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Motivated by the problem of detecting a change in the evolution of a
network, we consider the preferential attachment random graph model with
a time-dependent attachment function. Our goal is to detect whether the at-
tachment mechanism changed over time, based on a single snapshot of the
network and without directly observable information about the dynamics. We
cast this question as a hypothesis testing problem, where the null hypothe-
sis is a preferential attachment model with a constant affine attachment pa-
rameter δ0, and the alternative hypothesis is a preferential attachment model
where the affine attachment parameter changes from δ0 to δ1 at an unknown
changepoint time τn. For our analysis we focus on the regime where δ0 and
δ1 are fixed, and the changepoint occurs close to the observation time of the
network (i.e., τn = n− cnγ with c > 0 and γ ∈ (0,1)). This corresponds to
the relevant scenario where we aim to detect the changepoint shortly after it
has happened.

We present two tests based on the number of vertices with minimal de-
gree, and show that these are asymptotically powerful when 1

2 < γ < 1. We
conjecture that there is no powerful test based on the final network snapshot
when γ < 1

2 . The first test we propose requires knowledge of δ0. The second
test is significantly more involved, and does not require the knowledge of
δ0 while still achieving the same performance guarantees. Furthermore, we
prove that the test statistics for both tests are asymptotically normal, allowing
for accurate calibration of the tests. This is demonstrated by numerical exper-
iments, that also illustrate the finite sample test properties.
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1. Introduction. One of the most celebrated successes of complex network theory has
been the recognition that simple dynamical random graph models with local connection rules
are able to successfully explain important macroscopic features observed in real-world net-
works. The preferential attachment model and its generalizations are perhaps the most suc-
cessful of such models. Barabási and Albert [5] proposed this model to explain the occurrence
of power-law degree sequences, which are often observed in real-world networks such as the
world wide web [1, 11] or internet [20], biological networks [21, 27, 29], collaboration net-
works of movie actors [2, 22], and citation networks [6, 30, 33, 37]. Furthermore, the typical
distance between vertices in the preferential attachment model is small [19] (see also [26,
Chapter 8] and references therein). This is called the small-world phenomenon [38, 39].

The preferential attachment model considers the entire evolution of a network by adding
vertices one by one using a simple preferential attachment rule. Informally, as new vertices
are added to the graph, they are more likely to attach to vertices that already have a large de-
gree, hence further increasing the degree of these vertices. This formalism essentially creates
a paradigm where “the rich get richer”, which is often invoked to explain the wide-spread
inequality in socio-economic contexts [32]. Accordingly, the degree of the oldest vertices
grows as new vertices attach to the graph. On the other hand, the degree of the last few ver-
tices to join is typically quite small. Since its introduction in [5], the preferential attachment
model has received a tremendous amount of attention thanks to its early explanatory suc-
cesses. The structural properties of the model are investigated formally in [9, 10], see also
[25, 26] for a detailed overview on this model and many of its properties.

In our work we are interested in situations where the growth dynamics of the network do
not remain constant over time, but have a change at some point. This captures a situation
where a major event could cause a change in the subsequent evolution of the network. To
model this, we consider a time-inhomogeneous affine preferential attachment model, where
a new vertex vt that enters the graph at time 1 ≤ t ≤ n connects to a pre-existing vertex
with degree k with probability proportional to f(k) = k + δ(t). We consider the hypothesis
testing problem where δ(t) = δ0 remains constant under the null hypothesis, whereas under
the alternative the affine attachment parameter δ(t) changes from δ0 to δ1 at an unknown
moment τn, called a changepoint. For our work we are particularly interested in scenarios
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where the change occurs very late, and affects only a very small part of the graph. Specifically,
in the regime we are interested in, the changepoint has the form τn = n− cnγ with c > 0 and
γ ∈ (0,1), as explained in Section 2. From a practical standpoint this is relevant when one
wants to detect the change as quickly as possible.

1.1. Related work. Our work nicely complements earlier results [4, 7] that focus on the
detection of a changepoint in the setting of preferential attachment trees, where every vertex
that enters the graph connects to m= 1 other vertices. There are also some differences. First,
our results consider the more general case of preferential attachment graphs, where vertices
may enter the graph withm≥ 1 edges. The other difference is that we focus on a late change-
point τn = n− cnγ , whereas [4, 7] focus on a changepoint that happens at a linear time O(n)
or even o(n). Thus, in our setting a much smaller number of vertices enter the graph after the
changepoint, making it harder to detect. The authors of [15] propose a likelihood-ratio testing
procedure to detect a changepoint in a preferential attachment tree and the associated change-
point estimator. Crucially the methods in [15] rely on the knowledge of the entire network
evolution. This is not the case for our test, which only requires a snapshot of the network at
the final time. The authors of [15] extend their test to detect multiple changepoints by apply-
ing two general techniques (namely, Screening and Ranking, and Binary Segmentation) to
decompose the multiple-changepoints problem into a sequence of single changepoint prob-
lems. This work, however, is still in the scenario where the changepoint occurs at a linear
time, in stark contrast with the regime we investigate.

Although different from this work, there has been much interest in understanding and
detecting the effect of an initial seed graph on the evolution of the preferential attachment
tree [12–14, 17, 28]. Here one starts with a given initial graph at time t= 1 and then grows
the remaining tree according to a preferential (or uniform) attachment. The goal is to estimate
the initial seed graph based on an observation of the fully developed graph at a much later
time. Finally, changepoint detection and related inference questions have also received much
attention in the setting of dynamic stochastic block models [8, 31, 35, 36, 40]. In those works
the aim is primarily to understand the evolution of the network’s community structure.

2. Model. We formalize the problem of detecting a changepoint in a dynamical net-
work as a hypothesis testing problem on random graphs. We first explain the model that
we use in general, and then define concrete versions of this model for the null and alterna-
tive hypothesis. This model has parameters m ∈ N and δ : N → (−m,∞) and produces a
sequence of undirected graphs without loops. Let Gn = (Vn,En) be an undirected graph,
where Vn = {v0, . . . , vn} denotes the vertex set and En ⊆ {(i, j) : i, j ∈ Vn} denotes a ran-
dom set of edges. Note that Gn has n+1 vertices. For v ∈ Vn let Dv(Gn) denote the degree
of vertex v in the graph Gn.

There exist various versions of the preferential attachment model, each following slightly
different conventions for adding new vertices. Here we consider the following model: the
first graph G1, also called the seed graph, consists of two vertices v0 and v1 connected by m
edges. For t > 1, the graph Gt is constructed by taking Gt−1 and adding one extra vertex vt,
that is connected to the vertices in Gt by exactly m edges. In the model we consider this pro-
cess is better described by introducing a number of intermediate steps, described by graphs
Gt,0,Gt,1, . . .Gt,m, with vertex set Vt = {v0, . . . , vt}. Begin by defining Gt,0 to be identical
to Gt−1 together with an isolated vertex vt. The graph Gt,1 is obtained by adding an edge
between vt and one of the vertices in Vt−1 with probability proportional to Dv(Gt,0) + δ(t).
In general, for i ∈ [m], we proceed by sampling vertex vt,i ∈ {v0, . . . , vt−1} with conditional
probability

(1) P (vt,i = v |Gt,i−1) =
Dv(Gt,i−1) + δ(t)∑t−1
j=0Dj(Gt,i−1) + δ(t)

,
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and constructing Gt,i by adding the edge {vt,i, vt} to Gt,i−1. Finally, define Gt =Gt,m. Note
that the degree of vt in Gt is exactly m.

The above model is rather general, as it allows for quite a bit of flexibility in terms of
the function δ(t), as the only requirement is that δ(t) > −m to ensure that (1) is indeed a
valid probability. A classical choice is to take δ(t) as a constant, and the properties of the
ensuing graphs are well studied (e.g., see [25, 26] and the references therein). However, we
are interested in knowing when it is possible to distinguish graphs generated by a model
where δ(t) is constant versus graphs generated by a model where δ(t) is a step function. The
latter models a preferential attachment evolution, where at some point the characteristics of
the attachment process change.

Consider the above model, and let Gn denote the “last” graph obtained. This is our only
observation, i.e., we do not have access to the sequence {G1, . . . ,Gn−1}. In particular, the
order of the vertices is unknown to us. Clearly the distribution of this random graph is param-
eterized by m and δ. Since Gn has exactly n+1 vertices and nm edges, we have knowledge
of m (so this is not an unknown parameter). Therefore the only unknown parameter is the
function δ.

Our goal is to determine when one can find evidence in the final graph that the growth
dynamics of the network has changed at some point. This can be rather naturally formulated
as an hypothesis testing problem. Namely, we would like to conduct the following binary
hypothesis test: under the null hypothesis (denoted by H0) we assume δ(t) = δ0 > −m for
all t ∈ N. Under the alternative hypothesis (denoted by H1) we assume δ is a step function,
namely

δ(t) = 1{t≤ τn}δ0 + 1{t > τn}δ1 ,

for some δ0 ̸= δ1 with δ0, δ1 >−m, and τn ∈N with τn ≤ n.
Our main research goal is to determine when it is possible to distinguish the two hypothe-

ses, based solely on Gn (where we do not know the order in which the various vertices have
arrived). For our first result we consider δ0 to be known, but we then relax this assumption
and devise a test that does not require this knowledge while retaining the same asymptotic
power characterization. In both cases we use the parameterization τn = n− cnγ , where c > 0
and γ ∈ (0,1), and obviously c and γ are unknown.

Note that the alternative model does coincide with the null model when either δ1 = δ0
or τn = n. Furthermore, since δ is a step-function, the attachment rule in (1) can be further
simplified to get, for v ∈ {v0, . . . , vt−1},

(2) P (vt,i = v |Gt,i−1) =


Dv(Gt,i−1)+δ0

2(t−1)m+tδ0+(i−1) if t≤ τn,

Dv(Gt,i−1)+δ1
2(t−1)m+tδ1+(i−1) if t > τn.

2.1. Assumptions and notation. Throughout this paper, when limits are unspecified, they
are taken as the graph size n→∞. We recall that we consider the parameterization τn = n−
cnγ . All the parameters m, δ0, δ1, c, and γ are assumed to remain constant as a function of n.
We use the subscripts 0 and 1 in the expectation and probability operators to indicate whether
we are considering the null or alternative hypothesis. Finally, we also use standard asymptotic
notation: an =O(bn) when |an/bn| is bounded, an = Ω(bn) when bn =O(an), an = o(bn)
when an/bn → 0, an = ω(bn) when bn = o(an), and an ≍ bn when an = (1 + o(1))bn.
Also, we use the probabilistic versions of these: an =OP(bn) when |an/bn| is stochastically
bounded, an = ΩP(bn) when bn = OP(an), and an = oP(bn) when an/bn converges to 0 in
probability.
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3. Minimal degree tests. All the tests we consider use the information contained in
low-degree vertices, in particular the number of vertices of minimal degree. Although this is
a rather simple idea, the number of minimal degree vertices is substantially affected by the
presence of a changepoint, even at late stages in the growth of the graph.

3.1. Powerful test for known δ0. We begin with the assumption that δ0 is known. Al-
though this might seem unrealistic, it provides a wealth of information about the properties
of the test statistic we consider, and paves the way for more general results when δ0 is un-
known.

To define our test we first introduce some notation. To reduce the notational burden we
identify the set of vertices {v0, . . . , vn} with [n] := {0,1, . . . , n}. Furthermore, let Dv(t) :=
Dv(Gt) denote the degree of vertex v in graph Gt, and let Nk(t) be the number of vertices
of degree k in the graph Gt, that is,

Nk(t) :=
∑
v∈[t]

1{Dv(t) = k} .

Since each vertex is attached to at least m other vertices, in our model we naturally have that
Nk(n) = 0 for k <m, and Nm(n) denotes the number of vertices with minimal degree. The
latter quantity plays a crucial role in our test.

It is well-known that in the classical preferential attachment model, which corresponds
to our null model, the number of vertices of degree k ≥m is highly concentrated [18, 25].
In particular, Nk(n) is well concentrated around npk(δ0) where pk = pk(δ0) satisfies the
recursion

pk =
k− 1 + δ0
2 + δ0/m

pk−1 −
k+ δ0

2 + δ0/m
pk ,

for k >m with

pm(δ0) =
2+ δ0/m

m+ δ0 + 2+ δ0/m
.

This recursion is easily solved, giving rise to the following expression for pk(δ0):

pk(δ0) := (2 + δ0/m)
Γ(k+ δ0)Γ(m+ 2+ δ0 + δ0/m)

Γ(m+ δ0)Γ(k+ 3+ δ0 + δ0/m)
.

Thus, pk(δ0) is the limiting degree distribution of the random graphGn under the null model.
We are now able to introduce our test statistic, that simply compares the number of mini-

mal degree vertices to its asymptotic expected value under the null model, as

T (Gn) :=Nm(n)− npm(δ0) .

If the observed value of T (Gn) is significantly different from zero, then we have evidence
to reject the null model. This brings us to the first result, characterizing when such a test is
powerful. Specifically we introduce a test based on this statistic that is guaranteed to have
type-I error that is at most α (asymptotically), and that is asymptotically powerful provided
γ > 1

2 . In other words, under the alternative hypothesis the type-II error converges to zero
provided γ > 1

2 . When γ < 1
2 , the test is powerless, and when γ = 1

2 , the type-II error is
bounded by a constant that depends on the specific model parameters.

Although this result indicates when the test is powerful or powerless, it provides only a
conservative upper bound on the type I error. It follows from [3] that this test statistic is
asymptotically normal, and therefore we can calibrate this test to guarantee that the type I
error is (1+ o(1))α as n→∞. We do this in Section 3.3. The proof of Theorem 3.1 is given
in Section 7.
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THEOREM 3.1 (Asymptotically powerful test: known δ0). Consider the test that rejects
the null hypothesis for large values of T (Gn). Namely, define the test

ψ(Gn) := 1
{
|T (Gn)| ≥m

√
8n log(2/α)

}
,

where α ∈ (0,1). The type-I error of this test is asymptotically bounded by α, i.e.,

P0 (ψ(Gn) ̸= 0)≤ (1 + o(1))α .

Furthermore, the type-II error of this test satisfies

P1 (ψ(Gn) = 0)

≤

o(1) when γ > 1
2 ,

(2 + o(1)) exp

(
−
((

c|1−pm(δ0)/pm(δ1)|
m
√
8

−
√

log(2/α)
)
∨ 0
)2)

when γ = 1
2 ,

and P1 (ψ(Gn) = 0)≥ (1 + o(1))(1− α) when γ < 1
2 .

The proof of this result is based on the following observations. Under the null model it is
known that E0(Nm(n))− npm(δ0) = O(1). Under the alternative model we can show that

E1 [Nm(n)]− npm(δ0) = (1 + o(1))η(δ0, δ1)n
γ ,

where

(3) η(δ0, δ1) := c(1− pm(δ0)/pm(δ1)) .

Therefore there is a substantial difference in the expected values of the test statistic under the
null and alternative models. Note that both E1 [Nm(n)] and npm(δ0) have the same order of
magnitude O(n), so the above result characterizes the second-order behavior of E1 [Nm(n)]
and thus is somewhat delicate. Besides characterizing the mean of Nm(n), we must also
characterize the fluctuations ofNm(n) around it. These are of small order, and controlled by a
rather standard application of Azuma-Hoeffding’s inequality. SpecificallyNm−E[Nm(n)] =
OP(

√
n). This result holds both under the null and alternative hypothesis, showing that it is

possible to construct a powerful test when γ > 1
2 .

As the proposed test is powerless when γ < 1
2 , one might wonder if there is any test that

can have power in that situation. Although a formal answer to this question is still open, we
conjecture that no test can be powerful in that scenario:

CONJECTURE 3.2 (Powerless tests when γ < 1
2 ). Consider the case γ < 1

2 . We conjec-
ture the following:

(i) All tests based on the vertex degrees {Dv(n)}v∈[n] are powerless.
(ii) All tests based on Gn are powerless.

Obviously the statement (ii) implies (i). The main motivation for (i) is that when γ < 1
2

the number of vertices with degree k will deviate from npk(δ0) by at most O(nγ). These
deviations become smaller when k gets larger. On the other hand, the fluctuations of Nk(n)
around its mean will also become smaller, but should always be of higher order than this
mean-shift. Actually, the results in [3] characterize the joint distribution of the degree counts
under the null model and show this is asymptotically a multi-variate normal distribution.
As shown in Lemma 9.2 these degree counts are also asymptotically normal, with the same
covariance matrix, but a rather small mean-shift. We conjecture this shift is small enough so to
imply the total variation distance between the two distributions is close to zero, implying (i).
The conjecture (ii) is significantly stronger, stating that higher-level information contained
on the edge structure of Gn will not be helpful for this testing problem. This is expected
given that the attachment dynamics are only driven by the vertex degrees, but proving such a
statement requires a careful formalization of this insight.
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3.2. Powerful test for unknown δ0. The knowledge of δ0 was crucial for the test above, as
it gives a benchmark to compare Nm(n) against, namely npm(δ0). Without this knowledge
we must essentially estimate, from Gn, the value of δ0. For such an approach to be fruitful a
candidate estimator must be “close enough” to δ0 both under the null and alternative models.
Gao and van der Vaart in [23] consider the problem of estimating δ0 when the preferential
attachment function is constant, meaning that we are under the null model in our formulation.
The authors proposed a maximum likelihood estimator based on Gn, and showed it consis-
tently estimates δ0 and is asymptotically normal. A natural idea is to start by considering this
estimator as well, and understand how its properties change when Gn is generated under the
alternative model.

As done in [23], to avoid the usual issues at the boundary of the parameter space we make
an extra assumption that the range of possible values for δ0 and δ1 is known:

ASSUMPTION 3.3 (Containment of δ0, δ1). Let −m < δmin ≤ δmax be known, and as-
sume that δ0, δ1 ∈ (δmin, δmax).

As shown in [23], under the null model the (normalized) log-likelihood function ιn :
[δmin, δmax]→R is given by

ιn(δ) :=
1

n+ 1

( ∞∑
k=1

log(k+ δ) (N>k(n)− (n+ 1)1{k <m}) −
n∑

t=2

m∑
i=1

logSt,i−1(δ)

)

=
1

n+ 1

∞∑
k=m

log(k+ δ)N>k(n) − 1

n+ 1

n∑
t=2

m∑
i=1

logSt,i−1(δ) ,

where St,i−1(δ) := tδ + 2m(t− 1) + (i− 1) and N>k(n) :=
∑

j>kNj(n). The maximum-
likelihood estimator is defined as

(4) δ̂n := argmax
δ∈[δmin,δmax]

ιn(δ) .

Equivalently (for large n) we can define δ̂n as the solution in δ ∈ [δmin, δmax] of ∂
∂δ ιn(δ) :=

ι′n(δ) = 0. Although not obvious, this definition coincides with (4) for large n, since it is
shown in [23] that the solution of ι′n(δ) = 0 exists and is unique for large enough n with high
probability. Note that the score function is given by

(5) ι′n(δ) =
1

n+ 1

∞∑
k=m

1

k+ δ
N>k(n) − 1

n+ 1

n∑
t=2

m∑
i=1

t

St,i−1(δ)
.

Motivated by this estimator we consider the test statistic

(6) Q(Gn) :=Nm(n)− npm(δ̂n) .

This is analogous to the previously considered statistic, with the exception that δ0 is replaced
by the above estimator.

A test based on the above statistic will only be sensible if δ̂n is a good surrogate for δ0,
under both the null and alternative models. When 1

2 < γ < 1 this is indeed the case, and
we show that δ̂n is a consistent estimator of δ0 under both the null and alternative models.
However, consistency is not enough, and it is necessary to carefully characterize the rate of
convergence of this estimator under the alternative model. It turns out that the deviations of
Nm(n) and npm(δ̂n) around their respective means have exactly the same order, but with
different leading constants. A careful characterization of those constants is the crucial result
leading to our main result:
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THEOREM 3.4 (Asymptotically powerful test, unknown δ0). Consider Assumption 3.3
and the test statistic defined in (6). Let an be a positive diverging sequence such that an =

ω(
√
n logn) and an = n

1
2+o(1) and define the test

ϕ(Gn) := 1{|Q(Gn)| ≥ an} .
The type-I error of this test converges to zero as n→∞, i.e.,

P0 (ϕ(Gn) ̸= 0) = o(1) .

Furthermore, when δ0 ̸= δ1 and 1
2 < γ < 1 this test has vanishing type II error, i.e., as n→

∞,

P1 (ϕ(Gn) = 0) = o(1) .

The proof of the theorem is deferred to Section 8 and it is rather involved. It builds upon
some of the results used to prove Theorem 3.1, namely the characterization of Nm(n) −
npm(δ0). However, it does require a very careful characterization of npm(δ̂n)− npm(δ0). It
turns out that both quantities have essentially the same order of magnitude, namely OP(n

γ).
However, the leading constants are different, and this fact allows the test to be powerful in
the regime 1

2 < γ < 1.
The cases γ = 1

2 and γ = 1 are special. For γ = 1
2 , one can expect Gaussian fluctuations

of Nm(n) under the null and alternative hypotheses to compete with the resulting change
in expectations of Nm(n), so the Type-II error can not be expected to vanish, as it does for
γ ∈ (12 ,1). For γ = 1, on the other hand, both the maximal and minimal degree tests seem
to perform well, but it is unclear which performs best, or whether there even is a better test
available.

3.3. Asymptotically calibrated tests. The two theorems above characterize the regime
when the proposed tests are powerful. However, they fall short of providing guidelines to
properly calibrate the tests. Particularly, in a fixed significance testing framework, for any
α ∈ (0,1) we would like to ensure that under the null model the type-I error is approximately
α. Theorem 3.1 provides only an rather conservative asymptotic upper bound on the type-
I error, due to the worst-case nature of the Azuma-Hoeffding inequality. To introduce our
calibrated test, we define

w(δ0,m) :=
m2(m+ δ0)(1 +m+ δ0)(2m+ δ0)

(δ0 + 2m(1 +m+ δ0))(δ0 +m(2 +m+ δ0))2
.(7)

Furthermore, let zα denote the right-quantile function of the standard normal distribution1.
In particular, zα/2 > 0 when α ∈ (0,1). We are now ready to present the asymptotically
calibrated test when δ0 is assumed known.

THEOREM 3.5 (Asymptotically calibrated test for known δ0). Let α ∈ (0,1) and define
the test

ψcal(Gn) := 1
{
|T (Gn)| ≥

√
nw(δ0,m)zα/2

}
.

As n→∞, the type-I error of this test converges to α:

P0 (ψcal(Gn) ̸= 0)→ α .

Furthermore, when δ0 ̸= δ1 and 1
2 < γ < 1 this test has vanishing type-II error as n→∞:

P1 (ψcal(Gn) = 0)→ 0 .

1For α ∈ (0,1), let zα be the unique solution of α=
∫∞
zα

1√
2π

e−
z2

2 dz.
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A statement regarding partial power when γ = 1
2 is also possible, but not particularly

insightful. To define the next test we require some additional notation. Let

v(δ0,m) :=

∞∑
k=m

mpk(δ0)

(k+ δ0)(2m+ δ0)
− m

(2m+ δ0)2
,(8)

and

u(δ0,m) :=− m4

v(δ0,m)(δ0 +m(2 +m+ δ0))4
.(9)

The next theorem presents the asymptotically calibrated test for the unknown δ0 case:

THEOREM 3.6 (Asymptotically calibrated test, unknown δ0). Consider Assumption 3.3,
let α ∈ (0,1), and define the test

ϕcal(Gn) := 1

{
|Q(Gn)| ≥

√
n(w(δ̂n,m) + u(δ̂n,m))zα/2

}
.

As n→∞, the type-I error of this test converges to α:

P0 (ϕcal(Gn) ̸= 0)→ α .

Furthermore, when δ0 ̸= δ1 and 1
2 < γ < 1 this test has vanishing type-II error as n→∞:

P1 (ϕcal(Gn) = 0)→ 0 .

The proofs of Theorems 3.5 and 3.6 are an immediate consequence of the asymptotic
normality of the test statistics as discussed in the next section, together with the consistency
of δ̂n as an estimator of δ0.

4. Asymptotic normality of test statistics. In this section we characterize the asymp-
totic distribution of the proposed test statistics which allowed us to calibrate the tests in
Section 3.3.

When δ0 is known, the situation is relatively simple. Under the null model and when
m = 1, it is known that Nm(n) with k ≥ m admits a central limit theorem [34]. In par-
ticular, this shows that Nm(n) is asymptotically normally distributed. Furthermore, [3] ex-
tends these results to the general case m≥ 1, making them applicable to our setting. For the
case of unknown δ0 the situation is a bit more complicated. Recall that our test statistic is
Q(Gn) =Nm(n)− npm(δ̂n). It is known from [23] that, under the null model, δ̂n is asymp-
totically normal. This does not, however, immediately imply that Q(Gn) is also asymptoti-
cally normal under the null model. The results in [3] establish that (Nm(n),Nm+1(n), . . .)
is asymptotically normal (under the null model), strongly hinting at asymptotic normality of
Q(Gn). Furthermore, even under the alternative model, one might expect asymptotic normal-
ity of the test statistics, with exactly the same asymptotic variance, as the number of vertices
that enter after the (late) changepoint is too small to change the asymptotic variance.

Let N (µ,σ2) denote the normal distribution with mean µ and variance σ2, and let D−→
denote convergence in distribution. The following theorem, proved in Section 9, establishes
the asymptotic properties of the test statistics.

THEOREM 4.1 (Asymptotic normality of test statistics). Recall the definitions of w and
u in (7) and (9) respectively. As n→∞,

T (Gn)√
n

D−→N (0,w(δ0,m)) .(10)
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Moreover, under Assumption 3.3 and the null model, as n→∞,

Q(Gn)√
n

=
Nm(n)− npm(δ̂n)√

n

D−→N (0,w(δ0,m) + u(δ0,m)) .(11)

Furthermore, under the alternative model with γ ∈ (0,1), as n→∞,

T (Gn)−E1[T (Gn)]√
n

D−→N (0,w(δ0,m)) .(12)

Moreover, under the alternative model with γ ∈ (12 ,1) and Assumption 3.3, as n→∞,

Q(Gn)−E1[Q(Gn)]√
n

D−→N (0,w(δ0,m) + u(δ0,m)) .(13)

Note that (10) has been proved in [3]. In the second statement (11), u(δ0,m) captures the
adjustment in the variability in the test statistic by using an estimate of δ0, instead of the
actual value. The convergence results (10) and (11) provide an avenue for asymptotically
exact calibration of the proposed test as given in Theorems 3.5 and 3.6 (equivalently, for
computation of asymptotically exact p-values).

To establish asymptotic normality under the alternative model, we exploit the correspond-
ing statements under the null model, together with a correction term quantifying the effects
due to the presence of a changepoint (partially relying on the arguments in Theorems 3.1 and
3.4). It is important to remark that, for the convergence result (13), the assumption γ > 1

2
appears to be merely technical, and it should be possible to drop it. Finally, note that the
asymptotic variances remain the same, whether one is considering the null or alternative
model, as expected. The proof of Theorem 4.1 is carried out in Section 9.

5. Numerical experiments. In this section we examine the properties of the proposed
tests using simulation. This serves a two-fold purpose, namely to empirically assess the va-
lidity of the theoretical guarantees given, as well as to investigate the finite-sample properties
of the tests.

To assess the finite sample properties of the asymptotically calibrated tests we conduct
several numerical experiments. For simplicity we fix δ0 = 0 for all the experiments (this is
the so-called linear preferential attachment model in [5]). We take m= 5, c= 1, γ = 3

4 , and
δ1 ∈ {−1,0,1}. Note that δ1 = δ0 = 0 corresponds to the null model. We consider graphs of
different sizes, namely n ∈ {1000,2000,5000,10000,20000,50000,100000,200000}, and
for each value of n we generate B = 2000 independent graphs using the preferential attach-
ment model in (1). Specifically, for the three cases δ1 = {−1,0,1} and each value n we
obtain {g(b)n }Bb=1 graphs.

Note that as n increases the relative distance between the changepoint and n decreases
considerably, and only a minute part of the graph is affected after the changepoint. For in-
stance, for n = 5000 there are only 594 vertices that join the graph after the changepoint,
so about 12% of the vertices. However, for n = 200000 only 9457 vertices join after the
changepoint, a mere 4.7% of the total vertices.

In Figure 1 we depict the power of the two proposed tests. For concreteness we consider
fixed significance testing at level α = 0.05 (qualitatively the results are similar for other
significance levels). We clearly see that both tests are well calibrated, even for small values
of n. Also, as expected, the power increases as a function of n. As intuitively expected, the
test that does not assume knowledge of δ0 has slightly less power than the test making use of
that knowledge. Finally, there is an asymmetry of the power depending on whether δ1 > δ0
or δ1 < δ0, the later scenario leading to higher power. This is expected, as for smaller δ1
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(a) Power of the tests (known δ0 and α= 0.05).
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(b) Power of the tests (unknown δ0 and α= 0.05).

FIG 1. Power of the tests calibrated using asymptotic normality for m= 5. Panel (a) corresponds to the case of
known δ0 and panel (b) corresponds to the unknown δ0 case. Both plots consider a fixed significance level testing
with level α= 0.05. The solid lines correspond to the power estimated using B = 2000 graph samples, and (the
pointwise 95% confidence bands are computed using the Clopper-Pearson exact method. The dashed lines are
estimates of the power based on the asymptotic characterization of the test statistics.
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(a) T (Gn) with n= 100 and δ0 = δ1 = 0.
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(b) T (Gn) with n= 1000 and δ0 = δ1 = 0.
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(c) Q(Gn) with n= 100 and δ0 = δ1 = 0.
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(d) Q(Gn) with n= 1000 and δ0 = δ1 = 0.

FIG 2. Normal QQ plots of the test statistics under the null model, for n ∈ {100,1000}. Panels (a) and (b)
correspond to T (Gn) (known δ0 statistic) and panels (c) and (d) correspond to Q(Gn) (unknown δ0 statistics).
Even for very small values of n distribution of the statistics is very well approximated by a normal distribution.
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values the empirical degree distribution has heavier tails, and detecting the presence of a
changepoint becomes easier.

To illustrate the results of Theorem 4.1, in Figure 2 we display normal quantile-quantile
plots of the test statistics for very small values of n. We see that, even for n= 100 (so, a graph
with nm= 500 edges) both test statistics are approximately normally distributed. In order to
have a better assessment of the mean and variance of the test statistics we compute (for
δ1 ∈ {−1,0,1}) the first two empirical moments, and compare them with their asymptotic
counterparts, both under the null and alternative hypothesis. Define

µ̂(T )

n :=
1

B

B∑
b=1

T (g(b)

n )

and

v̂(T )

n :=
1

B

B∑
b=1

(T (g(b)

n )− µ̂(T )

n )2 ,

and the analogous definitions of µ̂(Q)

n and v̂(Q)

n . In Table 1 we compare these values (ade-
quately rescaled) with the expected asymptotic values. As can be seen, the empirical variance
closely matches the asymptotic variance, both under the null and alternative models, even for
small values of n. This is in agreement with Theorem 4.1. For the mean of the statistics, one
sees that the scaling by nγ and the corresponding leading constant is also accurate, but finite
sample effects are more evident under the alternative model when n is small.

Finally, making use of Theorem 4.1 we can compare the empirical power with an estimate
based on the asymptotic normality of the statistic. Namely, we know the test statistics are
asymptotically normal with exactly the same variance, and a small mean-shift proportional to
nγ(1+ o(1)), where the proportionality constant is given by η(δ0, δ1) from (3) and α(δ0, δ1)
from (24) for T (Gn) and Q(Gn) respectively. Based on this, one can get an estimate for the
power of the tests for different values of δ1. This is shown by the dashed lines in Figure 1.
As one can see, although not terribly accurate, the estimates capture the exact behavior of
the empirically observed power. This lack of accuracy is not unexpected, as all we know is
that the mean-shifts are of the form const(δ0, δ1,m)nγ+o(nγ). However, the remainder term
might still have an order only slightly smaller than nγ , which will lead to rather poor power
estimates for small values of n.

6. Discussion and open problems. In this section, we compare our results to the litera-
ture and state some open problems.

6.1. Early changepoint. In previous work [4, 7, 15], the case of an early changepoint
was considered for preferential attachment trees, i.e., for m= 1. Thus, our work extends this
setting from trees to graphs, as well as from an early changepoint to a late one. Arguably, the
latter case is more relevant in practice, since one would rather detect a changepoint quickly,
meaning, close to the time after which it occurs. This setting corresponds to a changepoint
close to the time of observation of the final network.

6.2. Dynamical graph observations. It would be of interest to extend our results to a
dynamic setting, where we detect the changepoint as the graph changes dynamically. Bear in
mind though that we currently only assume that we observe the graph at the final time, and
observing the graph dynamically thus provides much more information. Thus, it is an inter-
esting extension to devise an appropriate setting where we only observe partial information
on the network, while still detecting the changepoint dynamically. There are several settings
that could be of interest. In the first, one observes the network snapshots only at multiples of
nγ . In the second, we assume that we only dynamically observe information about the degree
counts, and not the entire network. We defer such problems to future work.
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TABLE 1
Numerical estimates of (rescaled) mean and variance of the test statistics, and comparison with corresponding

asymptotic values. The estimates above are based on B = 2000 independently generated graphs.

(a) Null model δ1 = δ0 = 0.

n µ̂(T )
n µ̂(Q)

n v̂(T )
n /n v̂(Q)

n /n

1000 0.0127 0.0105 0.1014 0.0801
2000 0.0017 0.0042 0.1016 0.0795
5000 0.0056 0.0041 0.1009 0.0789

10000 −0.0052 −0.0038 0.1049 0.0831
20000 0.0007 0.0012 0.1034 0.0828
50000 0.0049 −0.0009 0.0986 0.0780

100000 −0.0066 −0.0054 0.1000 0.0814
200000 0.0031 0.0046 0.1048 0.0811

η(δ0, δ0) α(δ0, δ0) w(δ0,m) w(δ0,m) + u(δ0,m)
= 0 = 0 = 0.1020 = 0.0811

(b) Alternative model δ0 = 0 and δ1 = 1.

n µ̂(T )
n /nγ µ̂(Q)

n /nγ v̂(T )
n /n v̂(Q)

n /n

1000 −0.0460 −0.0276 0.0944 0.0772
2000 −0.0487 −0.0308 0.0992 0.0776
5000 −0.0554 −0.0371 0.1017 0.0826

10000 −0.0558 −0.0375 0.0994 0.0799
20000 −0.0574 −0.0395 0.1041 0.0799
50000 −0.0594 −0.0409 0.1033 0.0832

100000 −0.0610 −0.0421 0.1042 0.0809
200000 −0.0610 −0.0427 0.0974 0.0759

η(δ0, δ1) α(δ0, δ1) w(δ0,m) w(δ0,m) + u(δ0,m)
=−0.0649 =−0.0464 = 0.1020 = 0.0811

(c) Alternative model δ0 = 0 and δ1 =−1.

n µ̂(T )
n /nγ µ̂(Q)

n /nγ v̂(T )
n /n v̂(Q)

n /n

1000 0.0672 0.0436 0.1087 0.0831
2000 0.0679 0.0443 0.1020 0.0760
5000 0.0700 0.0463 0.1033 0.0799

10000 0.0725 0.0491 0.0952 0.0759
20000 0.0713 0.0488 0.1049 0.0817
50000 0.0738 0.0509 0.1043 0.0833

100000 0.0743 0.0515 0.1057 0.0875
200000 0.0750 0.0522 0.0998 0.0793

η(δ0, δ1) α(δ0, δ1) w(δ0,m) w(δ0,m) + u(δ0,m)
= 0.0794 = 0.0567 = 0.1020 = 0.0811

6.3. Lower bounds. Conjecture 3.2 states that no test will be powerful when γ < 1
2 . Prov-

ing such lower bounds in the context of preferential attachment models is challenging, due
to the latent nature of these models. However, part (i) of the conjecture might be approached
by relying on the asymptotic normality characterization in Lemma 9.2, together with bounds
on E1[Nk(n)]−E0[Nk(n)] obtained using the methods developed in this paper.
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6.4. Boundary case γ = 1. Note that in Theorems 3.1 and 3.4 the case γ = 1 is excluded.
This is in contrast with the results in [4, 7, 15]. The proof of the two theorems relies on Propo-
sition 7.1, that explicitly excludes the case γ = 1. It should be possible to extend that result for
γ = 1. Specifically, the current argument quantifies the contribution to E1[Nm(n)]−npm(δ0)
made by vertices that arrived after the changepoint. Due to the late changepoint, most of those
vertices will have degree m in Gn. However, for γ = 1, a small, but non-vanishing fraction of
those vertices will have higher degree. Therefore, to extend the result, this needs to be quan-
tified, and a slightly more refined argument will be needed, where the role of the parameter
c will become much more prevalent. Extending the result of Theorem 3.4 to this setting will
likely be significantly more challenging, as it requires extending Proposition 8.2, where the
assumption that γ < 1 was crucially used to bound the terms of order o(nγ). On the other
hand, when γ = 1, our test statistic will likely not be a good practical choice (particularly
when c is large), and the statistics used in [4, 7] will likely lead to more powerful tests.

6.5. Other test statistics. Note that information about the presence of a changepoint is
present not only inNm(n), but also on other counts of low-degree vertices. With this in mind,
a test based on (Nm(n),Nm+1(n)) can be potentially more powerful (in a finite sample
sense) than the test we proposed. Although we expect such tests to have exactly the same
asymptotic performance, they can perform much better for finite n. An interesting avenue of
research is to identify, in a principled way, statistics that lead to tests that have higher power
than the ones proposed.

6.6. Boundary case γ = 1
2 . When γ = 1

2 , the fluctuations of Nm(n) around its mean
under H0 are of the same order as E1[Nm(n)] − pm(δ0). Moreover, since a central limit
theorem holds for Nm(n)− E1[Nm(n)] under H1, with the same limiting variance as under
H0 (cf. Theorem 4.1), it follows that, when γ = 1

2 , the type-II error of our test is strictly
bounded away from zero. In other words, when γ = 1

2 , a large value of Nm(n)− pm can be
explained either by a large deviation away from E0[Nm] under H0, or by a deviation around
E1[Nm] under H1.

7. Powerful test for known δ0: Proof of Theorem 3.1. The main idea of the proof is
to decompose the test statistic T (Gn) in two terms:

(14) T (Gn) =Nm(n)− npm(δ0) = Eℓ[Nm(n)]− npm(δ0)︸ ︷︷ ︸
:=A

+Nm(n)−Eℓ[Nm(n)]︸ ︷︷ ︸
:=B

,

where ℓ ∈ {0,1}. The characterization of the stochastic term B is the same under both the
null and alternative models, and follows a somewhat standard argument. Let ℓ ∈ {0,1} be
fixed. Define the stochastic process {Mt}nt=1 such that

Mt := Eℓ[Nm(n)|Gt] .

This is a Doob martingale [25, Lemma 8.5], and such that Eℓ[Nm(n)] =M1 and Nm(n) =
Mn. Furthermore, by [25, Lemma 8.6], we know that, for every t ∈ {2, . . . , n}, |Mn −
Mn−1| ≤ 2m almost surely. Although strictly speaking these two lemmas were not stated
for our model, their arguments do not depend on the specific sequence δ(t) in (1). Therefore,
those results still hold and follow simply from the fact that every step in time we add pre-
cisely m edges to the graph. With this in hand, we can directly apply the Azuma-Hoeffding
inequality to get that, for any x > 0,

(15) ∀ℓ ∈ {0,1} Pℓ (|Nm(n)−Eℓ[Nm(n)]| ≥ x)≤ 2e−
x2

8m2n .

This completes the characterization of the term B in (14). We now proceed by considering
the type-I and type-II errors separately.
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7.1. Type-I error. To control the term A in (14) under the null model we use [18,
Proposition 2.2] (see also [25, Proposition 8.7]), which states that there exists a constant
C0 =C0(δ0,m) such that, for all n≥ 1,

(16) |E0[Nm(n)]− npm(δ0)| ≤C0 .

Combining this with (15) we see that the type-I error of the minimal degree test is bounded
by

P0(ψ(T (Gn)) ̸= 0) = P0

(
|Nm(n)− npm(δ0)| ≥m

√
8n log(2/α)

)
≤ P0

(
|Nm(n)−E0[Nm(n)]| ≥m

√
8n log(2/α)−C0

)
≤ 2exp

(
−
(m
√

8n log(2/α)−C0)
2

8m2n

)
= (1+ o(1))α .

This shows that the type-I error is essentially at most α, completing the first part of the proof.

7.2. Type-II error. Again we must control the term A above, for which the following
proposition is instrumental:

PROPOSITION 7.1. Let 0< γ < 1. Then

E1[Nm(n)]− npm(δ0) = (1 + o(1)) cnγ
(
1− pm(δ0)

pm(δ1)

)
= (1+ o(1))cnγ(δ0 − δ1)

1

(2 + δ1/m)(m+ δ0 + 2+ δ0/m)
.

PROOF. Note that

E1[Nm(n)]− npm(δ0) = E0[Nm(n)]− npm(δ0)(17)

+E1[Nm(n)]−E1[Nm(τn)]− (E0[Nm(n)]−E0[Nm(τn)]) .

The equality holds as the law of Gτn is the same under the null and alternative models, and
therefore E0[Nm(τn)] = E1[Nm(τn)]. The last two terms are controlled in a similar way.

Let ℓ ∈ {0,1} and note that

Eℓ[Nm(n)]−Eℓ[Nm(τn)] =
∑
v∈[τn]

(Pℓ(Dv(n) =m)− Pℓ(Dv(τn) =m))

+
∑

v∈[n]\[τn]

Pℓ(Dv(n) =m) .

In the above there is a contribution from vertices that arrived before the change-point (so-
called “old” vertices), and vertices that arrived afterwards (the “new” vertices). The con-
tribution by the new vertices v ∈ [n] \ [τn] is essentially the same regardless of the value
of ℓ, as Pℓ(Dv(n) =m) ≈ 1 when v ∈ [n] \ [τn]. To see this, note that Pℓ(Dv(n) =m) =
1 − Pℓ(Dv(n) > m) and that the event Dv(n) > m can only occur if there is at least one
vertex v′ > v attaching to v. Referring to (2) the probability of this happening is at most
(m+ δℓ)/((2m+ δℓ)τn− 2m), and there are at most m(n− τn) possible edges that can lead
to that connection. Therefore

Pℓ(Dv(n) =m)≥ 1−m(n− τn)
m+ δℓ

(2m+ δℓ)τn − 2m
= 1−O(nγ−1) .
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In conclusion (since Pℓ(Dv(n) =m) is bounded above by 1)∑
v∈[n]\[τn]

Pℓ(Dv(n) =m) = c(n− τn)(1 +O(nγ−1)) , ℓ ∈ {0,1} .

For the term involving the “old” vertices we use the following lemma, which will be used
to the full extent for the proof of Theorem 3.4:

LEMMA 7.2. Let v ∈ [τn], γ < 1 and m≤ k = o(n1−γ) and ℓ ∈ {0,1}. Then

Pℓ(Dv(n)−Dv(τn)> 0 |Dv(τn) = k) = (1 + o(1))cnγ−1m
k+ δℓ
2m+ δℓ

.

as n→∞.

PROOF. Note that

Pℓ (Dv(n)−Dv(τn)> 0 |Dv(τn) = k)

= 1− Pℓ (Dv(n)−Dv(τn) = 0 |Dv(τn) = k)

= 1−
∏

j∈[n]\[τn]

m∏
i=1

(
1− k+ δℓ

j(2m+ δℓ)− 2m+ i− 1

)

= 1− exp

 ∑
j∈[n]\[τn]

m∑
i=1

log

(
1− k+ δℓ

j(2m+ δℓ)− 2m+ i− 1

)
= 1− exp

 ∑
j∈[n]\[τn]

m∑
i=1

−(1 + o(1))
k+ δℓ

j(2m+ δℓ)− 2m+ i− 1

(18)

= 1− exp

(
−(1 + o(1))cmnγ

k+ δℓ
n(2m+ δℓ)

)
= 1−

(
1− (1 + o(1))cmnγ−1 k+ δℓ

2m+ δℓ

)
(19)

= (1+ o(1))cmnγ−1 k+ δℓ
2m+ δℓ

,

where in (18) we relied on the fact that k = o(n) and for (19) it is crucial that k = o(n1−γ).

With this lemma in hand, we clearly see that

Pℓ(Dv(n) =m)− Pℓ(Dv(τn) =m)

= Pℓ(Dv(n)−Dv(τn) = 0|Dv(τn) =m)Pℓ(Dv(τn) =m)

= (1− Pℓ(Dv(n)−Dv(τn)> 0|Dv(τn) =m))Pℓ(Dv(τn) =m)

=

(
1− (1 + o(1))cnγ−1m

m+ δℓ
2m+ δℓ

)
Pℓ(Dv(τn) =m) .

Putting the two results together we get

Eℓ[Nm(n)]−Eℓ[Nm(τn)]

=

(
1− (1 + o(1))cnγ−1m

m+ δℓ
2m+ δℓ

)
Eℓ[Nm(τn)] + c(n− τn)(1 +O(nγ−1)) .
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Note that this results characterizes what happens both under the null and alternative models.
Hence this result, together with (17) and the fact that E0[Nm(τn)] = E1[Nm(τn)], yields

E1[Nm(n)]− npm(δ0)

= E0[Nm(n)]− npm(δ0)

+ (1 + o(1))cnγ−1m

(
m+ δ1
2m+ δ1

− m+ δ0
2m+ δ0

)
E0[Nm(n)] +O(n2γ−1)

= O(1) + (1 + o(1))cnγ−1(δ1 − δ0)
1

(2 + δ1/m)(2 + δ0/m)
n (pm(δ0) +O(1/n))

+O(n2γ−1)

= (1 + o(1))cnγ
δ1 − δ0

(2 + δ1/m)(m+ δ0 + 2+ δ0/m)
,

where 0< γ < 1, and we have again used (16) to relate E0[Nm(n)] to npm(δ0).

Similarly as for the type-I error, we can use Proposition 7.1 together with the Azuma-
Hoeffding inequality (15) to get

P1(T (Gn) ̸= 1)

= P1

(
|Nm(n)− npm(δ0)|<m

√
8n log(2/α)

)
≤ P1

(
|Nm(n)−E1[Nm(n)]|>

(
|E1[Nm(n)]− npm(δ0)| −m

√
8n log(2/α)

)
∨ 0
)

≤ 2exp

−

((
|E1[Nm(n)]− npm(δ0)| −m

√
8n log(2/α)

)
∨ 0
)2

8m2n

 .

Considering the cases γ > 1
2 and γ = 1

2 separately, this gives

P1(T (Gn) ̸= 1)

≤

o(1) when γ > 1
2 ,

(2 + o(1)) exp

(
−
((

c |1−pm(δ0)/pm(δ1)|
m
√
8

−
√

log(2/α)
)
∨ 0
)2)

when γ = 1
2 .

The case γ < 1
2 does not follow immediately from the analysis above, as the characteriza-

tion obtained by the Azuma-Hoeffding only provides an upper bound on the variability of the
test statistic. However, in Theorem 4.1 it is shown that (T (Gn)−E1[T (Gn)])/

√
n is asymp-

totically normal with mean 0 and variance w(δ0,m)> 0. As shown above E1[T (Gn)]/
√
n=

O(nγ−
1
2 ). Therefore E1[T (Gn)]/

√
n = o(1) when γ < 1

2 , and therefore T (Gn)/
√
n con-

verges to the same distribution under the null and alternative models, meaning the type II
error is asymptotically just the complement of the type I error.

8. Powerful test for unknown δ0: Proof of Theorem 3.4. To prove Theorem 3.4 we
partially leverage on the results and analysis in Theorem 3.1. However, we must take into
account that δ0 is not known, and rather we have only its estimate δ̂n. The main idea is to
decompose the test statistic Q(Gn) as

Q(Gn) =Nm(n)− npm(δ̂n)(20)
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= Eℓ[Nm(n)]− npm(δ0)︸ ︷︷ ︸
:=A

+npm(δ0)− npm(δ̃n)︸ ︷︷ ︸
:=B

+Nm(n)−Eℓ[Nm(n)] + npm(δ̃n)− npm(δ̂n)︸ ︷︷ ︸
:=C

,

where ℓ ∈ {0,1}. In the above δ̃n is a deterministic quantity, and it is formally defined below.
At this moment one might simply think of it as a “population” version of δ̂n.

Clearly A is already characterized by Proposition 7.1. The bulk of the argument needed
to prove Theorem 3.1 is in the characterization of B, the second term. For this we need
to understand how fast δ̃n converges to δ0 as n→∞. It turns out that under the alternative
model bothA andB have the same first-order asymptotic behavior, but with different leading
constants. This fact is crucial to ensure that the test is powerful. Finally C , the last term,
appears complicated but it is very well concentrated around zero.

Define δ̃n as a solution of Eℓ[ι
′
n(δ)] = 0 in δ ∈ [δmin, δmax] (if more than one solution

exists, then we choose an arbitrary one). Most of the analysis focuses on the alternative
model, but the stated results apply to the null model simply by taking δ1 = δ0. The following
proposition gives a characterization of δ̃n and the term B above:

PROPOSITION 8.1. Let 1
2 < γ < 1. Under the alternative model δ̃n converges to δ0 as

n→∞. Furthermore,

δ̃n − δ0 = (1+ o(1))nγ−1c(δ1 − δ0)
2m+ δ0
2m+ δ1

,

and

n(pm(δ0)− pm(δ̃n)) = (1 + o(1))cnγ
1

(m+ δ0 + 2+ δ0/m)2
(δ1 − δ0)

2m+ δ0
2m+ δ1

.

The proof of this result is rather involved, due to the implicit nature of the definition
of δ̃n. Note, however, that ι′n(δ) is a score function, therefore we have immediately that
E0[ι

′
n(δ0)] = 0. Under the alternative model δ̃n will not be equal to δ0 and quantifying this

deviation is crucial to our analysis. The following technical result, examining the difference
between E1[ι

′
n(δ)] and E0[ι

′
n(δ)], is instrumental:

PROPOSITION 8.2 (Analysis of differences of means). Let 1
2 < γ < 1. As n→∞, and

uniformly for every δ ∈ [δmin, δmax],

(n+ 1)
(
E1[ι

′
n(δ)]−E0[ι

′
n(δ)]

)
= κ(δ1, δ0, δ)n

γ(1 + o(1)) ,

where κ(δ1, δ0, δ) equals

κ := κ(δ1, δ0, δ) = (δ1 − δ0)
cm

(2m+ δ1)(2m+ δ0)

−1 +
∑
k≥m

2m+ δ

k+ δ
pk(δ0)

 .

The proof of this result, which is long and rather technical, is given in the appendix. With
this result in hand we are ready to prove Proposition 8.1:

PROOF OF PROPOSITION 8.1. We first establish that δ̃n is well defined and that δ̃n → δ0.
Define

ι′(δ) :=
∑
k≥m

p>k(δ0)

k+ δ
− 1

2 + δ/m
,
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where p>k(δ0) =
∑

j>k pj(δ0). Intuitively, this should be the limit of ι′n(δ) as n→∞, as we
see next. Note also that we can rewrite this expression in terms of pk, by noticing (see [23,
Lemma 2]) that, for k ≥m

p>k(δ0) =
k+ δ0

2 + δ0/m
pk(δ0) .

Therefore,

ι′(δ) =
1

2+ δ0/m

∑
k≥m

k+ δ0
k+ δ

pk(δ0)−
1

2 + δ/m
.

[23, Lemma 6] shows essentially that, as n→∞,

sup
δ∈[δmin,δmax]

|ι′n(δ)− ι′(δ)| P0−→ 0 .

[23, Lemma 6] is actually stated for a more general setting, where the number of edges added
at each step is random. However, if the support of the distribution of the number of edges is
bounded below by m, then following the steps in the proof of the lemma leads to the above
result. Actually, in our setting we can state a slightly stronger result, namely convergence in
L1. First note that both |ι′n(δ)| and |ι′(δ)| are bounded, uniformly in δ and n. To see this note
that, regardless of the value k,

kN>k(n) = k
∑
ℓ>k

Nℓ(n)≤
∑
ℓ>k

ℓNℓ(n)≤
∑
ℓ≥m

ℓNℓ(n) = 2nm .

Therefore,

0≤ 1

n+ 1

∞∑
k=m

1

k+ δ
N>k(n)≤

1

n+ 1

∞∑
k=m

1

k(k+ δ)
2nm

≤ 2nm

n+ 1

∞∑
k=m

1

k(k+ δmin)
≤m

∞∑
k=m

1

k(k+ δmin)

≤m

(
1

m(m+ δmin)
+

∞∑
k=1

1

k2

)
=m

(
1

m(m+ δmin)
+ π2/6

)
.

On the other hand,

0≤ 1

n+ 1

n∑
t=2

m∑
i=1

t

tδ+ 2m(t− 1) + (i− 1)
≤ m

n+ 1

n∑
t=2

t

tδmin + 2m(t− 1)

≤ m(n− 1)

n+ 1

2

2(m+ δmin)
≤ 2m

2(m+ δmin)
.

These two results together imply that |ι′n(δ)| is almost surely uniformly bounded for all δ ∈
[δmin, δmax]. For ι′ we must simply note that this is a continuous function defined in the
compact set [δmin, δmax], and is therefore bounded. In conclusion, as n→∞,

E0

[
sup

δ∈[δmin,δmax]
|ι′n(δ)− ι′(δ)|

]
→ 0 .

This result, together with Proposition 8.2, shows that this is also true under the alternative
model, and therefore, as n→∞,

(21) ∀ℓ ∈ {0,1} Eℓ

[
sup

δ∈[δmin,δmax]
|ι′n(δ)− ι′(δ)|

]
→ 0 .
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By definition E1[ι
′
n(δ̃n)] = 0, therefore we conclude that ι′(δ̃n)→ 0. [23, Lemma 4] shows

that ι′ has a unique zero at δ0, and ι′(δ)> 0 for δ < δ0 and ι′(δ)< 0 for δ > δ0. This imme-
diately implies that δ̃n → δ0 as n→∞, proving the first assertion in the proposition.

To quantify the speed of convergence note first that E0[ι
′
n(δ0)] = 0, since ι′n is a score

function. Furthermore, by definition E1[ι
′
n(δ̃n)] = 0, therefore Proposition 8.2 implies that

0 = E1[ι
′
n(δ̃n)]−E0[ι

′
n(δ̃n)] +E0[ι

′
n(δ̃n)]

= κ(δ1, δ0, δ̃n)n
γ−1(1 + o(1)) +E0[ι

′
n(δ0) + ι′′n(δ̄n)(δ̃n − δ0)]

= κ(δ1, δ0, δ̃n)n
γ−1(1 + o(1)) +E0[ι

′′
n(δ̄n)](δ̃n − δ0) ,(22)

where |δ̄n − δ0| ≤ |δ̃n − δ0|. Clearly δ̄n → δ0. As shown in [23], ι′′n(δ) also converges in
probability to ι′′(δ) uniformly in δ ∈ [δmin, δmax]. In fact, convergence holds also in L1,
since ι′′n(δ) is uniformly bounded (following the type of argument used before showing that
ι′n is uniformly bounded). In addition, it is also shown in [23] that ι′′(δ0)< 0. Therefore, for
n large enough,

E0[ι
′′
n(δ̄n)] = (1 + o(1))ι′′(δ0)< 0 .

We are now ready to show the second assertion in Proposition 8.1. Note that κ(δ1, δ0, δ̃n)→
κ(δ1, δ0, δ0) since κ is a continuous function. Putting all this together and re-writing the ex-
pression (22) we conclude that

δ̃n − δ0 = (1+ o(1))nγ−1κ(δ1, δ0, δ0)

|ι′′(δ0)|
,

where

ι′′(δ0) =
m

(2m+ δ0)2
−
∑
k≥m

p>k(δ0)

(k+ δ0)2

=
m

(2m+ δ0)2
− m

2m+ δ0

∑
k≥m

pk(δ0)

k+ δ0
.

Therefore, after trivial algebraic manipulation, we conclude that

δ̃n − δ0 = (1+ o(1))nγ−1 c(δ1 − δ0)

2m+ δ1

−1 +
∑

k≥m
2m+δ0
k+δ0

pk(δ0)∑
k≥m

1
k+δ0

pk(δ0)− 1
2m+δ0

= (1+ o(1))nγ−1c(δ1 − δ0)
2m+ δ0
2m+ δ1

,

proving the second assertion in the proposition. For the last assertion note that δ 7→ pm(δ) is
a continuously differentiable function, so that

pm(δ̃n) = pm(δ0) + p′m(δ̄n)(δ̃n − δ0) ,

where |δ̄n − δ0| ≤ |δ̃n − δ0| and

(23) p′m(δ) =− 1

(m+ δ+ 2+ δ/m)2
.

Clearly δ̄n → δ0, and p′m(δ0) ̸= 0 and so

n(pm(δ0)− pm(δ̃n))

=−(1 + o(1))np′m(δ0)(δ̃n − δ0)

= (1 + o(1))nγ
1

(m+ δ0 + 2+ δ0/m)2
c(δ1 − δ0)

2m+ δ0
2m+ δ1

.
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In conclusion, the sum of the terms A and B in (20) equals α(δ0, δ1)(1 + o(1))nγ with

α(δ0, δ1) = c

[
1− pm(δ0)

pm(δ1)
+

1

(m+ δ0 + 2+ δ0/m)2
(δ1 − δ0)

2m+ δ0
2m+ δ1

]
= c(δ0 − δ1)

m+ δ0
(2 + δ1/m)(m+ δ0 + 2+ δ0/m)2

.

Clearly, this takes the value 0 when δ0 = δ1, and it is non-zero otherwise.
To complete the proof of Theorem 3.1 we need to characterize the term C in (20). This has

two components, the first one already studied in the proof of Theorem 3.1. For the second
component we must characterize the deviations of δ̂n around δ̃n. Again, due to the implicit
definition of the estimator this requires some care. The results are summarized in the follow-
ing proposition, proven in the appendix:

PROPOSITION 8.3. The estimator δ̂n is consistent, both under the null and alternative
models. Specifically,

Eℓ[|δ̂n − δ0|]→ 0 ,

as n→∞, where ℓ ∈ {0,1}. In addition,

|δ̂n − δ̃n|= oPℓ
(an/n)

where an = ω(
√
n logn). Finally,

n(pm(δ̂n)− pm(δ̃n)) = oPℓ
(an) .

With these results in hand we are ready to complete the proof of Theorem 3.4. We proceed
separately for the type I and type II error:

8.1. Type-I error. Recall the definition of an in Theorem 3.4, which satisfies an =

ω(
√
n logn) and an = n

1
2+o(1). Refer to the decomposition of the test statistic Q(Gn) in

(20). Under the null model the term B is equal to zero, and for the term A we know (from
(16)) that

|E0[Nm(n)]− npm(δ0)| ≤C0(δ0,m) :=C0 .

Therefore

P0 (|Q(Gn)| ≥ an)

= P0

(∣∣∣E0[Nm(n)]− npm(δ0) +Nm(n)−E0[Nm(n)] + npm(δ̃n)− npm(δ̂n)
∣∣∣≥ an

)
≤ P0

(∣∣∣Nm(n)−E0[Nm(n)] + npm(δ̃n)− npm(δ̂n)
∣∣∣≥ an −C0

)
≤ P0

(
|Nm(n)−E0[Nm(n)]| ≥ an −C0

2

)
+ P0

(∣∣∣npm(δ̃n)− npm(δ̂n)
∣∣∣≥ an −C0

2

)
= o(1) ,

where the final result follows from (15) and the last statement in Proposition 8.3, since an =
ω(

√
n logn).
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8.2. Type-II error. Referring again to the decomposition in (20) we see that the terms A
and B now play a crucial role. Namely, we have shown that the sum of the two terms equals
α(δ0, δ1)n

γ + o(nγ), where

α(δ0, δ1) = c

[
1− pm(δ0)

pm(δ1)
+

1

(m+ δ0 + 2+ δ0/m)2
(δ1 − δ0)

2m+ δ0
2m+ δ1

]
= c(δ0 − δ1)

m+ δ0
(2 + δ1/m)(m+ δ0 + 2+ δ0/m)2

.(24)

Clearly, this takes the value 0 when δ0 = δ1, and it is non-zero otherwise. The characterization
of the term C remains exactly the same as under the null model. Therefore,

Eℓ[Nm(n)]− npm(δ0) + npm(δ0)− npm(δ̃n) = α(δ0, δ1)(1 + o(1))nγ = ω(an) ,

since an = n
1
2+o(1) and γ > 1

2 , and therefore

P1(|Q(Gn)| ≥ τn) = 1

concluding the proof of Theorem 3.4.

9. Asymptotic normality proofs. This section is dedicated to the proof of Theorem 4.1.
The proof for the null model relies on a somewhat involved application of a martingale central
limit theorem to an appropriately constructed martingale. The proof for the alternative model
hinges on the null model result, as well as further estimates of the effect of the last n− τn
vertices on the distribution of Nk(n) for k ≥m. Since one proof hinges on the other, and to
avoid any confusion between the null and alternative models, we separate these two cases in
two sections. Specifically, in Section 9.1 we prove the asymptotic normality of test statistics
under the null model, i.e., (11). In Section 9.2 we prove the asymptotic normality of test
statistics under the alternative model, i.e., (12) and (13).

9.1. Asymptotic normality under the null hypothesis. Let N (µ,Σ) denote the normal
distribution with mean µ and covariance matrix Σ. The following result establishes the joint
asymptotic normality of Nm(n) and δ̂n, which can be them used to deduce (11) by an appli-
cation of the delta method:

PROPOSITION 9.1 (Joint normality of count of degree m vertices and estimator for δ0).
Under the null model, as n→∞,

√
n

(
Nm(n)−npm(δ0)

n

δ̂n − δ0

)
D−→N

((
0
0

)
,Σ(δ0,m)

)
,(25)

where the covariance matrix is

Σ(δ0,m) :=

(
w(δ0,m)− b(δ0,m)

v(δ0,m)

− b(δ0,m)
v(δ0,m)

1
v(δ0,m)

)
,(26)

where w and v are defined in (7) and (8), and b(δ0,m) := m2

(δ0+m(2+m+δ0))2
.

PROOF OF PROPOSITION 9.1. The convergence of the marginals in (25) follows from
results in the literature, which we briefly recall here. From the general result in [3] it follows
that, under the null model,

Nm(n)− npm(δ0)√
n

D−→N (0,w(δ0,m)) ,
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as n→∞. Moreover, from [23] follows that, under the null model,
√
n(δ̂n − δ0)

D−→N (0,1/v(δ0,m)) ,

as n→∞. To show joint convergence, we apply the multivariate martingale central limit the-
orem (MMCLT) to (a linear transformation of) the vector on the left-hand side of (25). For
more details on the MMCLT, see, e.g., [16] and references therein. In fact, the asymptotic
normality of the marginals has been proven respectively in [3] and [23] by applying a martin-
gale central limit theorem to appropriately constructed martingale difference sequences Xt,i

and Yt,i, which we define precisely later on. To obtain our results, we apply the MMCLT to
the (square-integrable) martingale difference array (Xt,i, Yt,i). The MMCLT requires two in-
gredients. First, the components of the array must satisfy the Lindeberg condition. Since this
is also an ingredient for the univariate martingale central limit theorem, it has already been
verified for Xt,i in [3, Section 3.2] and for Yt,i in [23, Section 4]. Second, one should com-
pute the asymptotic expression for the covariance matrix. Note that the asymptotic variance
of Xt,i (resp. Yt,i) has already been computed explicitly in [3] (resp. [23]).

We begin by introducing the notation required to define the martingale difference array
(Xt,i, Yt,i), which, roughly speaking, is a linear transformation of (Nm(t), δ̂t). We then com-
pute the asymptotic covariance matrix of (Xt,i, Yt,i). Finally, we perform a linear transfor-
mation to deduce a joint central limit theorem for (Nm(n), δ̂n).

To construct the martingale difference sequences, it is important to consider the “interme-
diate” m steps in the preferential attachment process, at each time t. For i= 1, . . . ,m−1, we
denote by Nk(s, i) the number of vertices of degree k after the i-th edge has been attached at
time s, excluding the vertex s. We set Nk(s+ 1,0) :=Nk(s,m) =Nk(s). We further define
Ds,i :=Dvs,i

(Gs,i−1). In other words, Ds,i is the degree of the vertex which will be attached
to when constructing Gs,i from Gs,i−1. For compactness, we define the constants

Wt,i :=

t−1∏
s=1

m∏
j=1

as,j

i∏
j=1

at,j where at,i := 1− m+ δ0
St,i−1

,

and where

St,i := tδ0 + 2(t− 1)m+ i .

Define also

ξ :=
m+ δ0
2m+ δ0

,

Λ :=

m−1∏
j=0

Γ
(
1− 2m−j

2m+δ0

)
Γ
(
1− 3m−j+δ0

2m+δ0

) .
In the constants defined above, we omitted the dependence on δ0 and m to facilitate readabil-
ity of the computations that follow. The martingale difference sequences (from [3, 24]) are
defined as

Xt,i :=

(
Nm(t, i)− at,i−1Nm(t, i− 1) + 1{i=m}

Wt,i−1

)
1

n
1
2+mξ

,

Yt,i :=

(
1

Dt,i + δ0
− t

St,i−1

)
1

n
1
2

.
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Here Xt,i is the first component of the martingale difference array in [3], and Yt,i is the
martingale difference defined in [23]. Next, we compute the asymptotic covariance matrix.
By [3, Section 3.1] and [23, Section 4], as n→∞,

n∑
t=2

m∑
i=1

E[X2
t,i|Gt,i−1]

P0−→ 1

Λ2

m

1 + 2mξ
pmξ

(
1− pmξ

)
=

1

Λ2

m2(m+ δ0)(1 +m+ δ0)(2m+ δ0)

(δ0 + 2m(1 +m+ δ0))(δ0 +m(2 +m+ δ0))2
,(27)

n∑
t=2

m∑
i=1

E[Y 2
t,i|Gt,i−1]

P0−→
∞∑
k=1

mpk
(k+ δ0)(2m+ δ0)

− m

(2m+ δ0)2
.(28)

We are left to explicitly compute E[Xt,iYt,i|Gt,i−1]. First, since E[Yt,i|Gt,i−1] = 0,

E[Xt,iYt,i|Gt,i−1] = E

[
1

n
1
2+mξ

Nm(t, i)

Wt,i−1
Yt,i

∣∣∣∣∣Gt,i−1

]

=
1

n1+mξ

1

Wt,i−1
E
[
Nm(t, i)

Dt,i + δ0

∣∣∣∣Gt,i−1

]
− 1

n1+mξ

1

Wt,i−1

t

St,i−1
E [Nm(t, i)|Gt,i−1] .

To continue, we determine the above two (conditional) expectations. We start by computing

E
[
Nm(t, i)

Dt,i + δ0

∣∣∣∣Gt,i−1

]
=
Nm(t, i− 1)− 1 + 1{i=m}

m+ δ0
P(Dt,i =m|Gt,i−1)

+

∞∑
k=m+1

Nm(t, i− 1) + 1{i=m}
k+ δ0

P(Dt,i = k|Gt,i−1)

=

∞∑
k=m

Nm(t, i− 1) + 1{i=m}
k+ δ0

P(Dt,i = k|Gt,i−1)

− 1

m+ δ0
P(Dt,i =m|Gt,i−1)

=
t

St,i−1

(
Nm(t, i− 1) + 1{i=m}

)
− Nm(t, i− 1)

St,i−1
.

Also, from [3],

E [Nm(t, i)|Gt,i−1] =

(
1− m+ δ0

St,i−1

)
Nm(t, i− 1) + 1{i=m} .

Combining the above, we get

E[Xt,iYt,i|Gt,i−1] =
1

n1+mξ

1

Wt,i−1
E
[
Nm(t, i)

Dt,i + δ0

∣∣∣∣Gt,i−1

]
− 1

n1+mξ

1

Wt,i−1

t

St,i−1
E [Nm(t, i)|Gt,i−1]

=
1

n1+mξ

1

Wt,i−1

t

St,i−1

[
Nm(t, i− 1) + 1{i=m} − Nm(t, i− 1)

t
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−
(
1− m+ δ0

St,i−1

)
Nm(t, i− 1)− 1{i=m}

]
=

1

n1+mξ

Nm(t, i− 1)

Wt,i−1St,i−1

[
t

St,i−1
(m+ δ0)− 1

]
.

To compute the limiting correlation we use that, uniformly over i= 1, . . . ,m, as t→∞,

Nm(t, i)

t

P0−→ pm ,
St,i
t

→ 2 + δ0 .

Furthermore, tedious but straightforward computations show that, uniformly over i =
1, . . . ,m, as t→∞,

Wt,i ≍
Λ

tmξ
,

where, crucially, Λ is not a function of t. Hence, as t→∞,

E[Xt,iYt,i|Gt,i−1] =
1

n1+mξ

tmξ

Λ

pm
(2m+ δ0)

(ξ − 1)(1 + oP(1)) .

Summing these terms and using
∑n

t=1 t
x−1 ≍ nx/x as n→∞, gives

n∑
t=2

m∑
i=1

E[Xt,iYt,i|Gt,i−1]
P0−→ 1

Λ

mpm
(2m+ δ0)

ξ − 1

1 +mξ
(29)

=− m2

(δ0 +m(2 +m+ δ0))2
1

Λ
.

In conclusion, putting together (27), (28), and (29) and applying the MMCLT (see, e.g., [16])
gives, as n→∞,

(30)
√
n

((
Nm(n)/n

Λ
ι′n(δ0)

)
−
( pm

Λ
ι′(δ0)

))
D−→N

((
0
0

)
, Σ̃

)
,

where

Σ̃ :=

(
1
Λ2

m2(m+δ0)(1+m+δ0)(2m+δ0)
(δ0+2m(1+m+δ0))(δ0+m(2+m+δ0))2

− 1
Λ

m2

(δ0+m(2+m+δ0))2

− 1
Λ

m2

(δ0+m(2+m+δ0))2
v(δ0,m)

)
.

Recall that v(δ0,m) is given in (8). Note that the above central limit theorem result is not for
(Nm(n)/n, δ̂n). This is because the martingale difference sequences are defined as a linear
transformation of (Nm(n)/n, δ̂n). Therefore, next we apply a linear transformation to (30)
to obtain a central limit theorem for (Nm(n)/n, δ̂n). To this end, observe that (see [23, proof
of Theorem 2]),

√
n(δ̂n − δ0) =−

√
n
(ι′n(δ0)− ι′(δ0))

ι′′n(δ̄n)
,

where δ̄n lies between δ0 and δ̂n, and so ι′′n(δ̄n)
P0−→ ι′′(δ0) =−v(δ0,m). Using the above we

obtain
√
n(Nm(n)/n− pm) =

√
nΛ

(
Nm(n)/n

Λ
− pm

Λ

)
√
n(δ̂n − δ0) =

√
n

v(δ0,m)
(ι′n(δ0)− ι′(δ0)) .



26

In conclusion, using Slutsky’s lemma, as n→∞,
√
n

((
Nm(n)/n

δ̂n

)
−
(
pm
δ0

))
D−→N

((
0
0

)
,Σ(δ0,m)

)
,

where

Σ(δ0,m) :=

(
m2(m+δ)(1+m+δ)(2m+δ)

(δ+2m(1+m+δ))(δ+m(2+m+δ))2 − m2

(δ+m(2+m+δ))2
1

v(δ0,m)

− m2

(δ+m(2+m+δ))2
1

v(δ0,m)
1

v(δ0,m)

)
.

The proof of (11) is now a simple consequence of Proposition 9.1 together with the delta
method. Define the function h(x, y) := x− pm(y). The gradient of h(·, ·) is given by

∇h(x, y) = (1,−p′m(y)) =
(
1,

m2

(y+m(2 +m+ y))2

)
,

where p′m(y) is given in (23). Using h(·, ·), we can rewrite

(31)
Q(Gn)√

n
=
Nm(n)− npm(δ̂n)√

n
=
√
nh
(
Nm(Gn)/n, δ̂n

)
.

Hence, by applying the delta method we get that (31) converges in distribution as n→∞ to
a normal distribution with variance

lim
n→∞

Var
(Nm(Gn)− npm(δ̂n)√

n

)
=
(
∇h(pm(δ0), δ0)

)T
Σ(δ0,m)

(
∇h(pm(δ0), δ0)

)
=

m2(m+ δ0)(1 +m+ δ0)(2m+ δ0)

(δ0 + 2m(1 +m+ δ0))(δ0 +m(2 +m+ δ0))2
− m4

v(δ0,m)(δ0 +m(2 +m+ δ0))4
.

where Σ(δ0,m) and v(δ0,m) are given by (26) and (8), respectively.

9.2. Asymptotic normality under the alternative hypothesis. The main insight is that
most of the contribution for the asymptotic distribution of the degree counts is due to
the attachment process up to the changepoint. In fact, the asymptotic distribution of
(Nm(n),Nm+1(n), . . .) is normal, both under the null and alternative models, with exactly
the same covariance structure but with different means. Specifically, in [3] it was shown that
under the null model (

Nk(n)−E0[Nk(n)]√
n

)
k≥m

D
=⇒ (Zk)k≥m ,

as n→∞, where the right-hand side is a zero-mean Gaussian process with covariance given
in [3, Theorem 2.5], and the notation (Xk(n))k≥m

D=⇒ (Zk)k≥m means that for any k ≥mwe

have (Xm(n), . . . ,Xk(n))
D−→ (Zm, . . . ,Zk) as n→∞ (i.e., the infinite vector converges in

the product topology). The following lemma generalizes this result to our alternative model,
immediately implying (12). Furthermore, it provides a stepping stone towards the proof of
(13):

LEMMA 9.2. Under the alternative model with γ ∈ (0,1)(
Nk(n)−E1[Nk(n)]√

n

)
k≥m

D
=⇒ (Zk)k≥m ,

as n→∞ where the right-hand side is a zero-mean Gaussian process with covariance given
in [3, Theorem 2.5].
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PROOF. Let k ≥ m be arbitrary. We must show that the standardized version of
(Nm(n), . . . ,Nk(n)) is asymptotically normal with the correct covariance structure. Let
us first inspect the asymptotic marginal distributions of Nk(n), as this illustrates the main
premise of the argument, that can be extended easily by using an application of the Cramér-
Wold device. Proceed by using the following decomposition

1√
n
(Nk(n)−E1[Nk(n)]) =

1√
n
(E1 [Nk(n)|Gτn ]−E1 [Nk(n)])

+
1√
n
(Nk(n)−E1 [Nk(n)|Gτn ]) .(32)

The second term in (32) can be dealt with conveniently using the Azuma-Hoeffding inequal-
ity. Define the Doob martingale, for t ∈ [n] \ [τn],

Mk(t) = E1 [Nk(n) |Gt] .

As used before we know that almost surely |Mk(t)−Mk(t− 1)| ≤ 2m. Therefore, by the
Azuma-Hoeffding inequality,

P1 (|Nk(n)−E1 [Nk(n)|Gτn ] | ≥ x)≤ 2e
− x2

8m2(n−τn) .

Thus, the second term in (32) is OP1
(
√
n− τn/

√
n) = OP1

(n(γ−1)/2) = o(1) when γ < 1.
We now shift the focus to the first term in (32). Define

Nk(τn, n) =
∑
v∈[τn]

1{Dv(n) = k} .

In words, this is the number of vertices of degree k that were added to the graph Gn up to the
changepoint. Note that

Nk(n) =Nk(τn, n) +
∑

v∈[n]\[τn]

1{Dv(n) = k} .

Given the affine nature of the preferential attachment function (after time τn) we know that∑
v∈[n]\[τn] 1{Dv(n) = k} is independent of Gτn . Therefore, we can simplify the first term

in (32) as
1√
n
(E1 [Nk(n)|Gτn ]−E1 [Nk(n)]) =

1√
n
(E1 [Nk(τn, n)|Gτn ]−E1 [Nk(τn, n)]) .

At this point, it is useful to write E1 [Nk(τn, n)|Gτn ] in a slightly more explicit way. Note
that

E1 [Nk(τn, n)|Gτn ] = E1

 ∑
v∈[τn]

1{Dv(n) = k}

∣∣∣∣∣∣Gτn


=
∑
v∈[τn]

k∑
j=m

1{Dv(τn) = j}P1 (Dv(n) = k|Dv(τn) = j)︸ ︷︷ ︸
:=pj,k(τn,n)

=

k∑
j=m

Nj(τn)pj,k(τn, n) .

Using this we immediately see that

E1[Nk(τn, n)] =

k∑
j=m

E1[Nj(τn)]pj,k(τn, n) =

k∑
j=m

E0[Nj(τn)]pj,k(τn, n) .
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In conclusion
1√
n
(E1 [Nk(n)|Gτn ]−E1 [Nk(n)])

=
1√
n

k∑
j=m

(Nj(τn)−E0[Nj(τn)])pj,k(τn, n)

=

k∑
j=m

1
√
τn

(Nj(τn)−E0[Nj(τn)])

√
τn
n
pj,k(τn, n) .(33)

To proceed all that is needed is to characterize pj,k(τn, n). Lemma 7.2 immediately provides
the necessary result, specifically

pk,k(τn, n) = 1− (1 + o(1))cnγ−1m
k+ δ1
2m+ δ1

= 1+ o(1)

and for j < k

pj,k(τn, n)≤ P1 (Dv(n)> k|Dv(τn) = j) = o(1) .

In conclusion, since
√
τn/n→ 1 and pk,l(τn, n)→ 1{j = k} as n→∞ we conclude that

(33) converges to the same normal distribution as 1√
n
(Nk(n)−E0[Nk(n)]) under the null

model.
Owing to the linearity of (33), the same argument also shows that any finite linear com-

bination of the (centered and rescaled) elements of (Nm(n), . . . ,Nk(n)) is asymptotically
normal with the appropriate variance. An application of the Cramér-Wold device then shows
that, for any k ≥m, this vector converges in distribution to the desired finite-dimensional
multi-variate Gaussian distribution. This concludes the proof.

With this lemma at hand (12) is immediate. The second result (13) is, however, not a
trivial consequence of the lemma, as the convergence in the product topology in Lemma 9.2
is unfortunately not sufficient to obtain the final result.

To formally show (13), begin by recalling that ι′n(δ̂n) = 0. Expanding δ 7→ ι′n(δ) around
δ0 we get

δ̂n − δ0 =− ι
′
n(δ0)

ι′′n(δ̄n)
,

where δ̄n = δ0 + ζ̄n(δ̂n − δ0) for some ζ̄n ∈ [0,1]. Therefore, and considering also a Taylor
expansion of pm(δ̂n), we conclude that

Q(gn) =Nm(n)− npm(δ̂n)

=Nm(n)− npm(δ0) + n
p′m(δ̆n)

ι′′n(δ̄n)
ι′n(δ0) ,

where δ̆n = δ0 + ζ̆n(δ̂n − δ0) for some ζ̆n ∈ [0,1]. Since δ̂n
P1−→ δ0 as n→∞, and using the

uniform convergence results of ι′′ from [23] (as already used in the proof of Proposition 8.1)
we conclude that

p′m(δ̌n)

ι′′n(δ̄n)

P1−→ p′m(δ0)

ι′′(δ0)
̸= 0.
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To aid the presentation we rewrite Q(Gn) as

Q(Gn) =Nm(n)− npm(δ0) + n
p′m(δ0)

ι′′(δ0)
ι′n(δ0)

+ n

(
p′m(δ̆0)

ι′′n(δ̄0)
− p′m(δ0)

ι′′(δ0)

)
ι′n(δ0) .(34)

We argue that the last term is negligible, and therefore it suffices to characterize the asymp-
totic normality of the first two terms. Note that Nm(n) and ι′n(δ0) are not independent. To
avoid unnecessarily cluttering the presentation we focus first on the asymptotic normality of
ι′n(δ0) and then argue that extending the analysis to the joint normality is straightforward.

The following result generalizes [23, Lemma 7] to the alternative model:

LEMMA 9.3. Recall the definition of v in (8). Under the alternative model,
√
n(ι′n(δ0)−E1[ι

′
n(δ0)])

D−→N (0, v(δ0,m)) .

PROOF. We proceed similarly as in the proof of Lemma 9.2 by isolating the contributions
of the vertices that join after the changepoint as follows

√
n(ι′n(δ0)−E1[ι

′
n(δ0)]) =

√
n

n+ 1

∑
k≥m

1

k+ δ0
(N>k(n)−E1[N>k(n)|Gτn ])

+

√
n

n+ 1

∑
k≥m

1

k+ δ0
(E1[N>k(n)|Gτn ]−E1[N>k(n)]) .(35)

Following the exact same argument as in the proof of Lemma A.2 the first term on the right-
hand side is sufficiently small since

P1(n|ι′n(δ0)−E1[ι
′
n(δ0)|Gτn ]| ≥ x)≤ 2exp

(
x2

2(n− τn)c2n,m

)
,

where cn,m = 2m log(n)(1 + o(1)), and thus
√
n(ι′n(δ0)−E1[ι

′
n(δ0)|Gτn ]) = OP(n

γ−1 log(n)) = oP1
(1) .

For the following term, it is convenient to introduce a convenient notation, similarly as done
in the proof of Lemma 9.2:

N>k(τn, n) :=
∑
v∈[τn]

1{Dv(n)> k} .

Note that

E1[N>k(n)|Gτn ]−E1[N>k(n)] = E1[N>k(τn, n)|Gτn ]−E1[N>k(τn, n)] ,

and also

E1[N>k(n)|Gτn ] =N>k(τn) +
∑
v∈[τn]

1{Dv(τn)≤ k}P1(Dv(n)> k|Dv(τn)≤ k)︸ ︷︷ ︸
:=qk(τn,n)

.
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With this in hand, the second term on the right-hand side of (35) is
√
n

n+ 1

∑
k≥m

1

k+ δ0
(E1[N>k(τn, n)|Gτn ]−E1[N>k(τn, n)])

=

√
nτn

n+ 1

1
√
τn

∑
k≥m

1

k+ δ0
(N>k(τn)−E1[N>k(τn)])

+

√
n

n+ 1

∑
k≥m

qk(τn, n)

k+ δ0

∑
v∈[τn]

(1{Dv(τn)≤ k} − P1(Dv(τn)≤ k))

=

√
nτn

n+ 1

1
√
τn

∑
k≥m

1

k+ δ0
(N>k(τn)−E0[N>k(τn)])(36)

−
√
n

n+ 1

∑
k≥m

qk(τn, n)

k+ δ0

∑
v∈[τn]

(1{Dv(τn)> k} − P0(Dv(τn)> k)) .(37)

The term (36) converges in law to N (0, v(δ0,m)) by [23, Lemma 7]. To finalize our argu-
ment, we are left to prove that the term (37) is negligible. We do this by rewriting it as a Doob
martingale difference, similarly as was done earlier in the proof. Let

Mt :=

√
n

n+ 1
E1

∑
k≥m

qk(τn, n)

k+ δ0
N>k(τn)

∣∣∣∣∣∣Gt

 .

With this notation (37) is precisely Mτn −M1. Furthermore, the martingale differences are
bounded by

|Mt −Mt−1| ≤
√
n

n+ 1

∑
k≥m

2m

k+ δ0
qk(τn, n)

=
2m

√
n

(n+ 1)τn

∑
k≥m

∑
v∈[τn]

1

k+ δ0

P1(Dv(n)> k,Dv(τn)≤ k)

P1(Dv(τn)≤ k)

≤ 2m
√
n

(n+ 1)τn

∑
k≥m

∑
v∈[τn]

P1(Dv(n)> k,Dv(τn)≤ k)

k+ δ0

1

P0(Dv(τn)≤m)

≤ 2mn−3/2

pm(δ0)
(1 + o(1))

∑
k≥m

∑
v∈[τn]

P1(Dv(n)> k,Dv(τn)≤ k)

k+ δ0
.

The double-summation is controlled in the proof of Proposition 8.2, and it is the sum of the
terms in expressions (41) and (42). In conclusion

|Mt −Mt−1| ≤
2m2c

(2m+ δ0)pm(δ0)︸ ︷︷ ︸
:=const(m,δ0,c)

nγ−3/2(1 + o(1)) .

Based on this and using the Azuma-Hoeffding inequality we conclude that, for any x≥ 0

P (|Mτn −M1| ≥ x)≤ 2exp

{
− x2

(1 + o(1))τn
(
const(m,δ0, c)nγ−3/2

)2
}

≤ 2exp

{
− x2

(1 + o(1))const2(m,δ0, c)n2(γ−1)

}
.
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This implies that Mτn −M1 = OP1
(nγ−1) = oP1

(1), showing that (37) is negligible, and
concluding the proof of the lemma.

Lemma 9.3 suffices to show that the last term in (34) gives a negligible contribution to the
limit distribution of (Q(Gn)−E1[Q(Gn)])/

√
n, since

√
n

(
p′m(δ̆0)

ι′′n(δ̄0)
− p′m(δ0)

ι′′(δ0)

)
ι′n(δ0)−E1

[
√
n

(
p′m(δ̆0)

ι′′n(δ̄0)
− p′m(δ0)

ι′′(δ0)

)
ι′n(δ0)

]
= oP1

(1)OP1
(1) = oP1

(1) .

In conclusion
Q(Gn)−E1[Gn]√

n
=
Nm(n)−E1[Nm(n)]√

n
+
√
n
p′m(δ0)

ι′′(δ0)

(
ι′n(δ0)−E1[ι

′
n(δ0)]

)
+ oP1

(1) .

Since ι′n(δ0) and Nm(n) are not independent we cannot directly rely on Lemma 9.3 and
9.2 to obtain the final result. However, using exactly the same type of argument leads to the
following sequence of statements:

Q(Gn)−E1[Q(Gn)]√
n

= oP1
(1) +

E1 [Nm(n)|Gτn ]−E1 [Nm(n)]√
n

+

√
n

n+ 1

∑
k≥m

1

k+ δ0
(E1 [N>k(n)|Gτn ]−E1 [N>k(n)])

= oP1
(1) +

Nm(τn)−E0 [Nm(τn)]√
n

+

√
n

n+ 1

∑
k≥m

1

k+ δ0
(N>k(τn)−E0 [N>k(τn)])

D−→N (0,w(δ0,m) + u(δ0,m)),

where the last statement follows from the joint convergence, after appropriate rescaling, of
Nm(τn) and ι′τn , which is guaranteed by (30) (cf. the definition of ι′n in (5)).

APPENDIX A: PROOF OF AUXILIARY RESULTS

A.1. Proof of Proposition 8.2. Recall that δ ∈ [δmin, δmax]. Begin by noting that

(n+ 1)
(
E1[ι

′
n(δ)]−E0[ι

′
n(δ)]

)
=
∑
k≥m

E1[N>k(n)]−E0[N>k(n)]

k+ δ
.

The numerator in the above summand can be decomposed in a similar manner as used for the
proof of Proposition 7.1:

E1[N>k(n)]−E0[N>k(n)]

= E1[N>k(n)]−E1[N>k(τn)] +E0[N>k(τn)]−E0[N>k(n)]

= (E1[N>k(n)]−E1[N>k(τn)])− (E0[N>k(n)]−E0[N>k(τn)]) .
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The first equality holds as the law of Gτn is the same under the null and alternative models.
Therefore,

(n+ 1)
(
E1[ι

′
n(δ)]−E0[ι

′
n(δ)]

)
=
∑
k≥m

E1[N>k(n)]−E1[N>k(τn)]

k+ δ
(38)

−
∑
k≥m

E0[N>k(n)]−E0[N>k(τn)]

k+ δ
.

The treatment of the two terms is entirely analogous and it is done simultaneously.
For the rest of the proof, let ℓ ∈ {0,1}. Clearly

Eℓ[N>k(n)]−Eℓ[N>k(τn)] =
∑
v∈[τn]

Pℓ(Dv(n)> k)− Pℓ(Dv(τn)> k)

+
∑

v∈[n]\[τn]

Pℓ(Dv(n)> k) .

Like in the proof of Proposition 7.1 we distinguish the behavior of “old” vertices (that arrived
before the change-point) from the remaining vertices (the “new” vertices). The contribution
of the latter plays an insignificant role, as we see next. Note that, since k ≥m and for v ∈
[n] \ [τn], the event Dv(n)> k is only possible when there is a vertex v′ > v that attached to
v. Referring to (2) we see that the probability of this happening is at most (m+ δℓ)/((2m+
δℓ)τn − 2m). Since there are at most m(n− τn) possible edges that could attach we get the
simple bound∑

v∈[n]\[τn]

Pℓ(Dv(n)> k)≤m(n− τn)
2 m+ δℓ
(2m+ δℓ)τn − 2m

=O(n2γ−1) .

Using that result and the fact that the largest degree in Gn is at most nm, this implies that
nm∑
k=m

∑
v∈[n]\[τn]

Pℓ(Dv(n)> k)

k+ δ
≤O(n2γ−1)

nm∑
k=m

1

k+ δ
≤ O(n2γ−1 logn) .

Therefore, ∑
k≥m

Eℓ[N>k(n)]−Eℓ[N>k(τn)]

k+ δ

=
∑
k≥m

∑
v∈[τn]

Pℓ(Dv(n)> k)− Pℓ(Dv(τn)> k)

k+ δ
+ O(n2γ−1 logn)

=
∑
k≥m

∑
v∈[τn]

Pℓ(Dv(τn)≤ k,Dv(n)> k)

k+ δ
+ o(nγ)

=
∑
k≥m

∑
v∈[τn]

Pℓ(Dv(τn) = k,Dv(n)> k)

k+ δ
(39)

+
∑
k>m

∑
v∈[τn]

Pℓ(Dv(τn)< k,Dv(n)> k)

k+ δ
+ o(nγ) .(40)

The bulk of the analysis is therefore the characterization of the double summations above.
This is somewhat delicate, and requires a good understanding of the behavior of Pℓ(Dv(τn)≤
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k,Dv(n)> k) for v ∈ [τn] and k ≥m. For an arbitrary vertex v ∈ [τn] and “small” k we know
that, most likely, the degree of the vertex will not change in Gn. Most of the contribution in
the above expression will therefore be due to the attachment of a single edge to v. This
reasoning does not apply when k is “large”, but in that case the denominator k + δ is large
enough to make the contribution to the above summations negligible.

Note that up to time τn both null model and alternative models coincide. Therefore
1
τn

∑
v∈[τn] Pℓ(Dv(τ) = k) = pk(δ0)(1 + o(1)), regardless of the value of ℓ. To characterize

the term (39) we proceed by truncating that series and using Lemma 7.2. Define an auxiliary
series bn = ⌈n1−γ/ logn⌉. This is a divergent sequence of integers such that bn = o(n1−γ).
Then ∑

k≥m

∑
v∈[τn]

Pℓ(Dv(τn) = k,Dv(n)> k)

k+ δ

=
∑
k≥m

∑
v∈[τn]

Pℓ(Dv(n)−Dv(τn)> 0 |Dn(τn) = k)Pℓ(Dv(τn) = k)

k+ δ

=

bn∑
k=m

∑
v∈[τn]

(1 + o(1))cnγ−1m
k+ δℓ
2m+ δℓ

Pℓ(Dv(τn) = k)

k+ δ

+

∞∑
k=bn+1

∑
v∈[τn]

Pℓ(Dv(n)−Dv(τn)> 0 |Dn(τn) = k)Pℓ(Dv(τn) = k)

k+ δ

= (1+ o(1))cnγ−1 m

2m+ δℓ
τn

bn∑
k=m

k+ δℓ
k+ δ

pk(δ0)(41)

+

∞∑
k=bn+1

∑
v∈[τn]

Pℓ(Dv(n)−Dv(τn)> 0 |Dn(τn) = k)Pℓ(Dv(τn) = k)

k+ δ
.(42)

The series in (41) is convergent. For the series in (42), note that
∞∑

k=bn+1

∑
v∈[τn]

Pℓ(Dv(n)−Dv(τn)> 0 |Dn(τn) = k)Pℓ(Dv(τn) = k)

k+ δ

≤
∞∑

k=bn+1

∑
v∈[τn]

k2

b2n

Pℓ(Dv(τn) = k)

k+ δ

=
1

b2n

∞∑
k=bn+1

∑
v∈[τn]

Eℓ

(
D2

v(τn)

Dv(τn) + δ
1{Dv(τn) = k}

)

≤ 1

b2n

∞∑
k=1

∑
v∈[τn]

Eℓ

 Dv(τn)

Dv(τn) + δ︸ ︷︷ ︸
≤Cm

Dv(τn)1{Dv(τn) = k}


=
Cm

b2n
Eℓ

∑
v∈[τn]

Dv(τn)


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=
Cm

b2n
2mτn =O(n2γ−1 logn) = o(nγ) ,

where Cm := m
m+δmin

. In conclusion,∑
k≥m

∑
v∈[τn]

Pℓ(Dv(τn) = k,Dv(n)> k)

k+ δ

= (1+ o(1))cnγ−1 m

2m+ δℓ
τn
∑
k≥m

k+ δℓ
k+ δ

pk(δ0) .(43)

The characterization of (40) is significantly more delicate. Note that∑
k>m

∑
v∈[τn]

Pℓ(Dv(τn)< k,Dv(n)> k)

k+ δ

=
∑
v∈[τn]

Eℓ

[∑
k>m

1

k+ δ
1{Dv(τn)< k,Dv(n)> k}

]

≤
∑
v∈[τn]

Eℓ

[∑
k>m

1

Dv(τn) + 1+ δ
1{Dv(τn)< k,Dv(n)> k}

]

=
∑
v∈[τn]

Eℓ

 1

Dv(τn) + 1+ δ
1{Dv(n)−Dv(τn)≥ 2}

Dv(n)−1∑
k=Dv(τn)+1

1


=
∑
v∈[τn]

Eℓ

[
1{Dv(n)−Dv(τn)≥ 2}Dv(n)−Dv(τn)− 1

Dv(τn) + 1+ δ

]

=
∑
v∈[τn]

Eℓ

[
1{Dv(n)−Dv(τn)≥ 1}Dv(n)−Dv(τn)− 1

Dv(τn) + 1+ δ

]
.(44)

The key quantity to control is the expectation in (44). Let σv denote the first time after τn
when an edge is attached to vertex v. With this in hand we can bound (44) as∑

k>m

∑
v∈[τn]

Pℓ(Dv(τn)< k,Dv(n)> k)

k+ δ

≤
∑
v∈[τn]

∑
s∈[n]\[τn]

Eℓ

[
1{σv = s}Dv(n)−Dv(s)

Dv(τn) + 1+ δ

]
.(45)

The following lemma allows us to bound (45):

LEMMA A.1. For ℓ ∈ {0,1} and t≥ τ > τn

Eℓ [Dv(t) + δℓ |Dv(τ)]

= (Dv(τ) + δℓ)

t−τ∏
j=1

m∏
i=1

(
1 +

1

2(τ + j − 1))m+ δℓ(τ + j) + (i− 1)

)
.

We postpone the proof of Lemma A.1 to later on. With this in hand, for any s ∈ [n] \ [τn],

Eℓ [Dv(n)−Dv(s) |Dv(s)]
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= Eℓ [Dv(n) + δℓ |Dv(s)]− (Dv(s) + δℓ)

= (Dv(s) + δℓ)

 ∏
j∈[n]\[τn]

m∏
i=1

(
1 +

1

j(2m+ δℓ)− 2m+ i− 1

)
− 1


= (1+ o(1))(Dv(s) + δℓ)(n− τn)

m

(2m+ δℓ)τn

≤O(1)(Dv(s) + δℓ)n
γ−1 .

When s = σv we know that Dv(s) ≤Dn(τn) +m (at time s the first edge was attached to
v, and therefore at most m edges were attached to v after all the intermediate steps). That
means that

Dv(s) + δℓ
Dv(τn) + 1+ δ

≤ Dv(τn) +m+ δℓ
Dv(τn) + 1+ δ

≤ Dv(τn) +m+ δmax

Dv(τn) + 1+ δmin

≤ 2m+ δmax

m+ 1+ δmin
:= const ,

where const> 0 is simply a constant. Therefore,∑
v∈[τn]

∑
s∈[n]\[τn]

Eℓ

[
1{σv = s}Dv(n)−Dv(s)

Dv(τn) + 1+ δ

]

=
∑
v∈[τn]

∑
s∈[n]\[τn]

Eℓ

[
1

Dv(τn) + 1+ δ
Eℓ [1{σv = s}(Dv(n)−Dv(s)) |Dv(s)]

]

=O(1)
∑
v∈[τn]

∑
s∈[n]\[τn]

Eℓ

[
1

Dv(τn) + 1+ δ
Eℓ

[
1{σv = s}(Dv(s) + δℓ)n

γ−1
∣∣Dv(s)

]]
≤O(nγ−1)

∑
v∈[τn]

∑
s∈[n]\[τn]

Pℓ (σv = s)

= O(nγ−1)
∑
v∈[τn]

Pℓ (Dv(n)−Dv(τn)≥ 1)

≤O(nγ−1)
∑
v∈[τn]

(n− τn)mEℓ

[
Dv(τn) + δℓ

(2m+ δℓ)τn + δℓ

]

=O(n2γ−2)Eℓ

 ∑
v∈[τn]

Dv(τn) + δℓ

=O(n2γ−1) = o(nγ) ,

where the last inequality follows from the same reasoning used to obtain (43), and the last
step follows since γ > 1

2 . This means that the term in (40) is of smaller order than the term in
(39). In conclusion,∑

k≥m

Eℓ[N>k(n)]−Eℓ[N>k(τn)]

k+ δ
= (1+ o(1))cnγ

m

2m+ δℓ

∞∑
k=m

k+ δℓ
k+ δ

pk(δ0) .
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We are now ready to go back to (38) to get

(n+ 1)
(
E1[ι

′
n(δ)]−E0[ι

′
n(δ)]

)
=
∑
k≥m

E1[N>k(n)]−E1[N>k(τn)]

k+ δ
−
∑
k≥m

E0[N>k(n)]−E0[N>k(τn)]

k+ δ

= (1+ o(1))
cmnγ

(2m+ δ0)(2m+ δ1)
(δ1 − δ0)

∑
k≥m

2m− k

k+ δ
pk(δ0)

= (1 + o(1))
cmnγ

(2m+ δ0)(2m+ δ1)
(δ1 − δ0)

−1 +
∑
k≥m

2m+ δ

k+ δ
pk(δ0)

 ,

as required and where in the last step we used the fact that
∑

k≥m pk(δ0) = 1.

A.2. Proof of Lemma A.1. Note that between t and τ the attachment function is affine
with parameter δℓ. Note also that the graph Gt has precisely t+1 vertices and mt edges. Let
us describe what happens at each one of the intermediate steps. Let v be a vertex in Gτ and
let Dv(τ + 1, i) denote its degree in the graph Gτ+1,i, where i ∈ {1, . . . ,m}. Then,

Eℓ[Dv(τ + 1, i) + δ0 |Dv(τ + 1, i− 1)]

=Dv(τ + 1, i− 1) + δ0 +Eℓ[Dv(τ + 1, i)−Dv(τ + 1, i− 1) |Dv(τ + 1, i− 1)]

=Dv(τ + 1, i− 1) + δ0 +
Dv(τ + 1, i− 1) + δ0

2τm+ δ0(τ + 1) + (i− 1)

= (Dv(τ + 1, i− 1) + δ0)

(
1 +

1

2τm+ δ0(τ + 1) + (i− 1)

)
.

Therefore,

Eℓ[Dv(τ + 1) + δ0 |Dv(τ)] = Eℓ[Dv(τ + 1,m) + δ0 |Dv(τ + 1,0)]

= (Dv(τ) + δ0)

m∏
i=1

(
1 +

1

2τm+ δ0(τ + 1) + (i− 1)

)
.

Thus, in general, for t > τ ,

Eℓ[Dv(t) + δ0 |Dv(τ)]

= Eℓ [Eℓ[Dv(t) + δ0 |Dv(t− 1)] |Dv(τ)]

= Eℓ [Eℓ[Dv(t) + δ0 |Dv(t− 1)] |Dv(τ)]

=

m∏
i=1

(
1 +

1

2(t− 1)m+ δ0t+ (i− 1)

)
Eℓ [Dv(t− 1) + δ0 |Dv(τ)]

...

= (Dv(τ) + δ0)

t−τ∏
j=1

m∏
i=1

(
1 +

1

2(τ + j − 1))m+ δ0(τ + j) + (i− 1)

)
.
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A.3. Proof of Proposition 8.3. To show consistency of δ̂n note that ι′n(δ̂n) = 0 by defi-
nition. Recalling (21) we conclude immediately that

E[ι′(δ̂n)]→ 0 .

[23, Lemma 4] shows that ι′ has a unique zero at δ0, and ι′(δ)> 0 for δ < δ0 and ι′(δ)< 0

for δ > δ0. This immediately implies that E1[|δ̂n − δ0|] as n→∞, proving the first assertion
in the proposition.

Note also that in Proposition 8.1 we have shown that δ̃n → δ0, therefore we also have
Eℓ[|δ̂n − δ̃n|]→ 0. To characterize the rate of convergence of δ̂n to δ̃n we need the following
lemma:

LEMMA A.2. For ℓ ∈ {0,1} and x > 0

Pℓ

(
sup

δ∈[δmin,δmax]
(n+ 1)

∣∣ι′n(δ)−Eℓ[ι
′
n(δ)]

∣∣≥ x

)
≤ 2e

− x2

2nc2n,m ,

where cn,m =
∑nm

k=m
2m

k+δmin
.

PROOF. To prove this lemma we use a similar argument used in the proof of Theorem 3.1,
resorting to the Azuma-Hoeffding’s inequality. Note that in the expression of ι′n(δ) in (5)
only the first term in not deterministic. Begin by constructing the Doob martingale

Mt(δ) =
∑
k≥m

Eℓ [N>k(n) |Gt]

k+ δ
,

where t ∈ [n]. Clearly M1(δ) =
∑

k≥m
Eℓ[N>k(n)]

k+δ and Mn(δ) =
∑

k≥m
N>k(n)
k+δ , therefore

Mn(δ)−M1(δ) = (n+ 1)
(
ι′n(δ)−Eℓ[ι

′
n(δ)]

)
.

Furthermore, at each timestep in the construction of Gn we add 2m edges. Therefore

|Eℓ [N>k(n) |Gt]−Eℓ [N>k(n) |Gt−1]≤ 2m ,

where t ∈ {2, . . . , n} and m≤ k ≤ nm. As a result,

|Mt(δ)−Mt−1(δ)| ≤
nm∑
k=m

2m

k+ δ
≤

nm∑
k=m

2m

k+ δmin
.

Note that the bound on the martingale differences holds uniformly in δ. With this in hand we
can simply apply the Azuma-Hoeffding’s inequality to get the desired result.

Note that cn,m = 2m(1+ o(1) logn as n→∞. Let an be an arbitrary sequence satisfying
an = ω (

√
n logn). The above lemma tells us that

Pℓ

(
sup

δ∈[δmin,δmax]

∣∣ι′n(δ)−Eℓ[ι
′
n(δ)]

∣∣≥ an/n

)
= o(1) .

Now define hℓ : δ 7→R as hℓ(δ) := Eℓ[ι
′
n(δ)].

We have in particular that

ι′n(δ̂n)− hℓ(δ̂n) = oP(an/n) .
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Using a Taylor expansion of hℓ allows us to characterize the difference between δ̂n and δ̃n.
Let h′ℓ(δ) =

∂
∂δhℓ(δ) = Eℓ[ι

′′
n(δ)] and recall that ιn(δ̂n) = hℓ(δ̃n) = 0 by definition. Then

0 = ιn(δ̂n)− hℓ(δ̃n)

= ιn(δ̂n)− hℓ(δ̂n)− h′ℓ(δ̄n)(δ̃n − δ̂n)

= oP(an/n)− h′ℓ(δ̄n)(δ̃n − δ̂n) ,(46)

where |δ̄n − δ̂n| ≤ |δ̃n − δ̂n|. To proceed we must understand the behavior of h′ℓ(δ) =
Eℓ[ι

′′
n(δ)]. As argued in the proof of Proposition 8.1, thanks to the results in [23] and the

fact that ι′′n(δ) and ι′′(δ) are uniformly bounded,

E0

[
sup

δ∈[δmin,δmax]
|ι′′n(δ)− ι′′(δ)|

]
→ 0 .

Actually, this result also holds under the alternative hypothesis by using the following fact:

LEMMA A.3. Let 1
2 < γ < 1. Then E1[ι

′′
n(δ)]− E0[ι

′′
n(δ)]→ 0 as n→∞ uniformly in

δ ∈ [δmin, δmax].

The proof of this result follows almost immediately from the arguments used to prove
Proposition 8.2. In addition, it is also shown in [23] that ι′′(δ0) < 0. Since δ̄n converges in
probability to δ0 we therefore conclude that

Eℓ[ι
′′
n(δ̄n)] = (1 + o(1))ι′′(δ0)< 0 .

This, together with (46) implies that

δ̂n − δ̃n = oP(an/n) ,

proving the second statement in the proposition. The third statement is a rather trivial conse-
quence of the second statement by using a Taylor expansion of pm(δ) around δ0 (recalling
Equation (23)) to obtain

n(pm(δ̂n)− pm(δ̃n)) = np′m(δ0)(1 + oP(1))(δ̂n − δ̃n) = oPℓ
(an) .

A.4. Sketch proof of Lemma A.3. Similarly to the proof of Proposition 8.2 note that

E1[ι
′′
n(δ)]−E0[ι

′′
n(δ)] =− 1

n+ 1

∑
k≥m

E1[N>k(n)]−E0[N>k(n)]

(k+ δ)2
.

This is quite similar to

E1[ι
′
n(δ)]−E0[ι

′
n(δ)] =

1

n+ 1

∑
k≥m

E1[N>k(n)]−E0[N>k(n)]

k+ δ
.

Note that
∑

k≥m
1

(k+δ)2 is a convergent series, unlike
∑

k≥m
1

k+δ . By the same (and in fact
somewhat simpler) arguments as in the proof of Proposition 8.2 we conclude therefore that
E1[ι

′′
n(δ)]−E0[ι

′′
n(δ)] = o(nγ−1), as we wanted to show.

Funding. The work of RvdH was supported in part by the Netherlands Organisation for
Scientific Research (NWO) through Gravitation-grant NETWORKS-024.002.003.



DETECTING A LATE CHANGEPOINT IN THE PREFERENTIAL ATTACHMENT MODEL 39

REFERENCES

[1] ADAMIC, L. A., HUBERMAN, B. A., BARABÁSI, A. L., ALBERT, R., JEONG, H. and BIANCONI, G.
(2000). Power-law distribution of the world wide web. Science 287.5461 2115. https://doi.org/10.
1126/science.287.5461.2115a

[2] ALBERT, R. and BARABÁSI, A. L. (2000). Topology of evolving networks: Local events and universality.
Physical Review Letters 85.24 5234–5237. https://doi.org/10.1103/PhysRevLett.85.5234

[3] BALDASSARRI, S. and BET, G. (2022). Asymptotic Normality of Degree Counts in a General Preferential
Attachment Model. Markov Processes and Related Fields 28.4 577-603.

[4] BANERJEE, S., BHAMIDI, S. and CARMICHAEL, I. (2023). Fluctuation bounds for continuous time branch-
ing processes and evolution of growing trees with a change point. Annals of Applied Probability 33.4
2919–2980. https://doi.org/10.1214/22-AAP1881

[5] BARABÁSI, A. L. and ALBERT, R. (1999). Emergence of scaling in random networks. Science 286.5439
509–512. https://doi.org/10.1126/science.286.5439.509

[6] BARABÁSI, A. L., JEONG, H., NÉDA, Z., RAVASZ, E., SCHUBERT, A. and VICSEK, T. (2002). Evolution
of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications
311.3-4 590–614. https://doi.org/10.1016/S0378-4371(02)00736-7

[7] BHAMIDI, S., JIN, J. and NOBEL, A. (2018). Change point detection in network models: Preferential
attachment and long range dependence. Annals of Applied Probability 28.1 35–78. https://doi.org/10.
1214/17-AAP1297

[8] BHATTACHARJEE, M., BANERJEE, M. and MICHAILIDIS, G. (2020). Change point estimation in a dy-
namic stochastic block model. The Journal of Machine Learning Research 21.1 4330–4388.

[9] BOLLOBÁS, B. and RIORDAN, O. (2004). The diameter of a scale-free random graph. Combinatorica 24.1
5–34. https://doi.org/10.1007/s00493-004-0002-2

[10] BOLLOBÁS, B., RIORDAN, O., SPENCER, J. and TUSNÁDY, G. (2001). The degree sequence of a scale-
free random graph process. Random Structures & Algorithms 18.3 279–290. https://doi.org/10.1002/
rsa.1009

[11] BRODER, A., KUMAR, R., MAGHOUL, F., RAGHAVAN, P., RAJAGOPALAN, S., STATA, R., TOMKINS, A.
and WIENER, J. (2000). Graph structure in the web. Computer Networks 33.1 309–320. https://doi.
org/10.1016/S1389-1286(00)00083-9

[12] BUBECK, S., DEVROYE, L. and LUGOSI, G. (2017). Finding Adam in random growing trees. Random
Structures & Algorithms 50.2 158–172. https://doi.org/10.1002/rsa.20649

[13] BUBECK, S., ELDAN, R., MOSSEL, E. and RÁCZ, M. Z. (2017). From trees to seeds: On the inference
of the seed from large trees in the uniform attachment model. Bernoulli 23.4A 2887–2916. https:
//doi.org/10.3150/16-BEJ831

[14] BUBECK, S., MOSSEL, E. and RÁCZ, M. Z. (2015). On the influence of the seed graph in the preferential
attachment model. IEEE Transactions on Network Science and Engineering 2.1 30–39. https://doi.
org/10.1109/TNSE.2015.2397592

[15] CIRKOVIC, D., WANG, T. and ZHANG, X. (2022). Likelihood-based Changepoint Detection in Preferential
Attachment Networks. Available at arXiv: 2206.01076

[16] CRIMALDI, I. and PRATELLI, L. (2005). Convergence results for multivariate martingales. Stochastic Pro-
cesses and their Applications 115.4 571–577. https://doi.org/10.1016/j.spa.2004.10.004

[17] CURIEN, N., DUQUESNE, T., KORTCHEMSKI, I. and MANOLESCU, I. (2015). Scaling limits and influence
of the seed graph in preferential attachment trees. Journal de l’École polytechnique — Mathématiques
2 1–34. https://doi.org/10.5802/jep.15

[18] DEIJFEN, M., VAN DEN ESKER, H., VAN DER HOFSTAD, R. and HOOGHIEMSTRA, G. (2007). A pref-
erential attachment model with random initial degrees. Arkiv for Matematik 47.1 41–72. https:
//doi.org/10.1007/s11512-007-0067-4

[19] DOMMERS, S., VAN DER HOFSTAD, R. and HOOGHIEMSTRA, G. (2010). Diameters in preferential attach-
ment graphs. Journ. Stat. Phys. 139 72–107. https://doi.org/10.1007/s10955-010-9921-z

[20] FALOUTSOS, M., FALOUTSOS, P. and FALOUTSOS, C. (1999). On power-law relationships of the internet
topology. Computer Communication Review 29.4 251–261. https://doi.org/10.1145/316194.316229

[21] FARKAS, I., JEONG, H., VICSEK, T., BARABÁSI, A. L. and OLTVAI, Z. N. (2003). The topology of
the transcription regulatory network in the yeast, Saccharomyces cerevisiae. Physica A: Statistical
Mechanics and its Applications 318.3-4 601–612. https://doi.org/10.1016/S0378-4371(02)01731-4

[22] GAO, F. (2011). Modeling and interference of the internet movie database, Master Thesis, Eindhoven Uni-
versity of Technology.

[23] GAO, F. and VAN DER VAART, A. (2017). On the asymptotic normality of estimating the affine preferential
attachment network models with random initial degrees. Stochastic Processes and their Applications
127.11 3754–3775. https://doi.org/10.1016/J.SPA.2017.03.008

https://doi.org/10.1126/science.287.5461.2115a
https://doi.org/10.1126/science.287.5461.2115a
https://doi.org/10.1103/PhysRevLett.85.5234
https://doi.org/10.1214/22-AAP1881
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1016/S0378-4371(02)00736-7
https://doi.org/10.1214/17-AAP1297
https://doi.org/10.1214/17-AAP1297
https://doi.org/10.1007/s00493-004-0002-2
https://doi.org/10.1002/rsa.1009
https://doi.org/10.1002/rsa.1009
https://doi.org/10.1016/S1389-1286(00)00083-9
https://doi.org/10.1016/S1389-1286(00)00083-9
https://doi.org/10.1002/rsa.20649
https://doi.org/10.3150/16-BEJ831
https://doi.org/10.3150/16-BEJ831
https://doi.org/10.1109/TNSE.2015.2397592
https://doi.org/10.1109/TNSE.2015.2397592
https://arxiv.org/abs/2206.01076
https://doi.org/10.1016/j.spa.2004.10.004
https://doi.org/10.5802/jep.15
https://doi.org/10.1007/s11512-007-0067-4
https://doi.org/10.1007/s11512-007-0067-4
https://doi.org/10.1007/s10955-010-9921-z
https://doi.org/10.1145/316194.316229
https://doi.org/10.1016/S0378-4371(02)01731-4
https://doi.org/10.1016/J.SPA.2017.03.008


40

[24] GAO, F., VAN DER VAART, A., CASTRO, R. M. and VAN DER HOFSTAD, R. (2017). Consistent estimation
in general sublinear preferential attachment trees. Electronic Journal of Statistics 11.2 3979–3999.
https://doi.org/10.1214/17-EJS1356

[25] VAN DER HOFSTAD, R. (2017). Random graphs and complex networks - Volume one. Cambridge University
Press. https://doi.org/10.1017/9781316779422

[26] VAN DER HOFSTAD, R. (2024). Random graphs and complex networks - Volume two. (in preparation).
[27] JEONG, H., TOMBOR, B., ALBERT, R., OLTVAL, Z. N. and BARABÁSI, A. L. (2000). The large-scale

organization of metabolic networks. Nature 407.6804 651–654. https://doi.org/10.1038/35036627
[28] MARCHAND, D. C. and MANOLESCU, I. (2020). Influence of the seed in affine preferential attachment

trees. Bernoulli 26.3 1665–1705. https://doi.org/10.3150/19-BEJ1152
[29] MIDDENDORF, M., ZIV, E. and WIGGINS, C. H. (2005). Inferring network mechanisms: The Drosophila

melanogaster protein interaction network. Proceedings of the National Academy of Sciences of the
United States of America 102.9 3192–3197. https://doi.org/10.1073/pnas.0409515102

[30] NEWMAN, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National
Academy of Sciences 98.2 404–409. https://doi.org/10.1073/pnas.021544898

[31] PENSKY, M. and ZHANG, T. (2019). Spectral clustering in the dynamic stochastic block model. Electronic
Journal of Statistics 13.1 678–709. https://doi.org/10.1214/19-EJS1533

[32] PERC, M. (2014). The Matthew effect in empirical data. J. R. Soc. Interface 11.98. https://doi.org/10.1098/
rsif.2014.0378

[33] REDNER, S. (1998). How popular is your paper? An empirical study of the citation distribution. European
Physical Journal B 4.2 131–134. https://doi.org/10.1007/s100510050359

[34] RESNICK, S. I. and SAMORODNITSKY, G. (2016). Asymptotic normality of degree counts in a preferential
attachment model. Advances in Applied Probability 48.A 283–299. https://doi.org/10.1017/apr.2016.
56

[35] WANG, D., YU, Y. and RINALDO, A. (2021). Optimal change point detection and localization in sparse
dynamic networks. The Annals of Statistics 49.1 203 – 232. https://doi.org/10.1214/20-AOS1953

[36] WANG, H., TANG, M., PARK, Y. and PRIEBE, C. E. (2014). Locality statistics for anomaly detection in
time series of graphs. IEEE Transactions on Signal Processing 62.3 703–717. https://doi.org/10.1109/
TSP.2013.2294594

[37] WANG, M., YU, G. and YU, D. (2008). Measuring the preferential attachment mechanism in citation
networks. Physica A: Statistical Mechanics and its Applications 387.18 4692–4698. https://doi.org/
10.1016/j.physa.2008.03.017

[38] WATTS, D. J. (1999). Small Worlds: The Dynamics of Networks between Order and Randomness. Princeton
University Press.

[39] WATTS, D. J. and STROGATZ, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature 393
440–442. https://doi.org/10.1038/30918

[40] ZHAO, Z., CHEN, L. and LIN, L. (2019). Change-point detection in dynamic networks via graphon estima-
tion. Available at arXiv: 1908.01823

https://doi.org/10.1214/17-EJS1356
https://doi.org/10.1017/9781316779422
https://doi.org/10.1038/35036627
https://doi.org/10.3150/19-BEJ1152
https://doi.org/10.1073/pnas.0409515102
https://doi.org/10.1073/pnas.021544898
https://doi.org/10.1214/19-EJS1533
https://doi.org/10.1098/rsif.2014.0378
https://doi.org/10.1098/rsif.2014.0378
https://doi.org/10.1007/s100510050359
https://doi.org/10.1017/apr.2016.56
https://doi.org/10.1017/apr.2016.56
https://doi.org/10.1214/20-AOS1953
https://doi.org/10.1109/TSP.2013.2294594
https://doi.org/10.1109/TSP.2013.2294594
https://doi.org/10.1016/j.physa.2008.03.017
https://doi.org/10.1016/j.physa.2008.03.017
https://doi.org/10.1038/30918
https://arxiv.org/abs/1908.01823

	Introduction
	Related work

	Model
	Assumptions and notation

	Minimal degree tests
	Powerful test for known δ₀
	Powerful test for unknown δ₀
	Asymptotically calibrated tests

	Asymptotic normality of test statistics
	Numerical experiments
	Discussion and open problems
	Early changepoint
	Dynamical graph observations
	Lower bounds
	Boundary case ɣ=1
	Other test statistics
	Boundary case ɣ=1/2

	Powerful test for known δ₀: Proof of Theorem 3.1
	Type-I error
	Type-II error

	Powerful test for unknown δ₀: Proof of Theorem 3.4
	Type-I error
	Type-II error

	Asymptotic normality proofs
	Asymptotic normality under the null hypothesis
	Asymptotic normality under the alternative hypothesis

	Proof of auxiliary results
	Proof of Proposition 8.2
	Proof of Lemma A.1
	Proof of Proposition 8.3
	Sketch proof of Lemma A.3

	Funding
	References

