∂pi∂pj

is complex unless β′(t) ∈ iR. Once p(t) can become complex, so can q(t). One is led to the idea that
path integral contour LP can be deformed into the complex domain LPC, as a middle dimensional
contour Σ, which splits, in the appropriate homology group, as a sum of Lefschetz thimble cycles
associated with the critical points of the exponential in (2).
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The classification of such cycles in one- and two-dimensional quantum field theories has recently
been revived in e.g. [18, 19, 25].

String worldsheet metric is sometime Lorentzian, somewhere Euclidean, and likely complex in
between [42]. Less often, integral, or quantized, parameters, such as the number n of flavors or
species (replica method), the number of colors N (matrix models, master field), spacetime dimension
D (dimensional regularization), or angular momentum l (Regge poles) are continued into the complex
domain. For example, the character (twisted partition function) of a particle on S2 (phase space)

χj(θ) =
sin
(
(j + 1

2 )θ
)

sin( θ2 )
(3)

admits analytic continuation to complex θ, j, etc. It was I. Gelfand’s dream to understand the
dimensional regularization used in computations of Feynman diagrams in quantum field theory and the
subsequent renormalization, through the representation theory of the non-compact Lie group SL(2,C)
(whose real form is the Lorentz group of the four dimensional Minkowski space which looks like our
space-time).

Theoretical physics often uses a trick of analytic continuation. In studying the disordered systems,
where a free energy of a statistical mechanical model

F (J) = − 1

β
logZ(β, J) (4)

is to be averaged, e.g.

〈F (J)〉J =

∫
DJ e−‖J‖2

F (J) (5)

over some manifold of parameters J , e.g. in the spin glass models, where

Z(β, J) =
∑

{σi=±1}

e
−β

∑

〈i,j〉

Jijσiσj

(6)

In replica trick, one computes the averages of n’th powers of Z, then takes the limit n→ 0 to extract the
free energy. Another popular application of the replica trick is in the computation of von Neumann
entropy Trρlogρ which is extracted in the n → 1 limit of Trρn. Thus, one studies the statistical
mechanics of n copies of the original system. For integer positive n this makes sense, but what is the
meaning of the n complex?

Curiously, we find several examples of systems for which these analytic continuations can be realized
with conventional supersymmetric quantum field (or M-) theory. The supersymmetry is softly broken
near a defect supporting the theory being analytically continued in some of its parameters. We are
interested in analytic continuations of spins, dimensions, temperatures, fugacities etc.

2 Models with O(N) symmetry

In our first model we study the conformally coupled scalar living on SN−1. Conformally coupled scalar
field living on an N -dimensional Riemanian manifold MN is described by the action

S =
1

2

∫

MN

dN ξ
√
g

(
gmn∂mϕ∂nϕ+

N − 2

2N − 2
R(g)ϕ2

)
(7)

In this paper we are interested in the conformally flat manifolds of the form SN−1 ×S1 (more general
case SN1−1 × SN2−1 with N1, N2 ≥ 3 is also connected to supersymmetric systems, but the story is
more complicated). We endow it with the metric

ds2MN = β2dt2 +R2dΩ2
SN−1 (8)

with t ∼ t+ 1,

βRN−1

2

∫

SN−1×S1

dtdN−1Ω

[
1

β2
(∂tϕ)

2 +
1

R2

(
∇ϕ · ∇ϕ+

(
N

2
− 1

)2

ϕ2

)]
(9)
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We can decompose ϕ(t, x) =
∑∞

l=0

∑dl(N)
A=1 ϕA,l(t)YA,l(x) into the spherical functions, where

−∆SN−1
R

YA,l =
l(l +N − 2)

R2
YA,l . (10)

We see (9) is a Lagrangian describing an infinite set (ϕA,l(t))
∞
l=0

dl(N)
A=1 of harmonic oscillators with

frequencies
l+N

2 −1

R . The multiplicity dl(N) is computed from the generating function

∞∑

l=0

xldl(N) =
1 + x

(1− x)N−1
(11)

(this is 1−x2 times the character of the space of polynomials in N variables, with x being the fugacity
for dilatation symmetry). Thus

dl(N) =

(
N + l − 2

l

)
+

(
N + l − 3
l − 1

)
,

dl(2) = 2− δl,0 , dl(3) = 2l + 1 , dl(4) = (l + 1)2 , . . . (12)

Note that dl(N) admits analytic continuation to complex values of N , as

Dr(N) =
2r

Γ(N − 1)

Γ(r +N/2− 1)

Γ(r −N/2 + 2)
, r = N/2− 1 + l (13)

from which the symmetry
Dr(N) = (−1)ND−r(N) (14)

is readily seen. This is related to the symmetry x 7→ x−1 of (11) accompanied by the (−1)NxN−2

prefactor.
We can thus write the partition function of conformal scalar on SN−1

R × S1
β :

ZN (q) = TrH
S
N−1
R

e−βĤ = qc0
∞∏

r≥N
2 −1

1

(1− qr)
Dr(N)

= qc0exp

∞∑

n=1

1

n

q−n/2 + qn/2

(q−n/2 − qn/2)N−1
(15)

where q is the conformal invariant:

q = e−
β
R (16)

and c0/R is the Casimir energy.1 We can refine (15) by introducing the general O(N) twisted boundary
conditions:

ϕ(t+ 1, x) = ϕ(t,g · x) (18)

where g ∈ O(N) is characterized by [N/2] angles θ1, . . . , θ[N/2] and, for odd N , in addition, by ξ = ±1:





N = 2m, ZN(q, θ1, . . . , θm) = exp
∞∑
n=1

q−n−qn

n

m∏
a=1

1
qn−2cos(nθa)+q−n

N = 2m+ 1 , ZN(q, θ1, . . . , θm, ξ) = exp
∞∑
n=1

q−n/2+qn/2ξn

n

m∏
a=1

1
qn−2cos(nθa)+q−n

(19)

For three dimensional conformally coupled scalar this formalism gives:

Z(q, θ, ξ) = exp

∞∑

n=1

1

n

q−n/2 + qn/2ξn

qn + q−n − 2cos(nθ)
(20)

1One can compute c0 as a regularized sum

c0 =
1

2

∞
∑

l=0

dl(N) (l+N/2− 1) := −

1

2
Coeffτ1

eτ/2 + e−τ/2

(eτ/2 − e−τ/2)N−1

∣

∣

∣

∣

∣

τ=0

(17)

See [1] for more systematic treatment
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One can get similar formulas for the conformally coupled fermions. These three-dimensional partition
functions are closely related to MacMahon function

M(q) =

∞∏

n=1

1

(1− qn)n
= exp

∞∑

n=1

1

n

qn

(1− qn)2
(21)

which counts plane partitions [34], is featured in representation theory of W1+∞-algebra [2, 3], and in
the theory of topological strings [6,35]. Recall [32] that the supersymmetric partition function of the Ω-
deformed maximally supersymmetric U(1) Yang-Mills theory on noncommutative R6 (or D5−D(−1)
system) is equal to

Z6(q, ε1, ε2, ε3) =M(q)−
(ε1+ε2)(ε1+ε3)(ε2+ε3)

ε1ε2ε3 (22)

where q is the D(−1)-instanton fugacity, and ε1, ε2, ε3 are the three parameters of the U(3) Ω-
deformation. The group U(3) ⊂ O(6) rotates the space-time R6 and the transverse R2 via determinant
U(1) ≈ O(2). Thus, the replica of three dimensional bosons and fermions can be realized physically as
six dimensional gauge theory by playing with the Ω-deformation parameters. Once the Ω-deformation
preserves more supersymmetry, the exponent in (22) becomes 1.

Similarly, two dimensional boson partition function (N = 2)

Z(q) = q−
1
12

∞∏

n=1

1

(1− qn)2
(23)

is related to Euler function

φ(q) =

∞∏

n=1

(1− qn) (24)

The replica of the two dimensional chiral bosons is given by the Ω-deformed N = 2∗ four dimensional
U(1) super-Yang-Mills theory:

Z4(q, ε1, ε2, ε3) =

(
1

φ(q)

) (ε1+ε3)(ε1+ε2)

ε1ε2

(25)

where ε3 is the mass of the adjoint hypermultiplet [28, 31]. One can refine the “replica theories” by
lifting them to the supersymmetric theories in one dimension higher, compactified on a circle. The
ε-parameters become q-parameters. For example, the two dimensional example refines to

Z5(q, q1, q2, q3) = exp

∞∑

n=1

qn

n

(1− qn1 q
n
3 )(1 − qn2 q

n
3 )

(1 − qn1 )(1− qn2 )(1− qn)
(26)

which has two interpretations: as Witten index of five dimensional maximally super-symmetric Yang-
Mills theory compactified on a circle with the Lorentz and R-symmetry twists compatible with a
fraction of supersymmetry, or as elliptic genus of a six dimensional (2, 0)-superconformal tensor theory
compactified on a torus [32]. The refinement of the replica of three dimensional theory brings about the
(linearized) eleven dimensional supegravity on R

10 × S1, subject to an SU(5) twist [29, 32]. Recently
this partition function was reproduced using a twisted version of supergravity [36].

Our second problem related to SN−1 is the classical two dimensional O(N)-model, i.e. the sigma
model with SN−1 as a target. We found, in [18, 19], that the complex critical points of the action

∫

T 2

√
hhab∇a~n · ∇b~n (27)

with ~n ∈ CN , ~n · ~n =
∑N

i=1 n
2
i = 1, and complex flat metric hab on T 2 are described in terms of an

algebraic integrable system. The vector ~n with N components is recovered from the so-called Baker-
Akhiezer ψ(k) function, which is an analytic function on an algebraic curve (called the Fermi-curve).
The components ni are related to the evaluation of ψ at N special points, singled out by an additional
structure. In this way all O(N) models are unified, and in a sense N is complexified (replaced by an
algebraic curve).
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3 Interpolating between SU , SO, Sp

In Dyson’s original work on ensembles of random matrices with various time-reversal properties [13]
one finds a discrete series of measures on the space of N indistinguishable particles on a real line (or a
circle), which is naturally generalized into a continuous family of β-ensembles. The points β = 1, 2, 4
correspond to the unitary, orthogonal, and symplectic groups. The interpolating model is no longer
a matrix model, yet it can be viewed, rather artificially, as a double-trace deformation of a more
conventional matrix model.

In a simplest setting, the partition function of the β-ensemble is given by the integral

Zβ =

∫

RN/S(N)

dx1 . . . dxN
∏

i<j

|xi − xj |2β e−
∑N

i=1 V (xi) (28)

with some single-particle potential V . The beauty of (28) is that these models share many features with
the fractional quantum Hall systems, they are amenable to the analysis via powerful Ward identities,
more recently they were connected [8, 30, 38] to instanton partition functions [24] and topological
recursion [14]. The connection between the partition sums of supersymmetric gauge theory and random
matrix models was pointed out in [28] for ε1 = −ε2 background, where it was suggested that the N = 1
Dijkgraaf-Vafa theories [11] solved by matrix models could potentially be analyzed systematically
starting with the N = 2 instanton count. It is however puzzling that the matrix models, at least in the
asymptotic large N̂ expansion, admit the β-deformation, while the N = 1 theory seems to be confined
to the anti-self-dual Ω-backgrounds. In a parallel series of developments, [12] proposed to describe the
refined topological strings using β-deformed matrix models.

All these examples above get embedded in a conventional supersymmetric gauge theory setup (and
string/M-theory via [29]) via identification

β = −ε1
ε2
, or − ε2

ε1
(29)

The simplest way to understand the emergence of matrix-model like structure is by looking at the
instanton measure written in the plethystic form [31], and observe that the contribution

Ivm = E

[
− S12S

∗
12

(1− q−1
1 )(1 − q−1

2 )

]
(30)

of the vector multiplets can be written as:

Ivm = E

[
− (1− q1)M12M

∗
12

(1− q−1
2 )

]
(31)

where we write
S12 = N12 −K12(1− q1)(1− q2) =M12(1 − q1) (32)

(see [31] for explanations of the notations) where, importantly, M is the pure character:

M12 =

n∑

α=1

∞∑

j=1

eaαqj−1
2 q

λ
(α)t
j

1 ∼
∑

I

exI (33)

where xI will play the role of the eigenvalues of some effective matrix X . In the limit where all ε’s, a’s
are therefore xI ’s are uniformly scaled to zero, the measure (31) approaches the β = −ε1/ε2-deformed
matrix ensemble for X :

∆2β
X :=

∏

I 6=J

(xI − xJ )
−ε1/ε2 (34)

where we are being cavalier with the infinite-dimensional products. Similar considerations apply to
the contributions of the bi-fundamental and fundamental hypermultiplets. Thus quiver gauge theories
become multi-matrix models.

One application of this imprecise dictionary is the matrix interpretation of the folded and crossed
instantons of [31] and followup papers. For example, the folded instanton setup fuses N = 2∗ gauge
theory on R

4 = C
2 with Ω-background with parameters ε1, ε2, and mass of the adjoint hypermultiplet
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ε3 with the N = 2∗ theory on C2 with Ω-background with parameters ε2, ε3 and adjoint mass ε1. A
typical instanton measure in this case looks like

E

[
−(1− q3)

S12S
∗
12

(1− q−1
1 )(1 − q−1

2 )
− (1− q1)

S23S
∗
23

(1 − q−1
2 )(1− q−1

3 )
+ q3

1− q−1
1 q−1

2 q−1
3

1− q−1
2

S12S
∗
23

]
(35)

Now, introducing the effective matrices X ,Y whose eigenvalues (xI), (yJ) are defined through

∑

I

exI =
S12

1− q1
,
∑

J

=
S23

1− q3
(36)

we rewrite (35) as

∆2β
X ∆

2/β
Y

Det(ad(X ) + ε3)β Det(ad(Y) + ε3)1/β
× Det(X ⊗ 1− 1⊗ Y + ε3)Det(X ⊗ 1− 1⊗ Y − ε3)

Det(X ⊗ 1− 1⊗ Y)2 (37)

in other words, a β-deformed supermatrix 3-matrix model (cf. [16]) with the superpotential

Tr
(
Z[X ,Y] + ε3Z2 + V (X ) +W (Y)

)
(38)

4 Complex spins

Spin chains, originally introduced to model the magnetic phenomena in metals, later generalized to
models of ice etc. typically involve finite-dimensional representations of the spin group, e.g. SU(2). In
recent years an interest to spin chains with infinite dimensional representations has been growing. One
source of interest is the integrable structure of two-dimensional conformal field theory [4], quantum
hydrodynamics [22,33]. Another source of interest is the integrable structure discovered in the planar
N = 4 super-Yang-Mills in four dimensions, where a spin chain based on the non-compact supergroup
PSU(2, 2|4) is detected [5]. Finally, a growing body of evidence is provided by the supersymmetric
sector of the Ω-deformed N = 2 theories in four dimensions (and their five and six dimensional lifts).
Namely, a mass deformed superconformal quiver theory in four dimensions is expected to be related to
an integrable spin chain based on the Yangian of the Kac-Moody algebra associated with the quiver.
Instead of stating the general conjecture, let us give a specific example: a super-QCD N = 2 theory
with SU(N) gauge group, with 2N hypermultiplets in fundamental representation, with Ω-deformation
in two out of four dimensions, is related to the sl2 spin chain, with the space of states being a subspace
of the tensor product of N infinite-dimensional modules :

H = Vs1,a1(u1)⊗ Vs2,a2(u2)⊗ . . .⊗ VsN ,aN (uN ) (39)

Here Vs,a denotes a representation of the algebra sl2, which has a eigenbasis |n〉 labelled by n ∈ Z,
with

L0|n〉 = (n+ a)|n〉 , L+|n〉 = (n+ a− s)|n+ 1〉 , L−|n〉 = (n+ a+ s)|n− 1〉 (40)

The parameter s ∈ C is the spin of the representation, related to the Casimir by L2
0− 1

2 (L+L− + L−L+) =
s(s + 1). The parameter a ∈ C determines a mid-point in the spectrum of L0. The familiar finite-
dimensional representations of SU(2) are found for half-integer s and a− s, a+ s both non-negative
integers.

The gauge theory corresponds to A1 quiver. The ai’s are the Coulomb moduli, i.e. the eigenvalues
of the adjoint scalar in the vector multiplet, while the spins si’s are related to the masses bym+

i −m−
i =

2si, i = 1, . . . , N . The sums ui =
1
2

(
m+

i +m−
i

)
are the inhomogeneities, the evaluation parameters

of the Yangian modules based on the sl2 modules. Although the permutations of the 2N masses
is a symmetry of the four dimensional theory, the specific two dimensional subsector defined by Ω-
deforming and adding a surface defect, depends on the ordering of masses, which, in turn, defines the
spins etc. See [15, 20, 21] for more details.

Another view on the same surface defect in the fully Ω-deformed theory reveals the connection

to Knizhnik-Zamolodchikov equation borrowed from the ŝlN -representation theory [15,21,26]. Again,
complex spins and infinite-dimensional modules feature prominently.
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5 Future directions

It would be nice to turn on interactions in the two and three dimensional theories. The supersymmetric
methods of a different kind (Wegner and Efetov) are used in the study of disordered systems for
many decades [43]. It would be nice to find a relation between our higher dimensional theories with
conventional supersymmetry and the supercoset sigma models used in the studies of integer Hall
plateau transitions [44].

The supersymmetric interfaces [10] in one, two, and three dimensional supersymmetric gauge the-
ories with eight supercharges realize finite dimensional spin chains. A T -dual construction realizes the
same systems in a four dimensional version of Chern-Simons theory [9]. It would be useful to find a
four dimensional analogue of the interfaces [10] providing a geometric realization of R-matrix suitable
for infinite dimensional representations of quiver Yangians and quantum loop algebras.

The most interesting and mysterious question is the role of complex metrics in string theory.
In addition to the arguments of [42] one would like to use the complex worldsheet metric to avoid
unphysical poles in the bulk of Mg which pop up in time-dependent cosmological string backgrounds
[23], as well as the spacetime considerations of [17, 40, 41]. We hope to return to this question in the
future (whatever it means in the complex world).
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