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We investigate the deconfinement transition driven by excitations in long-range spin models. At
low temperatures, these models exhibit a confined phase where domain-wall (or kinks) are localized.
As temperature increases, kinks interact and propagate, leading to a transition to a de-confined
phase. This transition is influenced by the interplay between thermal energy and interaction ef-
fects, resulting in extended, de-confined regions. Although kink density is dynamically stable, non-
equilibrium changes in their fluctuations characterize the transition. Our findings provide insights
into the mechanisms of confinement and deconfinement in long-range spin models, with implications
for both condensed matter physics and lattice gauge theories. This study sheds light on the universal
aspects of confinement and opens avenues for further exploration and experimental verification.

Introduction: Confinement, as observed in quantum
chromodynamics (QCD), is a phenomenon that binds
fundamental particles, such as quarks and gluons, into
stable heavier particles known as hadrons [1–5]. This
binding occurs because of the presence of a confining
potential, which asymptotically increases with particle
separation. Recent research in lattice gauge theories [6–
14] and quantum spin chains [15–21] has explored the
effects of confinement in out-of-equilibrium settings, re-
vealing anomalous dynamical behavior that ultimately
leads to the suppression of thermalization [6, 22, 23].
Despite the fundamental differences between the lattice
gauge theories and quantum spin chains, there is a con-
nection between the observed confinement behavior in
these two systems. Notably, the two-dimensional Ising
model can exhibit confinement-like behavior, similar to
that observed in lattice gauge theories [24–26]. There-
fore, the study of simplified magnetic spin models can
provide valuable insights into the mechanisms of confine-
ment and phase transitions in complex gauge theories.

In recent years, there has been increasing interest
in the study of confinement-deconfinement transitions
in lattice gauge theories [12, 27–35] and quantum spin
chains [16–18, 36, 37]. This interest arises from the dir-
ect analogy between this behavior and the confinement-
deconfinement crossover hypothesized in QCD, where
stable hadrons transform into quark-gluon plasma at ex-
tremely high energy densities. In particular, the ferro-
magnetic long-range Ising model (LRIM) with power-
law decaying interactions has been a paradigmatic model
for such investigations because long-range ferromag-
netic interactions naturally induce confinement and loc-
alize domain-wall kinks to specific regions of the lattice
[15, 16]. These bound-domain wall kinks are analogous
to stable hadrons in QCD.

In this study, we explore the confinement-
deconfinement transition in the long-range Ising

model, driven by the density of excitations that has been
adjusted by temperature. In a previous study for short
range confined Ising chain it was observed that rare
events with mesons created in close proximity lead to an
avalanche of scattering events which give rise to a stable
prethermal regime [38]. Here, we begin with a thermal
state with non-trivial kink density that is tuned by the
temperature followed by a quench to the confining phase
of the long-range Ising model [16, 17, 37]. We investigate
the real-time dynamics of the average kink density and
kink fluctuation [17, 19].

We employ state-of-the-art tensor network simulations
[39–41] to represent the thermal states as matrix density
operators (MPDO) [42–44] and simulate their sub-
sequent real-time evolution. The post-quench real-time
dynamics of a mixed density matrix exhibit a much
richer behavior compared to that of a pure state with
a non-zero density of kinks. Both the average kink
density and kink fluctuation show strong signatures of
transition from a low-temperature strongly confined
phase to a high-temperature deconfined phase. Finally,
we employ an effective semi-classical model with a
single kink [15] to theoretically predict the observed
confinement-deconfinement transition. Our results
can be experimentally realized using various Atomic,
Molecular, and Optical (AMO) platforms [17, 45–52]
which are capable of implementing the global quench
protocol.

Model: We study a spin-1/2 ferromagnetic long-range
Ising model (LRIM) under open boundary conditions,
described by the following Hamiltonian:

Ĥ(J, α, h) = −J

N∑
i<j

σ̂x
i σ̂

x
j

|i− j|α
− h

N∑
i=1

σ̂z
i (1)

Here, σν
i represents the Pauli matrix in the ith site
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Figure 1. Schematic diagram of the quench protocol: 1) Initial states are prepared as thermal density matrices of the initial
Hamiltonian, ∝ e−βĤ0 at varying temperatures (β = 1/T ). 2) The initial thermal density matrix is evolved in real time with a
final Hamiltonian ∝ e−itĤ . Here, we illustrate the evolution of a single representative state withing a thermal density matrix.
⟨K⟩ is the average number of domain wall kinks, l is the average distance between two kinks and ξloc is the localization length
defined as the maximum distance traced by a domain wall kink. 3) We probe the real time evolution by calculating the kink
density and kink fluctuation at every time step.

and νth directions. The long-range interaction between
the two spins follows an inverse power law of their
separation distance, controlled by the parameter α. The
transverse magnetic field h governs the kinetic term in
the Hamiltonian. We adopt a energy scaling convention
with J set to 1. The LRIM demonstrates integrable
behavior at the two extremities of α. At α = ∞, it
simplifies to the nearest-neighbor transverse field Ising
model (TFIM) and can be effectively solved by mapping
onto spinless fermions through the Jordan-Wigner trans-
formation [53]. Conversely, when α = 0, it transforms
into a fully connected model [54–56]. TFIM exhibits
a quantum phase transition between the ferromagnetic
and paramagnetic phases at h = J , which persists
for all values of α with an increasing critical point
[57–59]. Additionally, at α ≤ 2 we observe a thermal
phase transition in the LRIM from a low-temperature
ferromagnetic phase to a high-temperature paramagnetic
phase [60, 61]. In recent years, LRIM has emerged as a
paradigmatic spin model for studying non-equilibrium
physics in many-body systems owing to its rich array
of intriguing features, including dynamical phase trans-
itions [45, 46, 56, 62–66], prethermalization phenomena
[22, 23], nonlinear lightcone propagation [67, 68], and
the emergence of time crystals [69, 70]. Furthermore,
LRIM exhibits the phenomenon of dynamical confine-
ment, wherein it confines domain wall kinks into bound

quasiparticles, ultimately resulting in the suppression
of information propagation within the system [15–17, 37].

Quench dynamics: We initialize our states as a thermal
density matrix ρ̂β(t = 0) ∝ e−βĤ0 , where β repres-
ents the inverse temperature and the initial Hamilto-
nian Ĥ0 has a zero magnetic field. The initial states
evolve in real time with the post-quench Hamiltonian
ρ̂β(t + dt) = e−idtĤ ρ̂β(t)e

idtĤ (see figure 1). The post-
quench Hamiltonian parameters are selected to reside
within the strongly confined regime [15, 16]. The thermal
state is simulated as a mixed density matrix in a locally
purified form [42, 43]. We begin at an infinite temperat-
ure, that is, β = 0 where the state is maximally entangled
and has a trivial representation as the matrix product
density operator (MPDO)[42]. We obtain subsequent fi-
nite temperature states by the imaginary time evolution
of the maximally mixed state [71]. The thermal states
realized as MPDO are then evolved in real time. We
employ a two-site time dependent variational algorithm
(TDVP) [72, 73] with second order integration scheme
for both imaginary and real time evolution of MPDO
[71]. The elementary excitations during real-time dynam-
ics are domain wall kinks, which propagate through the
system in real time spreading correlation. Consequently,
kink density emerges as a natural order parameter for
investigating confinement and its impact on correlation
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Figure 2. (a) Time evolution of kink density following a
quench to α = 1.8, hf = 0.4, system is initialized at α = 1.8,
hi = 0.0 at different temperatures. The horizontal dashed
lines represent the kink densities of the thermal states cor-
responding to the quenches. The results are for system size
of N = 50 spins. (b) Fourier spectrum of ⟨k̂⟩t (right panel).
The vertical dashed lines corresponds to the meson masses
calculated from the effective two kink model [71]. The col-
orbar is common to both panels.

propagation within the system [15–18]. Specifically, it is
defined as

k̂ =
1

N

N−1∑
i=1

1− σ̂x
i σ̂

x
i+1

2
, (2)

quantifying the number of nearest neighbor kinks within
the system. The initial state is represented by a mixed
thermal density matrix, with the average kink density
ranging from 0.5 at infinite temperature (corresponding
to a maximally mixed state) to 0 at lower temperatures
([71]. Therefore, the parameter β serves as a tuning para-
meter to precisely control the initial state of the system
with varying kink densities.

In Figure 2 (a), we plot the post-quench evolution
of the average kink density, ⟨k̂⟩, initiated from vari-
ous initial thermal states within a temperature range
0.30 ≤ β ≤ 1.10. The horizontal dashed lines represent
the expected thermal values Tr[ρ̂β̃ k̂], where ρ̂β̃ ∝ e−β̃Ĥ

and the effective temperature attributed to a quench[74]
β̃ is extracted by solving the equation,

Tr[ρ̂βĤ0]

Tr[ρ̂β ]
=

Tr[ρ̂β̃Ĥ]

Tr[ρ̂β̃ ]
(3)

We observe two distinct behaviors at the extremit-
ies of the investigated temperature range. At lower
temperatures, the kink density persistently oscillates
around the expected thermal value with no signs of
relaxation. This is indicative of strong confinement
and suppression of the correlation spreading within
the system and eventual delay of thermalization [75].
This behavior weakens as the temperature increases,
and at high temperatures, the kink density rapidly
relaxes to the expected thermal value, suggesting
robust thermalization [75] and deconfinement [16, 18].
Figure 2 (b) shows the Fourier spectrum of ⟨k̂⟩. At
lower temperatures we observe sharp frequency peaks

Figure 3. Time evolution of the kink fluctuation at different
temperatures (the color bar shows the inverse temperature
β) for α = 1.8, hf = 0.4 (a) and α = 2.3, hf = 0.4 (b).The
results are for system size of N = 50 spins. The data are
rescaled by 1/β and subtracted from their initial values for
better visualization. Dashed lines represent the linear fit of
the data in an appropriate time window.

corresponding to the dominant oscillations of ⟨k̂⟩.
These frequency peaks exhibit strong agreement with
the meson masses extracted from the two-kink model
[15, 16, 18, 19, 37](refer to [71] for additional details)
indicative of the presence of strongly bound mesons.
However, as the temperature increases, these frequency
peaks gradually diminish and ceases to exists, indicating
the dissolution of bound mesons at high temperature [76].

Evolution of kink fluctuation: Kink density provides
valuable qualitative insights into the deconfinement
transition, revealing distinct behaviors at the extreme
ends of the temperature range under examination. How-
ever, a more prominent signature of this transition
emerges from the interaction and propagation of domain
wall kinks within the system. To address this, we study
the connected kink fluctuation ⟨k̂2⟩c = ⟨k̂2⟩ − ⟨k̂⟩2.

In Figure 3, we depict the post-quench evolution of
⟨k̂2⟩c for two distinct sets of post-quench parameters. For
both post-quench Hamiltonians, we observe two contrast-
ing behaviors at the extremes of the temperature range
considered. At lower temperatures, ⟨k̂2⟩c exhibits per-
sistent oscillations over time, similar to the behavior of
⟨k̂⟩, indicating a significant suppression in the propaga-
tion of domain wall kinks. As the temperature increases,
⟨k̂2⟩c exhibits linear growth over time, suggesting a light-
cone-like dispersion of the domain wall kinks. This ob-
servation aligns with light-cone spreading of correlation
and entanglement in the deconfined phase, as previously
discussed in the literature [15, 16, 18]. A more compre-
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Figure 4. Probability distribution function (PDF) of domain
wall kinks for different system parameters and temperature.
Three colors represent different time slices during the real
time dynamics (see label). (a) and (c) exhibits strong con-
finement at low temperature with persistent oscillation of
PDF, (b) and (d) exhibits high temperature deconfinement
where the PDF consistently gets broader with time (see [71]
for details on calculation of P (k))

.

hensive understanding emerges when we examine the full
probability distribution P (k) of the domain wall kinks.
In Figure 4 (b) and (d), we observe that P (k) monoton-
ically broadens over time, whereas in Figure 4 (b) and
(d), it exhibits oscillations in time. To quantitatively as-
sess this behavior, we fit straight lines to the ⟨k̂2⟩c data
over an appropriate time window and define the slope of
these lines as the velocity of kink dispersion v. In figure
5 we plot v as the function of temperature of the initial
thermal states. We observe a transition from a strongly
confined regime at low temperatures denoted by v ≈ 0 to
a de-confined regime denoted by a monotonically increas-
ing finite v as the temperature increases. This monotonic
rise in v halts eventually because of the finite size effects.

The underlying mechanism of this transition can be un-
derstood by studying the dynamics of an effective single
kink model, previously employed to study the quasi-
localized excitations and suppression of transport in one-
dimensional spin chains [15, 77]. The semi-classical limit
of the single kink model is given by the Hamiltonian,

Hcls
α,h,N (k, q) = Vα,N (q)− 2h cos(k) (4)

where,

Vα,N (q) =
2[q2−α + (N − q)2−α − (N − 1)2−α]

(α− 1)(2− α)
, (5)

and (k, q) ∈ [0, 2π]× [1, N −1] [71]. Within this frame-
work we define the localization length for a given system

Figure 5. Velocity of kink fluctuation extracted from 3 as
a function temperature for two different quenches: α =
1.8, hf = 0.4 (a) and α = 2.3, hf = 0.4 (b) and system sizes
N = 30 (solid triangle) and N = 50 (solid circle). The color
gradient represents varying temperature. Dashed black lines
are for visual guidance. Horizontal dashed lines are the de-
confinement transition temperatures predicted by the single
kink model: blue for N = 50, green for N = 30.

parameters, ξloc as the maximum distance traced by the
single kink initialized at rest with the maximum possible
energy that is by solving for maximum q in the equation,

Hcls
α,N (0, N/2) = Hcls

α,N (k, q). (6)

ξloc provides a natural threshold for deconfinement
transition. If the separation between kinks is larger than
localization length, l = 1/⟨k̂⟩ ≫ ξloc the kinks undergo
persistent Bloch oscillations localized at their site of ori-
gin, however when 1/⟨k̂⟩ ⪅ ξloc, kinks scatter and de-
localize, effectively destroying confinement [38]. We can
extract the corresponding transition temperature by solv-
ing the following equation for β,

1

ξloc
= ⟨k̂β(t)⟩, (7)
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where ⟨k̂β(t)⟩ is the time averaged Tr[ρ̂β(t)k̂]. It is
apparent from Figure 2 that ⟨k̂β(t)⟩ = Tr[ρ̂β̃ k̂] holds
true for all values of β. By substituting this relation
into Equation 7, the transition temperature can be
determined numerically. In Figure 5, the dashed ho-
rizontal lines represent the deconfinement transition
temperatures obtained using this method. Despite the
simplicity of the single-kink model, it demonstrates a
strong predictive capacity for transition temperature.
This observation can be realized in trapped-ion experi-
ments and other Atomic, Molecular, and Optical (AMO)
platforms [17, 45–52] that are capable of initiating the
global quench protocol from an initial product state. The
post-quench evolution of a mixed state can be realized
by independently evolving individual pure states within
the given mixed state and subsequently computing
the weighted ensemble average of the individual pure
state evolution: ρ̂β(0) → ρ̂β(t) =

∑
n Pβ(n) |n(t)⟩ ⟨n(t)|,

where |n(t)⟩ = e−itĤ |n⟩ and Pβ(n) = e−βEn/
∑

n e
−βEn .

State |n⟩ represents the eigenstate of Ĥ0, and En corres-
ponds to the associated eigenvalue. Notably, this proced-
ure scales exponentially with the system size. However,
for practical purposes, it is feasible to consider only the
dominant states, based on how Pβ(n) decays with n.
This is particularly applicable to low-temperature states.

Conclusion: We have studied the out-of -equilibrium
dynamics of thermal states following a global quantum
quench to a confined phase of a long-range Ising model
[15–17]. The post-quench time evolution of domain walls
kinks and their Fourier signals have highlighted the in-
tricate interplay between slow-decaying long-range inter-
actions and the emergence of confinement-like behavior
at low temperature. Furthermore, the time dependent
fluctuation of domain wall kinks provides a solid evid-
ence of dynamical deconfinement transition with increas-
ing initial kink density that has been tuned thermally.

Our study opens up promising avenues for both the-
oretical exploration and experimental verification. The
identification of the initial density as a key parameter in-
fluencing the deconfinement transition offers a new dir-
ection for experimental investigations in various AMO
platforms[17, 45–52]. Moreover, the implications of our
results extend beyond the regime of condensed matter
physics, resonating with the study of confinement in lat-
tice gauge theories [6–12].
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Supplemental Materials

TWO KINK MODEL

We use the two kink model to study the low energy excitations as bound quasiparticles in the long-range Ising
model. The idea is to project the Hilbert space into a subspace where n spins are clustered together in the sea of up
spins, forming two kink domain walls that are free to shift, contract, or expand. The state is defined by two quantum
numbers,

|j, n⟩ = |... ↑↑↓j↓j+1 ... ↓↓j+n−1↑↑ ...⟩ (8)

The long-range Hamiltonian 1 can be projected in the in the two kink subspace is Ĥ = P̂−1ĤP̂, where P̂ is the
projection operator,

Ĥ |j, n⟩ = Vα,N (j, n) |j, n⟩ − h
[
|j, n+ 1⟩+ |j, n− 1⟩+ |j + 1, n− 1⟩+ |j − 1, n+ 1⟩

]
(9)

where, for a finite system with N spins, 1 ≤ j ≤ N − 1 and 1 ≤ n ≤ N − j − 1. The first term is diagonal,
Vα,N (j, n) is the total potential energy above the ground state (fully polarized), and the second off-diagonal term
is the spin flip term, which is responsible for the shift, expansion, and contraction of the domain wall kinks. The
projected Hamiltonian 9 can be diagonalized on the basis {|j, n⟩} and the masses of the mesons can be extracted from
the energy spectrum. The matrix we need to diagonalize is

Hj,n:j′,n′ = Vα,N (j, n)δj,j′δn,n′ − h
[
δj,j′δn+1,n′ + δj,j′δn−1,n′ + δj+1,j′δn−1,n′ + δj−1,j′δn+1,n′

]
(10)

where,

Vα,N (j, n) = 2
∑

j≤u≤j+n−1

[ ∑
1≤v≤j−1

1

|v − u|α
+

∑
j+n≤v≤N

1

|v − u|α

]
(11)

is the potential energy of excitation of the two kink states |j, n⟩ above the ground state. This model provides
a good description of confinement in a long-range Ising chain in the limit N → ∞ where the confining potential
increases monotonically with distance between the coupled domain walls. However, for a finite spin chain, the
confining potential increases with the separation of the kinks up to a characteristic length, after which it starts to
decrease. This behavior is more severe for smaller α so the energy spectrum of equation 9 does not provide a good
prediction for the masses of the mesons as α is decreased.

SINGLE KINK MODEL AND LOCALIZATION LENGTH

Similar to the two kink model we can define the single kink model by projecting the Hilbert space into a subspace
with just one single kink. The quantum state is defined by a single quantum number signifying the position of the
single kink,

|j, n⟩ = |... ↑↑↑n↓n+1↓↓ ...⟩ . (12)

The corresponding Hamiltonian is defined as,

Hn:n′ = Vα,N (n)δn,n′ − h
[
δn+1,n′ + δn−1,n′

]
(13)

where the effective potential is,

Vα,N (n) = 2
∑

1≤i≤n

∑
n+1≤j≤N

1

|i− j|α
. (14)

In thermodynamic limit the sums in the potential can be approximated with integrals,
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Figure 6. Phase space of the semi-classical Hamiltonian 20 over a full period of momentum for two different system parameters.
ξloc is called the localization length and is defined as the maximum space traversed by the single kink originally located at the
center of the system.

Vα,N (n) = 2

[
N−n∑
r=1

1

rα
+

N−n+1∑
r=2

1

rα
+ ....+

N−1∑
r=n

1

rα

]
(15)

≈

[∫ N−n

1

dr

rα
+

∫ N−n+1

2

dr

rα
+ ....+

∫ N−1

n

dr

rα

]
(16)

=
1

(α− 1)

[
n∑

r=1

1

rα−1
−

1∑
n′=n

1

(N − n′)α−1

]
(17)

On further approximation of the sums we get,

Vα,N (n) ≈ 2

(α− 1)

[∫ n

1

dr

rα−1
−

∫ 1

n

dn′

(N − n′)α−1

]
(18)

=
2

(α− 1)(2− α)

[
1

nα−2
+

1

(N − n)α−2
− 1− 1

(N − 1)α−2

]
(19)

We can take the classical limit of the Hamiltonian in equation 13 by defining a phase space (p, q) ∈ [0, 2π]× [1, N−1]
and corresponding Hamiltonian,

Hcls
α,h,N (p, q) = Vα,N (q)− 2h cos(p) (20)

where the function Vα,N (q) is defined in the equations 19. Starting from the most energetic state in a finite chain
within the single kink scenario; a single static kink located at the centre of the chain, we can calculate the p× q phase
space by solving;

Hcls
α,N (0, N/2) = Hcls

α,N (p, q) (21)

In figure 6 we plot the classical phase space by solving 21 over a full periodicity of the momentum. We observe
that the kink travels farthest from its original position at p = π. We define this distance as the localization length of
the kink, ξloc. Localization length separates two different dynamical regimes: when the average separation between
the kinks is larger than ξloc the kinks exhibit uncorrelated Bloch oscillations strictly localized at their site of origin,
as the average kink separation between kinks becomes comparable to and smaller than ξloc the kinks disperse and
delocalize. The critical temperature corresponding to this transition can be extracted by numerically solving the
following equation for β;
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Figure 7. Numerical solution of the equation 22. The dots are the average kink separation, l = N

Tr[ρ̂
β̃
k̂]

, as a function of β, the

full lines are the cubic interpolation of the data, and the horizontal dashed lines are ξloc for the corresponding parameters. The
dashed circles highlights the point of solution.

l =
N

⟨k̂β(t)⟩
= ξloc, (22)

where ⟨k̂β(t)⟩ is the time average of Tr[ρ̂β(t)k̂]. The post-quench behavior of ⟨k̂β(t)⟩ suggests that we can replace
⟨k̂β(t)⟩ with the expected thermal kink density Tr[ρ̂β̃ k̂].

SIMULATION DETAILS

Simulation of finite temperature states

The finite temperature states are simulated by the method of purification. We begin at infinite temperature, β = 0,
where the state is maximally mixed and can be written as the tensor product of local identities ρ̂0 =

⊗N
i=1 1

σi,σ̃i = 1,
where 1σi,σ̃i = [δσi,σ̃i

]d×d and d is the dimension of the physical space. The density operator for any non-zero β is

ρ̂β ∝ e−βĤ = e−
β
2 Ĥ

1e−
β
2 Ĥ (23a)

∝ e−
β
2 Ĥ ρ̂0e

− β
2 Ĥ (23b)

We keep the density operator in locally purified form ρ̂ = XX† at each stage where X is represented as tensor

Xσ1,σ2,...σi,...,σN

k1,k2,...,ki,...,kN
= Aσ1,k1

m0,m1
Aσ2,k2

m1,m2
...Aσi,ki

mi−1,mi
...AσN ,kN

mN−1,mN
(24)

where si = d, ki = d are the physical index and the Kraus index are are fixed through out and 1 ≤ mi ≤ χmax is
the bond index. The density operator can now be purified to a given β in trotterized steps

ρ̂β+dβ = e−
dβ
2 Ĥ ρ̂βe

− dβ
2 Ĥ (25a)

= e−
dβ
2 ĤXβX

†
βe

− dβ
2 Ĥ (25b)

= e−
dβ
2 ĤXβ [e

− dβ
2 ĤXβ ]

† (25c)

The simulation of Equation (25) can be achieved through an imaginary time Time-Dependent Variational Principle
(TDVP) by employing the transformation −idt → −dβ, while rigorously maintaining the locally purified form. It
is sufficient to simulate Xβ + dβ = e−

dβ
2 ĤXβ; the other half is a trivial conjugate. We employ a two-site TDVP

algorithm with a time step of dβ = 0.001. The initial state, denoted by ρ̂0, is maximally mixed and has a small bond
dimension of two. Notably, unlike real-time evolution, the bond dimension does not exhibit excessive growth during
imaginary time evolution.
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Figure 8. (a) Bond dimension corresponding to the central site as a function of inverse temperature during the imaginary time
evolution. All singular values smaller than 10−8 are discarded during truncation. (b) Average kink density ⟨k̂⟩ as a function of
inverse temperature β for three different parameters and system size N = 51. The figure illustrates a thermal phase transition
from low temperature ferromagnetic regime (in blue) to high temperature paramagnetic regime (in red) based on the kink
density. Notice that at β = 0 kink density is 0.5 for all parameter values which is the expected value for a maximally mixed
state. Note: In thermodynamic limit we should not observe a thermal phase transition for α > 2, the transition observed here
for α = 2.3, h = 0.0 is an artifact of finite size effect.

In Figure 8 (a), the bond dimension corresponding to the central site is plotted against β. Truncation involves
discarding all singular values smaller than 10−8. The peaks in the plot indicate critical regions where the area law
is invalid [78–82]. In Figure 8 (b), the average kink density ⟨k̂⟩ is plotted as a function of the inverse temperature β

for different α and h = 0.0. At β = 0, the state is maximally mixed and ⟨k̂⟩ = 0.5 holds for all parameters. As β

increases, there is a monotonic reduction in ⟨k̂⟩, indicating a thermal transition into the ferromagnetic phase, where
⟨k̂⟩ = 0. It is important to note that the thermal phase transition observed in Figure 8 is robust only for α ≤ 2 in
the long-range Ising model, and the transition observed for α = 2.3 is an artifact of the finite-size effects.

Real time evolution of thermal state

The thermal density operator can be evolved in real time while keeping the locally purified form intact,

ρ̂β(t+ dt) = e−idtĤ ρ̂β(t)e
idtĤ (26a)

= e−idtĤXβ(t)X
†
β(t)e

idtĤ (26b)

= e−idtĤXβ(t)
[
e−idtĤXβ(t)

]†
(26c)

We employ a two-site Time-Dependent Variational Principle (TDVP) algorithm with a time step of dt = 0.05 for
real-time evolution. Similar to the imaginary time evolution, it is sufficient to simulate Xβ(t + dt) = e−idtĤXβ(t)
with the other half being its trivial conjugate. To assess the convergence of the TDVP data, we calculate the relative
error in kink density using three increasing bond dimensions (χmax = 80, 100, 128) at β = 0.3, as illustrated in Figure
9. Relative errors consistently remain below O(10−3).

The explanation for choosing β = 0.3 to test the convergence of all TDVP data is straightforward. Increasing the
temperature facilitates correlation spreading through the system during real-time evolution, necessitating a higher
bond dimension to capture the dynamics effectively. Thus, testing the convergence of errors for the worst-case
scenario, where β = 0.3 is sufficient for our study. The results discussed in the main text are based on a maximum
bond dimension of χmax = 128.
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Figure 9. Convergence of the TDVP data for DT(t) with increasing bond dimensions, χ = 80, 100, 128, for α = 1.8, hf = 0.4
(a) and α = 2.3, hf = 0.4 (b). The black dashed line is for visual guidance.

Full counting statistics of kink density

The full counting statistics of a generic quantum mechanical operator Ô over a density matrix ρ̂ can be calculated
as;

P (o) = Tr[ρ̂δ(Ô − o)] (27)

which can be Fourier transformed to an integral

P (o) =

∫ ∞

−∞

dθ

2π
e−iθoTr

[
ρ̂eiθÔ

]
. (28)

In our specific case the operator is the kink density k̂ defined in equation 2, replacing this in equation 28 gives us,

P (k) =

∫ ∞

−∞

dθ

2π
e
−iθ

[
k−N−1

2

]
Tr

[
ρ̂

N−1∏
j=1

e−iθ
σ̂x
j σ̂x

j+1
2

]
. (29)

The problem boils down to calculating the trace of the product of two site exponential operator. We can expand
the two site exponential operator by Taylor series and rearrange to break it down into a product of two single site
operators acting on site i and i+ 1 respectively,

e−iθ
σ̂x
j σ̂x

j+1
2 = cos

(θ
2

)
− i sin

(θ
2

)
σ̂x
j σ̂

x
j+1 =

[
cos

(
θ
2

)
Ij −i sin

(
θ
2

)
σ̂x
j

] [
Ij+1

σ̂x
j+1

]
(30)

Equation 30 suggests that that the integral in equation 29 has a periodicity of 2π so the integral can be restricted to
θ ∈ [−π, π]. We reshape and redefine the operators acting on site i and i+1 in equation 30 as MPOleft and MPOright
respectively (see (a) and (b) in figure 10). Each site now has two single site tensors that can be compressed together
into a four legged MPO (see (c) in figure 10) which can act on a matrix product density operator in a straight forward
manner.



13

Figure 10. Left (red) and right (blue) MPO at site j, (a) and (b) respectively. Contracting left and right MPO at each site to
build a four legged MPO (black) at each site, (c).
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