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Abstract. Recent methods in text-to-3D leverage powerful pretrained
diffusion models to optimize NeRF. Notably, these methods are able to
produce high-quality 3D scenes without training on 3D data. Due to the
open-ended nature of the task, most studies evaluate their results with
subjective case studies and user experiments, thereby presenting a chal-
lenge in quantitatively addressing the question: How has current progress
in Text-to-3D gone so far? In this paper, we introduce T3Bench, the first
comprehensive text-to-3D benchmark containing diverse text prompts
of three increasing complexity levels that are specially designed for 3D
generation. To assess both the subjective quality and the text alignment,
we propose two automatic metrics based on multi-view images produced
by the 3D contents. The quality metric combines multi-view text-image
scores and regional convolution to detect quality and view inconsistency.
The alignment metric uses multi-view captioning and GPT-4 evalua-
tion to measure text-3D consistency. Both metrics closely correlate with
different dimensions of human judgments, providing a paradigm for effi-
ciently evaluating text-to-3D models. The benchmarking results, shown
in Fig. 1, reveal performance differences among an extensive 10 prevalent
text-to-3D methods. Our analysis further highlights the common strug-
gles for current methods on generating surroundings and multi-object
scenes, as well as the bottleneck of leveraging 2D guidance for 3D gen-
eration. Our project page is available at: https://t3bench.com.
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1 Introduction
It is a narrow mind which cannot look at a subject from various points of view.
— George Eliot

Equipping machines with the ability to automatically generate 3D objects and
scenes from text descriptions has long been an ambitious and ongoing pursuit.
Recent methods, such as diffusion model [10,31] and NeRF [8,23,48], have signif-
icantly improved the effectiveness of text-to-3D methods, empowering potential
applications ranging from arts realization to industrial design.
⋆ Equal contribution
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Fig. 1: The average scores of 10 prevalent text-to-3D methods on T3Bench, computed
by the mean of quality & alignment metrics.

However, there lacks a systematic approach to benchmarking current progress
on text-to-3D methods, which is most prominently reflected in two aspects: (a)
A lack of a standard set of diverse, challenging test textual inputs. (b) An ab-
sence of a set of automatic and comprehensive evaluation metrics to quanti-
tatively measure the quality of the generated 3D scenes. Specifically, previous
works [16, 36, 37] mostly adopt simple object or scene prompts for evaluation,
and largely rely on subjective user experiments. Several works [24,27,42,45] as-
sess 3D generation quality by rendering the generated 3D model into a single 2D
image and measuring its alignment with the text prompt through CLIP cosine
distance or CLIP R-precision. Nevertheless, they only consider one view of the
3D scene, failing to assess the overall 3D quality.

To facilitate further research in this direction, we introduce T3Bench, the first
comprehensive text-to-3D benchmark. For a careful and thorough assessment,
we build the benchmark to accurately reflect the primary challenges of current
text-to-3D approaches. This includes their scalability and robustness in gener-
ating a variety of 3D scenes, the quality and view consistency of these generated
scenes, and the correctness or alignment of these 3D scenes with their respec-
tive texts. Specifically, we devise three prompt suites incorporating diverse 3D
scenes and with increasing complexity, including Single object, Single object with
surroundings, and Multiple objects. We also propose two automatic evaluation
metrics that both take multi-view information into consideration, focusing
on assessing the subjective quality of the generated 3D scenes and its alignment
with the textual prompt respectively. To calculate these two metrics, we first
employ multi-focal and multi-view capturing to obtain a set of 2D images from
the generated 3D scenes. The quality metric individually scores these multi-view
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Fig. 2: The overview of our T3Bench benchmark pipeline.

images with text-image scoring models (CLIP [30], ImageReward [46]), and then
combines them into one overall quality measurement using regional convolution,
which also effectively detects the infamous Janus problem (view inconsistency)
in prevalent text-to-3D models [11,27]. On the other hand, the alignment metric
utilizes multi-view captioning and GPT-4 evaluation to measure how closely the
3D information aligns with the textual information in the input text prompt.
Our user experiments show that both metrics correlate closely with human scor-
ings in 1-5 scale (with a Spearman correlation higher than 0.75), demonstrating
them as efficient and accurate measurements.

As the first attempt to benchmark current text-to-3D methods, T3Bench
yields fruitful results. Our benchmark reveals the strengths and weaknesses
across 10 prevalent text-to-3D methods, as well as their common insufficiency
when faced with more complicated 3D scenes, such as those involving multiple
objects. We also analyze the correlation between the performance of text-to-
3D methods and the quality of the 2D guidance generated by diffusion models,
showing that the primary hurdle for text-to-3D mainly lies in the transition from
2D to a consistent 3D scene.

2 Related Works

Text-to-3D. Predominant works in text-to-3D [4, 16, 22, 26, 28, 44] circumvent
the need for 3D training data by using large pretrained text-to-image diffusion
models [32, 34]. However, these approaches suffer from inconsistency between
views. Notably, the proposed score distillation loss [26] does not take into ac-
count the consistency between views as the diffusion model mimics a stochastic
process [10]. On the one hand, ProlificDreamer [44] proposes a variational formu-
lation of the score distillation loss to consider the stochasticity in the diffusion
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process. On the other hand, some researchers propose to fine-tune the diffusion
model to improve its consistency across views [50]. However, current metrics do
not adequately consider the 3D nature of the generated results, which makes it
difficult to compare the effectiveness of different methods. Prior work has relied
either on labor-intensive user studies [44] or CLIP R-precision [30], which does
not consider 3D consistency. While early attempts have been made to measure
3D consistency [11], these efforts only capture one aspect of the problem and
overlook crucial metrics such as quality and prompt alignment.
Text-to-image Generation and Evaluation. With the development of diffu-
sion models [10], text-based image generation has experienced significant progress
in recent years [32, 34]. These models excel at complex tasks like editing and
composition [3, 9]. However, comparing their capabilities in text-based gener-
ation is challenging due to the open-ended nature of the task [2]. Prior work
in text-to-image generation introduced DrawBench [34], a comprehensive set of
prompts aiming to evaluate various aspects, including color understanding, ob-
ject recognition, and spatial relations. Other approaches leverage CLIP [30] and
BLIP [15] to measure the similarity between text and generated images by us-
ing these models as scorers to gauge prompt alignment. In a similar vein, the
Aesthetic score [35] employs the CLIP model to predict image aesthetics. While
these methods assess alignment and quality to some extent, they fall short in con-
sidering multiple properties like toxicity, quality, and alignment. To encompass
these diverse properties into a single model, ImageReward [46] proposes train-
ing a reward model via reinforcement learning from human feedback. Results
show that this reward model better aligns with human preferences. Although
evaluation for 3D generation can draw on text-to-image evaluation methods, it
is important to note the major difference between the two: 3D contains semantic
information from multiple viewpoints rather than a single view.

3 Method

This section presents the methodology in constructing T3Bench, including the
design and generation of text prompts, the unification of 3D representations,
and the introduction of two novel evaluation metrics — the quality assessment
and the alignment assessment.

3.1 Diverse Prompts with Increasing Complexity

While there are some widely used text-to-image prompt sets, such as Draw-
Bench [33] and DALL-EVAL [5], many of the prompts in these benchmarks pose
substantial challenges for existing text-to-3D methods and lack an adequate de-
gree of distinction. Certain prompts, for instance, are excessively lengthy, while
others incorporate complex aspects such as counting, leading to poor 3D scenes
generated by all current text-to-3D methods. Therefore, a new set of prompts
needs to be specifically crafted for evaluating prevalent text-to-3D methods.
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We observe that current text-to-3D approaches demonstrate relatively ro-
bust performance on prompts with a single object. However, their performance
notably declines on text prompts that include environmental surroundings or
multiple objects. Such deficiency is partly due to the utilization of 2D supervi-
sion, which cannot ensure consistency amongst different viewpoints. With these
observations, we design three prompt sets with increasing complexity to perform
a targeted evaluation of text-to-3D approaches, namely Single object, Single ob-
ject with surroundings, and Multiple objects. The Single object set represents the
simplest scenario to establish a baseline level of performance, and the other two
prompt sets introduce increased levels of difficulty by incorporating additional
information, i.e., surroundings or multiple objects.

To generate these prompt sets, we first use GPT-4 [25] to generate a large pool
of candidate prompts, and then manually filter out prompts that contain proper
nouns or toponyms. Subsequently, we utilize ROUGE-L [17] to quantify prompt
similarity and gradually remove highly similar prompts until there remains a
number of N distinct prompts with significant diversity in each prompt set.

3.2 Unified 3D Representation

Different text-to-3D methods employ various 3D representations during genera-
tion, such as NeRF [23] and 3D mesh. From a testing perspective, a 3D mesh is
more conducive than NeRF due to its explicit geometric structure, which facili-
tates localization and normalization. Moreover, the primary use of text-to-3D is
to obtain editable 3D assets that can be applied in fields such as virtual reality
and gaming. Considering the purpose and practical applications, 3D mesh is a
more suitable unified representation for benchmarking text-to-3D methods. We
convert NeRF generated by text-to-3D methods into a 3D mesh using either
DMTet [38] or Marching Cube [19], and choose the one that produces superior
results. This makes subsequent evaluations more convenient while encourages
the generation of 3D scenes with more compact and clear geometry.

3.3 Evaluation Metrics on Quality and Alignment

Overview The evaluation of text-to-3D methods remains challenging due to
the need to fully account for the quality, view consistency, and text alignment
of the generated 3D scenes.

Our evaluation metrics primarily focus on two dimensions [13] that typically
reflect the effectiveness of text-to-3D methods: (1) the subjective quality of the
generated 3D scene, and (2) the degree of alignment between the generated 3D
scene and the input text prompt. To assess quality, we devise a scoring mech-
anism that comprises multi-focal and multi-view capturing, and utilizes text-
image scoring models to obtain an overall quality measurement of the generated
3D scene. As for the textual alignment, we develop a scoring metric based on
multi-view captioning and GPT-4 evaluation.
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Fig. 3: Demonstration of scores at different viewpoints after multi-view capturing and
regional convolution. Here, we use a level-0 icosahedron for a schematic illustration,
please refer to Fig. 6 in the supplementary material for more details.

Quality Assessment Since the spatial geometry information is crucial for the
generated 3D scenes, evaluation from a single view is incapable of assessing the
quality of the generated results. We believe a comprehensive and reliable 3D
quality assessment should take into account the following aspects: (a) Viewpoint
selection: choosing an appropriate viewpoint can better reflect the quality of
the 3D scene, particularly potential object occlusions; (b) Area coverage: it is
essential to simultaneously examine the current viewpoint and adjacent areas. By
doing so, the assessment can take into account a more global geometry, thereby
avoiding a collapse to a local optimal view that leads to failure in detecting 3D
consistency issues like the Janus problem.

To meet these requirements, we incorporate a delicate capturing and scoring
procedure to evaluate the quality of the 3D generation. The following steps
outline our method:
Mesh Normalization. We convert the generated 3D scene into a mesh and
scale it proportionally in the x, y, and z directions, allowing the mesh to fit
within a cube with a range of [−1, 1] on all three dimensions. This helps to
roughly determine the mesh’s range for subsequent capturing.
Multi-Focal Capturing. Capturing a 2D image using a fixed focal length from
a single location may yield inaccurate evaluation results. This is because the
information in the captured image may be incomplete when the focal length
is too long, and may occupy only a small portion in the frame when the focal
length is too short. To address this issue, we employ five different focal lengths
to capture the mesh at each location and select the best focal length based on
the highest text-image score.
Multi-View Capturing. To capture the 3D scene as completely as possible, we
construct an icosahedron with a radius of 2.2 around the origin and capture the
3D scene from all the vertices of the icosahedron (see an illustration of icosahe-
dron in Fig. 3,6). As text-image scoring models may be sensitive to rotation, we
ensure that the plane formed by the up vector and look-at vector during capture
contains the vertical axis. In practice, we use a level-2 icosahedron and capture
from 161 locations.
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Scoring and Regional Convolution. We employ text-image scoring models,
e.g., CLIP [30] and ImageReward [46], to score the 2D views from all 161 icosa-
hedron vertices along with the textual prompt. To capture a more global feature,
we apply a pooling operator to the score at each location. Standard averaging of
scores across all locations may not be appropriate, as most views are not suitable
for evaluation (e.g., top or bottom), and this approach may oversmooth the ac-
tual performance. Meanwhile, taking the overall maximum scores may overlook
the view inconsistency issue. Therefore, we design a regional convolution mech-
anism to smooth out the score over each local region. We treat the icosahedron
as a graph composed of vertices and edges, and perform mean pooling on the
graph with the following recursive formula:

s
(t+1)
i =

1

w|N(i)|+ 1

s
(t)
i + w

∑
j∈N(i)

s
(t)
j

 , (1)

where s
(t)
i is the score of point i on the icosahedron at the t-th iteration, N(i)

is the set of neighboring points of i, and |N(i)| is the number of neighbors of
i. The superscript (t + 1) denotes the score after the (t + 1)-th iteration. We
choose a total of t = 3 iterations of mean pooling and convolution weight w = 1
as we empirically find that they ensure a balance between adequate smoothing
and over-smoothing (please refer to Sec. 9 for more details).

After these steps, we select the highest score from all viewpoints as the final
quality score for the 3D generation.

Alignment Assessment In addition to the evaluation from the quality aspect,
the alignment between 3D semantic information and text is another crucial as-
pect that should be considered. To measure the alignment between different
modalities, we first perform 3D-to-text captioning on the 3D scene and then
compute the similarity between the caption and the textual prompt.

Directly utilizing image captioning methods such as BLIP [15] on a single
view may fail to reflect the comprehensive information of a 3D object. To this
end, we utilize a 3D-to-text captioning pipeline similar to Cap3D [20]. Initially, a
level-0 icosahedron consisting of 12 vertices is established around the origin. This
icosahedron captures the 3D scene on the 12 locations, each of which is captioned
using BLIP. We then employ GPT-4 [25] to merge these captions (detailed in
Sec. 7.2 of supplementary material), resulting in a 3D caption for the object.

Upon obtaining the 3D caption, we need to measure its alignment with the
original prompt, particularly concerning the recall of the original prompt within
the caption. Specifically, we observe that the text-to-3D methods might generate
features not mentioned in the prompt (e.g., a red beak feature on a rubber
duck), which may be reflected in the caption provided by BLIP. Such additional
features should not be considered misalignments, even though many similarity-
based scoring methods (BLEU, BERTScore [49]) might assign them lower scores.
To assess the text recall, we adopt ROUGE-L [17]. We also incorporate GPT-4 as
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text recall evaluators, drawing upon their demonstrated ability to mimic human
experts in data annotation and evaluation [1]. Here is the prompt we use:

Prompt: You are an assessment expert responsible for prompt-prediction
pairs. Your task is to score the prediction according to the following require-
ments:
1. Evaluate the recall, or how well the prediction covers the information in
the prompt. If the prediction contains information that does not appear in
the prompt, it should not be considered as bad.
2. If the prediction contains correct information about color or features in
the prompt, you should also consider raising your score.
3. Assign a score between 1 and 5, with 5 being the highest. Do not provide
a complete answer; give the score in the format: 3
Prompt: A photographer is capturing a beautiful butterfly with his camera
Prediction: A man photographing a butterfly near a tree and map, sur-
rounded by plants
Answer: 4

4 Experiments

4.1 Metric Evaluation

In order to validate the reliability of our proposed metrics, we conduct a human-
centered evaluation. Expert evaluators are tasked with manually assigning scores
to 3D scenes generated by 7 different methods (detailed in Sec. 4.2) on 30% of
all the prompts in T3Bench. This results in a total of 1,260 scores. The human
annotations span two dimensions: quality, which concerns the subjective quality
of the generated results, and alignment, which focuses on the extent to which the
generated content covers the original prompt. These evaluations are quantified
using a 1-5 Likert scale. Subsequently, we measure the correlation between the
proposed metrics and human annotations using Spearman’s ρ, Kendall’s τ , and
Pearson’s ρ correlation coefficients.

Table 1: Overview of evaluation metrics used in previous works.

User Study CLIP R-Precision CLIP Similarity

Dream Fields [12] ✓

DreamFusion [27] ✓

Magic3D [16] ✓

ProlificDreamer [44] ✓

MVDream [40] ✓

GaussianDreamer [47] ✓

Instant3D [14] ✓

We list the commonly used metrics for text-to-3D evaluation in Table 1.
The CLIP R-Precision and CLIP Similarity metrics used in previous works only
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Table 2: The correlation of different combinations of evaluation methods with human
annotations.

CLIP CLIP Multi-view Quality Multi-view Alignment
Similarity R-Precision CLIP ImageReward ROUGE-L GPT-4

Quality
Spearman (ρ) ↑ 0.638 0.464 0.749 0.784 0.407 0.593
Kendall (τ) ↑ 0.496 0.420 0.597 0.636 0.310 0.508
Pearson (ρ) ↑ 0.621 0.457 0.727 0.780 0.393 0.554

Alignment
Spearman (ρ) ↑ 0.638 0.479 0.745 0.722 0.567 0.780
Kendall (τ) ↑ 0.495 0.433 0.590 0.572 0.442 0.701
Pearson (ρ) ↑ 0.627 0.475 0.730 0.713 0.574 0.774

consider one view, and we compare them with our proposed multi-view based
metrics. Specifically, for our quality metric, we consider CLIP [30] and ImageRe-
ward [46] as single-view scoring methods; for the alignment metric, we explore
the use of ROUGE-L and GPT-4 to measure text recall. CLIP R-Precision uses
CLIP to retrieve the correct caption among a set of distractors given a rendering
of the content. Following prior works [12, 26], we use the 153 prompts from the
object-centric COCO [18] validation subset of Dream Fields [12] as the negative
prompt set.

We report the results in Tab. 2. Drawing conclusion from the first four
columns, we validate that our proposed multi-view based metrics are superior to
single-view examination. Moreover, compared to ROUGE-L, GPT-4 provides a
more reliable assessment of alignment, as depicted by the last two columns. These
findings justify the design of our processing and scoring methods in Sec. 3.3.
The inherent characteristics of retrieval-based metrics, which provide assess-
ments that are comparative rather than absolute, also result in misalignment
with human perceptual processes. Overall, we observe that Multi-view captur-
ing + ImageReward and 3D captioning + GPT-4 scoring align most closely with
quality and alignment aspects as annotated by human experts, respectively. We
thus employ these combinations as the default quality and alignment metrics in
our benchmark, throughout the rest of the paper.
Janus problem analysis. The Janus problem, or multi-view inconsistency is-
sue, arises when using Stable Diffusion for guidance, as it may not always gener-
ate accurate front, side, or back views for training. Consequently, this can lead to
the regeneration of content described by the text prompt, and the most canoni-
cal view (e.g., the front piggy face) of an object appears in other views (e.g., the
back view of a piggy). In the following, we validate that 3D scenes with the
Janus problem can be reflected in our multi-view metrics.

Intuitively, given a large number of viewpoints, for an object with the Janus
problem, many views will show wrong results and lead to a decline in the quality
score. After employing regional convolution to evaluate the quality of a more
global region, our multi-view quality metric is able to faithfully reflect the Janus
problem within the generated 3D scenes. This mechanism is illustrated in Fig. 4.
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We perform two evaluations to investigate the discrepancy in scores for the
Janus problem. The first is by randomly selecting 30 pairs of results generated by
two different methods using the same prompts and with similar texture quality
(that is indistinguishable upon human examination), meanwhile one with and the
other without the Janus problem. Secondly, we take 15 generated scenes without
the Janus problem and artificially synthesized scenes with the Janus problem by
rotating counterparts and fusing them. For both cases, we compare the changes
in the quality metric score before and after applying regional convolution. The
results in Table 3 show a clear discrepancy in scores, especially after applying
regional convolution.

A bright red 
kite with a 
frayed tail

Score Change
After Regional Conv.

A pair of 
polka-dotted 

sneakers

A blue denim 
jacket hanging on 
a metal coat rack

Best view

Non-Janus

62.4/100

Other view1 Other view2 Best view
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59.8/100

56.1/100
(-6.3)

49.9/100
(-9.9)

The Drop of difference
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(3.6%)
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75.7/100 50.4/10081.5/100 26.8/100

Score Change
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*Every row denotes a pair with similar subjective texture quality and same prompt, but one exhibits Janus while the other not.

Fig. 4: Underlying mechanism of how our multi-view quality metric reflects the Janus
problem: Scores for illed-views are penalized, and regional convolution propagates this
drop in local score to the global score.
Table 3: Relative quality score drop
from 3D scenes without Janus problem to
scenes with Janus problem.

Relative score drop
w/o regional conv

Relative score drop
w/ regional conv

Randomly
Selected Pairs 2.93% 4.45%

Artificially
Modified Pairs 4.05% 7.01%

Fig. 5: The quality score (normalized to
0-100) distribution of generated 3D scenes
with and without Janus problem.

10 20 30 40 50 60 70 80
Scores

Janus

Non-Janus

Distribution of Janus and Non-Janus Scores

We also present the quality score trend on randomly selected 70 non-collapsed
meshes and categorize them based on the presence of the Janus Problem (shown
in Fig. 5). We observe that 3D scenes with the Janus Problem are generally
scored lower.

4.2 Benchmarking Results

Experimental Setup. Following the prompt generation scheme outlined in
Sec. 3.1 and taking into consideration both experimental breadth and test speed,
we utilize GPT-4 to generate N = 100 prompts for each of the three cate-
gories: single object, single object with surroundings, and multiple objects, re-
sulting in a total of 300 prompts. We employ the implementation provided by
ThreeStudio [7] (or its extensions) to uniformly evaluate 10 prevalent text-to-
3D methods on these prompts, including DreamFusion [27], Magic3D [16], La-
tentNeRF [22], Fantasia3D [4], SJC [43], ProlificDreamer [44], MVDream [40],
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DreamGaussian [41], GeoDream [21], and RichDreamer [29]. We normalize the
original scores on quality and alignment assessment from the range [−2.5, 2.5],
[1, 5] to [0, 100]. We set the five focal lengths used for multi-focal capturing to
3.0, 4.0, 5.0, 6.0, 7.5, and set the resolution of the rendered image to 512× 512.
When capturing the 3D mesh, we directly use the diffuse color of the texture
without additional light source at the corresponding direction as the rendering
result. All experiments are conducted on an NVIDIA A100-80GB GPU. We will
continuously review the latest methods and update our leaderboard.

To obtain an optimal mesh extraction, Marching Cubes is utilized for Dream-
Fusion, LatentNeRF, ProlificDreamer and MVDream, while other methods em-
ploy DMTet; To retain quality without excessive UV unwrapping times, textures
are extracted following mesh geometry simplification to a maximum of 40,000
faces. For methods that yield 3D scenes with a diffusion latent radiance field rep-
resentation rather than RGB, we also convert them into a latent texture map.
Subsequently, we transform these into RGB textures using a latent decoder with
a sliding window strategy to achieve anti-aliasing conversion.
Results. Tab. 4 reports the quality scores, alignment scores, and the average
scores for each text-to-3D method on the three prompt sets in T3Bench. We also
showcase some examples in Sec. 11. We summarize our key findings on current
methods in the following.
1. A simple combination of SDS and Stable Diffusion can cause density
collapse. For DreamFusion, the randomness inherent in Stable Diffusion’s
2D guidance makes the direct application of Score Distillation Sampling (SDS)
to supervise NeRF generation somewhat unstable. This can occasionally result
in an inability to form effective density information during the optimization
process, leading to failures that lower the overall score. Magic3D introduced
an additional mesh refinement stage with high-resolution guidance, significantly
improving the generated content’s quality. However, the first stage still suffers
from a high failure rate. LatentNeRF reduces this rate and boosts performance
by optimizing in the latent domain rather than the RGB domain from the outset.
Furthermore, compared to SDS, Score Jacobian Chaining (SJC) is less likely
to lead to density collapse but tends to produce a large volume of sparse and
floating density, making it difficult to extract high-quality meshes and reducing
its practicality, as evidenced by our metrics.
2. The Efficiency of Current Text-to-3D Methods Requires Enhance-
ment. Current optimization approaches based on SDS typically necessitate thirty
minutes or more, constraining further applications. DreamGaussian acceler-
ates content generation by employing Gaussian splatting as scene representation
instead of NeRF. However, the meshes extracted from Gaussians often suffer
from poor quality, excessive smoothness, and disordered textures, leading to a
need for overall performance improvement. Future research into Gaussian splat-
ting techniques and text-to-3D framework with feed-forward design may hold
the key to significantly boosting efficiency.
3. VSD achieves rich detail generation at the expense of efficiency
and Janus faces. Variational Score Distillation (VSD) proposed by Prolific-
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Table 4: The average scores of text-to-3D methods on T3Bench.

Running Time ↓ Quality ↑ Alignment ↑ Average ↑

Single Object
Dreamfusion [27] 30min 24.9 24.0 24.4
Magic3D [16] 40min 38.7 35.3 37.0
LatentNeRF [22] 65min 34.2 32.0 33.1
Fantasia3D [4] 45min 29.2 23.5 26.4
SJC [43] 25min 26.3 23.0 24.7
ProlificDreamer [44] 240min 51.1 47.8 49.4
MVDream [40] 30min 53.2 42.3 47.8
DreamGaussian [41] 7min 19.9 19.8 19.8
GeoDream [21] 400min 48.4 33.8 41.1
RichDreamer [29] 70min 57.3 40.0 48.6

Single Object with Surroundings
Dreamfusion [27] 30min 19.3 29.8 24.6
Magic3D [16] 40min 29.8 41.0 35.4
LatentNeRF [22] 65min 23.7 37.5 30.6
Fantasia3D [4] 45min 21.9 32.0 27.0
SJC [43] 25min 17.3 22.3 19.8
ProlificDreamer [44] 240min 42.5 47.0 44.8
MVDream [40] 30min 36.3 48.5 42.4
DreamGaussian [41] 7min 10.4 17.8 14.1
GeoDream [21] 400min 35.2 34.5 34.9
RichDreamer [29] 70min 43.9 42.3 43.1

Multiple Objects
Dreamfusion [27] 30min 17.3 14.8 16.1
Magic3D [16] 40min 26.6 24.8 25.7
LatentNeRF [22] 65min 21.7 19.5 20.6
Fantasia3D [4] 45min 22.7 14.3 18.5
SJC [43] 25min 17.7 5.8 11.7
ProlificDreamer [44] 240min 45.7 25.8 35.8
MVDream [40] 30min 39.0 28.5 33.8
DreamGaussian [41] 7min 12.3 9.5 10.9
GeoDream [21] 400min 34.3 16.5 25.4
RichDreamer [29] 70min 34.8 22.0 28.4

Dreamer optimizes the distribution of 3D scenes, showing significant benefits in
generating detailed information across both single-object settings and complex
prompts. Nonetheless, the use of VSD can sometimes lead to the introduction of
extraneous details or geometric noise, adversely affecting human perception and
BLIP captioning accuracy. This issue becomes more pronounced as the object
count increases, leading to a decrease in alignment metrics. Additionally, VSD’s
modifications do not incorporate 3D or multi-view priors, allowing the persis-
tence of the Janus problem in the generated outcomes. Employing appropriate
geometry initialization may help mitigate these issues.
4. Geometry initialization techniques need improvement. Implement-
ing effective geometry initialization before optimization shows the potential to
improve 3D content generation. While Fantasia3D excels in generating rich
textures, its efficacy diminishes in complex scenes due to the less precise geom-
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etry it produces, as the supervision of geometry generation only through Stable
Diffusion. GeoDream, on the other hand, generates a set of pseudo-multi-view
images through models like MVDream and Zero123++ [39] to initialize cost vol-
umes, leading to more accurate geometry initialization. However, constrained by
the performance of these models, inconsistencies may arise among the multi-view
images, resulting in initialization failures (approximately one-fifth based on our
benchmarks), highlighting the need for further performance improvement.
5. Leveraging multi-view diffusion models achieving commendable out-
comes yet faces challenges with OOD problems. The multi-view diffusion
model introduced by MVDream demonstrates substantial quality improve-
ments, as reflected in the scores. It also effectively solves the multi-view inconsis-
tency problem that arises with other methods. RichDreamer further developed
a multi-view diffusion model that incorporates depth, normal, and albedo infor-
mation. Nevertheless, these methods encounter a limitation in more complex
scenarios, where there is a tendency to omit certain elements of the object or
environment, or to generate inaccurate colors in the outcomes. This may stem
in part from the fact that multi-view diffusion was trained on Objaverse [6], a
3D dataset comprised primarily of centered objects, which explains the struggle
with certain out-of-distribution (OOD) cases.
Trends across different prompt sets. As shown in Tab. 4, the overall per-
formance is relatively good for the Single Object set, particularly for Prolific-
Dreamer, Magic3D, and MVDream. However, when additional surrounding in-
formation is incorporated or when multiple objects are placed, the quality met-
rics for all methods experience varying degrees of degradation.

In terms of alignment, some methods are able to reflect object information
beyond the surroundings. This results in no significant decline in the Single
Object with Surroundings set compared to the Single Object set. However, a no-
ticeable decline is observed when the prompt set changes to Multiple Objects.
This trend reflects the current issue with most works using Score Distillation
Sampling (SDS) as guidance to supervise the generation of 3D scenes. Specifi-
cally, SDS is relatively stable for single objects, but when the descriptions of the
surroundings are added or when there are multiple objects in the scene, the ap-
pearance of the surroundings may have many possibilities after denoising steps.
There may be more possibilities for relative positions between multiple objects,
leading to increased variability in the results generated by the diffusion model.
This in turn reduces the stability when supervising the generation of 3D scenes,
resulting in a significant decline in the results.

In contrast, ProlificDreamer uses Variational Score Distillation (VSD) in-
stead of SDS. By optimizing the distribution of the scene rather than directly
optimizing the rendering results of the scene for 3D generation, ProlificDreamer
demonstrates a clear advantage in complex scenarios. The multi-view diffusion
guidance used by MVDream also shows superior performance on multi-object
scenes. MVDream tends to generate clearer and more favorable 3D shapes com-
pared to ProlificDreamer, which can sometimes produce redundant densities.
However, when dealing with out-of-distribution text prompts outside of the Ob-
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javerse dataset, MVDream sometimes struggles to fully capture all of the in-
formation from the text (e.g. generate a single object when the text refers to
multiple ones).
Parallels and contrasts of the quality and alignment metrics. It is worth
noting that quality and alignment are not entirely correlated. Quality is more
concerned with the geometry and subjective quality within a certain range, while
alignment focuses on accurately restoring the information in the prompt. It is
relatively sensitive to additional erroneous information, encouraging the gener-
ation of precise and clear 3D scenes. For instance, the overall performance of
Fantasia3D decreases markedly when generating multiple objects, as it fails to
create precise 3D geometry, resulting in poor alignment compared to Latent-
NeRF. However, the quality of some generated objects is commendable with the
obtained rich texture, making the overall quality higher than LatentNeRF.

ProlificDreamer typically generates more realistic textures, contributing to its
superior quality. However, it sometimes generates a large amount of information
not mentioned in the prompt, resulting in the possibility that the information
described in the prompt only occupies a small part of the 3D generation results.
Sometimes it only appears in the form of partial texture without significant
geometry, which reduces its alignment index. Moreover, this characteristic is not
what subsequent applications of text-to-3D want to see, further highlighting the
importance of the alignment metric.
2D Guidance Analysis. In Sec. 10, we investigate the effectiveness of 2D
guidance from Stable Diffusion in generating 3D scenes by examining the corre-
lation between the quality of 2D image generation and the quality of resulting
3D scenes. Results show that while Stable Diffusion produces high-quality 2D
images, the ability of text-to-3D methods to utilize this guidance for accurate
3D scene generation is limited, reflected in generally low Spearman correlation
between 2D image quality and 3D scene quality. The findings highlight that the
main challenges in text-to-3D generation are learning 3D structures from 2D
guidance and ensuring view consistency.

5 Conclusion

In this work, we present T3Bench, the first comprehensive benchmark for eval-
uating text-to-3D generation methods. T3Bench serves as a rich testbed as it
provides diverse prompt suites, and supports fully automatic evaluation by in-
corporating our proposed multi-view quality and alignment metrics that closely
correlate with human judgments. We carefully benchmark 10 prevalent text-
to-3D methods on T3Bench, and highlight a number of common and specific
problems with current methods.

6 Discussion

Size of Data. Unlike existing text-to-image methods that enable efficient gen-
eration, the current text-to-3D techniques are considerably slower, requiring a
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minimum of half an hour and potentially several hours for a single prompt. This
makes it hard to test with larger sets of prompts.
Indirect Evaluation. Given the absence of an effective evaluation method that
directly aligns the generated 3D scenes with human evaluation, there is an in-
evitable loss of information during the 3D to 2D rendering process, even with
the efficacy of our multi-view capturing and processing scheme in evaluating ge-
ometry and other information. Likewise, no 3D captioning framework matches
the performance of BLIP in 2D image captioning. While our multi-view caption-
ing and merging strategy typically generates accurate 3D captions, the merging
process does not always yield flawless results.

References

1. Bai, Y., Ying, J., Cao, Y., Lv, X., He, Y., Wang, X., Yu, J., Zeng, K., Xiao, Y., Lyu,
H., et al.: Benchmarking foundation models with language-model-as-an-examiner.
arXiv preprint arXiv:2306.04181 (2023)

2. Bakr, E.M., Sun, P., Shen, X., Khan, F.F., Li, L.E., Elhoseiny, M.: Hrs-bench:
Holistic, reliable and scalable benchmark for text-to-image models. arXiv preprint
arXiv:2304.05390 (2023)

3. Brooks, T., Holynski, A., Efros, A.A.: Instructpix2pix: Learning to follow image
editing instructions. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 18392–18402 (2023)

4. Chen, R., Chen, Y., Jiao, N., Jia, K.: Fantasia3d: Disentangling geometry
and appearance for high-quality text-to-3d content creation. arXiv preprint
arXiv:2303.13873 (2023)

5. Cho, J., Zala, A., Bansal, M.: Dall-eval: Probing the reasoning skills and social
biases of text-to-image generation models (2023)

6. Deitke, M., Schwenk, D., Salvador, J., Weihs, L., Michel, O., VanderBilt, E.,
Schmidt, L., Ehsani, K., Kembhavi, A., Farhadi, A.: Objaverse: A universe of
annotated 3d objects. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 13142–13153 (2023)

7. Guo, Y.C., Liu, Y.T., Shao, R., Laforte, C., Voleti, V., Luo, G., Chen, C.H., Zou,
Z.X., Wang, C., Cao, Y.P., Zhang, S.H.: threestudio: A unified framework for
3d content generation. https://github.com/threestudio-project/threestudio
(2023)

8. He, Y., Wang, P., Hu, Y., Zhao, W., Yi, R., Liu, Y.J., Wang, W.: Mmpi: a flexible
radiance field representation by multiple multi-plane images blending (2023)

9. Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or,
D.: Prompt-to-prompt image editing with cross attention control. arXiv preprint
arXiv:2208.01626 (2022)

10. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
neural information processing systems 33, 6840–6851 (2020)

11. Hong, S., Ahn, D., Kim, S.: Debiasing scores and prompts of 2d diffusion for robust
text-to-3d generation. arXiv preprint arXiv:2303.15413 (2023)

12. Jain, A., Mildenhall, B., Barron, J.T., Abbeel, P., Poole, B.: Zero-shot text-guided
object generation with dream fields. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 867–876 (2022)

https://github.com/threestudio-project/threestudio


16 He Y., Bai Y. et al.

13. Lee, T., Yasunaga, M., Meng, C., Mai, Y., Park, J.S., Gupta, A., Zhang, Y.,
Narayanan, D., Teufel, H., Bellagente, M., et al.: Holistic evaluation of text-to-
image models. Advances in Neural Information Processing Systems 36 (2024)

14. Li, J., Tan, H., Zhang, K., Xu, Z., Luan, F., Xu, Y., Hong, Y., Sunkavalli, K.,
Shakhnarovich, G., Bi, S.: Instant3d: Fast text-to-3d with sparse-view generation
and large reconstruction model. arXiv preprint arXiv:2311.06214 (2023)

15. Li, J., Li, D., Xiong, C., Hoi, S.: Blip: Bootstrapping language-image pre-training
for unified vision-language understanding and generation. In: International Con-
ference on Machine Learning. pp. 12888–12900. PMLR (2022)

16. Lin, C.H., Gao, J., Tang, L., Takikawa, T., Zeng, X., Huang, X., Kreis, K., Fidler,
S., Liu, M.Y., Lin, T.Y.: Magic3d: High-resolution text-to-3d content creation.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 300–309 (2023)

17. Lin, C.Y.: Rouge: A package for automatic evaluation of summaries. In: Text sum-
marization branches out. pp. 74–81 (2004)

18. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part V 13. pp. 740–755. Springer (2014)

19. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. In: Seminal graphics: pioneering efforts that shaped the field,
pp. 347–353 (1998)

20. Luo, T., Rockwell, C., Lee, H., Johnson, J.: Scalable 3d captioning with pretrained
models. arXiv preprint arXiv:2306.07279 (2023)

21. Ma, B., Deng, H., Zhou, J., Liu, Y.S., Huang, T., Wang, X.: Geodream: Disentan-
gling 2d and geometric priors for high-fidelity and consistent 3d generation. arXiv
preprint arXiv:2311.17971 (2023)

22. Metzer, G., Richardson, E., Patashnik, O., Giryes, R., Cohen-Or, D.: Latent-nerf
for shape-guided generation of 3d shapes and textures (2022)

23. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Commu-
nications of the ACM 65(1), 99–106 (2021)

24. Mohammad Khalid, N., Xie, T., Belilovsky, E., Popa, T.: Clip-mesh: Generating
textured meshes from text using pretrained image-text models. In: SIGGRAPH
Asia 2022 conference papers. pp. 1–8 (2022)

25. OpenAI: Gpt-4 technical report. arXiv preprint arXiv:2303.08774 (2023)
26. Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: Dreamfusion: Text-to-3d using

2d diffusion. arXiv preprint arXiv:2209.14988 (2022)
27. Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: Dreamfusion: Text-to-3d using 2d

diffusion. In: The Eleventh International Conference on Learning Representations
(2023)

28. Qian, G., Mai, J., Hamdi, A., Ren, J., Siarohin, A., Li, B., Lee, H.Y., Skorokhodov,
I., Wonka, P., Tulyakov, S., et al.: Magic123: One image to high-quality 3d object
generation using both 2d and 3d diffusion priors. arXiv preprint arXiv:2306.17843
(2023)

29. Qiu, L., Chen, G., Gu, X., Zuo, Q., Xu, M., Wu, Y., Yuan, W., Dong, Z., Bo,
L., Han, X.: Richdreamer: A generalizable normal-depth diffusion model for detail
richness in text-to-3d. arXiv preprint arXiv:2311.16918 (2023)

30. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from



T3Bench: Benchmarking Current Progress in Text-to-3D Generation 17

natural language supervision. In: International conference on machine learning. pp.
8748–8763. PMLR (2021)

31. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 10684–10695 (2022)

32. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 10684–10695 (2022)

33. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour,
S.K.S., Ayan, B.K., Mahdavi, S.S., Lopes, R.G., Salimans, T., Ho, J., Fleet, D.J.,
Norouzi, M.: Photorealistic text-to-image diffusion models with deep language un-
derstanding (2022)

34. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E.L., Ghasemipour,
K., Gontijo Lopes, R., Karagol Ayan, B., Salimans, T., et al.: Photorealistic text-
to-image diffusion models with deep language understanding. Advances in Neural
Information Processing Systems 35, 36479–36494 (2022)

35. Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C., Wightman, R., Cherti, M.,
Coombes, T., Katta, A., Mullis, C., Wortsman, M., et al.: Laion-5b: An open large-
scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems 35, 25278–25294 (2022)

36. Seo, H., Kim, H., Kim, G., Chun, S.Y.: Ditto-nerf: Diffusion-based iterative text
to omni-directional 3d model. arXiv preprint arXiv:2304.02827 (2023)

37. Seo, J., Jang, W., Kwak, M.S., Ko, J., Kim, H., Kim, J., Kim, J.H., Lee, J., Kim,
S.: Let 2d diffusion model know 3d-consistency for robust text-to-3d generation.
arXiv preprint arXiv:2303.07937 (2023)

38. Shen, T., Gao, J., Yin, K., Liu, M.Y., Fidler, S.: Deep marching tetrahedra: a
hybrid representation for high-resolution 3d shape synthesis. Advances in Neural
Information Processing Systems 34, 6087–6101 (2021)

39. Shi, R., Chen, H., Zhang, Z., Liu, M., Xu, C., Wei, X., Chen, L., Zeng, C., Su, H.:
Zero123++: a single image to consistent multi-view diffusion base model. arXiv
preprint arXiv:2310.15110 (2023)

40. Shi, Y., Wang, P., Ye, J., Long, M., Li, K., Yang, X.: Mvdream: Multi-view diffusion
for 3d generation. arXiv preprint arXiv:2308.16512 (2023)

41. Tang, J., Ren, J., Zhou, H., Liu, Z., Zeng, G.: Dreamgaussian: Generative gaussian
splatting for efficient 3d content creation. arXiv preprint arXiv:2309.16653 (2023)

42. Tsalicoglou, C., Manhardt, F., Tonioni, A., Niemeyer, M., Tombari, F.:
Textmesh: Generation of realistic 3d meshes from text prompts. arXiv preprint
arXiv:2304.12439 (2023)

43. Wang, H., Du, X., Li, J., Yeh, R.A., Shakhnarovich, G.: Score jacobian chaining:
Lifting pretrained 2d diffusion models for 3d generation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12619–
12629 (2023)

44. Wang, Z., Lu, C., Wang, Y., Bao, F., Li, C., Su, H., Zhu, J.: Prolificdreamer: High-
fidelity and diverse text-to-3d generation with variational score distillation. arXiv
preprint arXiv:2305.16213 (2023)

45. Xu, J., Wang, X., Cheng, W., Cao, Y.P., Shan, Y., Qie, X., Gao, S.: Dream3d:
Zero-shot text-to-3d synthesis using 3d shape prior and text-to-image diffusion
models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 20908–20918 (2023)



18 He Y., Bai Y. et al.

46. Xu, J., Liu, X., Wu, Y., Tong, Y., Li, Q., Ding, M., Tang, J., Dong, Y.: Imagere-
ward: Learning and evaluating human preferences for text-to-image generation.
arXiv preprint arXiv:2304.05977 (2023)

47. Yi, T., Fang, J., Wu, G., Xie, L., Zhang, X., Liu, W., Tian, Q., Wang, X.: Gaus-
siandreamer: Fast generation from text to 3d gaussian splatting with point cloud
priors. arXiv preprint arXiv:2310.08529 (2023)

48. Zhang, K., Riegler, G., Snavely, N., Koltun, V.: Nerf++: Analyzing and improving
neural radiance fields. arXiv preprint arXiv:2010.07492 (2020)

49. Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: Bertscore: Evaluating
text generation with bert. arXiv preprint arXiv:1904.09675 (2019)

50. Zhao, M., Zhao, C., Liang, X., Li, L., Zhao, Z., Hu, Z., Fan, C., Yu, X.: Efficient-
dreamer: High-fidelity and robust 3d creation via orthogonal-view diffusion prior.
arXiv preprint arXiv:2308.13223 (2023)



T3Bench: Benchmarking Current Progress in Text-to-3D Generation 1

7 Example Prompts

7.1 Question Generation

Single Object.

Please describe 20 objects’ appearance for me in brief words, without
background. Please make sure that the object you provided has enough
diversity, and that the format is similar to my example. Here is an ex-
ample: “A pig wearing a backpack”.

Single Object with Surroundings.

Please describe 20 objects for me in brief words. Please make sure that the
object you provided has enough diversity, and that the format is similar to
my example. Here is an example: “A black metal bicycle leaning against
a brick wall”.

Multiple Objects.

Please describe 20 different scenes for me in brief words, each scene
contains multiple objects. Do not describe the environment. Please make
sure that the scenes you provided have enough diversity, and the format
similar to my example. Here are examples: “A child with a red shirt is
playing with a dog”, or “Two coffee cups stand on the table”.

7.2 Multiple Caption Merging

Given a set of descriptions about the same 3D object, distill these de-
scriptions into one concise caption. The descriptions are as follows:
view1: ...
view2: ...
...
view{N}: ...
Avoid describing background, surface, and posture. The caption should
be:

7.3 LLM Likert Scale Scoring

You are an assessment expert responsible for prompt-prediction pairs.
Your task is to score the prediction according to the following require-
ments:
1. Evaluate the recall, or how well the prediction covers the information
in the prompt. if the prediction contains information that does not appear
in the prompt, it should not be considered as bad.
2. If the prediction contains correct information about color or features
in the prompt, you should also consider raising your score.
3. Assign a score between 1 and 5, with 5 being the highest. Do not
provide a complete answer; give the score in the format: 3
Prompt: ...
Prediction: ...
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Fig. 6: Schema of icosahedrons with different levels.

8 Experimental Details

8.1 Metric Evaluation

For the evaluation of metrics, we randomly select 30% of the prompts from each
prompt set, along with their corresponding 3D mesh generated by the text-to-3D
method. This results in a total of 630 samples. We request human annotators to
carefully check the mesh in an interactive 3D viewer and score the responses on
a scale of 1-5, based on their 3D quality and alignment. Below, we provide the
annotation instructions:

1. Scoring is based on two dimensions: quality (which assesses the subjective
quality of the 3D generation) and alignment (which evaluates how well the
generated content covers the original prompt). These two dimensions are
scored on a scale of 1 to 5, with 1 being the lowest and 5 the highest.
2. Please drag each generated mesh to our specified 3D viewer. After care-
fully examining the mesh from various angles, assign your score based on
the above two dimensions.

8.2 Capture Viewpoint Selection

In order to uniformly select the capturing location of the 3D mesh, we construct
the icosahedron and use its vertices as the location for the captures. The vertex
coordinates of a level-0 unit icosahedron are computed as follows:
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V (0) =
√
1 + ϕ2 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ 1 0
−ϕ 1 0
ϕ −1 0
−ϕ −1 0
1 0 ϕ
1 0 −ϕ
−1 0 ϕ
−1 0 −ϕ
0 ϕ 1
0 −ϕ 1
0 ϕ −1
0 −ϕ −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (2)

where

ϕ =
1 +

√
5

2
, (3)

and there is an edge between every two points with a distance of 2/
√

1 + ϕ2,
resulting in 12 vertices, 30 edges, and 20 triangle faces.

A level-K unit icosahedron can be obtained recursively by adding an extra
vertice on every edge of a level-(K-1) unit icosahedron and adding an edge
between every two new vertexes with a triangle face of the level-(K-1) unit
icosahedron, then scaling every new vertex’s coordinate to a length of 1. A
demonstration of different level icosahedrons is shown in Fig. 6.

8.3 Capturing Poses Derivation

Since many text image scoring models are sensitive to rotation, we need to make
sure that the angle of the shot is as free as possible from 2D rotation around the
look-at vector. We ensure this constraint with the following procedure:

Given the location v of the shot, we can get the look-at vector as follows:

l = − v
||v||

. (4)

Then, we acquire the horizontal vector r of the camera plane by

r =
u × l

||u × l||
, (5)

where u is the unit vector parallel with the positive direction of the vertical axis.
The up vector of the camera plane can be calculated by
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u′ = l × r. (6)

Finally, the camera matrix P is formed with

P = [−r u′ l v]. (7)

9 Design Choices for Regional Convolution

The general form of regional convolution can be formed as:

s
(t+1)
i =

1

w|N(i)|+ 1

s
(t)
i + w

∑
j∈N(i)

s
(t)
j

 , (8)

To further explore the use of convolution kernels and the impact of the re-
ceptive field on the quality evaluation metric, we conduct experiments on cor-
relations with human annotations, where the convolution weights w are varied
from 0 to 2, and different times of convolutions are applied.
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Fig. 7: Correlation variations on different weights and times of convolutions.
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We observe that as the number of convolutions and the weights of neighbors in
convolutions increases, both the Spearman and Kendall correlation coefficients
consistently rise. However, the Pearson correlation coefficient exhibits a more
complex trend. Specifically, it decreases when the number of convolutions and
the weights of neighboring convolutions are excessively high. This phenomenon
could be attributed to a smoother convolution operation with a larger reception
field, which takes a more overall sense, is more beneficial for preserving the
order of evaluation metrics. However, excessive smoothing can overlook finer
details such as texture quality, leading to a non-uniform compression of scores
and a reduction in the linearity of the quality evaluation metric. Considering
these factors, we ultimately selected a weight w = 1 and applied three times of
convolutions.

10 2D Guidance Analysis

The majority of current text-to-3D methods utilize 2D priors associated with
Stable Diffusion [31] for the generation of 3D scenes. To delve deeper into the
effectiveness of 2D guidance and the capabilities of current text-to-3D methods
in utilizing this guidance for 3D generation, we explore the correlation between
the quality of 2D image generation produced by the diffusion model and the
resulting quality of the 3D generation. For each prompt in T3Bench, we apply
the Stable Diffusion backbone of each method for text-to-image generation. No-
tably, the text-to-3D methods utilize view-dependent prompting in conjunction
with 2D guidance from the diffusion model during the generation process. De-
scriptions of viewing angles (e.g. front view, side view) are added at the end
of the prompt. Given that the range and granularity of viewing descriptions in
view-dependent prompting vary across different text-to-3D methods, we directly
use the original prompt without view-dependent prompting in the text-to-image
generation. We then compute the single-view quality metric on the generated
2D image. Finally, we compute the correlation between the single-view quality
metric of the generated 2D image and the quality metric (Multi-view capturing
with ImageReward) result of the generated 3D scene.

Tab. 5 displays the Spearman correlation between the text-to-image scores
for the 2D guidance and the final text-to-3D scores. It can be observed that that
all correlations are relatively low, and there are two overall trends: 1) methods
demonstrating better performance in text-to-3D also have higher correlation co-
efficients; and 2) when using different prompt sets, the correlation coefficient also
follows the trend of Single Object greater than Single Object with Surroundings,
and the latter greater than Multiple Objects. We attribute these outcomes to
the fact that Stable Diffusion can generate satisfactory 2D images most of the
time, even for complex prompts. However, 2D guidance may not be effectively
used by text-to-3D methods — they may fail to generate accurate 3D scenes
even though the 2D images are acceptable, leading to a low text-to-3D score
while high text-to-image score. In addition, the 2D guidance may not be view-
consistent, which does not significantly affect the text-to-image scores but can
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Table 5: The Spearman’s ρ correlation between the text-to-3D methods’ generation
qualities and the diffusion models’ 2D image generation qualities, averaged over all
prompts.

Single Obj. Single Obj. with Surr. Multi Obj.

Dreamfusion 0.211 0.184 0.045
Magic3D 0.229 0.158 0.059
LatentNeRF 0.290 0.191 0.050
Fantasia3D 0.159 0.153 0.006
SJC 0.228 0.159 0.040
ProlificDreamer 0.357 0.272 0.147
MVDream 0.421 0.340 0.474
DreamGaussian 0.206 0.132 0.156
GeoDream 0.330 0.228 0.086
Richdreamer 0.407 0.347 0.252

indeed lead to poorer quality in the final 3D generation. Superior methods like
ProlificDreamer can better utilize 2D images to form a 3D scene, as suggested
by its higher correlation, and as a result, can generate higher quality 3D scenes.

The retrained multi-view diffusion model by MVDream (also leveraged by
RichDreamer) provides effective guidance for 3D generation, as evidenced by
the highest correlation results. This highlights the capabilities of the retrained
diffusion model. However, the retrained diffusion itself exhibits a degree of degra-
dation in its generation capabilities, especially in scenarios involving surrounding
information and multiple objects. This is reflected in the lower average scores
of 2D image generation with MVDream’s diffusion model compared to Stable
Diffusion (e.g. 32.9 vs 44.0 on the multi-object set). While the retrained diffusion
model is useful for guiding 3D generation, there is still room for improvement in
diffusion modeling for 3D tasks.

These observations suggest that the current bottleneck of text-to-3D lies in
the process of learning 3D from 2D guidance and the view consistency of 2D
guidance, rather than the generative capability of Stable Diffusion itself.

11 More Case Studies

11.1 Single-view vs. Multi-view Capturing

We further illustrate through a case study that adhering to the previous method
and only capturing single-view images does not yield satisfactory evaluations. As
depicted in Fig. 8, the first two examples demonstrate good subjective quality
in the front view. However, their geometries are relatively poor, and there are
noticeable residuals or artifacts when they are converted to other viewpoints.
These can be identified with our multi-view capturing mechanism, which sub-
sequently adjusts the scores accordingly. In the next two examples, the front
view is partially obscured, which fails to fully represent the subjective quality of
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An antique ruby-
studded brooch

32.2/100 20.5/100

Single
View

Multi
View

51.5/100 45.2/100
A steaming mug
of hot chocolate

with whipped 
cream

An open book
sits beside a
vintage brass

spectacles

A pair of polka-
dotted sneakers

5.3/100 53.4/100

34.4/100 64.9/100

(-11.7)

(-6.4)

(+48.1)

(+30.5)

Fig. 8: Comparisons of the scoring between single-view capturing and our multi-view
capturing scheme. The first image column denotes the single front view, and the other
two image columns are captured from other viewpoints.

the generated objects. Our multi-view capturing mechanism can detect this and
improve their scores accordingly.

11.2 More results

We provide case studies of test prompts with generations and evaluations of
different text-to-3D methods in Figs. 9, 10, 11, 12.
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Single
Object

Single
Object

with Surr.

Multi
Objects

A cactus 
with pink 
flowers

A smooth, 
round opal 

stone

Ripe apples 
cluster next to a 
gleaming knife

A blue and 
white china cup 

on a saucer

A red barn in a 
green field

DreamFusion

Magic3D

LatentNeRF

Fantasia3D

SJC

ProlificDreamer

MVDream

Hot popcorn 
jump out from 
the red striped 
popcorn maker

DreamGaussian

RichDreamer

GeoDream

Fig. 9: Visualizations of text-to-3D generation results. The two scores denote quality
and alignment, respectively.
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DreamFusion

Magic3D

LatentNeRF

Fantasia3D

SJC

ProlificDreamer

MVDream

DreamGaussian

RichDreamer

GeoDream

An antique gold 
pocket watch

A cherry red 
vintage lipstick 

tube

A rainbow-colored 
umbrella

A small porcelain 
white rabbit 

figurine

A castle-shaped 
sandcastle

A leather-bound 
book with gold 

details

A sparkling 
crystal 

chandelier

An elegant 
feather-quill ink 

pen

Fig. 10: More results of our test prompts, including generations and evaluations of
different text-to-3D methods (#1).
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DreamFusion

Magic3D

LatentNeRF

Fantasia3D

SJC

ProlificDreamer

MVDream

DreamGaussian

RichDreamer

GeoDream

A red rose in a 
crystal vase

A green cactus in 
a clay pot

A pair of blue jeans 
hanging on a 
clothesline

A rainbow over a 
waterfall

A blue butterfly 
on a pink flower

A white porcelain 
teapot on a lace 

tablecloth

A green frog on a 
lily pad

A bluebird 
perched on a 
tree branch

Fig. 11: More results of our test prompts, including generations and evaluations of
different text-to-3D methods (#2).
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DreamFusion

Magic3D

LatentNeRF

Fantasia3D

SJC

ProlificDreamer

MVDream

DreamGaussian

RichDreamer

GeoDream

A baby is reaching 
for a teddy bear 

on the bed

A footballer is 
kicking a soccer 

ball

A black cat sleeps 
peacefully beside a 

carved pumpkin

A man is holding 
an umbrella 
against rain

A dripping 
paintbrush strokes 
a vibrant palette of 

colors

A girl is reading a 
hardcover book in 

her room

A drummer is 
beating the 

drumsticks on a 
drum

A boy is flying a 
colorful kite in 

the sky

Fig. 12: More results of our test prompts, including generations and evaluations of
different text-to-3D methods (#3).
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