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The d-wave pseudospin current order (dPSCO) with staggered circulating pseudospin current has been pro-
posed as the hidden electronic order to describe the unexpected breaking of spatial symmetries in stoichiometric
Sr2IrO4 and the unconventional pseudogap phenomena in electron doped Sr2IrO4. However, a microscopic
model for the emergence of dPSCO is still lacking. The nearest neighbor Coulomb repulsion V , which is ex-
pected to be significant in Sr2IrO4 due to the large spatial extension of the Ir 5d orbitals, is capable of driving
dPSCO on the mean-field level, albeit the latter is energetically degenerate to the staggered flux phase with cir-
culating charge current. We find the in-plane anisotropy Γ2 in the effective superexchange interaction between
Jeff =

1
2 pseudospins, originating from the cooperative interplay between Hund’s rule coupling and spin-orbit

coupling of Ir 5d electrons, is able to lift the degeneracy and stabilize the pseudospin currents. The effective
single-orbital model of Jeff =

1
2 electrons, including onsite Coulomb repulsion U, nearest neighbor Coulomb

repulsion V , and the in-plane anisotropy Γ2, is then studied. We obtain the mean-field ground states, analyze
their properties, and determine the phase diagram of stoichiometric Sr2IrO4 in the plane spanned by U and V at
a fixed Γ2. We demonstrate the realization of dPSCO, as well as its competition and coexistence with antifer-
romagnetism. Remarkably, we find the coexistence of dPSCO and antiferromagnetism naturally leads to spin
bond nematicity, with the spin directions of these three orders forming nontrivial chirality. Furthermore, we
show that the emergence of the coexistent state and its chirality can be tuned by carrier doping.

I. INTRODUCTION

The layered square-lattice iridate Sr2IrO4 has recently at-
tracted much attention partly due to its close resemblance to
the high-temperature cuprate superconductors [1–12]. It is
isostructural to La2CuO4 and the stoichiometric Sr2IrO4 be-
comes a canted antiferromagnetic (AFM) insulator below the
Néel temperature TN ≃ 230 K [1, 2]. The magnetic excita-
tions are well described by pseudospin- 1

2 Heisenberg model
on the square lattice, with strong AFM exchange coupling
J ≃ 60 meV [13, 14]. This is believed to be the essential
physics of the cuprates and thus naturally leads to the expec-
tation that Sr2IrO4 can be another platform for unconventional
high-temperature superconductivity upon carrier doping [15–
18]. Although there is not yet firm evidence for supercon-
ductivity, a remarkable range of cuprate phenomenology has
been observed in electron- and hole-doped Sr2IrO4, including
Fermi surface pockets [19], Fermi arcs [20], pseudogaps [21–
23], and V-shaped tunneling spectra that potentially signals
d-wave superconductivity [24, 25].

At stoichiometry, neutron and resonant X-ray measure-
ments reveal that the magnetic moments in the canted AFM
insulator are aligned in the basal ab plane, with their direc-
tions tracking the staggered IrO6 octahedra rotation about the
c axis due to strong spin-orbit coupling [26–30]. The result-
ing net ferromagnetic moment of each layer is shown to order
in a + − −+ pattern along the c axis [2, 31]. This magnetic
ground state belongs to a centrosymmetric orthorhombic mag-
netic point group 2/m1′ with spatial C2z rotation, inversion,

and time-reversal symmetries (TRS) [32, 33]. Recent opti-
cal second-harmonic generation experiments [32, 34], how-
ever, reported evidence of unexpected breaking of spatial ro-
tation and inversion symmetries, pointing to the existence
of a symmetry-breaking hidden order. It is further sup-
ported by polarized neutron diffraction [35] and muon spin
relaxation measurements [36] which revealed the breaking of
TRS. Intriguingly, magnetic resonant X-ray scattering mea-
surements conducted on the electron-doped Sr2IrO4 have un-
covered a unidirectional spin density wave in the pseudogap
phase [37], further supporting the idea that the pseudogap is
associated with a symmetry-breaking hidden order. It was ar-
gued that the broken symmetries can be caused by loop cur-
rents [32, 35, 36, 38] which were proposed to account for the
pseudogap physics in cuprates [39–41]. However, the oxygen
2p states in Sr2IrO4 are much further away from the Fermi
level than those in the cuprates [1, 42], making it disadvan-
tageous to develop the loop currents that requires low-energy
oxygen 2p states.

The d-wave pseudospin current order (dPSCO), with
pseudospin-up electrons staggered circulating along one di-
rection and pseudospin-down electrons in the opposite direc-
tion, has been proposed as an alternative candidate for the
hidden electronic order in Sr2IrO4 [43]. Symmetry analysis
shows that the coexistence of dPSCO and canted AFM with a
particular c-axis stacking pattern has the symmetries consis-
tent with all available experimental observations on the stoi-
chiometric Sr2IrO4 below the Néel temperature [44]. This co-
existent phase is a magnetoelectric state that breaks twofold
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rotation, spatial inversion, and TRS [44]. In addition, it can
account for the observed splitting of bands [19] at (π, 0) whose
twofold degeneracy is otherwise protected by certain lattice
symmetries [43, 45, 46]. Upon sufficient electron doping
such that the magnetism is completely suppressed, dPSCO
produces Fermi pockets and Fermi arcs in the nonmagnetic
electron-doped Sr2IrO4 [43], in good agreement with the
pseudogap phenomena revealed by angle-resolved photoemis-
sion and scanning tunneling microscopy measurements [19–
21, 24]. While describing remarkably well the unexpected
symmetry properties and the unconventional quasiparticle be-
haviours observed in both stoichiometric and electron-doped
Sr2IrO4, the physical origin of dPSCO is unclear and a micro-
scopic model for its emergence is still lacking.

In this work, we discuss the emergence of dPSCO in an
effective single-orbital model for pseudospin- 1

2 electrons of
Sr2IrO4 in the local basis (see Fig. 1a) tracking the staggered
IrO6 octahedra rotation, in which the canted AFM becomes a
perfect Neél order [15, 47]. Hereinafter, we replace dPSCO
by dSCO (d-wave spin current order) for convenience. Due
to the large spatial extension of the Ir 5d orbitals, the off-site
Coulomb repulsions are significant in Sr2IrO4 and expected
to play important role in the development of dSCO. Indeed,
it has been shown on half-filled honeycomb lattice that off-
site Coulomb repulsions can produce dSCO with staggered
spin current on the mean-field level [48]. It has the contin-
uous global SO(3) symmetry associated with the rotation of
the spin direction, and energetically degenerate with the stag-
gered flux phase (SFP) with circulating charge current, lead-
ing to spin Hall effect and anomalous Hall effect, respectively.
TRS is broken in SFP but preserved in dSCO, and thus these
two states can never coexist. It is argued that quantum fluctu-
ations lifts the degeneracy and favors spin current over charge
current [48].

Interestingly, we note that the in-plane anisotropy Γ2 in
the effective superexchange interactions between the Jeff =

1
2

pseudospins, originating from the cooperative interplay be-
tween Hund’s rule coupling and spin-orbit coupling of the
Ir 5d electrons [47], can lift the degeneracy between SFP
and dSCO within mean-field theories. Furthermore, it breaks
the SO(3) rotation symmetry of dSCO down to C4z by ori-
entating the spins of dSCO along one of the four easy axes,
i.e., [±1,±1, 0]. This motivates us to investigate the realiza-
tion of dSCO in a concrete effective single-orbital t-U-V-Γ2
model of pseudospin- 1

2 electrons for Sr2IrO4, where t denotes
the kinetic hoppings, U for on-site Coulomb repulsion, V for
nearest-neighbor (nn) Coulomb repulsion, and Γ2 for the in-
plane anisotropy of pseudospins.

We discuss the emergence of dSCO in the t-U-V-Γ2 model,
and investigate its competition and coexistence with AFM.
The rest of the paper is organized as follows. Sec. II
introduces the effective single-orbital t-U-V-Γ2 model for
pseudospin- 1

2 electrons in Sr2IrO4. The onsite Coulomb re-
pulsion U is treated by SU(2) spin-rotation invariant slave-
boson mean-field theory, while interactions on nn bonds, V
and Γ2, are mean-field decoupled into bond channels. In

FIG. 1. (a) Schematic picture of one IrO2 layer. Large filled or open
circles denote the Ir atoms on the two sublattices, and small open cir-
cles are oxygens. Lowercase x, y and capital X, Y indicate, respec-
tively, the global and sublattice-dependent local cubic axis. (b) Tight-
binding band structure of the free electrons, displaying a DP at N and
a QBT at X point. The inset in (b) shows the one-Ir BZ (solid black
lines), the reduced BZ (dotted black lines), and the high-symmetry
points labeled by Γ = (0, 0), X = (π, 0), Y = (0, π), M = (π, π), and
N = (π/2, π/2).

Sec. III, the t-U-V-Γ2 model is solved self-consistently at
half-filling for stoichiometric Sr2IrO4. We obtain the mean
field ground states, analyze their properties, and determine the
phase diagram at a fixed nonzero Γ2. The phase diagram con-
sists of paramagnetic (PM), AFM, dSCO, and the coexistent
state involving the latter two. We note that the coexistent state
breaks the C4z rotation symmetry of Jeff =

1
2 pseudospins, and

naturally leads to spin bond nematicity (sBN) with nontrivial
chirality. We then study the doping evolution of these states
and illustrate that the emergence of coexistent state and its chi-
rality can be tuned by the carrier doping. Possible connections
to experimental observations are also discussed. Summaries
are presented in Sec. IV.

II. MODEL AND METHOD

The t-U-V-Γ2 model. We start with an effective square lat-
tice single-orbital t-U-V-Γ2 model for the pseudospin- 1

2 elec-
trons in the local basis depicted in Fig. 1a that tracks the stag-
gered IrO6 octahedra rotation in Sr2IrO4,

Ĥ = −
∑
i j,α

ti jc
†

iαc jα + U
∑

i

n̂i↑n̂i↓ (1)

+ V
∑
⟨i j⟩

n̂in̂ j + Γ2

∑
⟨i j⟩

τi j(Ŝ x
i Ŝ x

j − Ŝ y
i Ŝ y

j),

where τi j = (−1)iy+ jy is the standard d-wave form factor on
nn bonds, c†iα creates a pseudospin-α (α =↑, ↓) electron at site
i, the density operators n̂iα = c†iαciα, n̂i =

∑
α n̂iα, and the

pseudospin operator Ŝ ηi =
1
2
∑
αβ c†iασ

η
αβciβ with ση the Pauli

matrices for η = x, y, z. To describe the low-energy quasi-
particle dispersion (Appendix A), the hopping parameters are
chosen according to ti j = (t1, t2, t3) = (218, 52,−18) meV for
the first, second, and third nn hopping, respectively. Fig. 1b
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shows the tight-binding dispersion along the high-symmetry
path in the reduced Brillouin zone (BZ), displaying the char-
acteristic Dirac point (DP) at N and quadratic band touching
(QBT) at X point. For this set of band parameters, the QBT
is higher in energy than DP by 4t2 − 8t3 = 352 meV. In Eq.
(1), U and V are the onsite and nn Coulomb repulsions, and
Γ2 is the in-plane anisotropy for Jeff =

1
2 pseudospins. It has

been shown that Γ2 is generated by the cooperative interplay
between Hund’s rule coupling and spin-orbit coupling of Ir
5d electrons, and induces a small in-plane magnetic gap via
quantum fluctuations [47].

Mean-field theories. To treat the onsite interaction non-
perturbatively and consider in-plane magnetic order conve-
niently, we use the Kotliar-Ruckenstein slave-boson formu-
lation with SU(2) spin-rotation invariance [49–52], in which
the physical electron operator is written as

cα = Zαβ fβ, Z = L−1/2
(
e†p + p̄†d

)
R−1/2, (2)

where fα is a spin- 1
2 fermion operator, and e, d, and p are

boson operators describe the holon, doublon, and singly oc-
cupied sites. The SU(2) spin-rotation invariance is achieved
by the 2 × 2 matrix representation of the singly occupied
site, p, with element pαβ = 1

√
2

∑
µ=0,x,y,z pµσ

µ
αβ, and its time-

reversal transformation p̄ = T̂pT̂−1. The 2×2 matrix operator
L = (1−d†d)σ0−p†p, R = (1−e†e)σ0−p̄†p̄, with σ0 the 2×2
identity matrix. This form ensures the spin rotation invariance
and the correct noninteracting limit within the mean-field ap-
proximation [51]. The intersite interactions on nn bonds, V
and Γ2, are rewritten in terms of Hubbard-Stratonivich fields
χ̂
µ
⟨i j⟩ =

∑
αβ f †iασ

µ
αβ f jβ, µ = 0, x, y, z [48]. The charge density

fields corresponding to the direct Hartree decoupling of V are
neglected to avoid double-counting, since their contribution is
already included in the LDA [53]. Furthermore, it is easy to
show that the spin density fields for the in-plane anisotropy
Γ2 are irrelevant in the two-sublattice states considered in this
work. As a result, the Hamiltonian becomes

H̃ = −
∑

i j,αβγ

ti j f †iαZ
†

i,αγZ j,γβ f jβ + U
∑

i

d†i di +
∑

i

λiQ̂i (3)

+
∑
i,µ

λ
µ
i Q̂µi −

∑
⟨i j⟩

V
2

∑
µ

∣∣∣χ̂µi j

∣∣∣2 + Γ2

4
τi j

[∣∣∣χ̂x
i j

∣∣∣2 − ∣∣∣χ̂y
i j

∣∣∣2] ,
where λi and λµi (µ = 0, x, y, z) are Lagrange multipliers intro-
duced to enforce the local constraints for the completeness of
the Hilbert space

Q̂i = e†i ei + d†i di + tr(p†i pi) − 1 = 0, (4)

and the equivalence between the fermion and boson represen-
tations of the particle and spin densities

Q̂µi = tr(σηp†i pi) + 2δµ,0d†i di −
∑
αβ

f †iασ
µ
αβ fiβ = 0. (5)

The saddle-point solution of the functional-integral for Eq. (3)
corresponds to condensing all boson fields {ei, di, piµ, λi, λ

µ
i ,

χ
µ
⟨i j⟩} and determining their values self-consistently by mini-

mizing the state energy ⟨H̃⟩.
The onsite and nn Coulomb repulsions, U and V , would

produce, respectively, magnetic and bond orders at sufficient
strengths. We consider two-sublattice solutions where onsite
boson fields condense uniformly on each sublattice ν = A or
B. Explicitly, on site i ∈ ν, ei = eν, di = dν, piµ = pνµ, λi = λν,
and λµi = λ

µ
ν . Consequently, the local magnetic moment mi=

mν = (mx
ν , my

ν, mz
ν), with component mην = tr(σηp†νpν), where a

g-factor of 2 has been used. Self-consistent calculations con-
verge to charge uniform states with, if magnetism developed,
perfect Neél order in the local basis tracking the IrO6 stag-
gered rotation. As a result, eν = e, dν = d, λν = λ, pν0 = p0,
λ0
ν = λ

0, and pAη = −pBη = pη, λ
η
A = −λ

η
B = λ

η for η = x, y, z.
Consequently, the magnetic moment mA = −mB =m. Sim-
ilarly, the condensation of boson fields on nn bonds can be
expressed as a combination of s- and d-wave components

χ
µ
⟨i j⟩ =

(
χ
′
µ,s + iχ′′µ,s

)
+τi j

(
χ
′
µ,d + iχ′′µ,d

)
, i ∈ A and j ∈ B, (6)

where χ′µ,s (χ′′µ,s) and χ′µ,d (χ′′µ,d) are the real and imaginary
parts of the s(d)-wave component. In the charge-uniform two-
sublattice solutions, the contributions to the state energy per
site from V and Γ2 are given by, respectively,

EV = − V
∑
µ

(
χ
′2
µ,s + χ

′′2
µ,s + χ

′2
µ,d + χ

′′2
µ,d

)
, (7)

EΓ2 =Γ2

(
χ
′
y,sχ
′
y,d + χ

′′
y,sχ
′′
y,d − χ

′
x,sχ
′
x,d − χ

′′
x,sχ
′′
x,d

)
. (8)

Clearly, in-plane anisotropy Γ2 tends to bring mixture of s-
and d-wave components in the µ = x, y bond orders to gain
energy and, as a result, breaks the SO(3) rotational symmetry
of spin currents down to C4z with four easy axes along [±1,
±1, 0]. We note that nonzero χ′′0,s brings charge currents flow-
ing into or out of a lattice site from all the four connecting
bonds, which violate the charge conservation and thus physi-
cally prohibited. In contrast, nonzero χsSCO = (χ′′x,s, χ

′′
y,s, χ

′′
z,s)

≡ χsSCOêsSCO that violates the spin conservation on each lat-
tice site by generating s-wave spin current is however allowed
at finite in-plane anisotropy Γ2 since the presence of the lat-
ter requires the existence of spin-orbit coupling [47]. Simi-
larly, the real parts of d-wave bond orders introduce charge
bond nematicity (cBN) χcBN = χ

′
0,d [53] and sBN χsBN =

(χ′x,d, χ
′
y,d, χ

′
z,d) ≡ χsBNêsBN, while the imaginary parts of d-

wave bond orders generate SFP χSFP = χ
′′
0,d and dSCO with

χdSCO = (χ′′x,d, χ
′′
y,d, χ

′′
z,d) ≡ χdSCOêdSCO for spins along êdSCO

direction.
To this end, in order to obtain all the possible states, we

use different initial conditions for solving the self-consistency
equations numerically. Besides PM, AFM, and dSCO, we also
encounter converged metallic solutions of coexisting AFM
and dSCO, which induces additional sBN and brings about
interesting chirality for the spin directions of these three or-
ders. When more than one converged states exist at a given
set of parameters, we compare their energies to determine the
true ground state.
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FIG. 2. (a) Ground state phase diagram of half-filled t-U-V-Γ2 model with fixed Γ2 = 0.2t1. Solid and dashed lines denote, respectively,
phase boundaries of first-order and continuous transitions. Insets display the spin directions of order parameters, i.e., êAFM, êdSCO, and êsBN, in
each ground states. Electronic structures of the nonparamagnetic ground states (black lines) along high-symmetry path at Coulomb interactions
(U,V) = (6, 1.6)t1 for the insulating AFM (b), (6, 3)t1 for the semimetallic dSCO (c), (5, 2)t1 for metallic COR (d), and (1, 2.4)t1 for the metallic
dSCO (f). Grey lines denote the band dispersion of the PM states converged at the same parameters. The corresponding Fermi surfaces of (d)
and (f) are shown in, respectively, (e) and (g).

III. RESULTS AND DISCUSSIONS

Phase diagram at half filling. We first explore the zero-
temperature phase structure and the formation of dSCO in the
half-filled t-U-V-Γ2 model for a given in-plane anisotropy. At
Γ2 = 0.2t1, the ground state phase diagram is presented in Fig.
2a in the plane spanned by the on-site Coulomb repulsion U
and nn Coulomb repulsion V . It consists of PM, AFM, dSCO,
and COR. Here, COR refers to the coexisting state of AFM,
dSCO, and sBN, with the subscript denotes the right-handed
chirality formed by the spin directions of these three orders.
The solid and dashed lines denote, respectively, a first-order
and a continuous phase transition between two neighboring
phases, and the boundaries are determined by comparing the
state energies of different phases.

PM and AFM. In the regime near the phase diagram origin
where neither U nor V is strong enough to produce magnetic
or bond orders, the ground state is a PM metal with the band-
width renormalized by electron correlations. Increasing U at
small V , the PM metal gives way to the AFM insulator at a
critical U via a first-order transition. As shown in Fig. 2a,
the critical U increases as one enhances the nn Coulomb re-
pulsion V , since the latter effectively enlarges the bandwidth.
The AFM gaps out the DP and QBT simultaneously, resulting
to a band dispersion displayed in Fig. 2b at (U,V) = (6, 1.6)t1.
Since Γ2 does not generate any in-plane magnetic anisotropy
on the mean-field level [47] and all other terms in the t-U-
V-Γ2 model are invariant under spin rotation, the moment
direction of AFM obtained here thus has the SO(3) rotation
symmetry. Inclusion of out-of-plane anisotropy Γ1, which is
shown to be present in Sr2IrO4 [47], would break SO(3) sym-
metry down to SO(2) with easy xy-plane. Furthermore, when

coexisting with dSCO, as we shall show later, the spin rotation
symmetry is further reduced to C4z with four equivalent easy-
axes along [±1, ± 1, 0], consistent with experimental observa-
tions and theoretical results in more sophisticated five-orbital
models [26–28, 54–59]. In this work, we neglect Γ1 in the
Hamiltonian for simplicity and, without loss of generality, fix
the moment direction along [1, 1, 0], unless otherwise noted.

Interestingly, we note that AFM could not be stabilized by
any U when nn Coulomb repulsion is large, i.e., V ≳ 2.3t1, as
shown in the phase diagram Fig. 2a. In the strongly coupling
theory, the dynamically generated AFM Zeeman field scales
with the average kinetic energy instead of U [60]. This effec-
tively sets a upper limit on the energy gain via the formation
of AFM. On the other hand, the energy gain of bond order, if
developed, is on the order of V , as shown clearly in Eq. (7).
Therefor, AFM is unable to compete with bond orders, dSCO
in particular here, when V is sufficiently large, regardless of
how strong on-site U is.

dSCO. When V is large, it drives charge or spin currents on
the nn bonds and consequently leads to SFP or dSCO sepa-
rately. These two states are energetically degenerate and share
the identical band structure in the absence of Γ2, and dSCO
has SO(3) rotation symmetry associated with the spin direc-
tion of the spin current. The SFP breaks TRS while dSCO
does not, and thus these two states can never coexist with each
other. We note that the in-plane anisotropy Γ2 is able to lift the
degeneracy within the mean-field theory and stabilize dSCO
with circulating spin currents as the ground state. Further-
more, in the presence of Γ2, the SO(3) rotation symmetry of
dSCO is broken down to C4z with four equivalent preferred
directions along [±1, ±1, 0], i.e., χdSCO = (±1,±1, 0)χ′′d . The
lifting of degeneracy and the lowering of rotation symmetry
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FIG. 3. (a) Path of êdSCO for the variational calculations. (b) The
state energy and (c) the magnitudes of various bond orders in dSCO
as a function of the pinned spin direction êdSCO displayed in (a). The
Coulomb interactions (U,V) = (6, 3)t1.

are achieved via the development of a s-wave spin current or-
der (sSCO) with the spin direction along [±1, ∓1, 0] direction,
i.e., χsSCO = (±1,∓1, 0)χ′′s , which coexists with d-wave χdSCO
and lowers the state energy per site in Eq. (8) by −2Γ2χ

′′
s χ
′′
d .

Due to its d-wave nature, dSCO gaps out the QBT at X but
leaves the DP at N unaltered. At sufficient strong V where
the dSCO gap is large, it gives rise to a Dirac semimetal with
vanishing density of states at Fermi level, as illustrated in the
band dispersion at (U,V) = (6, 3)t1 shown in Fig. 2c.

In order to elaborate on the anisotropy in the spin direc-
tion of dSCO in the presence of Γ2, we have performed
variational calculation where an external field is applied to
pin the spin direction of spin currents along the desired di-
rection, whereas the elastic part of the external field is ex-
cluded in the state energy. As a function of êdSCO pinned
along the path shown in Fig. 3a, the state energy per site
is plotted in Fig. 3b at (U,V) = (6, 3)t1, with the inset fo-
cus on the in-plane anisotropy. For clarity, all energies are
shown with respect to E[−1,1,0], i.e., energy of dSCO with
êdSCO along [−1, 1, 0]. Clearly, [−1, 1, 0] is the most pre-
ferred spin direction for dSCO, with a tiny in-plane anisotropy
E[0,1,0] − E[−1,1,0] ≃ 4.5 × 10−8t1 and a relatively large out-of-
plane anisotropy E[0,0,1] − E[−1,1,0] ≃ 1.6 × 10−4t1. The evolu-
tion of the amplitudes of various bond orders are displayed in
Fig. 3c. It is clear that the in-plane dSCO gain energy via the
formation of χsSCO, while the [-1, 1, 0] dSCO lowers energy
further by the small increasing in its amplitude χdSCO.

COR. Reducing the nn V from the dSCO phase at small
to moderate U, the phase diagram in Fig. 2a shows a
wide regime where the ground state possesses simultaneously
AFM, dSCO, and sBN orderings. Interestingly, the spin direc-
tions of these three orders, êAFM, êdSCO, and êsBN, are perpen-
dicular to each other and form a right-handed chirality, i.e.,
(êAFM × êdSCO) · êsBN = 1, as displayed in the inset in Fig. 2a.
Therefore, we refer to this coexistent state as COR hereafter.
At (U,V) = (5, 2)t1, the converged COR has AFM moment

FIG. 4. Low-energy band dispersions (red lines) of (a) the self-
consistently converged pure dSCO, (b) COR with sBN order man-
ually switched off, (c) COR with AFM order manually switched
off, and (d) COR with the spin direction of sBN manually reversed.
Band dispersions of the self-consistently converged COR are plotted
in black lines for comparison. The Coulomb interactions (U,V) =
(5, 2)t1.

m = 0.135µB, dSCO χdSCO = 0.117, and sBN χsBN = 0.044,
with the electronic structure shown in Fig. 2d. The primary
feature of the coexistence lies at X point where the doubly
degenerate bands in AFM and dSCO are now split unevenly,
unnoticeably small on the conduction bands above the Fermi
level but substantially larger on the valence bands crossing
the Fermi level. It gains energy by pushing one of the valence
band below Fermi level. The corresponding Fermi surfaces is
displayed in Fig. 2e, exhibiting two elliptic electron pockets
around N points and a square-shaped hole pocket around X
and Y points.

To shed light on the emergence of the coexisting COR

phase, we plot in Fig. 4a the band structure of the would-be
pure dSCO self-consistently converged at the same interac-
tions, (U,V) = (5, 2)t1. Clearly, the dSCO gap is not large
enough to realize a Dirac semimetal, as the doubly degener-
ate valence bands cross the Fermi level around X point. This
would leads to a large density of states at Fermi level, which
is expected to trigger the emergence of AFM and sBN, and
hence the stabilization of the coexistent state. To further un-
derstand the coexistence and its chirality, we manually switch
off the sBN or AFM in the COR and plot the resulting elec-
tronic structure in, respectively, Fig. 4b and 4c. Clearly, in
both cases, the conduction and valence bands split evenly at
X point, failing to push one of the valence band below Fermi
level and thus could not compete with COR in lowering state
energy. Furthermore, symmetry analysis conducted in Ap-
pendix B shows that combination of any two of dSCO, AFM,
and sBN has the same symmetry properties as the coexisting
state of all these three orders. This implies that the combina-
tion of any two of these three orders would in principal give
rise to the emergence of the third order, which has been ver-
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FIG. 5. (a,d) The state energy per site with respect to dSCO, (b,e) the
magnitudes of magnetism and bond orders, and (c,f) the locations of
valence bond tops at X point, EVBT, as a function of the nn Coulomb
repulsion V . The onsite Coulomb repulsion U = 0 in left panels and
U = 6t1 in right panels.

ified numerically in Appendix B. This is exactly the reason
why the regime of COR extends to U = 0 (this is the case even
in the absence of Γ2) in the phase diagram Fig. 2a, where ki-
netic magnetism arises in the absence of local repulsion. Next,
we manually switch the chirality from right-handed to left-
handed, which can be achieved by reversing the spin direction
of all three orders or only one of them. The resulting band dis-
persions are all identical and shown in Fig. 4d. Interestingly,
the splitting in the conduction bands is now much larger than
that in the valence bands, which is disadvantageous for lower-
ing energy and thus unstable.

We note that, underneath the regime of COR in the phase
diagram Fig. 2a, there is another small regime for pure dSCO.
The band dispersions and corresponding Fermi surfaces are
shown in Figs. 2f and 2g at (U,V) = (1, 2.4)t1. The coexistent
state could not be stabilized in this regime, as we shall show
later, because it fails to push one of the valence band below
Fermi level at X point to lower energy.

Phase transitions at half filling. To investigate in detail
the phase transitions between different ground states shown
in Fig. 2a, we fix onsite Coulomb repulsion U = 0 or 6t1
and monitor the phase evolution as a function of nn Coulomb
repulsion V , focusing on the regions near phase boundaries.
The state energies per site with respect to dSCO are compared

in Fig. 5a and 5d. The magnitudes of magnetism and bond or-
ders are shown in Fig. 5b and 5e, and the locations of valence
band top EVBT, i.e., the energies of the lower two levels at X
point, are plotted in Fig. 5c and 5f.

For U = 0, self-consistent calculations at V ≳ 3.24t1 can
converge to PM and dSCO, with the latter being the ground
state with much lower energy, as shown in Fig. 5a. The mag-
nitude of dSCO order is quite large, χdSCO ≳ 0.24 (Fig. 5b),
which gaps the QBT by a large gap and consequently leads
to a Dirac semimetal shown in Fig. 2c, with the two valence
band tops (Fig. 5c) degenerate in energy and lying below the
Fermi level. As one reduces nn V , EVBT increase in energy
and cross the Fermi level at V ≃ 3.24t1, where the dSCO
gives way to COR via a second-order transition. AFM and
sBN orders start to develop, and their coexistence with dSCO
split the two valence bands and push one of them below the
Fermi level to lower energy. As shown in Fig. 5c, the evo-
lution of the lower valence band top is nonmonotonic and it
is about to cross the Fermi level again at V ≃ 2.51t1. Here
the ground state changes from COR to dSCO via a first-order
transition, as indicated by the kink in state energy (Fig. 5a)
and the abrupt disappearance of AFM and sBN orders (Fig.
5b). Reducing V further, the dSCO is suppressed gradually
and vanishes at V ≃ 2.30t1 where the ground state becomes
PM via a second-order phase transition.

For fixed onsite Coulomb repulsion U = 6t1, the ground
state at V ≳ 2.49t1 is also a Dirac semimetal, i.e., dSCO
with large d-wave gap. Reducing nn V , the ground state first
undergoes a second-order transition from dSCO to COR at
V ≃ 2.49t1 where the doubly degenerate valence band top
reaches Fermi level, as shown in Fig. 5f. At V ≃ 2.17t1,
AFM sets in via a first-order transition, as shown by the level
crossing displayed in Fig. 5d.

Electron-doping evolution of AFM insulator. To make con-
nection to the experimental observations in electron-doped
Sr2IrO4 [19–21, 24, 61], it is instructive to study the state evo-
lution with electron doping away from half filling. We fix the
in-plane anisotropy Γ2 = 0.2t1 and the Coulomb repulsions
(U,V) = (6, 1.6)t1, where the ground state at stoichiometry
is the insulating AFM, as shown in Fig. 2a. As a function
of electron doping x away from the half filling, the ground
state undergoes successively phase transitions from the AFM
to dSCO at x ≃ 0.09, to a coexistent state with left-handed
chirality (COL) at x ≃ 0.23, and finally to PM at x ≃ 0.32, as
displayed in Fig. 6a. The energies per site of converged states
at different electron doping are summarized in Fig. 6b, with
respect to the energy of the PM phase. In addition to the four
ground states shown in Fig. 6a, we managed to converge to
the cBN state in the electron doping range 0.18 ≤ x ≤ 0.31,
but it is always higher in energy and fails to present itself as
a ground state. The features of level-crossing between these
four ground states in Fig. 6b indicate that the three succes-
sive phase transitions are all of first-order. Fig. 6c shows the
amplitudes of AFM moment and bond orders in the nonpara-
magnetic phases.

The band dispersions and corresponding Fermi surfaces of
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FIG. 6. (a) Zero-temperature phase diagram as a function of electron
doping, with the insets show the spin directions of AFM, dSCO, and
sBN orders. (b) Energy per site of converged states with respect
to PM state. (c) Magnitudes of the magnetic and bond orders in
nonparamagnetic phases. Here the in-plane anisotropy Γ2 = 0.2t1

and the Coulomb repulsions (U,V) = (6, 1.6)t1.

AFM at x = 0.04, dSCO at x = 0.1, and COL at x = 0.25 are
plotted in Fig. 7. At half filling x = 0, the ground state is an
AFM insulator. In the x = 0.04 electron-doped AFM, addi-
tional electrons go to the bottom of conduction bands around
N point and give rise to the elliptic electron pockets showing
in Fig. 7a. The dSCO away from half filling in Fig. 7b is
a doped Dirac semimetal as the d-wave order gaps only the
QBT but leave the Dirac point unaltered. Increasing electron
doping x further, the chemical potential moves upwards to ac-
commodate more electrons, and the dSCO order decreases in
amplitude as well. As a result, the bottom of the conduction
bands near X point get closer to the Fermi level. However, the
coexistent state sets in as the ground state before the bottom
of the conduction bands reach the Fermi level. The coexis-
tence split the doubly degenerate conduction band bottoms at
X point and push one of them below Fermi level to lower en-
ergy, as shown in Fig. 7c. Interestingly, this coexistent state

FIG. 7. Band dispersions (black lines) and corresponding Fermi sur-
faces of (a) AFM at x = 0.04, (b) dSCO at x = 0.1, and (c) COL at
x = 0.25. The grey lines in (a) and (c) denote the electronic structure
of dSCO converged at the corresponding electron doping.

tends to split more the conduction band, thus its chirality is
left-handed with (êAFM × êdSCO) · êsBN = −1, instead of right-
handed for the coexistent state at half-filling.

Manipulation of chirality by carrier doping. We have
shown that when the valence band top or conduction band
bottom near X point is above and close to the Fermi level in
dSCO phase, coexistent state can be stabilized by splitting the
corresponding bands, pushing one of them below Fermi level,
and thus lowering the ground state energy. Furthermore, the
chirality of the coexistent state manifests itself in the splitting
of the bands, COR splits mainly the valence bands while COL

splits more the conduction bands, as shown clearly in Figs.
2d and 7c. It thus suggests that the emergence of coexistent
state and its chirality can potentially be manipulated by gate-
voltage or carrier doping. To demonstrate it, we start with
a Dirac semimetal at half filling by setting (U,V) = (6, 3)t1,
where the large dSCO order produces a wide energy gap near
X point, as shown in Fig. 2c. The resulting valence band top
is below Fermi level and the conduction band bottom is quite
far away from the Fermi level, neither of them can trigger the
development of coexistent state and the ground state is thus a
Dirac semimetal with pure dSCO. Electron- and hole-doping
would move the Fermi level, respectively, upwards and down-
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FIG. 8. Doping dependence of (a) the ground state chirality (m ×
χdSCO) · χsBN and (b) the four energy levels at X point. The Coulomb
repulsions (U,V) = (6, 3)t1.

wards, and dSCO is expected to give its way to coexistent state
with different chirality at critical doping concentrations.

The state evolution of the Dirac semimetal is summarized in
Fig. 8 as a function of carrier doping x, with positive x stands
for electron doping and negative x for hole doping. The dop-
ing dependence of the ground state chirality (m×χdSCO) ·χsBN
is displayed in Fig. 8a. It obtains a nonzero value only in the
coexistent state, positive in COR with right-handed chirality
and negative in COL with left-handed chirality. Clearly, COR

and COL can be realized separately by hole- and electron-
doping a Dirac semimetal. Fig. 8b shows the doping evolution
of the four energy levels at X point. As electrons doped into
the Dirac semimetal, the Fermi level gets closer to the con-
duction band bottom, i.e, the upper two levels at X point, and
dSCO gives its way to COL via a first-order transition at crit-
ical doping x ≃ 0.21 where the coexistence splits mainly the
conduction bands and pushes one of the conduction band bot-
tom below Fermi level. The COL becomes unstable with re-
spect to PM at x ≳ 0.35. On the other hand, hole doping drives
the Fermi level of the doped Dirac semimetal towards the va-
lence band top, and they coincide in energy at x ≃ −0.01,
where COR sets in via a second-order transition. The coexis-
tence splits mainly the valence bands and pushes one of the
valence band top below Fermi level to lower the ground state
energy.

IV. SUMMARIES

In this paper, we constructed an effective square lattice
single-orbital t-U-V-Γ2 model for the low-energy physics in
Sr2IrO4, where Γ2 is the in-plane anisotropy of the Jeff =

1
2

pseudospins arising from the cooperative interplay between
Hund’s rule coupling and SOC [47]. To study the mean-field
ground state properties of the model, the onsite Coulomb re-
pulsion U is treated by SU(2) spin-rotation invariant slave-
boson mean-field theory, while nn interactions, V and Γ2,
are mean-field decoupled into bond channels. We obtain the
ground state phase diagram at half-filling with fixed Γ2 =

0.2t1, in the plane spanned by U and V , and investigate the
competition and coexistence of magnetic and bond orders.

The nn V , which is expected to be significant in Sr2IrO4
due to the large spatial extension of the Ir 5d orbitals, is ca-
pable of driving dSCO with circulating spin current, which
is degenerate in energy with the SFP produced by circulating
charge current. We demonstrated the importance of in-plane
anisotropy Γ2 in the stabilization of dSCO. It lifts the degener-
acy by stabilizing dSCO and lowers the rotation symmetry of
dSCO from SO(3) to C4z with four equivalent preferred direc-
tions along [±1, ±1, 0]. The lifting of degeneracy and the low-
ering of rotation symmetry are achieved via the development
of a s-wave spin current with the spin direction along [±1, ∓1,
0]. It coexists with d-wave χdSCO and lowers the state energy.
The dSCO order gaps out the QBT while leaves the DP un-
altered, giving rise to a Dirac semimetal when its amplitude
is sufficiently large. Thus, we have succeeded in providing
a minimal effective single-orbital model for the hidden elec-
tronic order capable of describing the unexpected breaking of
spatial symmetries in the AFM ordered spin-orbit Mott insu-
lator in stoichiometric Sr2IrO4 and the unconventional pseu-
dogap phenomena in electron doped Sr2IrO4 [43].

Remarkably, we discovered that, in a wide regime of the
phase diagram, the ground state is COR, a coexisting phase of
AFM, dSCO, and sBN with unconventional right-handed chi-
rality, i.e., (êAFM × êdSCO) · êsBN = 1. In this phase, the dSCO
order is relatively small, and the Fermi level would cross the
valence band near X point in the would-be pure dSCO state.
The coexistent state sets in here as the ground state, gaining
energy by splitting the bands and pushing one of the valence
band below Fermi level. Its chirality leads to uneven splitting
of the valence and conduction bands, with COR splits mostly
the valence band and COL splits mainly the conduction bands.
We demonstrated that the emergence of coexistent state and
its chirality can potentially be manipulated by carrier doping
a Dirac semimetal. COR with right-handed chirality and COL

with left-handed chirality can be realized separately by hole
and electron doping. The electron doping evolution of the
AFM insulator is also investigated. As increases the electron
doping concentration x, the ground state undergoes succes-
sively first-order phase transitions from the AFM to dSCO,
COL, and PM.

It would be interesting to investigate if the coexistent phase
possesses any nontrival topological properties. In the mean-
field study of the t-U-V-Γ2 model conducted in this work,
the coexistent states, either COR or COL, can emerge only in
metallic states, no insulating states with simultaneously devel-
oped AFM and dSCO orders have been stabilized. It would
be desirable to study the quantum states and phase diagram
of this model by more sophisticated analytical and numerical
methods for an improved understanding. The findings pre-
sented in this work can be viewed as a starting point for further
studies.
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FIG. 9. Band dispersion (red lines) of the single-orbital tight-binding
model. The black lines display the interacting electronic structure of
undoped Sr2IrO4 obtained from the five-orbital model [43] at Hub-
bard interaction (U, JH) = (1.2, 0.05) eV, with the line thickness de-
noting the content of Jeff = 1/2 doublet.

Appendix A: Single-orbital tight-binding model

In the atomic limit, Ir4+ has a 5d5 configuration, with 5
electrons occupy the lower threefold t2g orbitals separated
from the higher twofold eg orbitals by the cubic crystal field.
The strong atomic SOC splits the t2g orbitals into a low-lying
Jeff =

3
2 multiplet occupied by 4 electrons and a singly occu-

pied Jeff =
1
2 doublet. For Sr2IrO4 solid, electronic structure

calculations using the local-density approximation including
SOC and structural distortion shows that, for the realistic
bandwidths and crystalline electric field, the atomic SOC is
insufficient to prevent two bands of predominantly Jeff =

1
2

and 3
2 characters to cross the Fermi level and give rise to two

Fermi surfaces. It has been shown that electron correlations,
i.e., multiorbital Hubbard interaction, leads to a significantly
enhanced effective SOC for the t2g complex [3, 43, 62], push-
ing the Jeff =

3
2 band in the LDA band structure below the

Fermi level, and consequently gives rise to the single band
crossing the Fermi level that is of dominant Jeff =

1
2 char-

acter [1]. This correlation-induced band polarization through
enhancement of the SOC by the Hubbard interaction enables
the single-orbital model of Jeff =

1
2 electrons for Sr2IrO4.

Fig. 9 displays the interacting electronic structure (black
lines) of undoped Sr2IrO4 obtained from the realistic five-

orbital model [43] at Hubbard interaction (U, JH) = (1.2, 0.05)
eV, with the line thickness denotes the content of the Jeff =

1
2

doublet. The red lines show the single-orbital tight-binding
dispersion with hopping parameters chosen according to ti j =

(218, 52,−18) meV for the first, second, and third nearest
neighbors, respectively. Clearly, the effective single-orbital
model describes faithfully the low-energy electronic structure
of the interacting Sr2IrO4.

E C4z C2z C−1
4z Mx My Mxy M−xy

AFM 0 × τ × × × τ 0
dSCO 0 × τ × × × τ 0
sBN 0 × 0, τ × × × 0, τ 0, τ

T TC4z TC2z TC−1
4z T Mx T My T Mxy T M−xy

AFM τ × 0 × × × 0 τ

dSCO 0 × τ × × × τ 0
sBN × 0, τ × 0, τ 0, τ 0, τ × ×

TABLE I. Symmetries of [1, 1, 0]-ordered AFM, [−1, 1, 0]-ordered
dSCO, and [0, 0, 1]-ordered sBN states. The table gives the lattice
translation required for a state to recover itself after a symmetry op-
eration of the magnetic space group of 4mm1′. τ is the translation of
one lattice constant along either x- or y-axis. Symbol × means such
a lattice translation does not exist.

Appendix B: Symmetry analysis

We analyze the symmetry properties of the states consid-
ered in this work within the symmetry point group C4v⊗{E,T },
i.e., the magnetic point group 4mm1′, where C4v is the sym-
metry point group of the two-dimensional square lattice and
T is the time-reversal operation. The magnetic point group
4mm1′ has 16 symmetry operations: the 8 symmetry opera-
tions of C4v listed in the top half of Table I and their products
with T in the bottom half. The 8 operations are identity E,
fourfold rotation around z-axis C4z, twofold rotation around
z-axis C2z, inverse fourfold rotation around z-axis C−1

4z , mirror
reflection about yz-plane Mx, mirror reflection about zx-plane
My, mirror reflection about diagonal-plane Mxy, and mirror
reflection about anti-diagonal-plane M−xy. The symmetries of
[1, 1, 0]-ordered AFM, [−1, 1, 0]-ordered dSCO, and [0, 0,
1]-ordered sBN are summarized in Table I, which gives the
lattice translation, if it exists, required for a state to recover
itself after a symmetry operation of the magnetic point group
4mm1′. The state does not have the corresponding symme-
try if it could not recover itself by any lattice translation after
a symmetry operation. Clearly, both [1, 1, 0]-ordered AFM
and [−1, 1, 0]-ordered dSCO break {C4z, C−1

4z , Mx, My, TC4z,
TC−1

4z , T Mx, T My} symmetries and belong to the magnetic
point group mm21′, while the [0, 0, 1]-ordered sBN breaks
{C4z, C−1

4z , Mx, My, T , TC2z, T Mxy, T M−xy} symmetries and
belongs to the magnetic point group 4′m′m.

Using the symmetries of AFM, dSCO, and sBN listed in
Table I, it is straightforward to obtain the symmetries of any



10

FIG. 10. The expectation of (a) sBN, (b) AFM, and (c) dSCO order
as a function of doping concentration x in the phenomenological co-
existent state where the other two orders with the strength of 0.05 are
introduced manually to the tight-binding model.

coexistent state. The coexistent state has a symmetry only if
there exists a lattice translation that simultaneously recovers
all involved states after the corresponding symmetry opera-
tion. It is thus easy to show that all coexistent states, no matter
it consists of any two or all three of AFM, dSCO, and sBN or-
ders, are invariant under {E, C2z, Mxy, M−xy} operations, and
belong to the magnetic group mm2. Since they all possess
the same symmetry properties, the combination of any two of
these three orders would naturally leads to the emergence of
the third one. To demonstrate this, we have introduced phe-
nomenologically two of these three orders, of the strength of
0.05, to the tight-binding Hamiltonian, and then calculate the
expectation of the third order. The doping dependence of the
third order is shown in Fig. 10a for sBN, in Fig. 10b for AFM,
and in Fig. 10c for dSCO. Clearly, each of the three orders
can be induced by the combination of the other two orders.
It varies continuously as a function of doping concentration
x, and changes its sign from negative to positive at a critical
doping, indicating a transition in its chirality from left-handed
to right-handed.
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[50] R. Frésard and P. Wölfle, Unified slave boson representation
of spin and charge degrees of freedom for strongly correlated
fermi systems, International Journal of Modern Physics B 6,
685 (1992).

[51] K. Jiang, S. Zhou, and Z. Wang, Textured electronic states of
the triangular-lattice Hubbard model and NaxCoO2, Phys. Rev.
B 90, 165135 (2014).

[52] Y.-P. Huang, J.-W. Dong, P. Kotetes, and S. Zhou, Antiferro-
magnetic chiral spin density wave and strain-induced Chern in-
sulator in the square lattice Hubbard model with frustration,
Phys. Rev. B 102, 195120 (2020).

[53] K. Jiang, J. Hu, H. Ding, and Z. Wang, Interatomic coulomb
interaction and electron nematic bond order in FeSe, Phys. Rev.
B 93, 115138 (2016).

[54] Y. Hong, Y. Jo, H. Y. Choi, N. Lee, Y. J. Choi, and W. Kang,
Large magnetic anisotropy in canted antiferromagnetic Sr2IrO4

single crystals, Phys. Rev. B 93, 094406 (2016).
[55] M. Nauman, Y. Hong, T. Hussain, M. S. Seo, S. Y. Park, N. Lee,

Y. J. Choi, W. Kang, and Y. Jo, In-plane magnetic anisotropy in
strontium iridate Sr2IrO4, Phys. Rev. B 96, 155102 (2017).

[56] M. Nauman, T. Hussain, J. Choi, N. Lee, Y. J. Choi, W. Kang,
and Y. Jo, Low-field magnetic anisotropy of Sr2IrO4, Journal of
Physics: Condensed Matter 34, 135802 (2022).

[57] H. Zhou, Y.-Y. Xu, and S. Zhou, Electron Correlations, Spin-
Orbit Coupling, and Antiferromagnetic Anisotropy in Layered
Perovskite Iridates Sr2IrO4, Communications in Theoretical
Physics 70, 081 (2018).

[58] S. Mohapatra and A. Singh, Pseudo-spin rotation symmetry



12

breaking by coulomb interaction terms in spin–orbit coupled
systems, Journal of Physics: Condensed Matter 33, 065802
(2020).

[59] H. Liu and G. Khaliullin, Pseudo-jahn-teller effect and magne-
toelastic coupling in spin-orbit mott insulators, Phys. Rev. Lett.
122, 057203 (2019).

[60] S. Zhou and Z. Wang, Electron Correlation and Spin Density
Wave Order in Iron Pnictides, Phys. Rev. Lett. 105, 096401
(2010).

[61] X. Chen, T. Hogan, D. Walkup, W. Zhou, M. Pokharel, M. Yao,
W. Tian, T. Z. Ward, Y. Zhao, D. Parshall, C. Opeil, J. W. Lynn,
V. Madhavan, and S. D. Wilson, Influence of electron doping on
the ground state of (Sr1−xLax)2IrO4, Phys. Rev. B 92, 075125
(2015).

[62] K. Jiang, Correlation renormalized and induced spin-orbit cou-
pling, Chinese Physics Letters 40, 017102 (2023).


