
Comment on “Anomalous Reentrant 5/2 Quan-
tum Hall Phase at Moderate Landau-Level-
Mixing Strength”

Das, Das, and Mandal[1] examine a wavefunction for
ν = 5/2 on a sphere including moderate Landau-Level
mixing evaluated perturbatively. In contrast to the
claims of Ref. [1], the wavefunction they find is not a frac-
tional quantum Hall (FQH) state. Splitting the system
into two hemispheres each with N/2 particles, Ref. [1]
shows entanglement spectra (Figs. 3, 5) which (i) do not
change qualitatively when two flux are either added or
subtracted and (ii) have a branch that remains at very
low entanglement energy (high weight) out to the max-
imum possible Lz angular momentum. Neither (i) nor
(ii) is the case for any known FQH states. Instead, I
claim that these wavefunctions exhibit phase separation
or bubble/stripe formation.

Assuming the system of N electrons separates into a
compact filled region (ν = 1) and a remaining empty
region (ν = 0), on a sphere we would expect a ground
state at maximal angular momentum. If we focus instead
on angular momentum L2 = 0 states, the best clustering
occurs by separating the system into two filled regions
containing N/2 electrons each (assuming even N), which
are arranged antipodally (opposite) on the sphere, and
then we sum over all directions of the antipodal axis to
obtain L2 = 0. I claim that this L2 = 0 antipodal cluster
state is what is found in the numerics of Ref. [1].
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FIG. 1. Entanglement spectra for two N = 12 electron states
on a sphere with Nϕ = 25 flux. The entanglement cut is along
the equator and each half of the cut has N/2 electrons. (Left)
Toy model. The wavefunction is the lowest energy L2 = 0
state of a Hamiltonian with short range attraction: V1 = −1
and Vn ̸=1 = 0. (Middle) Data taken from Fig. 3c of Ref. [1].
The wavefunction is the ground state with Landau-level mix-
ing parameter κ = 1.2 using the approximate Hamiltonian
described in Ref. [1]. (Right) left and middle overlayed.

This type of antipodal clustering should not care much
about the precise value of N (even) or flux Nϕ in agree-
ment with (i). Further, such a wavefunction should have
high entanglement for a cut with maximal Lz from the
configuration with clusters at the north and south poles.
This is in agreement with (ii). A branch of lower Lz

states should also have similarly high entanglement, cor-
responding to configurations with the antipodal axis not

along the poles. These statements are in agreement with
the numerical observations of Ref. [1].
In order to prove our claim that the data of Ref. [1]

is showing clustering, following Ref. [2] we consider elec-
trons with short ranged attraction only: i.e., Haldane
pseudopotentials V1 = −1 and Vn ̸=1 = 0. With such a
Hamiltonian the electrons attract each other as much as
possible, forming entirely filled regions. The ground state
is at maximum L, but if we look instead at the lowest en-
ergy L2 = 0 state, we see in Fig. 1 that its entanglement
spectrum is identical to that shown in Ref. [1]. Note
that this particular toy-model Hamiltonian is particle-
hole symmetric, and for filling ν < 1/2 the holes will
cluster instead of the electrons. The Hamiltonian con-
sidered in Ref. [1], in contrast, is not particle-hole sym-
metric and shows the same electron clustering behavior
for all fillings shown in Fig. 3.
The explicit analytic wavefunction shown in Ref. [1]

(Eq. 2) is a Halperin 113 state[3] which has been fully
antisymmetrized between two species. It is known that
the 113 state phase separates between species[4]. Once
the species are physically separated, the effects of an-
tisymmetrization are expected to be minor. Here, the
phase separation is so strong that the electrons form re-
gions that are entirely filled and entirely empty.
The fact that the system breaks up into antipodal clus-

ters is perhaps not surprising given that there is a well-
known tendency to stripe/bubble formation in the higher
Landau levels[5] and at ν = 5/2 when strong enough
Landau level mixing is included perturbatively[2]. What
might be more surprising is that in all cases observed in
Ref. [1], it appears there are exactly two clusters on the
sphere. There could be several reasons for this. First, if
it were just a single cluster, one would not have L2 = 0.
Secondly, it is possible that such finite size systems are
too small to fit more than two clusters.
In summary, the states studied in Ref. [1] are not FQH

states but rather show phase separations or stripe/bubble
formation. All conclusions stated by Ref. [1] must be
considered in this light.
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