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We study the transport dynamics of an interacting tilted (Stark) chain. We show that the crossover

between diffusive and subdiffusive dynamics is governed by F
√
L, where F is the strength of the

field, and L is the wave-length of the excitation. While the subdiffusive dynamics persist for large
fields, the corresponding transport coefficient is exponentially suppressed with F so that the finite-
time dynamics appear almost frozen. We explain the crossover scale between the diffusive and
subdiffusive transport by bounding the dynamics of the dipole moment for arbitrary initial state.
We also prove its emergent conservation at infinite temperature. Consequently, the studied chain is
one of the simplest experimentally realizable models for which numerical data are consistent with
the hydrodynamics of fractons.

Introduction. For generic closed many-body systems,
the out-of-equilibrium dynamics results in a relaxation
into a state of equilibrium specified by the conserved
quantities. In such systems, the long-wavelength exci-
tations associated with these quantities attenuate follow-
ing the near-universal Fick’s law of diffusion. For more
than a decade, much attention has been devoted to sys-
tems that could violate these ubiquitous properties, dis-
playing anomalous diffusion or even failing to thermalize
entirely. Tilted (Stark) quantum systems, subjected to
a linear potential, offer a concrete and experimentally
accessible platform to explore these extraordinary phe-
nomena. Such systems can be realized in cold-atom ex-
periments [1–3], and their properties have served as one
of the main motivations for theoretical studies concern-
ing Stark many-body localization (SMBL), Hilbert space
fragmentation, and fracton hydrodynamics.

SMBL emerged as a phenomenon that was expected to
exhibit physics resembling the conventional many-body
localization (MBL) in that single-particle Stark localiza-
tion survives despite the presence of interactions between
particles [4–6]. Later on, SMBL was studied theoreti-
cally for various models [7–10] and experimentally also
in a trapped-ion quantum simulator [11]. Despite a simi-
larity to MBL, the nonergodicity of SMBL systems has a
distinct physical origin [2, 12] and is expected to be tran-
sient, at least in finite systems [13]. In the case of large
tilt, the Schrieffer-Wolff transformation allows one to de-
rive (approximate) effective Hamiltonians, which strictly
conserve the dipole moment [2, 14]. Combination of the
particle-number and dipole conservations leads to exten-
sive fragmentation of the Hilbert space [15–17] and to a
breakdown of thermalization [18–22].

On the one hand, the dipole moment is not strictly con-
served in experimentally relevant tilted models. There-
fore, some studies indicate that the nonergodicity of
tilted chains is only a prethermal phenomenon, which
is eventually replaced by thermalization [2, 3, 18]. On
the other hand, fluids in which charge and dipole mo-
ment are conserved [23] exhibit unconventional transport
properties, as described by the framework of fracton hy-

drodynamics [24–26]. One of the distinctive features of
dipole-conserving systems is the prediction of subdiffu-
sive relaxation of charge-density modulation. A modula-
tion with wavevector q relaxes with the rate Γ ∝ q4 [27–
29], as observed experimentally in strongly tilted planar
cold-atom lattices [1].

A one-dimensional (1D) tilted chain with short-range
interactions is the simplest system in which these phe-
nomena may possibly occur and which is closely related
to the experimental setups. However, so far, it is not
clear how to properly reconcile the presence of seemingly
conflicting phenomena: the subdiffusive relaxation (with
rate Γ = Dq4), originating from the conservation of the
dipole moment, the transient absence of ergodicity orig-
inating from nearly fragmented Hilbert space, and the
possible asymptotic thermalization originating from the
fact that the dipole moment is not strictly conserved but
is rather a time-dependent quantity.

In this Letter, we study interacting spinless fermions
on chains with L sites tilted by the electric field F .
We present compelling numerical evidence supporting
the subdiffusive relaxation of the hydrodynamic density
modes Aq ∝ exp(−Dqzt). Upon increasing F , for the
smallest considered q ∼ 1/L, the exponent changes from
the diffusive value z = 2 to the subdiffusive z = 4 and,
quite unexpectedly, the crossover in z is determined by
the magnitude of F

√
L. Moreover, the transport coeffi-

cientD in the subdiffusive regime decreases exponentially
with the field, which can be reconciled with previous ob-
servations of nonergodicity for strong F . The diffusion-
to-subdiffusion crossover can be linked with the emergent
conservation of the dipole moment that is shown to hold
true also for nonequilibrium evolution starting from an
arbitrary initial state. In the case of infinite temperature,
one can prove a stronger bound on the time-dependence
of the dipole moment. The latter bound holds for a broad
class of models and also for multidimensional systems.

Steady-state properties. We first study a Stark chain
with L sites and open boundary conditions (obc). It
contains L/2 spinless fermions interacting via nearest-

ar
X

iv
:2

31
0.

01
86

2v
2 

 [
co

nd
-m

at
.s

tr
-e

l]
  1

3 
O

ct
 2

02
3



2

1.0 0.5 0.0 0.5 1.0
2 /L 1

0.4

0.2

0.0

0.2

0.4
n

/
(a)

F=0
F=0.8
fitted line

10 20 30 40 50 60
L

10 3

10 2

I/

V = 3.0(b)

F = 0.0, 0.1, 0.2. . 0.8

1.0 2.0 3.0 4.0 5.0
F L

2

3

4

z

(c)

0.1 0.2 0.3 0.4
F

10 3

10 2

I/

(d)

L=30
L=40
L=50

Figure 1. Results for NESS in chains with boundary driv-
ing. (a) Normalized amplitude of the spatial profile of par-
ticle density for L = 50 and two different tilts: F = 0
(diffusive) and F = 0.8 (subdiffusive). A cubic profile,
⟨ñl⟩ = ax + bx3, x = 2l/L − 1, consistent with the hydro-
dynamic equation corresponding to the z = 4 case, fits the
data well for F = 0.8. (b) NESS current I/µ vs. L for dif-
ferent values of field F , where F ∈ [0.0, 0.1, 0.2, 0.4, 0.6, 0.8].
The arrow points to the direction of increasing F . (c) Expo-

nent z as a function of F
√
L. (d) NESS current I/µ reveals

the exponential decay with F .

neighbor (nn) repulsion V ,

H = H0 + FM ,

H0 =
∑
l

(
c†l cl+1 + c†l+1cl

)
+ V

∑
l

ñlñl+1 +H ′ .(1)

Here, c†l creates a particle at site l, nl = c†l cl, ñl = nl −
1/2, and M =

∑
l(l − L/2)ñl is the dipole moment. We

have added a term H ′ that breaks the integrability of the
model at F = 0, allowing for normal diffusion at weak
F , and its choice is optimized for the applied numerical
method. In the main text, we discuss numerical results
for V = 3, whereas results for smaller V are shown in the
Supplementary Material, Ref. [30].

First, we study an open chain, Eq. (1), that is driven
via boundary Lindblad operators with a small parti-
cle current injection rate µ [31]. We employ the time-
evolving block decimation (TEBD) technique for vector-
ized density matrices [32, 33] to solve the Lindblad mas-
ter equation. It allows us to establish the nonequilibrium
steady state (NESS) for which we calculate the normal-
ized particle current, I/µ, and the spatial profile of par-
ticles, ⟨ñl⟩. When using the TEBD, it is convenient to
stay within the nearest-neighbor interaction. Therefore,
to break the integrability at F = 0, we resort to a term
having the form H ′ = Ṽ

∑
l(−1)lñlñl+1. We set Ṽ = 0.4

throughout the paper unless mentioned otherwise. All
other details concerning numerical calculations are ex-

plained in Ref. [30].
Fig. 1(a) shows the rescaled steady-state density pro-

files, ⟨ñl⟩/µ, for two different field strengths F with a
system size of L = 50. Diffusive systems follow the stan-
dard hydrodynamic equation, ∂tn − D∂2xn = 0, char-
acterized by a linear steady-state profile, ∂2xn = 0. In
Fig. 1(a), we indeed see a linear profile at F = 0, con-
sistent with the exponent being z = 2. However, for a
large enough field F = 0.8, the numerical results clearly
reveal the nonlinearity of the profile. Such pronounced
non-linear profile can be very accurately fitted to a cu-
bic function, ⟨ñl⟩ = ax + bx3, x = 2l/L− 1, as shown in
Fig. 1(a). Note that a cubic profile of the steady state
is consistent with the generalized hydrodynamic equa-
tion for systems conserving the total charge and dipole
moment [23], ∂tn + D∂4xn = 0, from which one obtains
∂4xn = 0 and z = 4.

To study the crossover from diffusive (z = 2) to subdif-
fusive (z = 4) regimes in more detail, we have calculated
L-dependence of normalized particle current I/µ shown
in Fig. 1(b). The dependence of the dynamical exponent
z on L is manifested via the bending of the curves, partic-
ularly pronounced for the larger F . To extract the expo-
nent z, related to the relaxation of the slowest modes on
the system of size L, we fit the slope between two consec-
utive calculated points on the plot log(I/µ) vs. log(L)
and locally assume scaling I ∼ L1−z. Fig. 1(c) shows
that extracted z collapse on a single curve when plotted
as a function of F

√
L. Later on, we explain the origin

of this unexpected scaling. It indicates that macroscopic
chains (L→ ∞) with nonzero F are always subdiffusive,
whereas diffusive behavior can be observed only in finite
systems or shorter wave-lengths. Another important ob-
servation that follows directly from panel (d) of Fig. 1
is that the normalized current I/µ for a fixed µ decays
exponentially with F . This immediately implies that for
a very strong F , the studied systems would appear local-
ized and nonergodic.

Dynamics of the density modulations. Next we
confirm that conclusions formulated from the NESS
are consistent also with the time-evolution of initial
states with spatially modulated densities of particles,
δnl = ⟨ñl⟩ ∝ cos(ql) with q = 2πm/L≪ 1 and m = 1, 2.
The evolution is obtained via the Lanczos propagation
method [34, 35], which allows to study chains with up to
L = 26. In order to reduce boundary effects, the time-
evolution is carried out for a system equivalent to Eq. (1),
but with time-dependent flux and periodic boundary con-
ditions

HF (t) =
∑
l

(
e−iF tc†l cl+1 + eiF tc†l+1cl + V nlnl+1

)
+H ′ .

(2)
Here, it is more convenient to choose another form of the
integrability-breaking term that does not affect the trans-
lational symmetry, namely H ′ = V ′ ∑

l nlnl+2 where we
take V ′ = 2.

We start the time-evolution from a microcanonical
thermal state obtained numerically [36–38] for the Hamil-
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Figure 2. Panel (a) and (b) depicts time evolution of nor-
malized amplitudes, δt, of the spatially modulated profile for
L = 24 with the wave-vectors q = 2π/L and q = 4π/L, re-
spectively. For both panels: F ∈ [0.2, 0.5, 1.0, 1.5, 2.0, 3.0] and
the arrow points to the direction of increasing F . Panels (c)
and (d) respectively show the field F dependence of the expo-
nent z and that of the transport coefficient D alongwith the
decay rate, Γmin = Dqz, for the smallest q = 2π/L. Results
in (c) and (d) are obtained from exponential fits to data in
the shaded areas in (a) and (b). (d) Also shows the Γmin

obtained for the Hamiltonian (1) with obc (see the Supple-
mentary Material [30] for the details).

tonian Ht<0 = HF=0(t) +
∑

l cos(ql)nl, where the first
term is defined in Eq. (2). In order to be in the linear
response regime and to obtain small but nonzero particle-
density modulation, we use large but finite temperature
kT = 1/β = 10. Within the high-temperature expan-
sion one estimates ⟨ñl⟩ ≃ −(β/4) cos(ql) ≪ 1/2. At time
t = 0, we quench the electric field F and determine evolu-
tion under the Hamiltonian (2) with F ̸= 0. We calculate

δn(t) =
√
⟨⟨ñl⟩2⟩l, where ⟨...⟩l denotes averaging over all

lattice sites. Technical details are discussed in the Sup-
plementary Material, Ref. [30].

Results in Figs. 2(a) and 2(b) show time-dependence
of the ratio δt = δn(t)/δn(0) at different fields. It de-
cays (up to an additive finite-size constant [30]) expo-
nentially with time, as expected for systems with either
diffusive or subdiffusive transport. We therefore use the
ansatz δt = exp(−Γqt) with Γq = Dqz. Numerical re-
sults for Γq at two smallest wave vectors q = 2π/L, 4π/L
determine the exponent z and the transport coefficient
D which are shown in Figs. 2(c) and 2(d), respectively.
Moreover, results for the decay rates Γmin for smallest
q = 2π/L in Fig. 2(d) reveal exponential dependence on
F , and they also agree with results obtained from the
density correlation-function analysis within the original
tilted model, Eq. (1), as described in Ref. [30].

Results obtained from the NESS properties (Fig. 1) as
well as from the dynamics of the spatial profiles (Fig. 2)

support a consistent picture of transport in the studied
system. The crossover from diffusive transport (z = 2)
to subdiffusive (z = 4) depends on the strength of the
field as well as on the length-scale of the modulation (or
equivalently on the related wavelength q ∝ 1/L) and fol-

lows the scaling z = z(F
√
L). While the transport re-

mains subdiffusive even for strong F , the corresponding
transport coefficient, D, is strongly suppressed, i.e., the
decrease of D with increasing F is at least exponential.
Latter is in agreement with a Floquet interpretation of
the problem, where F plays the role of large frequency,
causing transitions that are exponentially suppressed in
the number of excitations needed to absorb such a large
energy [39–41], however, one should note that we ob-
serve exponential supression already at intermediate F .
It should also be reminded that the Floquet Hamiltonian,
Eq. (2), and the tilted model, Eq. (1) are in finite systems
equivalent only up to boundary terms. Furthermore, the
D(F ) dependence of the transport coefficient also par-
tially resembles the disorder-dependence of the diffusion
constant in disordered interacting chains [38, 42–47]. As
a consequence, finite systems appear almost localized for
very strong fields in agreement with the previous numer-
ical studies that suggested Stark many-body localization
and absence of thermalization in the effective models with
fragmented Hilbert spaces.

Bound on the dynamics of the dipole moment. The
dynamics of the dipole moment remains an important
open issue, which determines whether transport in the
studied systems is correctly captured by the fracton hy-
drodynamics. A simple bound on the maximal variation
of the dipole moment during the time-evolution can be
obtained from the identity,

d⟨M⟩t
dt

=
1

F

d⟨H −H0⟩t
dt

= − 1

F

d⟨H0⟩t
dt

, (3)

where H and H0 are introduced in Eq. (1) while
⟨M⟩t = ⟨ψ(0)| exp(iHt)M exp(−iHt)|ψ(0)⟩ and |ψ(0)⟩ is
the initial state. The change of ⟨H0⟩t is limited
by a span of eigenvalues of H0 leading to bound
that is linear in L, i.e., |⟨H0⟩t − ⟨H0⟩t′⟩| < αL. Here
α is F - and L-independent constant determined by
parameters of H0. Then one gets from Eq. (3)
also a bound on the variation of the dipole moment
|⟨M⟩t − ⟨M⟩t′ | < δM = αL/F . The latter bound should
be compared to the width of the spectrum of the dipole
moment operator, M |ψn⟩ = dn|ψn⟩. The density of its
eigenvalues ρ(d) = 1

Z

∑
n δ(d−dn) is described by a Gaus-

sian with the variance

σ2
M =

1

Z
Tr(M2) =

L
2∑

l=−L
2 +1

l2

4
≃ L3

48
. (4)

Consequently, one gets

δM
σM

=
4α

√
3

F
√
L
. (5)
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For arbitrary nonzero F and sufficiently large L, changes
in the dipole moment become negligible and the frac-
tonic dynamics sets in. The ratio in Eq. (5) also explains
the unexpected scaling shown for the crossover from nor-
mal diffusive transport to subdiffusive dynamics shown
in Fig. 1(c). We stress that Eq. (5) holds for arbitrary
initial |ψ(0)⟩ and hence is applicable also for nonequilib-
rium dynamics. This equation originates from the excep-
tionally broad spectrum of the dipole moment. Namely,
the width of the spectrum of typical, extensive operators
(e.g., H0 or H ′) increases as L1/2 in contrast to L3/2

dependence of σM in Eq. (4).
Emergent conservation of the dipole moment at infinite

temperature. In the case of dynamics at T → ∞, one
can formulate a stronger bound on the variation of M .
Below we prove that the dipole moment is conserved in
macroscopic systems, i.e,

lim
L→∞

⟨M(t)M⟩
⟨MM⟩

= 1, M(t) = eiHtMe−iHt . (6)

Eq. (6) will be shown to hold at any time t for arbi-
trary nonzero F . From now on, we use the symbol ⟨...⟩
to denote T → ∞ average, ⟨...⟩ = (1/Z)Tr(...). We re-
call that ||A||2 = ⟨AA⟩ is the (squared) Hilbert-Schmidt
(HS) norm of a Hermitian operator A while ⟨AB⟩ is the
HS inner product of Hermitian A and B. We note also
that two terms entering Hamiltonian (1) are mutually
orthogonal, ⟨H0M⟩ = 0. Due to this orthogonality, one
obtains

||H||2 = ||H0||2 + F 2||M ||2, (7)

||H0||
||M ||

∝ L1/2

L3/2
, (8)

where we used Eq. (4). As a central step, we split
the dipole moment into two mutually orthogonal parts,
M = M∥ +M⊥, defined via the projection

M∥ =
⟨MH⟩
⟨HH⟩

H, M⊥ = M −M∥, (9)

||M ||2 = ||M∥||2 + ||M⊥||2. (10)

so that M∥ is conserved by construction. Using
Eqs. (7),(9) and (10) we calculate the HS norms of both
components of the dipole moment

||M∥||2 =
⟨MH⟩2

||H||2
= ||M ||2 F 2||M ||2

||H0||2 + F 2||M ||2

||M⊥||2 = ||M ||2 ||H0||2

||H0||2 + F 2||M ||2
. (11)

Finally, we obtain a bound on the numerator in Eq. (6)

⟨[M∥ +M⊥(t)]M⟩ ≥ ||M∥||2 − |⟨M⊥(t)M⟩|
≥ ||M∥||2 − ||M⊥|| ||M ||, (12)

where we used the orthogonality ⟨M∥M⊥⟩ = 0 as well
as the Cauchy–Schwarz (CS) inequality for |⟨M⊥(t)M⟩|.

The CS inequality also implies that the correlation func-
tion in Eq. (6) is not larger than unity, hence

1 ≥ ⟨M(t)M⟩
||M ||2

≥ 1 − ||M⊥||
||M ||

− ||M⊥||2

||M ||2
. (13)

These inequalities together with Eqs.(8) and (11) prove
Eq. (6). The details of the model enter the above deriva-
tion only via Eqs. (7) and (8), which hold true for a broad
class of Hamiltonians. Moreover, the same reasoning is
applicable also for multidimensional systems with L sites
when ||H0|| ∝ L1/2 while ||M || ∝ LFL

1/2, where LF is
the size of the system along the field. Then the ratio in
Eq. (8) vanishes when LF becomes infinite.

We note that the bound on the variation of the dipole
moment for a chain at T → ∞ (13) is stronger than the
one obtained in Eq. (5). Therefore, the emergent conser-
vation of the dipole moment at infinite temperature takes
place for much weaker fields, F ≫ 1/L (see also Refs.
[1, 48]), compared with dynamics starting from an arbi-

trary nonequilibrium state where one needs F ≫ 1/
√
L.

Concluding remarks We have studied tilted (Stark)
chains with short-range interaction. Such a system has
previously been studied as a prototype model for several
phenomena ranging from the Stark many-body localiza-
tion, subdiffusive relaxation of the density profiles, and
the Hilbert space fragmentation found in the effective
models. Our numerical studies provide a coherent and
unifying picture that captures these phenomena as well as
quantitative results for the dynamics of the tilted chains.
We have found that the relaxation rate, Γq = Dqz, of
the density profile with the wave-vector q ∼ 1/L exhibits
a crossover from a diffusive behavior, z = 2, for small
F
√
L to the subdiffusive one, z = 4 when F

√
L is large.

The subdiffusive transport coefficient D is exponentially
suppressed for strong fields F so that the finite-time dy-
namics can hardly be distinguished from a nonergodic
behavior. The exponential suppression of D can be ex-
plained via analogy with driven Floquet systems as used
in Eq. (2). Nevertheless, we have not found any signa-
ture of strict nonergodicity expected in SMBL as well
as in the effective models with strictly conserved dipole
moment and finite-range interaction.

The unexpected scaling z = z(F
√
L) can be linked

to the fraction of the spectrum of the dipole moment,
M , that is accessible to the system during its evolution.
It means that macroscopic chains (isolated in the bulk)
subject to nonzero F are subdiffusive (at small enough
q) and that they evolve within a vanishing small part of
the spectrum of M independently of the initial state of
the evolution. At the same time, the dynamics of M at
T → ∞ reveals the emergent conservation of the dipole
moment [in the sense of Eq. (6)], formally shown for a
broad class of models and also for multidimensional sys-
tems. Our results indicate that an interacting tilted chain
can be considered one of the simplest systems that real-
ize fractonic hydrodynamics; however, the correspond-
ing transport coefficient is exponentially suppressed by
strong fields.
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Dynamical conductivity and its fluctuations along the
crossover to many-body localization, Phys. Rev. B 94,
045126 (2016).

[44] R. Steinigeweg, J. Herbrych, F. Pollmann, and
W. Brenig, Scaling of the optical conductivity in the tran-
sition from thermal to many-body localized phases, Phys.
Rev. B 94, 180401(R) (2016).
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In the Supplemental Material we provide technical details for the (i) TEBD studies of an open system with Hamil-
tonian described by the Eq. (1), (ii) the Lanczos-time propagation of density profiles in chains described by the
time-dependent Hamiltonian in Eq. (2), and (iii) density-correlation analysis of tilted systems with open boundary
conditions, Eq. (1).

S1. TEBD STUDIES OF THE
BOUNDARY-DRIVEN SYSTEM

For convenience of implementation, we resort to the
spin version of the model described by the Hamiltonian
in Eq. (1) The basic idea, in the spin language, is to
drive a spin current across the system via boundary
Lindblad operators with a small spin bias µ. To this
end, the boundary Lindblads employed are of the form
L1 =

√
1 + µS−

1 , L2 =
√

1 − µS+
1 , L3 =

√
1 − µS−

L , L4 =√
1 + µS+

L . The master equation governing the evolution
of the system’s density matrix is given by

∂tρ = −i[H, ρ] + D̂ρ (S1)

where H denotes the Hamiltonian and D̂ stands for the
dissipator expression in terms of the Lindblad operators

as D̂ρ =
∑

k LkρL
†
k −

1
2{L

†
kLk, ρ}. To evolve the density

matrix towards the steady state ρss, we use the time-
evolving block decimation for vectorized density matri-
ces. In particular, we use the fourth-order TEBD with
a time step dt = 0.2, bond dimension χ ∼ 140, and bias
µ ∼ 0.01.

Figure 1 in the main text shows results obtained from
TEBD studies for the chain described by the Hamiltonian
(1) with V = 3. In Fig. S1, we present similar data,
but for weaker interactions V = 2, leading to the same
conclusions as presented in the main text.

S2. RELAXATION OF THE DENSITY
PROFILES FOR TIME-DEPENDENT

HAMILTONIAN

We start the time-evolution from a state obtained
from the microcanonical Lanczos method (MCLM)
[36–38]. The method employs the Lanczos algo-
rithm for solving the eigenproblem of the opera-
tor (Hini − Etarget)

2. Here, the initial Hamilto-
nian reads Hini = HF=0(t) +

∑
l cos(ql)nl, and HF=0(t)

is defined in Eq. (2) in the main text. Since
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Figure S1. The same as in Fig. 1 (panel (b) and (c)) in
the main text but for smaller V = 2. As in Fig. 1, here
also F ∈ [0.0, 0.1, 0.2, 0.4, 0.6, 0.8], and the arrow in the upper
panel points to the direction of increasing F .

we are interested in the high-temperature regime,
the energy of the microcanonical window, Etarget,
is obtained from the high-temperature expansion,
Etarget = ⟨Hini⟩∞ − β

[
⟨H2

ini⟩∞ − ⟨Hini⟩2∞
]
. For simplic-
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Figure S2. Selected data from Fig. 2(b) in the main text
shifted vertically by a constant c indicated in the legend.

ity, the infinite-temperature averages ⟨...⟩∞ are estimated
from the grand canonical ensemble, and we set β = 0.1.
Using Ns = 5000 Lanczos steps, we obtain an initial
state |ψ(0)⟩ that is a superposition of eigenstates of Hini

with energies centered at Etagret and with a small energy
spread ∆2E ∝ L/Ns.

The distribution of particles in the initial state is
spatially modulated, ⟨ψ(0)|ñl|ψ(0)⟩ ≃ −(β/4) cos(ql).
After obtaining the initial state, we quench the field
F ̸= 0 and propagate this state under the Hamiltonian
Eq. (2) from the main text.Applying the Lanczos prop-
agation method [34, 35] we numerically solve the time-
dependent Schrödinger equation in small time-windows
∆t = 0.01 using 20 Lanczos steps for each time interval
|ψ(t)⟩ → |ψ(t+ ∆t)⟩ and calculate the time-dependence
of the profile ⟨ñl⟩ = ⟨ψ(t)|ñl|ψ(t)⟩. Finally, we obtain

the amplitude of the modulations δn(t) =
√

⟨⟨ñl⟩2⟩l,
where ⟨...⟩l denotes averaging over all lattice sites.
Figs. 2(a) and 2(b) in the main text, show the ratio
δt = δn(t)/δn(0) for L = 24 and smallest wave-vectors
q1 = 2π/L and q2 = 4π/L, respectively.

It is rather obvious that δt cannot strictly vanish in a
finite system. Instead, one expects, δt = exp(−Γqt) + c,
where c is a constant, and we use the ansatz for the decay
rate Γq = Dqz. In the case of the profile with q = q1,
the constant c is small enough and hardly affects the
exponential decay of δt; see Fig. 2(a) in the main text.
However, the offset (c) is larger for q2, and some results in
Fig. 2(b) in the main text might appear non-exponential.
Therefore in Fig. S2 we show that δt−c is an exponential
function for tuned, small c.

In order to obtain the relaxation rate, Γq, one may
either use a fitting function that includes the vertical off-
set, c, or one may restrict the range of fitted data to
δt ≫ c. In order not to increase the number of fitting pa-
rameters, we choose the latter possibility and fit results
for t > 5 with δt > 0.05 and δt > 0.1 for q = q1 and
q = q2, respectively. The fitted range of data is marked
as a shaded area in Figs.2(a) and 2(b) in the main text.
As a consistency check, we have also carried out fitting
with the offset (not shown). The qualitative results re-
main unchanged. Upon increasing the tilt, the exponent
z changes from z = 2 to z = 4 while the relaxation rate
Γq, as well as the transport coefficient D decreases expo-
nentially for large F .

S3. NUMERICAL STUDIES OF A SYSTEM
WITH OPEN BOUNDARY CONDITIONS

In order to confirm the exponential decrease of the re-
laxation rate Γq we have also carried out numerical stud-
ies of a tilted chain with open boundary conditions (obc),
Eq. (1) in the main text, with the same H ′ as for the
time-dependent flux and same parameters V = 3, V ′ = 2.
Results are shown in Fig. 2(d) in the main text. In this
case, the calculated quantity is the T → ∞ dynamical
structure factor S(q, ω), i.e., the density correlation func-

tion ⟨nq(t)nq(0)⟩ω for nq = (1/
√
L)

∑
l cos(q(l−L/2))nl,

again for smallest q = 2π/L and q = 4π/L (not shown).
Results for the whole spectrum of S(q, ω) are obtained
by employing MCLM using a large number of Lanczos
steps (up to NL = 8 × 104 for L = 26) in order to reach
high-frequency resolution (typically δω < 10−3). MCLM
at T → ∞ in principle requires the averaging over the
whole spread of the initial Etarget, which was here due to
substantial fluctuations somewhat restricted. To extract
relaxation rates Γq we use the low-ω representation

S(q, ω ∼ 0) =
−χ0

q

ω + iΓq
, χ0

q =
2

π

∫
ImS(q, ω)dω (S2)

where χ0
q is static susceptibility, so that Γq =

χ0
q/ImS(q, ω = 0).
Such an approach should yield the same result as the

analysis via the time-dependent flux following Eq. (2).
Indeed, the comparison presented in Fig. 2(d) in the main
text confirms that. Still, in particular at the lowest ω ∼ 0
(or equivalently regarding long times t ≫ 1), the results
can be affected by obc, which restricts the reliable anal-
ysis to Γq > 2.10−3, presented in Fig. 2(d).
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