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Abstract: We present new infinitesimal ‘conformal-like’ symmetries for the field equations
of strictly massless spin-s ≥ 3/2 totally symmetric tensor-spinors (i.e. gauge potentials)
on 4-dimensional de Sitter spacetime (dS4). The corresponding symmetry transformations
are generated by the five closed conformal Killing vectors of dS4, but they are not con-
ventional conformal transformations. We show that the algebra generated by the ten de
Sitter (dS) symmetries and the five conformal-like symmetries closes on the conformal-like
algebra so(4, 2) up to gauge transformations of the gauge potentials. The transformations
of the gauge-invariant field strength tensor-spinors under the conformal-like symmetries
are given by the product of γ5 times a usual infinitesimal conformal transformation of the
field strengths. Furthermore, we demonstrate that the two sets of physical mode solutions,
corresponding to the two helicities ±s of the strictly massless theories, form a direct sum
of Unitary Irreducible Representations (UIRs) of the conformal-like algebra. We also fill a
gap in the literature by explaining how these physical modes form a direct sum of Discrete
Series UIRs of the dS algebra so(4, 1).
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1 Introduction

Four-dimensional de Sitter spacetime (dS4) is believed to be a good approximation of the
very early epoch of our Universe (Inflation). Also, according to recent data indicating
the accelerated expansion of space [1–3], there is evidence to suggest that our Universe is
asymptotically approaching another de Sitter phase.

The D-dimensional de Sitter spacetime (dSD) is the maximally symmetric solution of
the vacuum Einstein equations with positive cosmological constant Λ,

Rµν −
1

2
gµνR+ Λgµν = 0, (1.1)

where gµν is the de Sitter metric tensor, Rµν is the Ricci tensor and R is the Ricci scalar.
In this paper, we use units in which 2Λ = (D − 1)(D − 2), while the Riemann tensor is

Rµνρσ = gµρ gνσ − gνρ gµσ. (1.2)

De Sitter (dS) field theories are known to exhibit characteristics with no Minkowskian
analogs. Two such interesting characteristics of integer-spin fields on dSD - related to the
representation theory of the dS algebra so(D, 1) - are:

• The existence of unitarily forbidden ranges for the mass parameters of integer-spin
fields depending on both D and the spin of the fields [14, 41].

• The existence of exotic unitary “partially massless” fields for spin s ≥ 2 [6, 8, 9, 11,
12, 14].

For the sake of completeness, let us give here some details about these two field-theoretic
characteristics. As discovered by Higuchi [14, 16, 41], massive totally symmetric tensor fields
of spin s ≥ 1 (here by “massive” we mean theories that do not enjoy a gauge symmetry),
satisfying (

∇α∇α −m2 + (s− 2)(s+D − 3)− s
)
hµ1...µs = 0,

∇αhαµ2...µs = 0, gαβhαβµ3...µs , (1.3)
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are always non-unitary for the following values of the mass parameter:

m2 < (s− 1)(s+D − 4).

Unitary massive theories thus obey the ‘Higuchi bound’

m2 > (s− 1)(s+D − 4). (1.4)

Moreover, Higuchi observed that for the following special values of the mass parameter [14,
16, 41]:

m2 = (τ− 1)(2s+D − 4− τ), (τ = 1, ..., s), (1.5)

the theory is unitary, while at the same time it enjoys a gauge symmetry. A field with
mass parameter given by Eq. (1.5) is a gauge potential known as partially massless field of
depth τ in the modern literature [6, 8, 9].1 The case with τ = 1 corresponds to the theory
known as strictly massless. In 4 dimensions, a strictly massless field has two propagating
helicity degrees of freedom ±s, while a partially massless field of depth τ has 2τ of them:
(±s,±(s−1), ...,±(s−τ+1)) [6, 8, 9]. In dS field theory, the strictly massless fields are the
closest analogs of Minkowskian massless fields, while partially massless fields of depth τ > 1

have no Minkowsian counterparts. The Unitary Irreducible Representations (UIRs) of the
dS algebra so(D, 1) corresponding to totally symmetric strictly/partially massless integer-
spin fields were first discussed in Higuchi’s PhD thesis [14, 16]. More recent discussions
concerning both totally symmetric and mixed symmetry integer-spin fields can be found in
Ref. [17].

From a cosmological viewpoint, the UIRs of the dS algebra have been useful for the com-
putation of late time correlators in the cosmological bootstrap program - see, e.g. Ref. [63]
and references therein. Also, the physical significance of studying dS representation theory
becomes clear in the “cosmological collider” approach, in which dS symmetries (which are
slightly broken in a standard slow roll inflation scenario) play a central role in determining
the outcome of calculations [64].

What about the representation theory of fermions on dSD?

Unlike the integer-spin case, the representation-theoretic properties of fermionic fields on
dSD are not well-studied.
Recent results. Although the phenomena of strict and partial masslessness also occur in
the case of spin-s ≥ 3/2 fermionic fields on dSD [6, 8, 9], the study of the corresponding
unitarity properties was absent from the (mathematical) physics literature for a long time.
Interestingly, as the author has recently shown [18, 19], four-dimensional dS space plays a
distinguished role in the unitarity of strictly/partially massless (totally symmetric) tensor-
spinors on dSD (D ≥ 3). More specifically, the representations of the dS algebra so(D, 1),

1The partially massless spin-2 field was first discovered by Deser and Nepomechie [11, 12].
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which correspond to strictly/partially massless totally symmetric tensor-spinors of spin
s ≥ 3/2, are non-unitary unless D = 4 [18, 19].2

In the present paper, we uncover a new group-theoretic feature of all strictly massless
totally symmetric spin-s ≥ 3/2 tensor-spinors on dS4: these fermionic gauge potentials
possess a conformal-like so(4, 2) global symmetry algebra. Moreover, we show that the mode
solutions with fixed helicity, i.e. the modes forming Unitary Irreducible Representations
(UIRs) of the dS algebra so(4, 1) [18], also form UIRs of the larger conformal-like so(4, 2)
algebra.

1.1 List of main results and methodology

Here we give some information about our main results and investigations concerning the
new conformal-like symmetries of strictly massless fermions on dS4.

• We present new conformal-like infinitesimal transformations (6.6) for strictly massless
totally symmetric tensor-spinors on dS4. These new transformations are generated
by conformal Killing vectors of dS4 and they are symmetries of the field equations
[Eqs. (2.15) and (2.16)], i.e. they preserve the solution space of the field equations. In
this paper, by conformal Killing vectors we mean the five genuine conformal Killing
vectors of dS4 with non-vanishing divergence - see Eq. (6.3).

Note. We call our new symmetries conformal-like, instead of just conformal, because
they are not expressed in the conventional form of infinitesimal conformal transfor-
mations (i.e. they are not expressed in terms of the Lie-Lorentz derivative (2.9) with
respect to conformal Killing vectors plus a conformal weight term). Also, the name
“conformal-like” will be justified further in Section 8, where the conformal-like trans-
formation of the field strengths (i.e. curvatures) of the strictly massless tensor-spinors
will be studied (see also the last bullet point in the present list of results).

• The conformal-like transformations (6.6), together with the ten known dS trans-
formations (2.9), generate an algebra that is isomorphic to so(4, 2). However, this
conformal-like algebra closes up to field-dependent gauge transformations.

2Note: For the cases with spin s = 3/2, 5/2, these results were obtained following two different ap-
proaches: a) on the one hand, by performing a technical analysis of the representation-theoretic properties
of the mode solutions on global dSD (this includes constructing the mode solutions explicitly, studying
their transformation properties under so(D, 1), and investigating the existence/non-existence of dS invari-
ant, positive definite scalar products in the space of mode solutions) [19], and, b) on the other hand, by
carefully examining the list of the dS algebra UIRs in the decomposition so(D, 1) ⊃ so(D) [18] and infer-
ring (non-)unitarity from the (mis-)match between the UIR and the field-theoretic representation labels.
For the cases with spin s ≥ 7/2, the results were obtained in Ref. [18] motivated only by the examina-
tion of the so(D, 1) UIRs and the (mis-)match of the representation labels. The technical analysis of the
representation-theoretic properties of the mode solutions with spin s ≥ 7/2 is still absent from the literature
for D ̸= 4 (the D = 4 case is studied in the present paper). Thus, if we want to be careful - as we should
- the results of Ref. [18] for s ≥ 7/2 may be viewed as a “suggestion” motivated by the examination of the
so(D, 1) UIRs. This suggestion can be confirmed by studying the representation-theoretic properties of the
spin-s ≥ 7/2 mode solutions on dSD, as in the spin-s = 3/2, 5/2 cases [19]. This is something that we leave
for future work.
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• We fill a gap in the literature by clarifying the way in which the spin-s ≥ 3/2 physical
(i.e. non-gauge) mode solutions with fixed helicity form a direct sum of Discrete
Series UIRs of the dS algebra so(4, 1). The modes with opposite helicity correspond
to different UIRs - this is also true in the case of strictly massless totally symmetric
tensors [16]. (Recall that a strictly massless field has only two propagating helicities
±s [8] corresponding to two sets of physical mode solutions with opposite helicities.)

• Then, we show that the physical mode solutions also form a direct sum of UIRs of
the conformal-like so(4, 2) algebra. We arrive at this result by following two basic
steps (which stem from the mathematical definitions of representation-theoretic irre-
ducibility and unitarity). First, we show that the mode solutions with fixed helicity
transform among themselves under all so(4, 2) transformations (this means under the
ten dS isometries (2.9), as well as the five conformal-like symmetries (6.6)). Then,
we show that there is a so(4, 2)-invariant, and gauge-invariant, positive definite scalar
product for each set of mode solutions with fixed helicity.

• As the name suggests, our conformal-like symmetry transformations are not conven-
tional infinitesimal conformal transformations. This is exemplified as follows. For the
cases with spin s = 3/2, 5/2, by investigating the conformal-like transformations of
the field strength tensor-spinors (i.e. curvatures) of the strictly massless fermions3,
we find that these transformations correspond to the product of two transformations:
an infinitesimal axial rotation (i.e. multiplication with γ5) times an infinitesimal
conformal transformation. For the cases with spin s ≥ 7/2, we present a (justified)
conjecture concerning the expressions for the conformal-like transformations of the
field strength tensor-spinors.

Literature review. We conclude this part of the Introduction with a brief literature
review that is relevant to our present work. The UIRs of so(4, 1) corresponding to
certain fermions on dS4 have been also discussed in Ref. [28]. The mode solutions
and the Quantum Field Theory of spin-1/2 fermions on dSD have been discussed in
various articles, such as Refs. [13, 21, 23, 24, 28, 33–40]. The invariance of maximal-
depth integer-spin partially massless theories on dS4 under conformal transformations
has been investigated in Ref. [10] - however, interestingly, a representation-theoretic
study [42] suggests that the associated symmetry algebra does not correspond to the
conformal algebra. Recently, I have shed some light on the unconventional conformal
symmetry of the maximal-depth partially massless bosons [43] (and its relation to
SUSY) on dS4. (For recent discussions on scale vs conformal invariance for integer-
spin fields on maximally symmetric spacetimes see Ref. [45].) Discrete Series UIRs,
which play a central role in the present paper, also exist in the case of the isometry
group of dS2. Recently, operators furnishing the discrete series UIRs of so(2, 1) in

3The field strength tensor(-spinor), also known as “generalised Weyl tensor(-spinor)” (see, e.g. [42]), is
invariant under gauge transformations. It plays the role of the electromagnetic tensor Fµν = ∂[µAν] in the
case of the U(1) gauge potential Aµ - or, likewise, the role of the linearised Weyl tensor in the case of the
spin-2 gauge potential (graviton) in linearised gravity.
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BF-type gauge theories on dS2 were constructed [56]. Quantum aspects of de Sitter
space have been reviewed in [60, 61].

1.2 Outline, notation, and conventions

The rest of this paper is organised as follows. In Section 2, we review the basics concerning
(strictly massless) tensor-spinors on dS4. In Section 3, we review the classification of the
UIRs of the dS algebra so(4, 1). In Section 4, we discuss the (pure gauge and physical)
mode solutions for strictly massless fermions of spin s ≥ 3/2 on global dS4. In particular,
we use the method of separation of variables to express the physical mode solutions on
global dS4 in terms of tensor-spinor spherical harmonics on S3 (these spherical harmonics
are not constructed explicitly here). We also identify the analogs of the flat-space positive
and negative frequency modes. In Section 5, we discuss the way in which the (positive
frequency) physical modes with fixed helicity form a direct sum of Discrete Series UIRs of
so(4, 1). In Section 6, we present our new conformal-like symmetry transformations and
we show that the associated symmetry algebra (generated by both dS and conformal-like
transformations) closes on so(4, 2) up to gauge transformations. In Section 7, we show
that the physical modes that form a direct sum of so(4, 1) UIRs, also form a direct sum
of so(4, 2) UIRs. In Section 8, we discuss the conformal-like transformations of the gauge
invariant filed strength tensor-spinors.

There are two Appendices, A and B, in which we include technical details that were
omitted in the main text.

Notation and conventions. We use the mostly plus metric sign convention for dS4.
Lowercase Greek tensor indices refer to components with respect to the ‘coordinate basis’
on dS4. Coordinate basis tensor indices on S3 are denoted as µ̃1, µ̃2, ... . Lowercase Latin
tensor indices refer to components with respect to the vielbein basis. Repeated indices are
summer over. We denote the symmetrisation of indices with the use of round brackets, e.g.
A(µν) ≡ (Aµν + Aνµ)/2, and the anti-symmetrisation with the use of square brackets, e.g.
A[µν] ≡ (Aµν − Aνµ)/2. Spinor indices are always suppressed throughout this paper. The
rank of spin-s tensor-spinors on dS4 is r (i.e. s = r + 1/2). The complex conjugate of
the number z is denoted as z∗. By conformal Killing vector we mean a genuine conformal
Killing vector of dS4 with non-vanishing divergence - see Eq. (6.3).

2 Background material for strictly massless fermions on dS4

2.1 Field equations for higher-spin fermions on dS4

Fermions of spin s ≡ r + 1/2 ≥ 3/2 on dS4 can be described by totally symmetric tensor-
spinors Ψµ1...µr that satisfy the on-shell conditions [6, 15, 49]:(

/∇+M
)
Ψµ1...µr = 0 (2.1)

∇αΨαµ2...µr = 0, γαΨαµ2...µr = 0, (2.2)

where M is the mass parameter, γα are the four gamma matrices and /∇ = γν∇ν is the
Dirac operator. We call the conditions in Eq. (2.2) the transverse-traceless (TT) conditions.
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The ‘curved space gamma matrices’, γµ(x), are defined with the use of the vierbein
fields as γµ(x) = eµ b(x)γ

b, where γb (b = 0, 1, 2, 3) are the spacetime-independent gamma
matrices. The gamma matrices γµ(x) satisfy the anti-commutation relations

γµγν + γνγµ = 2gµν 1, (2.3)

where 1 is the spinorial identity matrix. The vierbein and co-vierbein fields satisfy

eµ
a eν

bηab = gµν , eµa eµ
b = δba, (2.4)

where ηab = diag(−1, 1, 1, 1). The fifth gamma matrix γ5 is determined as [26]

ϵµνρσ = iγ5γ[µγνγργσ], (2.5)

where ϵµνρσ are the components of the dS4 volume element. In the vierbein (i.e. orthonor-
mal frame) basis we have ϵ0123 = +1. The matrix γ5 anti-commutes with the other four
gamma matrices, and, hence, with the Dirac operator.

The derivative ∇ν acts on our totally symmetric tensor-spinors as

∇νΨµ1...µr =

(
∂ν +

1

4
ωνbcγ

bγc
)
Ψµ1...µr − r Γλ

ν(µ1
Ψµ2...µr)λ, (2.6)

where Γλ
νµ are the Christoffel symbols, while ωνbc = ων[bc] = eν

aωabc is the spin connection.
We have

∂µe
ρ
b + Γρ

µσe
σ
b − ωµ

c
b e

ρ
c = 0. (2.7)

The gamma matrices are covariantly constant, ∇νγ
µ = 0. The commutator of covariant

derivatives acting on totally symmetric tensor-spinors on dS4 is given by

[∇µ,∇ν ]Ψµ1...µr =
1

2
(γµγν − gµν)Ψµ1...µr

+ r
(
gµ(µ1

Ψµ2...µr)ν − gν(µ1
Ψµ2...µr)µ

)
. (2.8)

2.2 Basics about dS symmetries of the field equations

The dS algebra is generated by the ten Killing vectors of dS4 satisfying ∇(µξν) = 0. The
dS generators act on solutions Ψµ1...µr in terms of the spinorial generalisation of the Lie
derivative - also known as the Lie-Lorentz derivative [25, 29]. The Lie-Lorentz derivative
acts on arbitrary tensor-spinors as follows:

LξΨµ1...µr = ξν∇νΨµ1...µr +∇µ1ξ
ν Ψνµ2...µr +∇µ2ξ

ν Ψµ1νµ3...µr + ...+∇µrξ
ν Ψµ1...µr−1ν

+
1

4
∇κξλγ

κλΨµ1...µr ., (2.9)

where γκλ = γ[κγλ]. The Lie-Lorentz derivative LξΨµ1...µr conveniently describes the in-
finitesimal so(4, 1) transformation of Ψµ1...µr generated by the Killing vector ξµ. From the
properties [25]:

Lξγ
a = 0,

Lξ∇νΨµ1...µr = ∇νLξΨµ1...µr , (2.10)
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it follows that if Ψµ1...µr is a solution of Eqs. (2.1) and (2.2), then so is LξΨµ1...µr . In other
words, the Lie-Lorentz derivative is a symmetry of the field equations for any value of M .
It is easy to conclude that the associated symmetry algebra is isomorphic to so(4, 1) as [25]

[Lξ,Lξ′ ]Ψµ1...µr = L[ξ,ξ′]Ψµ1...µr (2.11)

for any two Killing vectors ξµ and ξ′µ.
The dS algebra, so(4, 1), has four non-compact generators (‘dS boosts’) and six compact

ones (‘dS rotations’). The compact generators generate the so(4) rotational subalgebra of
so(4, 1). For any fixed value of M , the mode solutions of the field equations (2.1) and (2.2)
form an infinite-dimensional representation of so(4, 1). The eigenvalue of the quadratic
Casimir for this representation is given by [18]

C =
∑

dS boosts

LξLξ −
∑

ξ∈so(4)

LξLξ = −M2 − 9

4
+ s(s+ 1), (2.12)

where s = r+1/2 ≥ 3/2 4. The unitarity of the representation depends on the value of the
mass parameter M [18]. In this paper, we are interested in the strictly massless theories,
which appear for special imaginary values of M (see Subsection 2.3) - for discussions on
arbitrary values of M in any spacetime dimension see Ref. [18].

2.3 Strictly massless fermions on dS4

For real values of M , Eqs. (2.1) and (2.2) describe a unitary massive theory with 2s + 1

propagating degrees of freedom [6, 15]. The theory enjoys a gauge symmetry for each of
the following imaginary tunings of M [6, 15]:

M2 = − (r − τ+ 1)2 . (2.13)

As in the bosonic case discussed in the Introduction, the value τ = 1 corresponds to
the strictly massless theory with two propagating helicities. Each of the values τ = 2, ..., r

corresponds to a partially massless field with 2τ helicities: (±s,±(s−1), ...,±(s−τ+1)) [6].
In this paper, we are interested in the equations for strictly massless fermions, i.e.

Eqs. (2.1) and (2.2) with mass parameter given by [6, 15]

M = ±i r. (2.14)

Strict masslessness occurs for either of the two signs for the mass parameter in Eq. (2.14).
However, the representations of so(4, 1) corresponding to the ‘+’ sign are equivalent to the
representations corresponding to the ‘−’ sign [18]. This is easy to understand as, if Ψµ1...µr

satisfies
/∇Ψµ1...µr = −M Ψµ1...µr ,

then the field Ψ′
µ1...µr

≡ γ5Ψµ1...µr satisfies

/∇Ψ′
µ1...µr

= +M Ψ′
µ1...µr

,

4The expression (2.12) for the quadratic Casimir is also true for spin-1/2 fields.
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while, also, γ5 commutes with all dS transformations (2.9) [18].
Based on the discussion of the previous paragraph, below we will only discuss the field

with the ‘+’ sign in Eq. (2.14). Thus, from now on, Ψµ1...µr denotes the strictly massless
field satisfying (

/∇+ ir
)
Ψµ1...µr = 0, (2.15)

∇αΨαµ2...µr = 0, γαΨαµ2...µr = 0. (2.16)

Equations (2.1) and (2.2) are invariant under the following restricted gauge transformations:

δresΨµ1...µr = ∇(µ1
λµ2...µr) +

i

2
γ(µ1

λµ2...µr), (2.17)

where the gauge functions λµ2...µr are totally symmetric tensor-spinors of rank r − 1 that
satisfy (

/∇+ i(r + 1)
)
λµ2...µr = 0, (2.18)

∇αλαµ3...µr = 0, γαλαµ3...µr = 0. (2.19)

For r = 0, i.e. in the case of the massless spin-1/2 field satisfying /∇Ψ = 0, the theory does
not have gauge symmetry.

3 Classification of the UIRs of the dS algebra

In this Section, we review the classification of the so(4, 1) UIRs in the decomposition
so(4, 1) ⊃ so(4) [47, 48]. An irreducible representation of so(4) appears at most once
in a UIR of so(4, 1) [53].

Let us recall that an irreducible representation of so(4) is specified by the highest
weight [54, 55]

f⃗ = (f1, f2), (3.1)

where

f1 ≥ |f2|. (3.2)

The numbers f1 and f2 are both integers or half-odd integers, while f2 can be negative.
The representation (f1,−f2) is the ‘mirror image’ of (f1, f2) [30].
UIRs of so(4,1). A UIR of so(4, 1) is specified by two numbers F⃗ = (F0, F1). The
number F1 ≥ 0 is an integer or half-odd integer. For the so(4) representations f⃗ = (f1, f2)

contained in the UIR F⃗ = (F0, F1) we have:

f1 ≥ F1 ≥ |f2|. (3.3)

The UIRs of so(4, 1) are listed below [47, 48]:

• Principal Series Dprin( F⃗ ):

F0 = −3

2
+ iy, (y > 0). (3.4)

F1 is an integer or half-odd integer.

– 8 –



• Complementary Series Dcomp( F⃗ ) :

−3

2
≤ F0 < −ñ, ñ ∈ {0, 1}. (3.5)

If ñ = 0, then F1 = 0, while for the so(4) content we have f2 = 0. If ñ = 1, then F1

is a positive integer.

• Exceptional Series Dex( F⃗ ) :

F0 = −1. (3.6)

F1 is a positive integer, while f2 = 0.

• Discrete Series D±( F⃗ ) : F0 is real, while F0 and F1 are both integers or half-odd
integers. The following conditions have to be satisfied:

F1 ≥ f2 ≥ F0 + 2 ≥ 1

2
for D+( F⃗ ), (3.7)

−F1 ≤ f2 ≤ −(F0 + 2) ≤ −1

2
for D−( F⃗ ). (3.8)

For any so(4, 1) UIR, F⃗ = (F0, F1), the quadratic Casimir, C2(F⃗ ), is expressed as:

C2(F⃗ ) = F0 (F0 + 3) + F1(F1 + 1). (3.9)

4 Mode solutions of strictly massless spin-(r + 1/2) ≥ 3/2 fermions

In this Section, we obtain the mode solutions of the spin-(r + 1/2) ≥ 3/2 strictly mass-
less theories [(2.15) and (2.16)]. The spin-3/2 and spin-5/2 mode solutions (for arbitrary
spacetime dimensions) have been already studied in Refs. [18, 19].

4.1 Global coordinates and representation of gamma matrices

In order to obtain the mode solutions of Eqs. (2.15) and (2.16) we will work with the global
coordinates of dS4, where the line element is

ds2 = −dt2 + cosh2 t dΩ2. (4.1)

The line element of S3, dΩ2, can be parameterised as

dΩ2 = dθ23 + sin2 θ3
(
dθ22 + sin2 θ2 dθ

2
1

)
, (4.2)

where 0 ≤ θj ≤ π (for j = 2, 3) and 0 ≤ θ1 ≤ 2π. We will also use the following notation
for a point on S3: θ3 ≡ (θ3, θ2, θ1).

In global coordinates, the non-zero Christoffel symbols are

Γt
θiθj

= cosh t sinh t g̃θiθj , Γθi
θjt

= tanh t g̃θiθj ,

Γθk
θiθj

= Γ̃θk
θiθj

, (4.3)
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where g̃θiθj and Γ̃θk
θiθj

are the metric tensor and the Christoffel symbols, respectively, on S3.
The vierbein fields on dS4 can be chosen to be:

et0 = 1, eθi i =
1

cosh t
ẽθi i, i = 1, 2, 3, (4.4)

where ẽθi i are the dreibein fields on S3. The non-zero components of the dS spin connection
are given by

ωijk =
ω̃ijk

cosh t
, ωi0k = −ωik0 = − tanh t δik, i, j, k ∈ {1, 2, 3} (4.5)

where ω̃ijk is the spin connection on S3.
We will work with the following representation of gamma matrices on dS4:

γ0 = i

(
0 1

1 0

)
, γj =

(
0 iγ̃j

−iγ̃j 0

)
, (4.6)

(j = 1, 2, 3) where the lower-dimensional gamma matrices, γ̃j , satisfy

{γ̃j , γ̃k} = 2δjk1, j, k = 1, 2, 3. (4.7)

The fifth gamma matrix (2.5) is given by

γ5 =

(
1 0

0 −1

)
. (4.8)

4.2 Constructing the mode solutions of the strictly massless theories

There are two kinds of spin-(r + 1/2) TT mode solutions satisfying the strictly massless
field equations [(2.15) and (2.16)] on dS4:

• The ‘physical modes’ describing the propagating degrees of freedom of the theory.

• The ‘pure gauge modes’ describing the gauge degrees of freedom of the theory.

In this Subsection, we present some details for the construction of these mode solutions.
The mode solutions on global dS4 can be constructed using the method of separation

variables. Schematically, this means that we are looking for solutions that can be expressed
as a product “function of t × function of θ3”. As we will see below, the functions describing
the θ3-dependence are tensor-spinor spherical harmonics on S3 forming UIRs of so(4).
Thus, from a representation-theoretic viewpoint, the solutions on global dS4 obtained with
the method of separation of variables form so(4, 1) representations in the decomposition
so(4, 1) ⊃ so(4). The method of separation of variables has been applied in Refs. [14, 16, 52]
for integer-spin fields, in Refs. [23, 24] for spin-1/2 fields and in Refs. [18, 19] for spin-3/2
and spin-5/2 fields.
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4.2.1 Physical spin-(r + 1/2) ≥ 3/2 modes on dS4

Let us start by obtaining the physical mode solutions of Eqs. (2.15) and (2.16). We first
discuss the spherical eigenmodes on S3 that describe the spatial dependence of physical
modes. Then, we discuss the time dependence of physical modes and we apply the method
of separation of variables.

Spatial dependence and so(4) content of physical modes

The spatial dependence of the spin-(r + 1/2) physical mode solutions on dS4 is expressed
in terms of (totally symmetric) tensor-spinor spherical harmonics of rank r on S3. The
latter are the totally symmetric TT tensor-spinor eigenmodes of the Dirac operator on S3

satisfying [23, 57]

/̃∇ψ̃(ℓ;m;k)
+µ̃1µ̃2...µ̃r

(θ3) = +i

(
ℓ+

3

2

)
ψ̃
(ℓ;m;k)
+µ̃1µ̃2...µ̃r

(θ3), (ℓ = r, r + 1, ...)

γ̃µ̃1ψ̃
(ℓ;m;k)
+µ̃1µ̃2...µ̃r

(θ3) = ∇̃µ̃1ψ̃
(ℓ;m;k)
+µ̃1µ̃2...µ̃r

(θ3) = 0, (4.9)

and

/̃∇ψ̃(ℓ;m;k)
−µ̃1µ̃2...µ̃r

(θ3) = −i
(
ℓ+

3

2

)
ψ̃
(ℓ;m;k)
−µ̃1µ̃2...µ̃r

(θ3), (ℓ = r, r + 1, ...)

γ̃µ̃1ψ̃
(ℓ;m;k)
−µ̃1µ̃2...µ̃r

(θ3) = ∇̃µ̃1ψ̃
(ℓ;m;k)
−µ̃1µ̃2...µ̃r

(θ3) = 0. (4.10)

The subscripts ‘±’ in ψ̃(ℓ;m;k)
±µ̃1µ̃2...µ̃r

have been used in order to indicate the sign of the eigen-

value in Eqs. (4.9) and (4.10), while γ̃µ̃, ∇̃µ̃ and /̃∇ = γ̃µ̃∇̃µ̃ are the gamma matrices,
covariant derivative and Dirac operator, respectively, on S3. The numbers ℓ,m, and k are
representation-theoretic labels corresponding to the chain of subalgebras so(4) ⊃ so(3) ⊃
so(2). In particular, the number ℓ = r, r + 1, ... is the angular momentum quantum num-
ber on S3. The numbers m and k are the angular momentum quantum numbers on S2

and S1, respectively, and they are allowed to take the values: m = r, r + 1, ..., ℓ and
k = −(m+1),−m, ..., 0, ...,m. The explicit form of the tensor-spinors ψ̃(ℓ;m;k)

±µ̃1µ̃2...µ̃r
(θ3) is not

needed for the purposes of this paper5.
The set of eigenmodes {ψ̃(ℓ;m;k)

+µ̃1µ̃2...µ̃r
} (with fixed ℓ) forms a so(4) representation with

highest weight (3.2) given by [57]:

f⃗+r =

(
ℓ+

1

2
, r +

1

2

)
, ℓ = r, r + 1, ... . (4.11)

Similarly, the set {ψ̃(ℓ;m;k)
−µ̃1µ̃2...µ̃r

} (with fixed ℓ) forms a so(4) representation with highest
weight [57]:

f⃗−r =

(
ℓ+

1

2
,−r − 1

2

)
, ℓ = r, r + 1, ... . (4.12)

5See Refs. [23, 31] for explicit expressions for the spinor eigenfunctions of the Dirac operator on
spheres and Refs. [19, 58] for the vector-spinor and symmetric rank-2 tensor-spinor cases. The general
representation-theoretic properties of tensor-spinor spherical harmonics of arbitrary rank have been dis-
cussed in Ref. [57].
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Each of the so(4) UIRs f⃗±r =
(
ℓ+ 1

2 ,±(r + 1
2)
)

has the following content concerning its
subalgebras: the so(3) content corresponds to the so(3) highest weight m+ 1

2 with ℓ+ 1
2 ≥

m + 1
2 ≥ r + 1

2 , while the so(2) content corresponds to the so(2) highest weight k + 1/2

with m+ 1
2 ≥ k + 1

2 ≥ −m− 1
2 .

In this paper we assume that the eigenmodes in Eqs. (4.9) and (4.10) are already
normalised using the standard inner product on S3:∫

S3

√
g̃ dθ3 g̃

µ̃1ν̃1 g̃µ̃2ν̃2 ...g̃µ̃r ν̃r ψ̃
(ℓ′;m′;k′)
σ′ µ̃1µ̃2...µ̃r

(θ3)
† ψ̃

(ℓ;m;k)
σ ν̃1ν̃2...ν̃r

(θ3)

= δσσ′ δℓℓ′ δmm′δkk′ , (4.13)

where σ, σ′ ∈ {+,−} and dθ3 ≡ dθ3dθ2dθ1, while g̃ is the determinant of the metric on S3.6

Time dependence of physical modes

The physical modes Ψµ1...µr(t,θ3) on dS4 are essentially TT tensor-spinors on S3, and,
thus, we have Ψtµ2...µr = 0, where µ2, µ3, ..., µr ∈ {t, θ3, θ2, θ1} - as will become clear,
the TT conditions (2.16) will be automatically satisfied by construction. The only non-zero
components of the physical modes are the spatial components Ψµ̃1...µ̃r , where µ̃1, µ̃2, ..., µ̃r ∈
{θ3, θ2, θ1}. These can be determined by solving the Dirac equation (2.15). To be specific,
letting µ1 = µ̃1, µ2 = µ̃2, ..., µr = µ̃r, the Dirac equation (2.15) for the physical modes is
expressed as

(
∂

∂t
+

3− 2r

2
tanh t

)
γtΨµ̃1...µ̃r +

1

cosh t

(
0 i /̃∇

−i /̃∇ 0

)
Ψµ̃1...µ̃r = −irΨµ̃1...µ̃r , (4.14)

where we have made use of the expressions for the Christoffel symbols, spin connection,
vierbein fields and gamma matrices from Subsection 4.1.

Before proceeding to the construction of the modes, note that the physical modes on dS4
are naturally split into two classes depending on their so(4) representation-theoretic content
- i.e. depending on whether their θ3-dependence is given by the spherical eigenmodes (4.9)
or (4.10). Let us introduce the following notation:

• The physical modes with so(4) content given by f⃗−r [Eq. (4.12)] are denoted as
Ψ

(phys,−ℓ;m;k)
µ1...µr (t,θ3). We also refer to these modes as ‘physical modes with helicity

−s’ (recall that s = r + 1/2).

• The physical modes with so(4) content given by f⃗+r [Eq. (4.11)] are denoted as
Ψ

(phys,+ℓ;m;k)
µ1...µr (t,θ3). We also refer to these modes as ‘physical modes with helicity

+s’.

6In Eq. (4.13), the eigenmodes with different values for σ = ± and/or ℓ = r, r + 1, ... are orthogonal
to each other because they belong to different so(4) representations. Similarly, eigenmodes with different
values of m and/or k are orthogonal to each other because, in the decomposition so(4) ⊃ so(3) ⊃ so(2),
they correspond to representations with different content concerning the chain of subalgebras so(3) ⊃ so(2).
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Following our previous work [18], we separate variables for Ψ
(phys,−ℓ;m;k)
µ1...µr (t,θ3) as:

Ψ
(phys,−ℓ;m;k)
tµ2...µr

(t,θ3) = 0, Ψ
(phys,−ℓ;m;k)
µ̃1...µ̃r

(t,θ3) =

(
α
(r)
ℓ (t) ψ̃

(ℓ;m;k)
−µ̃1...µ̃r

(θ3)

−iβ(r)ℓ (t) ψ̃
(ℓ;m;k)
−µ̃1...µ̃r

(θ3)

)
, (4.15)

where ℓ = r, r + 1, ..., while α(r)
ℓ (t) and β

(r)
ℓ (t) are functions of time that we must deter-

mine.7 Substituting Eq. (4.15) into Eq. (4.14), we find(
d

dt
+

3− 2r

2
tanh t−

i
(
ℓ+ 3

2

)
cosh t

)
β
(r)
ℓ (t) = −i r α(r)

ℓ (t), (4.16)

(
d

dt
+

3− 2r

2
tanh t+

i
(
ℓ+ 3

2

)
cosh t

)
α
(r)
ℓ (t) = i r β

(r)
ℓ (t). (4.17)

Using these two relations, and introducing the variable

x =
π

2
− it, (4.18)

we find two second-order equations:[
∂2

∂x2
+ (3− 2r) cotx

∂

∂x
+

(
ℓ+

3

2

)
cosx

sin2 x

−
(ℓ+ 3

2)
2 − 1

4(3− 2r)(1− 2r)

sin2 x
− (3− 2r)2

4

]
α
(r)
ℓ (t) = −r2α(r)

ℓ (t) (4.19)

and [
∂2

∂x2
+ (3− 2r) cotx

∂

∂x
−
(
ℓ+

3

2

)
cosx

sin2 x

−
(ℓ+ 3

2)
2 − 1

4(3− 2r)(1− 2r)

sin2 x
− (3− 2r)2

4

]
β
(r)
ℓ (t) = −r2 β(r)ℓ (t), (4.20)

where cosx = i sinh t, sinx = cosh t and cotx = i tanh t.8 The solutions are given in terms
of the Gauss hypergeometric function [59] as:

α
(r)
ℓ (t) =

(
cos

x(t)

2

)ℓ+1+r (
sin

x(t)

2

)ℓ+r

× F

(
r + 2 + ℓ,−r + ℓ+ 2; ℓ+ 2; sin2

x(t)

2

)
, (4.21)

7The functions α
(r)
ℓ (t) and β

(r)
ℓ (t) correspond to Φ

(a)
Mℓ and Ψ

(a)
Mℓ, respectively, with a = −r and M = ir

(in four spacetime dimensions) in our previous work [18].
8Note that the third term of the differential operator in Eq. (4.19) has an opposite sign from the third

term of the differential operator in Eq. (4.20). This is the only difference between these two differential
operators.
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and

β
(r)
ℓ (t) =

r

ℓ+ 2

(
cos

x(t)

2

)ℓ+r (
sin

x(t)

2

)ℓ+r+1

× F

(
r + 2 + ℓ,−r + ℓ+ 2; ℓ+ 3; sin2

x(t)

2

)
, (4.22)

where

cos
x(t)

2
=

(
sin

x(t)

2

)∗
=

√
2

2

(
cosh

t

2
+ i sinh

t

2

)
. (4.23)

We have now completely determined the form of the physical modes Ψ(phys,−ℓ;m;k)
µ1...µr (t,θ3) in

Eq. (4.15).
Similarly, we find that the physical modes with so(4) content given by f⃗+r [Eq. (4.11)]

are expressed as

Ψ
(phys,+ℓ;m;k)
tµ2...µr

(t,θ3) = 0, Ψ
(phys,+ℓ;m;k)
µ̃1...µ̃r

(t,θ3) =

(
iβ

(r)
ℓ (t) ψ̃

(ℓ;m;k)
+µ̃1...µ̃r

(θ3)

−α(r)
ℓ (t) ψ̃

(ℓ;m;k)
+µ̃1...µ̃r

(θ3)

)
. (4.24)

The functions α(r)
ℓ (t) and β(r)ℓ (t) are given again by Eqs. (4.21) and (4.22), respectively.

The physical modes (4.15) and (4.24) can also be obtained by analytically continuing
tensor-spinor spherical harmonics on S4 (see Refs. [14, 18, 19, 24] for details concerning
such analytic continuation techniques).

Short wavelength limit of physical modes and ‘positive frequency’ condition

Using the property [59]:

F (A,B;C; z) = (1− z)C−A−B F (C −A,C −B;C; z), (4.25)

we find that in the limit ℓ >> 1 (short wavelength/high frequency limit), the functions
α
(r)
ℓ (t) [Eq. (4.21)] and β

(r)
ℓ (t) [Eq. (4.22)] describe the time dependence of positive fre-

quency Minkowskian modes, as

dα
(r)
ℓ (t)

dt
∼ − iℓ

cosh t
α
(r)
ℓ (t),

d β
(r)
ℓ (t)

dt
∼ − iℓ

cosh t
β
(r)
ℓ (t), (4.26)

and thus,

∂

∂t
Ψ(phys,±ℓ;m;k)

µ1...µr
∼ − iℓ

cosh t
Ψ(phys,±ℓ;m;k)

µ1...µr
(for ℓ >> 1). (4.27)

Equation (4.27) holds for all (fixed) times t and it has the form of the standard ‘positive
frequency’ condition for the Euclidean vacuum in global dS4 [66]. Note that, as we will show
in Section 5, our ‘positive frequency’ physical modes transform among themselves under dS
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transformations (5.2). We can express the ‘positive frequency’ condition (4.27) in a more
familiar form as follows. Introducing the conformal time parameter, η (with tan η ≡ sinh t

and π/2 > η > −π/2), the dS line element (4.1) is expressed as

ds2 =
1

cos2 η

(
−dη2 + dΩ2

)
,

while the ‘positive frequency’ condition (4.27) becomes

∂

∂η
Ψ(phys,±ℓ;m;k)

µ1...µr
∼ −iℓ Ψ(phys,±ℓ;m;k)

µ1...µr
(for ℓ >> 1). (4.28)

This is the standard ‘positive frequency’ behaviour (for large ℓ) used to define the Euclidean
vacuum in the case of the scalar field in global dS4 in Ref. [66] (with the use of the conformal
time parameter).

The condition in Eq. (4.27) is not an exact positive frequency condition in the Minkowskian
sense, as indicated by the time-dependent ‘frequency’. However, the Euclidean vacuum -
for which the notion of ‘particles’ is defined with the help of (4.27), (4.28) - is a good
‘no-particle’ state for local observers in the high-frequency limit [66]. (In global dS4, it is
this limit - and not the limit t → ±∞ - where one can define an adiabatic vacuum with
no particle production as explained in [66].) Moreover, the Euclidean vacuum ‘positive fre-
quency’ condition [(4.27), (4.28)] is often preferred in the mathematical physics community
because, as is well-known, the Euclidean vacuum in the unique dS invariant vacuum for
which the 2-point functions obey the Hadamard condition, i.e. their singularity structure
matches the flat-space one. For example, apart from the well-studied scalar case (discussed
in, e.g., [66]), the graviton and spinor mode functions that satisfy the positive frequency
condition (4.27) on global dS spacetime have been used to construct the Wightman 2-point
functions with Minkowskian short-distance behaviour in Refs. [67] and [24], respectively.
However, there are also other positive frequency conditions giving rise to different vacua,
such as the in/out vacuua in Ref. [65] (these do not correspond to Hadamard states).
‘Negative frequency’ physical modes. Apart from the physical modes (4.15) and (4.24),
there are also physical modes that are the analogs of Minkowskian negative frequency modes.
These are given by

Ψ
(phys,+ℓ;m;k)C
tµ2...µr

(t,θ3) = 0, Ψ
(phys,+ℓ;m;k)C
µ̃1...µ̃r

(t,θ3) =

(
α
(r)∗
ℓ (t) ψ̃

(ℓ;m;k)
+µ̃1...µ̃r

(θ3)

+iβ
(r)∗
ℓ (t) ψ̃

(ℓ;m;k)
+µ̃1...µ̃r

(θ3)

)
(4.29)

and

Ψ
(phys,−ℓ;m;k)C
tµ2...µr

(t,θ3) = 0, Ψ
(phys,−ℓ;m;k)C
µ̃1...µ̃r

(t,θ3) =

(
iβ

(r)∗
ℓ (t) ψ̃

(ℓ;m;k)
−µ̃1...µ̃r

(θ3)

+α
(r)∗
ℓ (t) ψ̃

(ℓ;m;k)
−µ̃1...µ̃r

(θ3)

)
. (4.30)

It is straightforward to verify that these modes satisfy Eq. (4.14), as well as the complex
conjugate of Eq. (4.27). In this paper, we do not discuss the representation-theoretic prop-
erties of the ‘negative frequency’ modes Ψ(phys,±ℓ;m;k)C

µ1...µr , because they form the same so(4, 1)
UIRs as the ones formed by the ‘positive frequency’ modes Ψ

(phys,±ℓ;m;k)
µ1...µr .
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4.2.2 Pure gauge spin-(r + 1/2) ≥ 3/2 modes on dS4

The pure gauge modes of the striclty massless spin-(r + 1/2) equations [(2.15) and (2.16)]
satisfy the same conditions as the restricted gauge transformations (2.17). This means that
the pure gauge modes are expressed as

Ψ(pg, r̃,±ℓ;m)
µ1...µr

(t,θ3) =

(
∇(µ1

+
i

2
γ(µ1

)
λ
(r̃,±ℓ;m)
µ2...µr)

(t,θ3). (4.31)

The “gauge-function modes”, λ(r̃,±ℓ;m)
µ2...µr , are totally symmetric tensor-spinors of rank r − 1

and they satisfy Eqs. (2.18) and (2.19). As in the case of physical modes, explicit expressions
for λ(r̃,±ℓ;m)

µ2...µr can be obtained using the method of separation of variables, but they are not
needed for the purposes of this paper9. The two labels r̃,±ℓ in Eq. (4.31) are used to denote
the so(4) content of each pure gauge mode; this corresponds to the so(4) highest weights

f⃗±r̃ = (ℓ+ 1
2 ,±r̃ ±

1
2), r̃ ∈ {0, 1, ..., r − 1}, (4.32)

with ℓ = r, r + 1, ... [the value r̃ = r is excluded in Eq. (4.32) since it corresponds to
the so(4) content of physical modes - see Eqs. (4.11) and (4.12)]. The label m represents
angular momentum quantum numbers corresponding to the subalgebras so(3) ⊃ so(2).

The pure gauge modes must have zero norm with respect to any dS invariant scalar
product and be orthogonal to all physical modes [14, 16, 18, 19, 52]. Because of these
properties, the pure gauge modes can be identified with zero in the solution space of the
field equations (2.15) and (2.16). These properties will be demonstrated in Section 5 for a
specific choice of dS invariant scalar product - see also Refs. [18, 19].

5 The physical modes form UIRs of the dS algebra

In this Section, we explain how the ‘positive frequency’ physical modes (4.15) and (4.24)
of the fermionic strictly massless theories form a direct sum of Discrete Series UIRs of the
dS algebra so(4, 1). (Below we often use the terms ‘positive frequency’ physical modes
and physical modes interchangeably.) To identify the so(4, 1) UIRs formed by these mode
solutions, we follow two basic steps:

• Irreducibility: We identify the sets of ‘positive frequency’ physical modes that form
irreducible representations of so(4, 1).

This means that we need to study the infinitesimal dS transformations of the physical
mode solutions. We show that the physical modes with fixed helicity ±s transform
among themselves under all so(4, 1) transformations (up to gauge equivalence). Thus,
the physical modes form a direct sum of irreducible representations - one correspond-
ing to the helicity +s and one to −s. Moreover, it is already easy to see that pure
gauge modes transform only into other pure gauge modes under infinitesimal dS trans-
formations, as the Lie-Lorentz derivative (2.9) commutes with the operator ∇µ+

i
2γµ

in Eq. (4.31), while also, it leaves invariant the conditions (2.18) and (2.19), which
determine the restricted gauge transformations.

9Explicit expressions for the spin-3/2 and spin-5/2 cases can be found in Ref. [19].
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• Unitarity: We introduce a positive definite dS invariant and gauge-invariant scalar
product for each set of ‘positive frequency’ physical modes of fixed helicity.

In particular, we start by introducing the scalar product (5.4) and we show that
it is dS invariant. With respect to this scalar product, the pure gauge modes are
shown to be orthogonal to themselves, as well as to all physical modes (i.e. it is
demonstrated that the pure gauge modes can be identified with zero in the solution
space). Interestingly, it turns out that the scalar product (5.4) is positive definite for
the ‘positive frequency’ physical modes with helicity −s and negative definite for the
‘positive frequency’ physical modes with helicity +s. However, as these two sets of
fixed-helicity modes form different irreducible so(4, 1) representations, we are allowed
to use a different scalar product for each set. We thus redefine the scalar product for
the +s modes by introducing a factor of −1, in order to achieve positive-definiteness.
This peculiarity - i.e. having a different positive definite scalar product for physical
modes with different helicity - is already known to appear in the spin-3/2 and spin-5/2
cases on even-dimensional dSD for D ≥ 4 [18, 19]. See the end of this Section for
more comments on this peculiarity.

Note. Although unitarity is often considered to be equivalent to the positive-definiteness
of the scalar product in the Hilbert space of mode solutions, this is not a sufficient
requirement. For representation-theoretic unitarity, the scalar product must be both
positive definite and invariant under the symmetry algebra (or group) of interest.
In this Section, the symmetries of interest correspond to the dS algebra, while, in
Section 6, they correspond to the conformal-like so(4, 2) algebra.

Once we ensure both the unitarity and irreducibility of the so(4, 1) representations formed
by the physical modes with fixed helicity, we will recall the so(4) content [Eqs. (4.11) and
(4.12)] of these modes, as well as the value of the field-theoretic quadratic Casimir (2.12).
Then, it will be straightforward to identify the UIRs formed by the physical modes with a
direct sum of Discrete Series UIRs of so(4, 1) [Eqs. (3.7) and (3.8)].

5.1 Infinitesimal dS transformations of physical modes and irreducibility of
so(4, 1) representations

The infinitesimal dS transformations of the mode solutions can be studied with the use
of the Lie-Lorentz derivative (2.9) with respect to the dS Killing vectors. Since the so(4)
content of the so(4, 1) representations formed by mode solutions is already known (see
Section 4), we just need to study the transformation properties of our mode solutions
under dS boosts. In fact, it is sufficient to focus on just one dS boost (the reason is that the
Lie bracket between a boost Killing vector and a rotational one is equal to another boost
Killing vector). We choose to work with the following boost Killing vector:

X = Xµ∂µ = cos θ3
∂

∂t
− tanh t sin θ3

∂

∂θ3
. (5.1)
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Our aim is to express LXΨ
(phys,−ℓ;m;k)
µ1...µr (t,θ3) and LXΨ

(phys,+ℓ;m;k)
µ1...µr (t,θ3) as linear com-

binations of other mode solutions10. There are (at least) two different ways we can follow
in order to proceed:

• i) Direct calculation, where in order to express LXΨ
(phys,±ℓ;m;k)
µ1...µr as a linear combina-

tion of other modes, one has to use the raising and lowering differential operators for
the angular momentum quantum number ℓ, as in Refs. [14, 19, 24, 52].

or

• ii) Making use of the matrix elements of so(5) generators obtained by Gelfand and
Tsetlin [46]. More specifically, one can use these matrix elements to find explicit
expressions for the so(5) transformations of tensor-spinor spherical harmonics on S4

and then perform analytic continuation to dS4.

In this paper, we follow approach ii. Here we present the final expressions for LXΨ
(phys,±ℓ;m;k)
µ1...µr .

The reader who is familiar with so(D+1) representations formed by tensor-spinor spherical
harmonics on SD [57] can infer the results from Gelfand and Tsetlin’s work [46]. Technical
details for the derivation can be found in Appendix A.

Without further ado, following approach ii, the infinitesimal transformation of the
physical spin-(r + 1/2) ≥ 3/2 modes under the dS boost (5.1) are found to be:

LXΨ(phys,±ℓ;m;k)
µ1...µr

=− i

2(ℓ+ 2)

√
((ℓ+ 2)2 − r2) (ℓ−m+ 1)(ℓ+m+ 3)Ψ(phys,±(ℓ+1) ;m;k)

µ1...µr

− i(ℓ+ 1)

2

√
(ℓ−m)(ℓ+m+ 2)

(ℓ+ 1)2 − r2
Ψ(phys,±(ℓ−1) ;m;k)

µ1...µr
+ (pure gauge),

(5.2)

where the term ‘(pure gauge)’ is proportional to the pure gauge mode Ψ
(pg, r̃=r−1,±ℓ;m;k)
µ1...µr

[see Eq. (4.31)].
Conclusion. From the transformation properties (5.2), we conclude that the modes
{Ψ(phys,−ℓ;m;k)

µ1...µr } and {Ψ(phys,+ℓ;m;k)
µ1...µr } separately form irreducible representations of so(4, 1)

(up to gauge equivalence).
In the next Subsection, by making a choice of a dS invariant scalar product, we will

explicitly show that all pure gauge modes have zero associated norm. Thus, the Lie-Lorentz
derivatives (2.9) essentially act on equivalence classes of physical modes, i.e. if for any two
physical modes, Ψ(1)

µ1...µr and Ψ
(2)
µ1...µr , the difference Ψ(1)

µ1...µr−Ψ
(2)
µ1...µr is a linear combination

of pure gauge modes, then Ψ
(1)
µ1...µr and Ψ

(2)
µ1...µr belong to the same equivalence class.

5.2 dS invariant scalar product and unitarity of so(4, 1) representations

For any two (physical or pure gauge) solutions Ψ
(1)
µ1...µr ,Ψ

(2)
µ1...µr of Eqs. (2.15) and (2.16),

define the (axial) vector current Jµ(Ψ(1),Ψ(2)) as

Jµ(Ψ(1),Ψ(2)) = −iΨ(1)
ν1...νrγ

5γµΨ(2)ν1...νr , (5.3)

10In the spin-3/2 and spin-5/2 cases, the transformations LXΨ
(phys,−ℓ;m;k)
µ1...µr (t,θ3) and

LXΨ
(phys,+ℓ;m;k)
µ1...µr (t,θ3) have already been expressed as linear combinations of other mode solutions

by direct calculation in Ref. [19].

– 18 –



where Ψ
(1)
ν1...νr = iΨ

(1)†
ν1...νrγ

0. This is covariantly conserved, ∇µJµ(Ψ
(1),Ψ(2)) = 0 11. Thus,

it immediately follows that the scalar product

⟨Ψ(1)|Ψ(2)⟩ =
∫
S3

√
−g dθ3 J0(Ψ(1),Ψ(2))

= cosh3 t

∫
S3

√
g̃ dθ3Ψ

(1)†
ν1...νr(t,θ3) γ

5Ψ(2)ν1...νr(t,θ3) (5.4)

is time-independent, where cosh3 t
√
g̃ =

√
−g, while g is the determinant of the dS metric.

dS invariance of the scalar product. The dS invariance of the scalar product (5.4)
can be demonstrated as follows. Let δξJµ be the change of the current (5.3) under the
infinitesimal dS transformation generated by a dS Killing vector ξµ. Then, we have

δξJ
µ(Ψ(1),Ψ(2)) = Jµ(LξΨ

(1),Ψ(2)) + Jµ(Ψ(1),LξΨ
(2))

= ∇ν

(
ξν Jµ(Ψ(1),Ψ(2))− ξµ Jν(Ψ(1),Ψ(2))

)
, (5.5)

δξJ
t(Ψ(1),Ψ(2)) =

1√
−g

∂ν̃

[
√
−g
(
ξν̃ J t(Ψ(1),Ψ(2))− ξt J ν̃(Ψ(1),Ψ(2))

)]
, (5.6)

where we have used that ∇νJ
ν = ∇νξ

ν = 0. As δξJµ is equal to the divergence of an
anti-symmetric tensor, the following integral vanishes:

δξ ⟨Ψ(1)|Ψ(2)⟩ =
∫
S3

√
−g dθ3 δξJ t(Ψ(1),Ψ(2)) = 0. (5.7)

In other words, the value of the scalar product (5.4) does not change under infinitesimal dS
transformations. This directly implies that

⟨LξΨ
(1)|Ψ(2)⟩+ ⟨Ψ(1)|LξΨ

(2)⟩ = 0, (5.8)

for any dS Killing vector ξ.
Gauge invariance of the scalar product. Let us show that, with respect to the scalar
product (5.4), all pure gauge modes (4.31) are orthogonal to themselves, as well as to all
physical modes. In particular, letting Ψ

(2)
µ1...µr be a pure gauge mode (4.31) - i.e. Ψ

(2)
µ1...µr =

Ψ
(pg)
µ1...µr = (∇(µ1

+ i
2γ(µ1

)λµ2...µr), where we have omitted the quantum number labels for
convenience - the current (5.3) can be expressed as

Jµ(Ψ(1),Ψ(pg)) = 2i∇λ

(
Ψ

(1)ν2ν3...νr[λγµ]γ5 λν2ν3...νr

)
, (5.9)

where Ψ(1) is any physical or pure gauge mode. As Jµ(Ψ(1),Ψ(pg)) in Eq. (5.9) is equal to the
divergence of an anti-symmetric tensor, the scalar product between any pure gauge mode
and any other mode is always zero. Also, this directly implies that the scalar product (5.4)
is invariant under restricted gauge transformations (2.17).
Positive-definiteness. Let us now calculate the norm of the physical ‘positive frequency’
mode solutions with respect to the scalar product (5.4). Substituting the expressions for

11I would like to thank Atsushi Higuchi for pointing out that this current is conserved.
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the physical modes, (4.15) and (4.24), into the scalar product (5.4), we find

⟨Ψ(phys, σℓ;m;k)|Ψ(phys, σ′ℓ′;m′;k′)⟩ =(−σ)× cosh3−2r t

×
(
|α(r)

ℓ (t)|2 − |β(r)ℓ (t)|2
)
δσσ′δℓℓ′δmm′δkk′ , (5.10)

where σ, σ′ ∈ {−,+}, while we have made use of the normalisation condition (4.13) of the
tensor-spinor spherical harmonics on S3. This expression is time-independent and its value
has been calculated in equation (8.26) of Ref. [19]. The result is [19]

⟨Ψ(phys, σℓ;m;k)|Ψ(phys, σ′ℓ′;m′;k′)⟩ = (−σ)× 23−2r |Γ(ℓ+ 2)|2

Γ(ℓ+ 2 + r)Γ(ℓ+ 2− r)
δσσ′δℓℓ′δmm′δkk′ .

(5.11)

According to this equation, the ‘positive frequency’ physical modes with helicity −s, {Ψ(phys,−ℓ;m;k)
µ1...µr },

form a UIR of so(4, 1) with positive definite scalar product given by Eq. (5.4), while the
‘positive frequency’ physical modes with helicity +s, {Ψ(phys,+ℓ;m;k)

µ1...µr }, form a UIR of so(4, 1)
with positive definite scalar product given by the negative of Eq. (5.4).

For the sake of completeness, we note that the norm of the physical ‘negative frequency’
modes [Eqs. (4.29) and (4.30)] is given by

⟨Ψ(phys, σℓ;m;k)C |Ψ(phys, σ′ℓ′;m′;k′)C⟩ = (+σ)× 23−2r |Γ(ℓ+ 2)|2

Γ(ℓ+ 2 + r)Γ(ℓ+ 2− r)
δσσ′δℓℓ′δmm′δkk′ .

(5.12)

5.3 Some comments on why the scalar product (5.4) is not positive definite
for both helicities

As we mentioned at the beginning of this Section, the physical ‘positive frequency’ modes
with helicity −s have a different positive definite scalar product from the physical ‘pos-
itive frequency’ modes with helicity +s [recall our definition of ‘positive frequency’ con-
ditions (4.27)]. The two scalar products differ in their definition by a factor of −1: the
scalar product for the −s modes is given by (5.4), while the scalar product for the +s

modes is given by the negative of (5.4). This means that if we use the same scalar prod-
uct (5.4) for both helicities, then the physical ‘positive frequency’ modes with helicity −s
will have positive definite norm, while the physical ‘positive frequency’ modes with helicity
+s will have negative definite norm [this becomes clear from Eq. (5.11)]. However, from
the representation theory point of view, we are allowed to use a different scalar product
for each set of fixed-helicity ‘positive frequency’ modes because each set separately forms
an irreducible so(4, 1) representation. This peculiarity of having a different positive defi-
nite scalar product for each fixed-helicity set of ‘positive frequency’ modes stems from the
appearance of γ5 in the scalar product (5.4). γ5 is necessary to achieve dS invariance of
the scalar product in the case of tensor-spinors with an imaginary mass parameter [19]. If
we remove γ5 from the scalar product (5.4), then we will obtain an inner product which
is always positive definite but is not dS invariant for tensor-spinors with imaginary mass
parameters. However, the scalar product with γ5 removed is dS invariant for tensor-spinors
with real mass parameters. [19]
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Comparing to the Klein-Gordon case. At first sight, the aforementioned indefiniteness
of the norm for strictly massless spin-s ≥ 3/2 fermions might remind us of the indefiniteness
of the Klein-Gordon norm in the case of the scalar field. The mode functions of the scalar
field on global dS4 (4.1) can be found in, e.g., Refs. [14, 65]. However, the indefiniteness of
the Klein-Gordon norm is of a different kind. The scalar field mode functions on global dS4
that satisfy a generalised positive frequency condition at short wavelengths as in Eq. (4.27)
[these are called CTBD (Chernikov-Tagirov-Bunch-Davies) mode functions in Ref. [65]] have
positive definite norm associated with the Klein-Gordon scalar product12. The complex
conjugate mode functions satisfy generalised negative frequency conditions [corresponding
to the complex conjugate of Eq. (4.27)] and have negative definite norm associated with the
Klein-Gordon scalar product. To sum up, in the case of the scalar field - unlike in the case
of strictly massless spin-s ≥ 3/2 fermions - the positive-definiteness or negative-definiteness
of the dS invariant norm can be used to distinguish between modes with generalised positive
or negative frequency behaviour. On the other hand, the special feature of the strictly
massless spin-s ≥ 3/2 theories is that indefiniteness of the norm appears among the set of
‘positive frequency’ modes [see Eq. (5.11)], as well as among the set of ‘negative frequency’
modes [see Eq. (5.12)]. This happens because the sign of the norm is related to the helicity
and not to the positive or negative frequency behaviour.
Comparing to the massless spin-1/2 case. It is worth recalling that in the spin-
1/2 (massive and massless) case, the standard dS invariant Dirac norm is always positive
definite and is not related to the ‘positive frequency’ and ‘negative frequency’ behaviour
of the modes - see, e.g., Ref. [24]. Below, to get some more insight into the peculiarities of
the strictly massless spin-s ≥ 3/2 fermions, we briefly discuss the massless spin-1/2 field on
global dS4, which is the simplest strictly massless fermion on dS4. We will use this example
to demonstrate that the appearance of γ5 in the scalar product leads to the indefiniteness of
the norm among the ‘positive frequency’ modes, as well as among the ‘negative frequency’
modes, as in the case of strictly massless spin-s ≥ 3/2 fields.

The massless spin-1/2 field

The massless spin-1/2 field on dS4 satisfies the massless Dirac equation

/∇Ψ = 0.

We will show that the indefiniteness of the norm (5.11) for the ‘positive frequency’ modes
of the strictly massless spin-s ≥ 3/2 theories can also appear in the massless spin-1/2 case
by making an unconventional choice of a dS invariant scalar product. (The unconventional
choice corresponds to the scalar product (5.4) for spin-1/2 fields, i.e. with r = 0, while the
conventional choice corresponds to the Dirac inner product discussed below.)

The mode functions of the massless Dirac equation on global dS4 (4.1) can be found
in Ref. [24]. Both ‘positive frequency’ and ‘negative frequency’ modes (of any helicity
±1/2) have positive definite norm associated with the standard dS invariant Dirac inner

12Recall that the Klein-Gordon scalar product is dS invariant [14].

– 21 –



product [24] 13. The Dirac inner product is defined as

⟨Ψ(1)|Ψ(2)⟩Dirac = cosh3 t

∫
S3

√
g̃ dθ3Ψ

(1)†(t,θ3)Ψ
(2)(t,θ3),

where Ψ(1) and Ψ(2) are any two solutions of the massless Dirac equation. By inserting γ5

in the Dirac inner product, we can define the modified/unconventional scalar product (as
in Eq. (5.4)):

⟨Ψ(1)|Ψ(2)⟩mod = cosh3 t

∫
S3

√
g̃ dθ3Ψ

(1)†(t,θ3) γ
5Ψ(2)(t,θ3).

(This is just the conserved charge corresponding to the axial current iΨ(1) γµγ5Ψ(2).) We
will show that the ‘positive frequency’ modes with helicity −1/2 (+1/2) have positive
(negative) norm with respect to the modified/unconventional scalar product, as in the case
of the strictly massless fermions of spin s ≥ 3/2 (5.11).
Note. In the case of the massless spin-1/2 field, both the Dirac and the modified/unconventional
scalar products are dS invariant14. As is well-known, the conventional choice is the (always
positive definite) Dirac inner product. On the other hand, in the case of strictly massless
spin-s ≥ 3/2 fermions, there seems to be only one dS invariant choice for the scalar product;
the scalar product that includes γ5 given by Eq. (5.4).
Spin-1/2 mode functions. The ‘positive frequency’ modes with helicities +1/2 and −1/2

are given by [24]

Ψ(+ℓ;m;k)(t,θ3) = α
(0)
ℓ (t)

(
0

ψ̃
(ℓ;m;k)
+ (θ3)

)
,

and

Ψ(−ℓ;m;k)(t,θ3) = α
(0)
ℓ (t)

(
ψ̃
(ℓ;m;k)
− (θ3)

0

)
,

respectively, where α(0)
ℓ (t) is found by letting r = 0 in Eq. (4.21) as

α
(0)
ℓ (t) =

(tan x(t)
2 )ℓ

(cos x(t)
2 )3

,

while ℓ = 0, 1, ..., m = 0, ..., ℓ, and k = −m− 1, ..., 0, ...,m. The spinor spherical harmonics
ψ̃
(ℓ;m;k)
± (θ3) on S3 satisfy Eqs. (4.9) and (4.10) with r = 0 (see also Ref. [23]). In the

limit ℓ >> 1, the ‘positive frequency’ modes satisfy the generalised positive frequency
condition [24]

∂Ψ(±ℓ;m;k)(t,θ3)

∂t
∼ − iℓ

cosh t
Ψ(±ℓ;m;k)(t,θ3),

13Unlike the Klein-Gordon norm, the Dirac norm is always positive definite (in both dS and Minkowski
spacetimes).

14The dS invariance of the Dirac inner product follows from the covariant conservation of the Dirac current
iΨ(1)γµΨ(2) [24]. Similarly, the dS invariance of the modified/unconventional scalar product follows from
the covariant conservation of axial current iΨ(1)γµγ5Ψ(2).
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as in the higher-spin case (4.27). The two sets of mode functions, {Ψ(+ℓ;m;k)} and {Ψ(−ℓ;m;k)},
separately form UIRs of so(4, 1) [18, 24]. Thus, it is group-theoretically allowed to have a
different scalar product for each set of mode functions.

The ‘negative frequency’ modes with helicities +1/2 and −1/2 are given by [24]

Ψ(−ℓ;m;k)C(t,θ3) =
(
α
(0)
ℓ (t)

)∗( 0

ψ̃
(ℓ;m;k)
− (θ3)

)
,

Ψ(+ℓ;m;k)C(t,θ3) =
(
α
(0)
ℓ (t)

)∗(ψ̃(ℓ;m;k)
+ (θ3)

0

)
.

In the limit ℓ >> 1, the ‘negative frequency’ modes satisfy the generalised negative fre-
quency condition [24]

∂Ψ(±ℓ;m;k)C(t,θ3)

∂t
∼ +

iℓ

cosh t
Ψ(±ℓ;m;k)C(t,θ3).

dS invariant norm of spin-1/2 mode functions. As we mentioned earlier, there are two
choices of dS invariant scalar products for the massless spin-1/2 field. Using the conventional
Dirac inner product we find [24]

⟨Ψ(σℓ;m;k)|Ψ(σ′ℓ′;m′;k′)⟩Dirac = ⟨Ψ(σℓ;m;k)C |Ψ(σ′ℓ′;m′;k′)C⟩Dirac = 23 δσσ′δℓℓ′δmm′δkk′ ,

while using the modified scalar product we find

⟨Ψ(σℓ;m;k)|Ψ(σ′ℓ′;m′;k′)⟩mod = (−σ)× 23 δσσ′δℓℓ′δmm′δkk′ ,

⟨Ψ(σℓ;m;k)C |Ψ(σ′ℓ′;m′;k′)C⟩mod = (+σ)× 23 δσσ′δℓℓ′δmm′δkk′ ,

where we have used the fact that the massless spin-1/2 mode functions are eigenfunctions
of γ5 [Eq. (4.8)]:

γ5Ψ(σℓ;m;k) = (−σ)Ψ(σℓ;m;k), γ5Ψ(σℓ;m;k)C = (+σ)Ψ(σℓ;m;k)C .

It is clear that using the modified scalar product we have indefiniteness of the norm among
the ‘positive frequency’ and among the ‘negative frequency’ massless spin-1/2 modes, as in
the case of strictly massless spin-s ≥ 3/2 fermions. However, in the spin-1/2 case, this is
easily explained because the mode functions are eigenfunctions of γ5 with eigenvalues ±1

that determine the sign of the norm. In the spin-s ≥ 3/2 cases, the mode functions are not
eigenfunctions of γ5 (see Section 4), but still, it is natural to blame the appearance of γ5

for the indefiniteness of the norm (recall that γ5 is needed to ensure the dS invariance of
the scalar product in the presence of an imaginary mass parameter [19]).

5.4 Identifying the dS algebra UIRs

The analysis presented in the previous Subsections has demonstrated that the physical
modes, {Ψ(phys,+ℓ;m;k)

µ1...µr } and {Ψ(phys,−ℓ;m;k)
µ1...µr }, of the strictly massless theories separately
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form UIRs of so(4, 1). It can be understood that we have a direct sum of Discrete Se-
ries UIRs (3.7) and (3.8) as follows. Combining the so(4) content of physical modes
[Eqs. (4.11) and (4.12)] with the branching rules (3.3), we find that both {Ψ(phys,+ℓ;m;k)

µ1...µr }
and {Ψ(phys,−ℓ;m;k)

µ1...µr } correspond to UIRs with F1 = r+1/2 (see Section 3). Then, comparing
the field-theoretic quadratic Casimir (2.12) (with M = ir) with the representation-theoretic
one (3.9), we find the following “field theory - representation theory dictionary”:

• The set of physical modes with helicity +s, {Ψ(phys,+ℓ;m;k)
µ1...µr }, forms the Discrete Series

UIR D+(F0, F1) = D+(r− 3
2 , r+

1
2) [Eq. (3.7)] of so(4, 1). The so(4) content is given

by Eq. (4.11). The positive definite norm is given by the negative of Eq. (5.11) (with
σ = +).

• The set of physical modes with helicity −s, {Ψ(phys,−ℓ;m;k)
µ1...µr }, forms the Discrete Series

UIR D−(F0, F1) = D−(r− 3
2 , r+

1
2) [Eq. (3.8)] of so(4, 1). The so(4) content is given

by Eq. (4.12). The positive definite norm is given by Eq. (5.11) (with σ = −).

Thus, the set of all physical mode solutions for the strictly massless spin-(r + 1/2) ≥ 3/2

theory, satisfying Eqs. (2.15) and (2.16), corresponds to the direct sum of Discrete Series
UIRs D−(r− 3

2 , r+
1
2)
⊕
D+(r− 3

2 , r+
1
2)

15. This is in agreement with the “field theory -
representation theory dictionary” suggested previously by us [18].

6 Conformal-like symmetries for strictly massless fermions

In this Section, we present our main results, i.e. we present and study new conformal-like
symmetries for strictly massless spin-s ≥ 3/2 fermions on dS4.
Conformal Killing vectors of dS4. For later convenience, let us review the basics con-
cerning the conformal Killing vectors on dS4. The five conformal Killing vectors of dS4
satisfy

∇µVν +∇νVµ = gµν
∇αVα

2
(6.1)

with ∇αVα ̸= 0. (The ten dS Killing vectors, ξµ, satisfy the same equation, but they
are divergence-free.) The 15-dimensional Lie algebra generated by the dS Killing vectors
and the conformal Killing vectors is isomorphic to so(4, 2). The Lie bracket between a dS
Killing vector and a conformal Killing vector is equal to a conformal Killing vector, while
the Lie bracket between two conformal Killing vectors closes on so(4, 1). These facts can
be understood from the so(4, 2) commutation relations:

[MA′B′ ,MC′D′ ] = (η′B′C′MA′D′ + η′A′D′MB′C′)− (A′ ↔ B′), (6.2)

withA′, B′, C ′, D′ = −1, 0, ..., 4, whereMA′B′ = −MB′A′ and η′A′B′ = diag(−1,−1, 1, 1, 1, 1)

(with η′−1−1 = η′00 = −1). The generators M−1A′ , with A′ = 0, ..., 4, can be identified with
the five conformal Killing vectors of dS4, while the generators MA′B′ , with A′, B′ = 0, ..., 4,
can be identified with the ten dS Killing vectors.

15This is also true for the massless spin-1/2 field on dS4, i.e. for r = 0 [18].
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Each of the five conformal Killing vectors of dS4, denoted for convenience as V (0)µ, V (1)µ,

..., V (4)µ, can be expressed as a gradient of a scalar function 16

V (A)
µ = ∇µϕV (A) . (6.3)

Each of the five scalar functions ϕV (A) (A = 0, 1, ..., 4) satisfies

∇µ∇νϕV (A) = −gµνϕV (A) , (6.4)

i.e. ∇µV
(A)
ν = −gµνϕV (A) . The scalar functions satisfying Eq. (6.4) can be found by analyt-

ically continuing the scalar functions that are annihilated by the operator ∇µ∇ν + gµν on
S4 17. If we embed dS4 in 5-dimensional Minkowski space as −(X0) 2 +

∑4
j=1(X

j) 2 = 1,
then the five scalar functions ϕV (A) are ϕV (A) = XA (this equality holds up to a proportion-
ality constant, which we ignore in the present paper). In the case of global coordinates (4.1)
we have

X0 = sinh t

X4 = cosh t cos θ3

X3 = cosh t sin θ3 cos θ2

X2 = cosh t sin θ3 sin θ2 cos θ1

X1 = cosh t sin θ3 sin θ2 sin θ1. (6.5)

Below we will often drop the label ‘(A)’ from V (A)µ and ϕV (A) . Thus, from now on,
we will denote conformal Killing vectors of dS4 as V µ = ∇µϕV or Wµ = ∇µϕW , unless
otherwise stated.

6.1 Conformal-like symmetry transformations

The main new result of the present paper is:

• If Ψµ1...µr is a strictly massless tensor-spinor satisfying Eqs. (2.15) and (2.16), then
these equations are also satisfied by TV Ψµ1...µr defined as

TV Ψµ1...µr ≡ γ5
(
V ρ∇ρΨµ1...µr + i r V ργρΨµ1...µr − i r V ργ(µ1

Ψµ2...µr)ρ −
3

2
ϕV Ψµ1...µr

)
− 2r

2r + 1

(
∇(µ1

+
i

2
γ(µ1

)
γ5Ψµ2...µr)ρV

ρ, (6.6)

for any conformal Killing vector V µ = ∇µϕV . The latter satisfies ∇µV
µ = −4ϕV [see

Eq. (6.4)]. Equation (6.6) describes the new conformal-like infinitesimal symmetry
transformations for strictly massless fermions generated by conformal Killing vectors
on dS4.

16I would like to thank Atsushi Higuchi for pointing this out.
17It is known that such functions on S4 exist [22]. More specifically, they correspond to scalar spherical

harmonics on S4 [14].
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The differential operator TV maps solutions of Eqs. (2.15) and (2.16) into other solutions,
i.e. TV corresponds to a symmetry of these equations.
Note. The term in the last line of Eq. (6.6) does not correspond to a restricted gauge trans-
formation (2.17). This can be understood by observing that the gauge function, λµ2...µr ,
in the restricted gauge transformation (2.17) satisfies Eq. (2.18), while γ5Ψµ2...µrρV

ρ in the
last line of Eq. (6.6) does not; it satisfies the following equation instead 18:

/∇γ5Ψµ2...µrρV
ρ = ir γ5Ψµ2...µrρV

ρ.

In order to prove that the conformal-like transformation (6.6) corresponds to a sym-
metry we need to show that TV Ψµ1...µr satisfies the same field equations as Ψµ1...µr , i.e.
Eqs. (2.15) and (2.16). It is convenient to define the totally symmetric tensor-spinors
∆V Ψµ1...µr and PV Ψµ1...µr as

∆V Ψµ1...µr ≡ γ5
(
V ρ∇ρΨµ1...µr + i r V ργρΨµ1...µr − i r V ργ(µ1

Ψµ2...µr)ρ −
3

2
ϕV Ψµ1...µr

)
(6.7)

and

PV Ψµ1...µr ≡ − 2r

2r + 1

(
∇(µ1

+
i

2
γ(µ1

)
γ5Ψµ2...µr)ρV

ρ, (6.8)

such that

TV Ψµ1...µr = ∆V Ψµ1...µr + PV Ψµ1...µr . (6.9)

We observe that ∆V Ψµ1...µr and PV Ψµ1...µr have opposite gamma traces

γα∆V Ψαµ2...µr = −γαPV Ψαµ2...µr = 2iγ5Ψµ2...µrρV
ρ. (6.10)

Thus, the gamma-tracelessness property of the conformal-like transformation (6.6),

γα TV Ψαµ2...µr = 0,

is straightforwardly shown.
18Although the term in the second line of Eq. (6.6) is not a restricted gauge transformation, it still

corresponds to an “off-shell” gauge transformation - by “off-shell” gauge transformation we mean any gauge
transformation that leaves invariant the Lagrangian for strictly massless fermions (the restricted gauge
transformations (2.17) correspond to a special case of the “off-shell” transformations). Hermitian and
gauge-invariant Lagrangians for strictly massless fermions on AdS4 have been constructed in Ref. [32] (see
also Ref. [27]). By analytically continuing AdS4 to dS4, i.e. by replacing the AdS radius as RAdS → iRdS ,
where RdS is the dS radius (RdS = 1 in our units), one can extend the Lagrangians for strictly massless
fermions on AdS4 [32] to non-hermitian Lagrangians on dS4. The field equations derived from these non-
hermitian Lagrangians on dS4 are invariant under “off-shell” gauge transformations that have the form
δΨµ1...µr = (∇(µ1

+ i
2
γ(µ1

)χµ2...µr), where χµ2...µr is a totally symmetric tensor-spinor with γµ2χµ2...µr = 0.
If one specialises to the TT gauge, these field equations reduce to Eqs. (2.15) and (2.16), while the initial
“off-shell” gauge invariance reduces to the restricted gauge invariance with gauge transformations given
by (2.17).
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Now let us show that, if Ψµ1...µr satisfies Eq. (2.15), then so does TV Ψµ1...µr . In other
words, we will show that TV Ψµ1...µr is an eigenfunction of the Dirac operator with eigenvalue
−ir. Acting with the Dirac operator on ∆V Ψµ1...µr and PV Ψµ1...µr , we find

(
/∇+ ir

)
∆V Ψµ1...µr = r

(
∇(µ1

− i

2
γ(µ1

)
γα∆V Ψµ2...µr)α (6.11)

and (
/∇+ ir

)
PV Ψµ1...µr = r

(
∇(µ1

− i

2
γ(µ1

)
γαPV Ψµ2...µr)α, (6.12)

respectively, where we have used Eq. (2.8). Adding Eqs. (6.11) and (6.12) by parts, and
making use of Eqs. (6.9) and (6.10), we find(

/∇+ ir
)
TV Ψµ1...µr = 0,

as required. Finally, contracting this equation with γµ1 , and using the gamma-traceleness
property of TV Ψµ1...µr , we find that TV Ψµ1...µr is also divergence-free.

To conclude, we have proved that the conformal-like transformation TV Ψµ1...µr [Eq. (6.6)]
satisfies (

/∇+ ir
)
TV Ψµ1...µr = 0, (6.13)

∇α TV Ψαµ2...µr = 0, γα TV Ψαµ2...µr = 0 (6.14)

for any conformal Killing vector V µ and for all spins s ≥ 3/2. In other words, the operator
TV [Eq. (6.6)] is a symmetry of the field equations (2.15) and (2.16) for strictly massless
fermions.

6.2 Conformal-like so(4, 2) algebra generated by the dS symmetries and the
conformal-like symmetries

In order to understand the structure of the algebra generated by the dS transformations (2.9)
and the conformal-like transformations (6.6) we need to study the corresponding Lie brack-
ets (i.e. commutators). Below, V µ = ∇µϕV and Wµ = ∇µϕW denote any two conformal
Killing vectors of dS4 [see Eq. (6.3)].
Commutator between dS and conformal-like transformations. After a straightfor-
ward calculation, the commutator between a dS transformation (2.9) and a conformal-like
transformation (6.6) is found to be

[Lξ, TV ]Ψµ1...µr = LξTV Ψµ1...µr − TV LξΨµ1...µr

= T[ξ,V ]Ψµ1...µr , (6.15)

where [ξ, V ] is the Lie bracket between the Killing vector ξ and the conformal Killing vector
V , i.e. [ξ, V ]µ = LξV

µ (Lξ is the usual Lie derivative with respect to ξ).
Commutator between two conformal-like transformations. The calculation of the
commutator between two conformal-like transformations, [TW , TV ]Ψµ1...µr , is quite long.
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Thus, here we present the final result and we refer the reader to Appendix B for some
details of the calculation. The result is

[TW , TV ]Ψµ1...µr = L[W,V ]Ψµ1...µr +

(
∇(µ1

+
i

2
γ(µ1

)
Lµ2...µr), (6.16)

where [W,V ]µ = LWV
µ = ϕWV

µ − ϕVW
µ is a Killing vector. The second term on the

right-hand side of Eq. (6.16) is a restricted gauge transformation of the form (2.17), where

Lµ2...µr =
4r

(2r + 1)2

(
(∇λ − i

2
γλ)Ψρ

µ2...µr
∇λ[W,V ]ρ − (r + 1)Ψρ

µ2...µr
[W,V ]ρ

)
. (6.17)

(We have verified that Lµ2...µr satisfies Eqs. (2.18) and (2.19).)
Structure of the conformal-like algebra. To conclude, the structure of the conformal-
like algebra generated by the ten dS transformations (2.9) and the five conformal-like trans-
formations (6.6) is determined by the following commutation relations:

[Lξ,Lξ′ ]Ψµ1...µr = L[ξ,ξ′]Ψµ1...µr , (6.18a)

[Lξ, TV ]Ψµ1...µr = T[ξ,V ]Ψµ1...µr , (6.18b)

[TW , TV ]Ψµ1...µr = L[W,V ]Ψµ1...µr +

(
∇(µ1

+
i

2
γ(µ1

)
Lµ2...µr), (6.18c)

where Lµ2...µr is given by (6.17), ξµ and ξ′µ are any two dS Killing vectors, while Wµ =

∇µϕW and V µ = ∇µϕV are any two conformal Killing vectors. The commutation re-
lations (6.18a)-(6.18c) coincide with the so(4, 2) commutation relations (6.2) up to the
restricted gauge transformation in Eq. (6.18c).

Our results demonstrate that there is a representation of so(4, 2) (which closes up
to field-dependent gauge transformations) acting on the solution space of Eqs. (2.15) and
(2.16). In the following Subsection, we will show that the physical modes, which have been
shown to form a direct sum of so(4, 1) UIRs (see Section 5), also form a direct sum of
so(4, 2) UIRs.

• Note. One might think that the closure of the conformal-like algebra up to (field-
dependent) gauge transformations is a consequence of the term in the second line of
Eq. (6.6). In order to argue that this is not the case, let us focus on the strictly
massless spin-3/2 field and depart from the TT gauge:

Consider the full Rarita-Schwinger (RS) equation for the strictly massless spin-3/2
field (gravitino) on dS4 [26]

γµρσ(∇ρ +
i

2
γρ)ψσ = 0, (6.19)

where γµρσ = γ[µγργσ]. This equation is invariant under “off-shell” gauge transforma-
tions

δψµ = (∇µ +
i

2
γµ)ϵ, (6.20)
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where ϵ is an arbitrary spinor. If we choose to work in the TT gauge, then the RS
equation reduces to Eqs. (2.15) and (2.16), which have a smaller gauge invariance
corresponding to restricted gauge transformations (2.17). After a straightforward
calculation, we find that the RS equation (6.19) enjoys the conformal-like symmetry19

∆V ψµ = γ5
(
V ρ∇ρψµ + i V ργρψµ − i V ργµψρ −

3

2
ϕV ψµ

)
. (6.21)

In other words, if ψµ satisfies the RS equation, then so does ∆V ψµ. Because of the
“off-shell” gauge symmetry (6.20), Eq. (6.21) does not include a part corresponding
to the second line of Eq. (6.6). Then, the commutator between two conformal-like
transformations (6.21) is found to be

[∆W ,∆V ]ψµ = L[W,V ]ψµ − 2i

(
∇µ +

i

2
γµ

)
γλψρ∇λ[W,V ]ρ, (6.22)

where we notice the appearance of an “off-shell” gauge transformation (which is not
a restricted gauge transformation (2.17)) on the right-hand side. The rest of the
structure of the symmetry algebra is determined by the same commutation relations
as in Eqs. (6.18a) and (6.18b) (with TV replaced by ∆V ).

Conclusion. As in the TT gauge, the full RS equation (6.19) enjoys a conformal-like
so(4, 2) symmetry and the algebra closes up to “off-shell” gauge transformations (6.20)
that do not correspond to restricted gauge transformations (2.17). However, in the
TT case (6.18c), the algebra closes up to restricted gauge transformations.

7 The physical modes also form UIRs of the conformal-like algebra

In this Section, we show that the ‘positive frequency’ physical modes (4.15) and (4.24) of
the strictly massless spin-s ≥ 3/2 fermionic theories form UIRs of the conformal-like so(4, 2)
algebra. To be specific:

• The irreducibility of the so(4, 2) representations will be demonstrated by showing
that the physical modes with fixed helicity transform among themselves under the
infinitesimal conformal-like transformations (6.6). In particular, the physical modes
with helicity +s [Eq. (4.24)], and the ones with helicity −s [Eq. (4.15)], will be shown
to separately form irreducible representations of so(4, 2). (Recall that we have already
shown that these modes form a direct sum of UIRs of the dS algebra so(4, 1) - see
Section 5.)

• As for showing the unitarity of the two aforementioned irreducible so(4, 2) represen-
tations, we work as follows. First, we recall from Section 5 that the physical modes
with helicity ∓s form a so(4, 1) UIR with dS invariant and positive definite scalar
product given by (±1)×(5.4). Then, since a positive definite and so(4, 1)-invariant
scalar product is known, it is sufficient to show that this scalar product is also invari-
ant under the conformal-like symmetries (6.6).

19The expression in Eq. (6.21) corresponds just to the first part (6.7) of the conformal-like transformation
in the TT gauge [Eq. (6.6)].
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7.1 Conformal-like transformations of physical modes and irreducibility of
so(4, 2) representations

Let us start with the simple observation that, according to Eq. (6.2), the Lie bracket
between a conformal Killing vector and a dS Killing vector is equal to a conformal Killing
vector. Similarly, the commutator [Lξ, TV ]Ψµ1...µr in Eq. (6.18b) is equal to a conformal-
like symmetry transformation. Thus, as the so(4, 1) representation-theoretic properties
of the physical modes are known (see Section 5), it is sufficient to study just one of the
five conformal-like transformations (6.6) for our physical modes. Then, the transformation
properties of the physical modes under the rest of the conformal-like transformations can
be found using the commutation relations (6.18b).

Let us now choose to work with the conformal Killing vector V (0)µ [Eq. (6.3)] given by

V (0)
µ = ∇µ sinh t, (7.1)

i.e. (V
(0)
t , V

(0)
θ3
, V

(0)
θ2
, V

(0)
θ1

) = (cosh t, 0, 0, 0). The conformal-like transformation (6.6) gen-
erated by V (0)µ is expressed as

TV (0)Ψµ1...µr = −γ5 cosh t

×

(
∂

∂t
+

(
−r + 3

2

)
tanh t− ir γt

)
Ψµ1...µr . (7.2)

Specialising to the physical modes (4.15) and (4.24), and making use of Eqs. (4.6), (4.16)
and (4.17), we readily find

TV (0)Ψ(phys,−ℓ;m;k)
µ1...µr

= +i

(
ℓ+

3

2

)
Ψ(phys,−ℓ;m;k)

µ1...µr
(7.3)

and

TV (0)Ψ(phys,+ℓ;m;k)
µ1...µr

= −i
(
ℓ+

3

2

)
Ψ(phys,+ℓ;m;k)

µ1...µr
. (7.4)

From these equations (and from the discussion at the beginning of this Subsection), it
follows that the two sets of modes, {Ψ(phys,+ℓ;m;k)

µ1...µr } and {Ψ(phys,−ℓ;m;k)
µ1...µr }, separately form

irreducible representations of the conformal-like so(4, 2) algebra.

7.2 so(4, 2)-invariant scalar product and unitarity

In the previous Subsection, we showed that the physical modes form a direct sum of irre-
ducible representations of the conformal-like algebra. The only remaining step for showing
that this is a direct sum of so(4, 2) UIRs is to ensure the existence of a so(4, 2)-invariant
and positive definite scalar product.

Let us show that the dS invariant scalar product (5.4) is also invariant under the
conformal-like symmetries (6.6) - and, thus, under the whole conformal-like so(4, 2) algebra
(recall that this scalar product is also invariant under restricted gauge transformations).
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Let Ψ
(1)
µ1...µr and Ψ

(2)
µ1...µr be any two solutions of Eqs. (2.15) and (2.16). We consider the

change
δV J

µ(Ψ(1),Ψ(2)) = Jµ(TV Ψ
(1),Ψ(2)) + Jµ(Ψ(1), TV Ψ

(2))

of the vector current (5.3) under the conformal-like transformations (6.6). After a straight-
forward calculation, we find

δV J
µ(Ψ(1),Ψ(2)) = −i∇λE

λµ, (7.5)

where Eλµ is an anti-symmetric tensor given by:

1

2
Eλµ

= −Ψ
(1)
ν1...νrV

[λγµ]Ψ(2)ν1...νr +
2r

2r + 1
V ρ
(
Ψ

(1)
ν2...νrργ

[µΨ(2)λ]ν2...νr +Ψ
(1)ν2...νr[λγµ]Ψ(2)

ν2...νrρ

)
.

(7.6)

This ensures that the dS invariant scalar product (5.4) is also invariant under infinitesimal
conformal-like transformations, as

δV ⟨Ψ(1)|Ψ(2)⟩ =
∫
S3

√
−g dθ3 δV J0(Ψ(1),Ψ(2)) = 0.

Based on the discussions in the previous paragraph (and in the previous Subsection),
we conclude the following:

• The set of physical modes with helicity +s, {Ψ(phys,+ℓ;m;k)
µ1...µr }, forms a UIR of so(4, 2)

with positive definite norm given by the negative of Eq. (5.11) (with σ = +).

• The set of physical modes with helicity −s, {Ψ(phys,−ℓ;m;k)
µ1...µr }, forms a UIR of so(4, 2)

with positive definite norm given by Eq. (5.11) (with σ = −).

8 Conformal-like transformations of field strength tensor-spinors

In order to gain some insight into the interpretation of the conformal-like transformations
TV Ψµ1...µr (6.6), we study the corresponding transformations of the field strength tensor-
spinors (i.e. curvatures). In particular, we study the transformations of the spin-s =

3/2, 5/2 field strengths explicitly, while in the spin-s ≥ 7/2 cases we make a conjecture for
the expressions of the transformations.

8.1 Spin-3/2 field strength tensor-spinor

The field strength tensor-spinor for the strictly massless spin-3/2 field is

Fµ1ν1 = −Fν1µ1 =

(
∇[µ1

+
i

2
γ[µ1

)
Ψν1]. (8.1)

For later convenience, we will denote this as Fµ1ν1(Ψ). The field strength Fµ1ν1(Ψ) is
invariant under not only restricted gauge transformations (2.17) but also “off-shell” gauge
transformations (6.20).
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Useful properties. Let us discuss some of the properties of Fµ1ν1(Ψ) that will be useful
in studying its conformal-like transformation. Using the field equations (2.15) and (2.16)
for Ψν , we find

γµ1Fµ1ν1(Ψ) = ∇µ1Fµ1ν1(Ψ) = 0. (8.2)

The dual field strength tensor-spinor is defined as

∗Fµ1ν1(Ψ) ≡ 1

2
ϵ κλ
µ1ν1 Fκλ(Ψ). (8.3)

Expressing ϵ κλ
µ1ν1 in Eq. (8.3) in terms of gamma matrices [see Eq. (2.5)], and using the

gamma-tracelessness of Fµ1ν1(Ψ), we find

∗Fµ1ν1(Ψ) = −iγ5Fµ1ν1(Ψ). (8.4)

Also, a straightforward calculation shows that the following identity holds:

∇[ρFµ1ν1](Ψ) +
i

2
γ[ρFµ1ν1](Ψ) = 0. (8.5)

It is easy to show that each of the two terms in this equation is zero by observing that20

∇[ρ
∗Fµ1ν1](Ψ) = 0. (8.6)

It immediately follows from Eqs. (8.4)-(8.6) that

∇[ρFµ1ν1](Ψ) = γ[ρFµ1ν1](Ψ) = 0. (8.7)

Conformal-like transformation. After a straightforward calculation, the conformal-like
transformation of the field strength, Fµ1ν1(TV Ψ), is expressed as

Fµ1ν1(TV Ψ) = Fµ1ν1(∆V Ψ)

= γ5
(
V ρ∇ρ −

5

2
ϕV

)
Fµ1ν1(Ψ) + 3 iγ5 V ρ γ[ρFµ1ν1](Ψ), (8.8)

where in the first line we have used TV Ψµ = ∆V Ψµ+PV Ψµ [see Eq. (6.9)] and Fµ1ν1(PV Ψ) =

0 (the latter follows from the gauge-invariance of the field strength). Then, using Eq. (8.7),
we find

Fµ1ν1(TV Ψ) = γ5
(
V ρ∇ρ −

5

2
ϕV

)
Fµ1ν1(Ψ), (8.9)

or equivalently

Fµ1ν1(TV Ψ) = γ5
(
LV +

∇κV
κ

8

)
Fµ1ν1(Ψ), (8.10)

20Proof of Eq. (8.6). In order to prove Eq. (8.6), we contract ∇[ρ
∗Fµ1ν1](Ψ) with ϵ µ1ν1

αβ and we
use the definition (8.3) of the dual field strength. Then, using well-known identities for ϵ µ1ν1

αβ , while
also using the divergence-freedom of the field strength, we can show that ϵ σκ

αβ ∇[ρ
∗Fσκ](Ψ) = 0. Finally,

contracting this equation with ϵ αβ
µ1ν1 , we arrive at Eq. (8.6). End of proof.
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where LV is the Lie-Lorentz derivative (2.9) with respect to the conformal Killing vector
V (6.3)21.
Conclusion. The expression (8.10) makes clear that the conformal-like transformation of
the spin-3/2 field strength tensor-spinor corresponds to the product of two transformations:
an infinitesimal axial rotation (i.e. multiplication with γ5) times an infinitesimal conformal
transformation (i.e. Lie-Lorentz derivative plus a conformal weight term).

8.2 Spin-5/2 field strength tensor-spinor

The field strength tensor-spinor for the strictly massless spin-5/2 field is a rank-4 tensor-
spinor given by

Fµ1ν1µ2ν2(Ψ)

=
1

2

(
∇µ2∇[µ1

+
3

4
gµ2[µ1

− 1

4
γµ2[µ1

+
i

2
∇µ2γ[µ1

+
i

2
γµ2∇[µ1

)
Ψν1]ν2 − (µ2 ↔ ν2).

(8.11)

This is symmetric under the exchange of pairs of indices

Fµ2ν2µ1ν1(Ψ) = Fµ1ν1µ2ν2(Ψ). (8.12)

It is also anti-symmetric in its first two and last two indices

Fµ1ν1µ2ν2(Ψ) = F[µ1ν1]µ2ν2(Ψ) = Fµ1ν1[µ2ν2](Ψ), (8.13)

and satisfies the identity

Fµαβγ(Ψ) + Fµγαβ(Ψ) + Fµβγα(Ψ) = 0. (8.14)

As in the spin-3/2 case, the field strength is invariant under not only restricted gauge
transformations (2.17) but also gauge transformations of the following form:

δΨµν =

(
∇(µ +

i

2
γ(µ

)
ϵν) (8.15)

(i.e. Fµ1ν1µ2ν2(δΨ) = 0), where ϵν is an arbitrary vector-spinor.
Working as in the spin-3/2 case, we can show that the spin-5/2 field strength (8.11) is

gamma-traceless and divergence-free with respect to all of its indices, and it also satisfies
the identities

∇[ρFµ1ν1]µ2ν2(Ψ) = γ[ρFµ1ν1]µ2ν2(Ψ) = 0. (8.16)

Conformal-like transformation. Let us find the conformal-like transformation of the
field strength, Fµ1ν1µ2ν2(TV Ψ). The calculation is similar to the spin-3/2 case, but quite
longer. The result is

Fµ1ν1µ2ν2(TV Ψ) = γ5
(
V ρ∇ρ −

7

2
ϕV

)
Fµ1ν1µ2ν2(Ψ), (8.17)

21The infinitesimal Lorentz transformation term ∇αVβγ
αβ/4 in the Lie-Lorentz derivative LV in Eq. (8.10)

vanishes because, according to Eq. (6.3), ∇[αVβ] = 0.
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or equivalently

Fµ1ν1µ2ν2(TV Ψ) = γ5
(
LV − ∇κV

κ

8

)
Fµ1ν1µ2ν2(Ψ). (8.18)

Conclusion. As in the spin-3/2 case (8.10), the expression (8.18) makes clear that the
conformal-like transformation of the spin-5/2 field strength corresponds to the product:
infinitesimal axial rotation times infinitesimal conformal transformation.

8.3 A conjecture for the spin-(r + 1/2) ≥ 7/2 field strength tensor-spinors

(Here we do not present explicit expressions for the field strength tensor-spinors Fµ1ν1....µrνr(Ψ)

of the strictly massless spin-(r+1/2) ≥ 7/2 fields.) We define the field strength Fµ1ν1....µrνr(Ψ)

as the gauge-invariant rank-2r tensor-spinor that satisfies

γµ1Fµ1ν1...µrνr(Ψ) = ∇µ1Fµ1ν1...µrνr(Ψ) = 0, (8.19)

and it is also anti-symmetric under the exchange of the indices µl ↔ νl for l = 1, ..., r. It is
also symmetric under the exchange of any two pairs of indices as in the following example:

Fµ1ν1µ2ν2....µrνr(Ψ) = Fµ2ν2µ1ν1....µrνr(Ψ) = Fµrνrµ2ν2....µr−1νr−1µ1ν1 and so forth, (8.20)

while it also satisfies the identities

F[µ1ν1µ2]ν2....µrνr(Ψ) = 0 (8.21)

and

∇[ρFµ1ν1]µ2ν2....µrνr(Ψ) = γ[ρFµ1ν1]µ2ν2....µrνr(Ψ) = 0. (8.22)

Conjecture. The conformal-like transformation of the spin-(r + 1/2) ≥ 7/2 field strength
tensor-spinor is given by

Fµ1ν1...µrνr(TV Ψ) = γ5
(
V ρ∇ρ −

(
r +

3

2

)
ϕV

)
Fµ1ν1...µrνr(Ψ), (8.23)

or equivalently

Fµ1ν1...µrνr(TV Ψ) = γ5
(
LV − (2r − 3)

∇κV
κ

8

)
Fµ1ν1...µrνr(Ψ). (8.24)

This conjecture has been verified for r = 1 in Subsection 8.1 and for r = 2 in Subsection 8.2.
Our conjecture is further justified by observing that Fµ1ν1...µrνr(TV Ψ) [Eq. (8.24)] satisfies
Eqs. (8.19)-(8.22).
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9 Summary and Discussions

In this paper, we uncovered new conformal-like symmetries (6.6) for the field equations
[(2.15) and (2.16)] of strictly massless fermionic potentials of spin s ≥ 3/2 on dS4. The
associated symmetry algebra closes on so(4, 2) up to gauge transformations [see Eqs. (6.18a)-
(6.18c)]. We also showed that the physical (positive frequency) mode solutions (4.15) and
(4.24) form a direct sum of UIRs of the conformal-like so(4, 2) algebra. As for the inter-
pretation of the conformal-like symmetries, we found that, at the level of the field strength
tensor-spinors, each conformal-like transformation is expressed as a product of two trans-
formations: an infinitesimal axial rotation and an infinitesimal conformal transformation
(this was shown explicitly for the spin-s = 3/2, 5/2 cases and conjectured for the cases with
s ≥ 7/2 - see Section 8).

Flat-space limit

Let us discuss the flat-space limit of the conformal-like symmetries (i.e. the limit of zero
cosmological constant). We will start by observing that the flat-space limit of the five
conformal Killing vectors (6.3) of dS4 gives rise to the four translation Killing vectors and
the generator of dilatations of Minkowski spacetime (rather than the five conformal Killing
vectors - i.e. four special conformal transformations and one dilatation - of Minkowski
spacetime, as one might expect). Using this observation, we will show that the flat-space
limits of the conformal-like symmetries (6.6) are ‘trivial’, in the sense that they correspond
to known symmetries of the flat-space theories: usual infinitesimal spacetime translations
and scale transformations. (At the level of the potentials, massless higher-spin fields on
Minkowski spacetime do not enjoy the full so(4, 2) symmetry of infinitesimal conformal
transformations [42]. They are only invariant under usual iso(3, 1) isometries and scale
transformations. However, massless higher-spin fields enjoy the full so(4, 2) symmetry at
the level of the gauge-invariant field strengths. See Ref. [42] and references therein for
group-theoretic discussions. Also, note that the 2-point function for the gauge-invariant
field strength of the massless spin-3/2 field on Minkowski spacetime has the expected form
for conformal primaries [44].)

To take the flat-space limit, let us recover the dS radius, RdS , such that (4.1) is written
as

ds2 = R2
dS

(
− dt2 + cosh2 t

[
dθ23 + sin2 θ3

(
dθ22 + sin2 θ2 dθ

2
1

)])
,

and Eqs. (2.15) and (2.16) as

(
/∇+

ir

RdS

)
Ψµ1...µr = 0,

∇αΨαµ2...µr = 0, γαΨαµ2...µr = 0.
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Also, recovering RdS , the conformal-like transformations (6.6) are written as

TV Ψµ1...µr ≡ γ5
(
V ρ∇ρΨµ1...µr +

i r

RdS
V ργρΨµ1...µr −

i r

RdS
V ργ(µ1

Ψµ2...µr)ρ +
3

8
∇αVαΨµ1...µr

)
− 2r

2r + 1

(
∇(µ1

+
i

2RdS
γ(µ1

)
γ5Ψµ2...µr)ρV

ρ.

Now let us define t ≡ T/RdS and θ3 ≡ ϱ/RdS . Letting RdS → ∞, we can obtain the
Minkowskian line element as

ds2|RdS→∞ = −dT 2 + dϱ2 + ϱ2
(
dθ22 + sin2 θ2 dθ

2
1

)
= −(dx0)2 +

3∑
j=1

(dxj)2,

where x0 = T , x1 = ϱ sin θ2 sin θ1, x2 = ϱ sin θ2 cos θ1 and x3 = ϱ cos θ2. The flat-space
version of the field equations for massless higher-spin fermions is

/∂Ψµ1...µr = 0,

∂αΨαµ2...µr = 0, γαΨαµ2...µr = 0. (9.1)

Now, let us find the flat-space limit of the dS conformal Killing vectors (6.3) (by re-scaling
them appropriately). In particular, the four translation Killing vectors, δµ0 , δ

µ
1 , δ

µ
2 and δµ3 ,

of Minkowski spacetime are obtained from the following limits:(
−RdSV

(0)
µ

)
|RdS→∞ = −δ0µ = −∂µx0,

(
RdSV

(1)
µ

)
|RdS→∞ = δ1µ = ∂µx

1,(
RdSV

(2)
µ

)
|RdS→∞ = δ2µ = ∂µx

2,
(
RdSV

(3)
µ

)
|RdS→∞ = δ3µ = ∂µx

3, (9.2)

while the dilatation conformal Killing vector xµ is obtained as(
−R2

dSV
(4)
µ

)
|RdS→∞ =

1

2
∂µ
(
−T 2 + ϱ2

)
=

1

2
∂µ (x

αxα) = xµ, (9.3)

where, here, µ takes the values {0, 1, 2, 3} corresponding to the standard Minkowski coor-
dinates x0 = −x0, x1, x2, x3. It is natural that the flat-space limit of the five exact dS con-
formal Killing vectors (6.3) corresponds to the five exact so(4, 2) generators on Minkowski
spacetime (recall that, unlike the generators of spacetime translations and dilatations, the
Killing vectors of Lorentz transformations and the conformal Killing vectors of special con-
formal transformations are not exact).

Following the aforementioned limiting procedure, it is straightforward to show that the
five de Sitterian conformal-like symmetries (6.6) reduce to five not interesting (i.e. known)
flat-space symmetries as:

TV (A)Ψµ1...µr → γ5∂AΨµ1...µr −
2r

2r + 1
∂(µ1

(
γ5Ψµ2...µr)ρδ

ρ
A

)
, for A = 0, 1, 2, 3,

and

TV (4)Ψµ1...µr → γ5
(
xρ∂ρΨµ1...µr +

3

8
∂ρx

ρΨµ1...µr

)
− 2r

2r + 1
∂(µ1

(
γ5Ψµ2...µr)ρx

ρ
)
.
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These are known flat-space symmetries of Eqs. (9.1) - they correspond to infinitesimal
translations and scale transformations (times γ5) accompanied by gauge transformations.
We can re-express these symmetries in a more familiar form using (the flat-space version
of) the Lie-Lorentz derivative (2.9) and dropping the gauge transformations22, as

T flat
w Ψµ1...µr ≡γ5

(
LwΨµ1...µr +

3− 2r

8
∂αwαΨµ1...µr

)
, (9.4)

where wρ ∈ {δρ0 , δ
ρ
1 , δ

ρ
2 , δ

ρ
3 , x

ρ}. The conformal weight term in Eq. (9.4) is non-zero only if
w is a dilatation conformal Killing vector. Also, Eq. (9.4) continues describing a symmetry
transformation if we replace w with any of the six Killing vectors of the Lorentz algebra in
Minkowski spacetime (this is not true however in the case of the conformal Killing vectors
of special conformal transformations).

Last, we observe that the transformation (9.4) is a product of two transformations.
Unlike in dS4, in Minkowski spacetime, each of the two transformations present in the
product (9.4) is also a symmetry. To be specific, the flat-space equations (9.1) are invariant
under the replacement Ψµ1...µr → γ5Ψµ1...µr (infinitesimal axial rotations), as well as under
Ψµ1...µr → LwΨµ1...µr +

3−2r
8 ∂αwαΨµ1...µr (infinitesimal translations and scale transforma-

tions).

Further discussions

The main result of the present paper, i.e. the fact that strictly massless spin-s ≥ 3/2

fermionic gauge potentials on dS4 have so(4, 2) symmetry, is a new interesting feature
of field theory on dS4 (and possibly on AdS4, although this has not been verified yet).
Such a so(4, 2) symmetry at the level of gauge potentials does not appear on Minkowski
spacetime [42]. However, at the level of the gauge-invariant field strengths, (bosonic and
fermionic) strictly massless theories have so(4, 2) symmetry on both (A)dS4 and Minkowski
spacetimes [42]. Interestingly, our result does not contradict the no-go theorem of Ref. [42],
according to which there cannot be so(4, 2) symmetry at the level of strictly massless gauge
potentials on (A)dS4, because our gauge potentials are complex (Dirac) tensor-spinors.

In Ref. [50], using the unfolded formalism, Vasiliev presented a sp(8,R) invariant for-
mulation of free massless fields (gauge potentials) of any spin in AdS4 and showed that the
free field equations are invariant under o(4, 2) (see also Ref. [51]). Although further study
is required, it is likely that the dS version of Vasiliev’s conformal invariance [50] is related
to the conformal-like symmetries we presented in this paper.

Last, it is worth recalling that unitary superconformal field theories on dS4 are known
to exist [20]. In view of our newly discovered conformal-like symmetries for strictly massless
fermions, it is interesting to look for new (and possibly unitary) supersymmetric theories
on dS4 that include strictly massless fermions of any spin s ≥ 3/2 - see also Ref. [43]. 23

22The gauge transformations in the dS conformal-like symmetries (6.6) were necessary to ensure that the
transformed tensor-spinor remains in the TT gauge. However, in the case of the flat-space symmetries, the
corresponding gauge transformations are not necessary.

23Recent interesting discussions on dS2 supergravity can be found in Ref. [62].
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A Deriving Eq. (5.2) by analytically continuing so(5) rotation generators
and their matrix elements to so(4, 1)

The aim of this Appendix is to explain how to use group-theoretic tools and analytic
continuation techniques in order to derive the transformation properties of physical modes
in Eq. (5.2).

A.1 Background material for representations of so(5) and Gelfand-Tsetlin pat-
terns

The representations of the algebra so(D + 1) - with arbitrary D - and the specification of
the matrix elements of the generators have been studied by Gelfand and Tsetlin [46].

The D(D + 1)/2 generators IAB = −IBA (A,B = 1, 2, ..., D + 1) of so(D + 1) satisfy
the commutation relations

[IAB, ICD] = (δBCIAD + δADIBC)− (A↔ B). (A.1)

In Ref. [46], the action of the so(D+1) generators has been determined in the decomposition
so(D + 1) ⊃ so(D). In particular, the representation space for a so(D + 1) representation
is chosen to be the direct sum of the representation spaces of all representations of so(D)

that appear in the so(D + 1) representation. (If a representation of so(D) appears in a
representation of so(D+1), then it appears with multiplicity one.) Similarly, the generators
of so(D) are determined in the decomposition so(D) ⊃ so(D − 1) and so forth. In other
words, Gelfand and Tsetlin [46] determined a so(D+1) representation in the decomposition
so(D + 1) ⊃ so(D) ⊃ ... ⊃ so(2).
Focusing on so(5). We now specialise to so(5) - since this is the non-compact partner
of the dS algebra so(4, 1). Let us review some basic results obtained by Gelfand and
Tsetlin [46] (with slightly modified notation).

A (unitary) irreducible representation of so(5) is specified by the highest weight s⃗ =

(s1, s2) with s1 ≥ s2 ≥ 0, where the numbers s1 and s2 are simultaneously integers or
half-odd-integers. The 10 anti-hermitian generators IAB = −IBA (A,B = 1, ..., 5) act
on a finite-dimensional vector space corresponding to a direct sum of so(4) representation
spaces (as described at the beginning of the Subsection). Let v denote the orthonormal
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basis vectors in the so(5) representation space. Each basis vector is uniquely labelled by a
“Gelfand-Tsetlin pattern”, α, as follows:

v(α) ≡ v


s1 s2
f1 f2
p

q

 . (A.2)

The labels s1, s2 are the same for all basis vectors, since they correspond to the highest
weight specifying the so(5) representation. The rest of the labels in Eq. (A.2) specify the
content of the so(5) representation concerning the chain of subalgebras so(4) ⊃ so(3) ⊃
so(2). In particular, the labels f1, f2 correspond to a so(4) highest weight f⃗ ≡ (f1, f2) with
f1 ≥ |f2|, where f1 and f2 are both integers or half-odd integers, while f2 can be negative.
The so(3) weight p ≥ 0 is an integer or half-odd integer. The full basis of the representation
space is given by all v(α)’s in eq. (A.2) - with fixed s1, s2 - satisfying:

s1 ≥ f1 ≥ s2 ≥ |f2|,
f1 ≥ p ≥ |f2|,
p ≥ q ≥ −p. (A.3)

The numbers s1, s2, f1, f2, p and q are all integers or half-odd integers.
In order to obtain the desired transformation formulae (5.2) using analytic continuation,

we need to study the action of the generator I54 on the basis vectors (A.2). This is given
by [46]:

−I54 v


s1 s2
f1 f2
p

q

 =− 1

2
A(f1, f2) v


s1 s2

f1 + 1 f2
p

q

− 1

2
B(f1, f2) v


s1 s2
f1 f2 + 1

p

q



+
1

2
A(f1 − 1, f2) v


s1 s2

f1 − 1 f2
p

q

+
1

2
B(f1, f2 − 1) v


s1 s2
f1 f2 − 1

p

q

 ,

(A.4)

where

A(f1, f2) =

√
(f1 − p+ 1)(f1 + p+ 2)(s1 − f1)(s1 + f1 + 3)(f1 − s2 + 1)(f1 + s2 + 2)

(f1 + f2 + 1)(f1 + f2 + 2)(f1 − f2 + 1)(f1 − f2 + 2)

(A.5)

and

B(f1, f2) =

√
(p− f2)(f2 + p+ 1)(s2 − f2)(s2 + f2 + 1)(s1 − f2 + 1)(s1 + f2 + 2)

(f1 + f2 + 1)(f1 + f2 + 2)(f1 − f2)(f1 − f2 + 1)
. (A.6)

(Our matrix elements differ from the matrix elements of Ref. [46] by a factor of 1/2.) Note
that A(f1,−f2) = A(f1, f2) and B(f1, f2) = B(f1,−f2 − 1).
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A.2 Specialising to so(5) representations formed by tensor-spinor spherical
harmonics on S4

The line element of S4 can be parametrised as

ds2S4 = dθ24 + sin2 θ4 dΩ
2, (A.7)

where 0 ≤ θ4 ≤ π and dΩ2 is the line element of S3 (4.2). For later convenience, note
that the line element (A.7) can be analytically continued to the dS4 line element (4.1) by
making the replacement

θ4 → x =
π

2
− it (A.8)

- the variable x has been already introduced in Eq. (4.18).
Let /∇ = γµ∇µ be the Dirac operator on S4, where γµ and ∇µ are the gamma matrices

and covariant derivative, respectively, on S4. We are interested in (totally symmetric)
rank-r tensor-spinor spherical harmonics ψ̂(n; r̃, σℓ;m;k)

µ1...µr (θ4,θ3) (with σ = ±) on S4 that
satisfy [57]

/∇ψ̂(n; r̃, σℓ;m;k)
µ1...µr

= −i(n+ 2) ψ̂(n; r̃, σℓ;m;k)
µ1...µr

,

γµ1ψ̂(n; r̃, σℓ;m;k)
µ1...µr

= ∇µ1ψ̂(n; r̃, σℓ;m;k)
µ1...µr

= 0, (n = r, r + 1, ...), (A.9)

where n is the angular momentum quantum number on S4 24. The representation-theoretic
meaning of the labels n, σ, ℓ, r̃,m and k will be discussed below. The hat has been used in
order to indicate that the eigenmodes ψ̂(n; r̃, σℓ;m;k)

µ1...µr (θ4,θ3) are normalised with respect to
the standard inner product on S4

∫
S4

√
gS4 dθ4 dθ3 dθ2 dθ1 ψ̂

(n′; r̃′, σ′ℓ′;m′;k′)†
µ1...µr

ψ̂(n; r̃, σℓ;m;k)µ1...µr = δnn′δℓℓ′δσσ′δr̃r̃′δmm′δkk′ ,

(A.10)

where gS4 is the determinant of the S4 metric. The indices µ1, ..., µr run from θ1 to θ4,
while the indices µ̃1, ..., µ̃r run from θ1 to θ3.
Gelfand-Tsetlin patterns and tensor-spinor spherical harmonics. The ten Killing
vectors of S4 act on the solution space of Eqs. (A.9) in terms of the Lie-Lorentz deriva-
tives (2.9), and the latter generate a representation of so(5) on this solution space. In
particular, for each allowed value of n, the set of eigenmodes {ψ̂(n; r̃, σℓ;m;k)

µ1...µr } forms an irre-
ducible representation of so(5) with highest weight

s⃗ = (s1, s2) =

(
n+

1

2
, r +

1

2

)
(A.11)

24There are also tensor-spinor spherical harmonics on S4 that satisfy Eqs. (A.9) but with an opposite
sign for the eigenvalue. We will not discuss these here as they form equivalent so(5) representations with
the tensor-spinor spherical harmonics in Eq. (A.9).

– 40 –



with n = r, r+1, .... Each eigenmode ψ̂(n; r̃, σℓ;m;k)
µ1...µr (θ4,θ3) corresponds to a Gelfand-Tsetlin

pattern (see Eq. (A.2))

α =


n+ 1

2 r + 1
2

ℓ+ 1
2 σ(r̃ + 1

2)

m+ 1
2

k + 1
2

 . (A.12)

The numbers ℓ,m and k are the angular momentum quantum numbers on S3, S2 and S1,
respectively, and their allowed values are found from (A.3).

Based on the discussion in the previous paragraph, we can identify each eigenmode
ψ̂
(n; r̃, σℓ;m;k)
µ1...µr (θ4,θ3) with a basis vector (A.2) labeled by the pattern (A.12). In particular,

we make the identifications:

v


n+ 1

2 r + 1
2

ℓ+ 1
2 r̃ + 1

2

m+ 1
2

k + 1
2

→ ψ̂(n; r̃,+ℓ;m;k)
µ1...µr

(A.13)

and

v


n+ 1

2 r + 1
2

ℓ+ 1
2 −(r̃ + 1

2)

m+ 1
2

k + 1
2

→ −i (−1)r̃ψ̂(n; r̃,−ℓ;m;k)
µ1...µr

, (A.14)

where the phase factor −i(−1)r̃ has been introduced for convenience.

A.3 Transformation properties of tensor-spinor spherical harmonics on S4 un-
der so(5)

In this Subsection, we find the so(5) transformation formulae for LS ψ̂
(n; r̃=r,±ℓ;m;k)
µ1...µr that

(after analytic continuation) will give rise to the so(4, 1) transformation formulae (5.2) for
the physical modes of the strictly massless fermions on dS4. Here LS is the Lie-Lorentz
derivative on S4 with respect to the Killing vector

S = S µ∂µ = cos θ3
∂

∂θ4
− cot θ4 sin θ3

∂

∂θ3
. (A.15)

This Killing vector corresponds to the so(5) generator I45 = −I54 in Eq. (A.4) and by
making the replacement (A.8) it is analytically continued as: S → iX, where X is the dS
boost Killing vector (5.1).

We focus on the eigenmodes ψ̂(n; r̃=r,+ℓ;m;k)
µ1...µr (θ4,θ3) and ψ̂

(n; r̃=r,−ℓ;m;k)
µ1...µr (θ4,θ3), as the

former will be analytically continued to the physical modes Ψ(phys,+ℓ;m;k)
µ1...µr (t,θ3) (4.24) and

the latter to the physical modes Ψ(phys,−ℓ;m;k)
µ1...µr (t,θ3) (4.15). We will also discuss in passing

the eigenmodes ψ̂(n; r̃=r−1,±ℓ;m;k)
µ1...µr (θ4,θ3) as they will be analytically continued to the pure

gauge modes Ψ
(pg, r̃=r−1,±ℓ;m;k)
µ1...µr (t,θ3), which appear in the transformation formulae (5.2).
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Explicit expressions for the infinitesimal transformations LS ψ̂
(n; r̃=r,±ℓ;m;k)
µ1...µr and

LS ψ̂
(n; r̃=r−1,±ℓ;m;k)
µ1...µr are immediately found from Eq. (A.4) with the use of Eqs. (A.13) and

(A.14). However, these transformation properties refer to normalised eigenmodes, while the
desired dS transformation properties (5.2) refer to un-normalised eigenmodes. Therefore,
we will first find the so(5) transformation properties for the un-normalised eigenmodes
on S4 (the un-normalised eigenmodes will be defined below), and then perform analytic
continuation to dS4.

Some useful expressions for eigenmodes on S3

For later convenience, let us present some expressions for certain tensor-spinor spherical
harmonics on S3 [see Eqs. (4.9) and (4.10)]. These expressions can be easily obtained using
the method of separation of variables as has been explained in Refs. [18, 23, 58]. Below,
we use the notation θ3 = (θ3, θ2, θ1) = (θ3,θ2). We only need the following expressions for
our computations:
• Rank-r eigenmodes ψ̃

(ℓ;m;k)
±µ̃1...µ̃r

(θ3,θ2) on S3: The component ψ̃(ℓ;m;k)
±θ3θ3...θ3

(θ3,θ2) is a
spinor on S2. It is given by

ψ̃
(ℓ;m;k)
±θ3θ3...θ3

r times

(θ3,θ2) =
c̃(r, ℓ;m)√

2

1√
2
(1+ iγ̃3)

{
ϕ̃
(r)
ℓm(θ3)± iψ̃

(r)
ℓm(θ3)γ̃

3
}
˜̃
ψ
(m;k)
− (θ2), (A.16)

where c̃(r,ℓ;m)√
2

is the normalisation factor, ˜̃
ψ
(m;k)
− (θ2) are the spinor eigenfunctions of the

Dirac operator
˜̃
/∇ on S2 satisfying

˜̃
/∇ ˜̃
ψ
(m;k)
− = −i(m+ 1)

˜̃
ψ
(m;k)
− ,

while the spinors ˜̃
ψ
(m;k)
+ ≡ γ̃3

˜̃
ψ
(m;k)
− satisfy

˜̃
/∇ ˜̃
ψ
(m;k)
+ = +i(m+ 1)

˜̃
ψ
(m;k)
+ .

The functions ϕ̃(r)ℓm(θ3) and ψ̃(r)
ℓm(θ3) correspond to special cases of the following functions:

ϕ̃
(ã)
ℓm(θ3) = κ̃ϕ̃(ℓ,m)

(
cos

θ3
2

)m+1−ã(
sin

θ3
2

)m−ã

× F

(
−ℓ+m, ℓ+m+ 3;m+

3

2
; sin2

θ3
2

)
, (A.17)

and

ψ̃
(ã)
ℓm(θ3) = κ̃ϕ̃(ℓ,m)

ℓ+ 3
2

m+ 3
2

(
cos

θ3
2

)m−ã(
sin

θ3
2

)m+1−ã

× F

(
−ℓ+m, ℓ+m+ 3;m+

5

2
; sin2

θ3
2

)
, (A.18)

where ã is an integer, while the factor κ̃ϕ̃(ℓ,m) is given by

κ̃ϕ̃(ℓ,m) =
Γ(ℓ+ 3

2)

Γ(ℓ−m+ 1)Γ(m+ 3
2)
. (A.19)
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• Rank-(r − 1) eigenmodes ψ̃(ℓ;m;k)
±µ̃2...µ̃r

(θ3,θ2) on S3: The component ψ̃(ℓ;m;k)
±θ3θ3...θ3

(θ3,θ2)

is a spinor on S2. It is given by

ψ̃
(ℓ;m;k)
± θ3θ3...θ3

r−1 times

(θ3,θ2) =
c̃(r − 1, ℓ;m)√

2

1√
2
(1+ iγ̃3)

{
ϕ̃
(r−1)
ℓm (θ3)± iψ̃

(r−1)
ℓm (θ3)γ̃

3
}
˜̃
ψ
(m;k)
− (θ2),

(A.20)

where c̃(r−1,ℓ;m)√
2

is the normalisation factor, while ϕ̃(r−1)
ℓm (θ3) and ψ̃

(r−1)
ℓm (θ3) are given by

Eqs. (A.17) and (A.18), respectively, with ã = r − 1.

Expressions for the eigenmodes ψ̂(n; r̃=r,±ℓ;m;k)
µ1µ2...µr on S4

Working as in Section 4, we separate variables for equations (A.9) on S4. We find

ψ̂
(n; r̃=r,+ℓ;m;k)
θ4µ2...µr

(θ4,θ3) = 0,

ψ̂
(n; r̃=r,+ℓ;m;k)
µ̃1...µ̃r

(θ4,θ3) =
c(r, n; r̃ = r, ℓ)√

2

(
iψ

(−r)
nℓ (θ4) ψ̃

(ℓ;m;k)
+µ̃1...µ̃r

(θ3)

−ϕ(−r)
nℓ (θ4) ψ̃

(ℓ;m;k)
+µ̃1...µ̃r

(θ3)

)
(A.21)

and

ψ̂
(n; r̃=r,−ℓ;m;k)
θ4µ2...µr

(θ4,θ3) = 0,

ψ̂
(n; r̃=r,−ℓ;m;k)
µ̃1...µ̃r

(θ4,θ3) =
c(r, n; r̃ = r, ℓ)√

2

(
ϕ
(−r)
nℓ (θ4) ψ̃

(ℓ;m;k)
−µ̃1...µ̃r

(θ3)

−iψ(−r)
nℓ (θ4) ψ̃

(ℓ;m;k)
−µ̃1...µ̃r

(θ3)

)
, (A.22)

where c(r,n;r̃=r,ℓ)√
2

is a normalisation factor that will be determined below. The functions

ϕ
(−r)
nℓ (θ4) and ψ(−r)

nℓ (θ4) belong to the following family of functions:

ϕ
(a)
nℓ (θ4) = κϕ(n, ℓ)

(
cos

θ4
2

)ℓ+1−a(
sin

θ4
2

)ℓ−a

× F

(
−n+ ℓ, n+ ℓ+ 4; ℓ+ 2; sin2

θ4
2

)
, (A.23)

ψ
(a)
nℓ (θ4) = κϕ(n, ℓ)

n+ 2

ℓ+ 2

(
cos

θ4
2

)ℓ−a(
sin

θ4
2

)ℓ+1−a

× F

(
−n+ ℓ, n+ ℓ+ 4; ℓ+ 3; sin2

θ4
2

)
, (A.24)

where the factor κϕ(n, ℓ) is given by

κϕ(n, ℓ) =
Γ(n+ 2)

Γ(n− ℓ+ 1)Γ(ℓ+ 2)
. (A.25)

Substituting the eigenmode (A.21) (or (A.22)) into the inner product (A.10), and using the
normalisation of the tensor-spinor eigenmodes on S3 (4.13), we find∣∣∣∣c(r, n; r̃ = r, ℓ)√

2

∣∣∣∣2 = 22r−3Γ(n− ℓ+ 1)Γ(4 + n+ ℓ)

|Γ(n+ 2)|2
. (A.26)
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Introducing the un-normalised eigenmodes. Now, let us define the un-normalised
eigenmodes ψ(n; r̃,±ℓ;m;k)

µ1µ2...µr (θ4,θ3) (for any value of r̃ ∈ {0, ..., r}) as

ψ(n; r̃,±ℓ;m;k)
µ1µ2...µr

(θ4,θ3) ≡
√
2

c(r, n; r̃, ℓ)

1

κϕ(n, ℓ)
ψ̂(n; r̃,±ℓ;m;k)
µ1µ2...µr

(θ4,θ3), (A.27)

where the normalisation factors c(r, n; r̃, ℓ) that are needed for our computations (and have
not been defined yet) will be defined later. (Recall that the un-normalised eigenmodes are
the ones that will be analytically continued to dS4.)
Transformation of the un-normalised eigenmodes ψ(n; r̃=r,±ℓ;m;k)

µ1µ2...µr . The infinitesimal
so(5) transformation of the un-normalised modes LSψ

(n; r̃=r,±ℓ;m;k)
µ1µ2...µr can be straightfor-

wardly found from the transformation of the normalised modes LS ψ̂
(n; r̃=r,±ℓ;m;k)
µ1µ2...µr (see the

discussion at the beginning of this Subsection). We find in this manner

LSψ
(n; r̃=r,±ℓ;m;k)
µ1µ2...µr

=−
κϕ(n, ℓ+ 1)

2κϕ(n, ℓ)

√
(ℓ−m+ 1)(ℓ+m+ 3)

(ℓ+ 2)2 − r2
(n+ ℓ+ 4)ψ(n; r̃=r,±(ℓ+1);m;k)

µ1µ2...µr

+
κϕ(n, ℓ− 1)

2κϕ(n, ℓ)

√
(ℓ−m)(ℓ+m+ 2)

(ℓ+ 1)2 − r2
(n− ℓ+ 1)ψ(n; r̃=r,±(ℓ−1);m;k)

µ1µ2...µr

+

√
(n+ 2)2 − r2

2
Kℓm

c(r, n; r̃ = r − 1, ℓ)

c(r, n; r̃ = r, ℓ)
ψ(n; r̃=r−1,±ℓ;m;k)
µ1µ2...µr

, (A.28)

where

Kℓm =

√
((m+ 1)2 − r2) (2r + 1)

((ℓ+ 1)2 − r2) ((ℓ+ 2)2 − r2)
. (A.29)

Note that, under this so(5) transformation, the modes ψ(n; r̃=r,+ℓ;m;k)
µ1µ2...µr do not mix with

the modes ψ(n; r̃=r,−ℓ;m;k)
µ1µ2...µr . This observation plays a key role when performing analytic

continuation to dS4, as it implies that the strictly massless fermions on dS4 correspond to
a direct sum of irreducible representations of so(4, 1) - see Eq. (5.2).

Expressions for the eigenmodes ψ̂(n; r̃=r−1,±ℓ;m;k)
µ1µ2...µr on S4

By separating variables again for equations (A.9) we find

ψ̂
(n; r̃=r−1,+ℓ;m;k)
θ4θ4µ3...µr

(θ4,θ3) = 0,

ψ̂
(n; r̃=r−1,+ℓ;m;k)
θ4µ̃2...µ̃r

(θ4,θ3) =
c(r, n; r̃ = r − 1, ℓ)√

2

(
iψ

(−r+2)
nℓ (θ4) ψ̃

(ℓ;m;k)
+µ̃2...µ̃r

(θ3)

−ϕ(−r+2)
nℓ (θ4) ψ̃

(ℓ;m;k)
+µ̃2...µ̃r

(θ3)

)
(A.30)

and

ψ̂
(n; r̃=r−1,−ℓ;m;k)
θ4θ4µ3...µr

(θ4,θ3) = 0

ψ̂
(n; r̃=r−1,−ℓ;m;k)
θ4µ̃2...µ̃r

(θ4,θ3) =
c(r, n; r̃ = r − 1, ℓ)√

2

(
ϕ
(−r+2)
nℓ (θ4) ψ̃

(ℓ;m;k)
−µ̃2...µ̃r

(θ3)

−iψ(−r+2)
nℓ (θ4) ψ̃

(ℓ;m;k)
−µ̃2...µ̃r

(θ3)

)
, (A.31)
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where c(r,n;r̃=r−1,ℓ)√
2

is the normalisation factor, while the functions ϕ(−r+2)
nℓ (θ4) and ψ(−r+2)

nℓ (θ4)

are given by Eqs. (A.23) and (A.24), respectively, with a = −r + 2. The components
ψ̂
(n; r̃=r−1,±ℓ;m;k)
µ̃1...µ̃r

(θ4,θ3) can be found using the TT conditions in Eq. (A.9).
Now that we know the expressions (A.30) and (A.31), we can perform the following cal-

culation for later convenience. Letting µ1 = θ4 and µ2 = ... = µr = θ3 in LSψ
(n; r̃=r,±ℓ;m;k)
µ1...µr

[Eq. (A.28)], we find

LSψ
(n; r̃=r,±ℓ;m;k)
θ4θ3...θ3

=

√
(n+ 2)2 − r2

2
Kℓm

c(r, n; r̃ = r − 1, ℓ)

c(r, n; r̃ = r, ℓ)
ψ
(n; r̃=r−1,±ℓ;m;k)
θ4θ3...θ3

, (A.32)

while using the explicit expressions (A.21), (A.22), (A.30) and (A.31) we rewrite this equa-
tion as

LSψ
(n; r̃=r,±ℓ;m;k)
θ4θ3...θ3

=
1

2

c̃(r, ℓ;m)

c̃(r − 1, ℓ;m)
ψ
(n; r̃=r−1,±ℓ;m;k)
θ4θ3...θ3

. (A.33)

Then, comparing Eqs. (A.32) and (A.33) we find

c(r, n; r̃ = r − 1, ℓ) ∝ 1√
(n+ 2)2 − r2

. (A.34)

(We have used that Kℓm is given by Eq. (A.29), while c(r, n; r̃ = r, ℓ) is given by Eq. (A.26).)
Transformation of the un-normalised eigenmodes ψ(n; r̃=r−1,±ℓ;m;k)

µ1µ2...µr . Again, the in-
finitesimal so(5) transformation of the un-normalised modes LSψ

(n; r̃=r−1,±ℓ;m;k)
µ1µ2...µr can be

straightforwardly found from the transformation of the normalised modes LS ψ̂
(n; r̃=r−1,±ℓ;m;k)
µ1µ2...µr

(see the discussion at the beginning of this Subsection). We find

LSψ
(n; r̃=r−1,±ℓ;m;k)
µ1µ2...µr

= −
√
(n+ 2)2 − r2

2
Kℓm

c(r, n; r̃ = r, ℓ)

c(r, n; r̃ = r − 1, ℓ)
ψ(n; r̃=r,±ℓ;m;k)
µ1µ2...µr

+ ... ,

(A.35)

where ‘...’ includes eigenmodes that are orthogonal to both ψ(n; r̃=r,±ℓ;m;k)
µ1µ2...µr and ψ(n; r̃=r−1,±ℓ;m;k)

µ1µ2...µr .

A.4 Performing analytic continuation

Let us analytically continue the tensor-spinor spherical harmonics (A.9) on S4 in order to
obtain tensor-spinors satisfying Eqs. (2.1) and (2.2) on dS4. By making the replacements
θ4 → x(t) = π/2− it [see Eq. (A.8)] and

n→ −2− iM, (A.36)

we analytically continue the un-normalised tensor-spinor spherical harmonics on S4 to
tensor-spinors on dS4 as

ψ(n; r̃, σℓ;m;k)
µ1...µr

(θ4,θ3) → ψ(−2−iM ; r̃, σℓ;m;k)
µ1...µr

(x(t),θ3).

The analytically continued tensor-spinors satisfy Eqs. (2.1) and (2.2) on dS4, which we
rewrite here again for convenience

/∇ψ(−2−iM ; r̃, σℓ;m;k)
µ1...µr

= −M ψ(−2−iM ; r̃, σℓ;m;k)
µ1...µr

,

γµ1ψ(−2−iM ; r̃, σℓ;m;k)
µ1...µr

= ∇µ1ψ(−2−iM ; r̃, σℓ;m;k)
µ1...µr

= 0 . (A.37)
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Let us focus on imaginary values of the mass parameter M . For these values of M , a dS
invariant (and time-independent) scalar product is given by (5.4).

By applying the aforementioned analytic continuation techniques to the so(5) trans-
formation formulae (A.28) and (A.35), we find

LXψ
(−2−iM ; r̃=r,±ℓ;m;k)
µ1µ2...µr

= i
κϕ(−2− iM, ℓ+ 1)

2κϕ(−2− iM, ℓ)

√
(ℓ−m+ 1)(ℓ+m+ 3)

(ℓ+ 2)2 − r2
(−iM + ℓ+ 2)ψ(−2−iM ; r̃=r,±(ℓ+1);m;k)

µ1µ2...µr

− i
κϕ(−2− iM, ℓ− 1)

2κϕ(−2− iM, ℓ)

√
(ℓ−m)(ℓ+m+ 2)

(ℓ+ 1)2 − r2
(−iM − ℓ− 1)ψ(−2−iM ; r̃=r,±(ℓ−1);m;k)

µ1µ2...µr

− i

√
−M2 − r2

2
Kℓm

c(r,−2− iM ; r̃ = r − 1, ℓ)

c(r,−2− iM ; r̃ = r, ℓ)
ψ(−2−iM ; r̃=r−1,±ℓ;m;k)
µ1µ2...µr

, (A.38)

and

LXψ
(−2−iM ; r̃=r−1,±ℓ;m;k)
µ1µ2...µr

= i

√
−M2 − r2

2
Kℓm

c(r,−2− iM ; r̃ = r, ℓ)

c(r,−2− iM ; r̃ = r − 1, ℓ)
ψ(−2−iM ; r̃=r,±ℓ;m;k)
µ1µ2...µr

+ ... , (A.39)

while the analytically continued version of Eq. (A.34) gives

c(r,−2− iM ; r̃ = r − 1, ℓ) ∝ 1√
−M2 − r2

. (A.40)

Recall that we focus on imaginary values of M . For convenience we assume that
−M2 > r2 [the value −M2 = r2 corresponds to the strictly massless case (2.14)]. Using
the dS invariance (5.8) of the scalar product (5.4), we have

⟨LXψ
(−2−iM ; r̃=r,±ℓ;m;k)|ψ(−2−iM ; r̃=r−1,±ℓ;m;k)⟩

+ ⟨ψ(−2−iM ; r̃=r,±ℓ;m;k)|LXψ
(−2−iM ; r̃=r−1,±ℓ;m;k)⟩ = 0. (A.41)

Then, using the transformation formulae (A.38) and (A.39), we find

⟨ψ(−2−iM ; r̃=r−1,±ℓ;m;k)|ψ(−2−iM ; r̃=r−1,±ℓ;m;k)⟩

= −
∣∣∣∣ c(r,−2− iM ; r̃ = r, ℓ)

c(r,−2− iM ; r̃ = r − 1, ℓ)

∣∣∣∣2 ⟨ψ(−2−iM ; r̃=r,±ℓ;m;k)|ψ(−2−iM ; r̃=r,±ℓ;m;k)⟩ (A.42)

∝
√

−M2 − r2
2
. (A.43)

From this equation, we understand that the analytically continued eigenmodes ψ(−2−iM ; r̃=r−1,±ℓ;m;k)
µ1...µr

have zero norm in the strictly massless limit (M2 = −r2). In other words, they become pure
gauge modes (4.31) in this limit, i.e. ψ(−2+r; r̃=r−1,±ℓ;m;k)

µ1...µr (x(t),θ3) = Ψ
(pg, r̃=r−1,±ℓ;m;k)
µ1...µr (t,θ3).

Specialising to the strictly massless case and, finally, deriving Eq. (5.2). Now
we tune the mass parameter to the strictly massless value M = ir (2.14). The physical
modes are ψ(−2+r; r̃,±ℓ;m;k)

µ1...µr (x(t),θ3) ≡ Ψ
(phys,±ℓ;m;k)
µ1...µr (t,θ3) [see Eqs. (4.15) and (4.24)]. The

infinitesimal dS transformation of these modes is found by letting M = ir in Eq. (A.38).
By doing so, we straightforwardly arrive at Eq. (5.2), as required.
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B Details for the computation of the commutator (6.16) between two
conformal-like transformations

We wish to calculate [TW , TV ]Ψµ1...µr in order to arrive at Eq. (6.16). For convenience,
we split each of the conformal-like transformations in the commutator in two parts as
in Eq. (6.9), i.e. TWΨµ1...µr = ∆WΨµ1...µr + PWΨµ1...µr and TV Ψµ1...µr = ∆V Ψµ1...µr +

PV Ψµ1...µr . Then, we split [TW , TV ]Ψµ1...µr into three parts as

[TW , TV ]Ψµ1...µr = [∆W ,∆V ]Ψµ1...µr +
(
[∆W , PV ]− [∆V , PW ]

)
Ψµ1...µr + [PW , PV ]Ψµ1...µr .

(B.1)

Let us now calculate each of the three parts in this equation. (Recall that we denote the
Lie bracket between two vectors as [W,V ]µ = LWV

µ.)
Calculating [∆W ,∆V ]Ψµ1...µr . Using Eqs. (6.3) and (6.4), we find (after a long calcula-
tion):

[∆W ,∆V ]Ψµ1...µr = L[W,V ]Ψµ1...µr − 2ir

(
∇(µ1

+
i

2
γ(µ1

)
γλΨρ

µ2...µr)
∇λ[W,V ]ρ

− 2ir∇λ[W,V ]ρ

(
γ(µ1

Kλρ
|µ2...µr)

+ γρK λ
(µ1 |µ2...µr)

+ γλKρ
(µ1|µ2...µr)

)
,

(B.2)

where we have used that any Killing vector ξ (such as [W,V ]) satisfies [4]

∇µ1∇λξρ = Rρλµ1σξ
σ, (B.3)

while we have also introduced the rank-(r + 1) tensor-spinor

Kλρ|µ2...µr
= −Kρλ|µ2...µr

= Kλρ|(µ2...µr) =

(
∇[λ +

ir

2
γ[λ

)
Ψρ]µ2...µr

, (B.4)

which is anti-symmetric in its first two indices and symmetric in its last r− 1 indices. (For
r = 1, this tensor-spinor coincides with the rank-2 anti-symmetric gauge-invariant field
strength tensor-spinor

(
∇[λ + i

2γ[λ
)
Ψρ], while for r ≥ 2, Kλρ|µ2...µr

is not gauge-invariant.)
Note that because of the field equations (2.15) and (2.16), the tensor-spinor (B.4) satisfies

γλKλρ|µ2...µr
= 0. (B.5)

Now we will show that

γµ1K
λρ

|µ2...µr
+ γρK λ

µ1 |µ2...µr
+ γλKρ

µ1|µ2...µr
= 0. (B.6)

It is convenient to proceed by defining

⋆Kαβ
|µ2...µr

≡ 1

2
ϵαβλρKλρ|µ2...µr

, (B.7)

which satisfies

γµ1
∗Kαβ

|µ2...µr
+ γβ ∗K α

µ1 |µ2...µr
+ γα ∗Kβ

µ1|µ2...µr
= 0 (B.8)
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(this is easy to show by contracting with ϵγδαβ and using well-known properties of the
totally anti-symmetric tensor). Then, using ϵαβλρ = iγ5γ[αγβγλγρ] [see Eq. (2.5)] and the
gamma-tracelessness property (B.5), we find that Eq. (B.7) becomes

⋆Kαβ
|µ2...µr

= −i γ5Kαβ
|µ2...µr

. (B.9)

Substituting this into Eq. (B.8), we immediately derive Eq. (B.6), and thus, we have

[∆W ,∆V ]Ψµ1...µr = L[W,V ]Ψµ1...µr − 2ir

(
∇(µ1

+
i

2
γ(µ1

)
γλΨρ

µ2...µr)
∇λ[W,V ]ρ. (B.10)

Calculating
(
[∆W , PV ]− [∆V , PW ]

)
Ψµ1...µr . We find(

[∆W , PV ]− [∆V , PW ]
)
Ψµ1...µr = − 2r

2r + 1

×
(
∇(µ1

+
i

2
γ(µ1

)[
2[W,V ]ρΨµ2...µr)ρ − i(2r + 1)∇λ[W,V ]ρ γ

λΨρ
µ2...µr)

]
.

(B.11)

Calculating [PW , PV ]Ψµ1...µr . We find

[PW , PV ]Ψµ1...µr =
4r

(2r + 1)2

×
(
∇(µ1

+
i

2
γ(µ1

)[
r [W,V ]ρΨµ2...µr)ρ + ∇ρ[W,V ]λ (∇ρ − i

2
γρ)Ψλ

µ2...µr)

]
.

(B.12)

Finally, adding Eqs. (B.10), (B.11) and (B.12) by parts, we arrive at Eq. (6.16), as required.
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