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Abstract

Agriculture is crucial in sustaining human life and civilization that relies heavily on
natural resources. This industry faces new challenges, such as climate change, a grow-
ing global population, and new models for managing food security and water resources.
Through a machine learning framework, we estimate the future productivity of croplands
based on CMIP5 climate projections on moderate carbon emission scenario. We demon-
strate that Vietnam and Thailand are at risk with a 10% and 14% drop in rice production,
respectively, whereas the Philippines is expected to increase its output by 11% by 2026
compared with 2018. We urge proactive international collaboration between regions facing
crop land gain and degradation to mitigate the climate change and population growth im-
pacts reducing our society’s vulnerability. Our study provides critical information on the
effects of climate change and human activities on land productivity and uses that may assist
such collaboration.

Introduction

Climate change has a substantial impact on crop production, which poses risks to food se-

curity globally [1]. The Secretary-General of the United Nations has highlighted that Least

Developed Countries are particularly vulnerable to these risks, especially given rising food and

energy costs [2]. While advances in technology have been made since the Industrial and Green

Revolutions, climate change and weather variability remain the primary factors affecting crop
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Table 1: Agricultural statistics in 2019 [8, 9].

Country
Employment in

agriculture (% of total)
Agriculture, forestry, and

fishing, value added (% of GDP)

Japan 3.4 1.0
Kazakhstan 14.9 4.5
Myanmar 48.9 21.4
Philippines 22.9 8.8
South Korea 5.1 1.7
Thailand 31.4 8.1
Turkey 18.1 6.4
Uzbekistan 25.7 24.6
Vietnam 37.2 11.8

production [3]. Anthropogenic climate change exacerbates temperature and precipitation ex-

tremes, further compounding the issue [4]. Agricultural investments are highly challenging due

to various financial and natural risks [5, 6], including nutrient price volatility, production losses,

market fluctuations, political instability, regulatory changes, and supply chain disruptions. Al-

thought observing land use changes can help to estimate how climate affects crops, allowing for

more accurate risk evaluation and ultimately contributing to global food security.

The above challenges are most crucial for countries with a high contribution of agriculture

to gross domestic product (GDP) and employment rate. To help governmental agencies and pol-

icymakers address these challenges, we propose a high-fidelity data-driven approach to identify

historical correlations between climate and arable land. Based on the widely recognized Cou-

pled Model Intercomparison Project (CMIP) [7], we accurately forecast land utilization patterns

and evaluate future production changes. This paper investigates countries with different levels

of dependency on agriculture, specifically focusing on Central, South, and South-Eastern Asia,

which present various levels of social and economic development, as outlined in Table 1.

While many researches have attempted to establish a direct relationship between climate

change and crop yields, ignoring the soil properties [10, 11], it is essential to note that previous
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imbalances in nutrient supply can seriously impact the effectiveness of mineral fertilizers [5].

Thus, our approach considers both climate and soil fertilizers usage to estimate the change in

rice production.

Despite notable progress in yield and crop modeling, many countries in the Asian region

are understudied (except for India and China). Therefore, this gap presents an opportunity to

produce regionally sensitive models that can account for region-specific factors and provide

better quality results within areas of interest. Our study aims to promote investigations and

modeling on a local scale using climate models, digital elevation models and tools like CMIP5

and Food and Agriculture Organization Corporate Statistical Database (FAOSTAT) [7, 12, 13]

to understand the impact of climate change on the environment. The latter will contribute to

global sustainable agriculture efforts and improve the industry level of development, ultimately

improving food security worldwide.

Global efforts should focus on international collaboration between regions facing varying

degrees of land gain or degradation proactively. This will play a critical role in sustainable

agriculture development, allowing regions to combine resources, knowledge, and expertise to

address the challenges of climate change, food security and beyond.

Results and discussion

The status of arable lands is determined by bioclimatic variables

The agricultural potential of croplands depends on various bioclimatic factors, such as tem-

perature, rainfall, and other environmental conditions. To demonstrate this, we use the dataset

prepared by Noce et. al. [14]. We will also use these data to predict the status of croplands. Fig.

1 illustrates the density distribution of certain bioclimatic variables for the samples that either

lost their crop production status (marked in red) or acquired it (marked in green) nine years

later. The profiles of some features show a distinct shift, which is likely to aid in predicting
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the status of croplands. This shift indicates that relatively warm conditions, such as an average

yearly temperature between 5◦C and 10◦C and a minimum temperature of the coldest month

between −20◦C and −10◦C, are likely to result in the emergence of croplands. In contrast,

harsher conditions can lead to their disappearance.

Fig. 1: Biovariables density distribution of samples lost (red) or acquired (green) cropland
status. Temperature is in ◦C, precipitation is in mm.

Effect of bioclimatic variables on croplands is delayed

In agricultural settings, climatic variables have a substantial impact on the growth and devel-

opment of crops. These effects may manifest immediately, such as when a hailstorm or flood

damages crops, or they may be delayed, such as when soil loses vital nutrients due to prolonged

changes in precipitation or droughts.

Our study aims to predict arable lands’ future status. We assume a land transformation

happens a few years after actual climate conditions occur. In order to predict the status of

land designated for cropland use, we determine an appropriate time delay in years between

relevant features and the actual status. We then develope a machine learning tool that utilizes

climate data to make these predictions (see below). Our evaluation of the tool’s performance is

dependent on the identified time delay value.

The effectiveness of our tool is shown in Fig. 2, which evaluates the quality of cropland
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status prediction given a time lag. Classical performance metrics were used to assess the tool’s

performance using data bootstrapping, and the results suggest that a 1-year time delay is the

most appropriate value for identifying the risks of cropland degradation.

Fig. 2: Performance of the climate model with different land cover time delay. N=6.

Agricultural use of fertilizers is expected to vary

The significance of the delayed and immediate effects of climatic parameters on agricultural

production also depends on other variables. Using fertilizers, a major attribute of the Green

Revolution of the XX century, can help reduce the damage caused by weather and generally

increases lands productivity. Based on agricultural statistics, one can identify trends in fertilizer

consumption and predict future use.

Fig. 3 demonstrates the agricultural consumption of three major types of fertilizers before

2019 and our forecasts (see Section Rice yield model) after 2020 using these data. Different

countries show various dynamics of consumption for different types of fertilizers. These differ-

ences could potentially magnify the impacts of beneficial climate changes on certain regions,

or conversely, exacerbate the ramifications of unfavorable changes. Under the neutral climatic

change, the utilization of fertilizers alone may increase the productivity of croplands.
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a b c

Fig. 3: Agricultural use of three primary feritilizer types. The figure illustrates the his-
torical fertilizers consumption before 2019 and the projected consumption from 2020 onwards,
measured per unit of arable area. a, Nitrogen. b, Phosphorus. c, Potassium.

Accounting for unknowns

Artificial and natural complex systems, including agricultural systems, are subject to various

unpredictable factors. While some of these factors may be beyond the domain of consideration,

such as the possibility of a supernova explosion or the massive use of defoliants in a conflict,

there are also domain-specific variables that are only implicitly present in climatic and agricul-

tural statistics.

In actual agricultural practice, lands suitable for crop cultivation are selected based on their

potential, either as a conscious decision of farmers who consider parameters not included in

current statistics or analogously to the natural selection of the most suitable combinations of

lands and other parameters. Therefore, considering past agricultural land use may help in the

effort to predict the future status of croplands.

In order to confirm the validity of this approach, we constructed a variety of machine learn-

ing models utilizing classical and advanced techniques [15, 16], incorporating climate and ele-

vation data. Of these models, the XGBClassifier [17] outperforms its counterparts (see Table 2).
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Subsequently, we proceeded by training the XGBClassifier model on data also encompassing

land use dedicated to agricultural purposes for a period of five years prior to the prediction date.

Hereafter, we will refer to this model as the “model with memory”.

In both cases, we set the time delay parameter d = 1 for better model performance (see

metrics in Table 2 and criteria in Section Model Parameters). The model with memory demon-

strates superior results according to all the metrics we used. The feature importance analysis,

performed with SHAP tool, using Shapley values to explain the output of the maching learning

model with game theory [18], confirms that prior land use is the major factor contributing to the

superior performance of the model with memory (Fig. 4).

These findings highlight the importance of considering past agricultural land use when pre-

dicting the future status of croplands. This observation can be interpreted differently from

various not mutually exclusive perspectives. Firstly, landowners may rely heavily on traditional

farming methods, instead of adapting new techniques that account for shifts in climate condi-

tions. Secondly, landowners may factor in local parameters that are absent from our climatic and

agricultural dataset. Thirdly, landowners who utilize effective practices, regardless of a rational

basis, can create a positive feedback loop through increased access to fertilizers or financial

assets.

Our attempt to account for unknown factors in crop lands’ status using the recorded land

use history demonstrates that the model without memory generally overestimates changes in

future crop lands’ status. Fig. 5 shows the potential switch in crop lands’ status for three

selected countries with diverse climates: Kazakhstan, Philippines, and South Korea, estimated

using both models. The green color highlights the pixels with good potential, while the red color

indicates those in danger for cultivation. The comparison of the two models allows us to identify

the areas where present-day agricultural practices are no longer advantageous. Conversely, it

also reveals areas where crop production is favored by climate change, and cultivation can be
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Table 2: Classification metrics on test data. Standard deviation was computed based on a
sample size of N=10.

Model Classification
threshold

Balanced
accuracy

Precision Recall ROC-
AUC

Climate model

Logistic Regression
[19]

0.12 0.722 0.232 0.745 0.793

Random Forest
Classifier [20]

0.29 0.803 0.509 0.688 0.919

Naive Bayes [21] 0.40 0.757 0.265 0.777 0.821
MLP Classifier [22] 0.24 0.797 0.455 0.695 0.909
AdaBoost Classifier
[23]

0.50 0.786 0.487 0.656 0.907

CatBoost Classifier
[24]

0.25 0.813 0.554 0.694 0.928

XGBClassifier [17] 0.27 0.822 0.501 0.734 0.928
Convolutional Neu-
ral Network [25]

0.30 0.792 0.579 0.509 0.812

Climate model with memory

XGBClassifier
0.66

±1.7×10−2
0.969

±1.2×10−6
0.945

±3.0×10−6
0.945

±2.8×10−6
0.990

±5.4×10−5

initiated with positive environmental outcomes.

Hereafter, we rely on a climate model with memory, which gives a moderate forecast. Since

it uses the land status five years prior to the considered time, any prediction will be made in a

short time horizon.

Yield changes due to climate change, fertilizers use, and other factors

Whereas the creation of additional agricultural lands as a result of positive change is unlikely

due to the conservative nature of the sector, any hostile conditions will inevitably result in

reduced yields within affected regions. We examined the cultivation of rice to evaluate this

approach. Fig. 6 shows the map with marked pixels having a high probability of crop status
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a b

Fig. 4: Feature importances evaluated with SHAP tool for the models with different set of
features. Features: lc – land class 5 years prior; bio1, ... , bio12 – see notations in Table 6 a,
Climate model. b, Climate model with memory.

changes in the year 2026 compared to the year 2018 according to the climate model with mem-

ory. Figure S1 contains high resolution picture. Green color highlights the pixels with good

potential, and red color – those with danger for cultivation. Table 3 demonstrates the results of

rice yield modeling utilizing the climate model with memory explained in Section Rice yield

model.

A negative yield or production value indicates a decrease, whereas a positive value repre-

sents an increase. Our yield model shows R2 = 0.944 and mean absolute percentage error

MAPE = 5.7% on test data. It is important to note that these findings adopt a cautious ap-

proach and only account for risky lands, thereby disregarding prosperous regions. This study

focuses on identifying potential risks rather than proposing development strategies. According

to our findings, Thailand and Vietnam face severe threats in rice production, while the Philip-

pines is expected to experience growth. Identifying region-specific factors contributing to these

trends is challenging, as climate conditions and soil fertilizer levels vary independently. Thus,

the efficacy of fertilizers may vary, and their impact can range from negligible to significant.
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a

b

c

Fig. 5: Expected changes in croplands in 2026 comparing with the historical year 2018
according to climate model without (Left) and with memory (Right). a, Kazakhstan. b,
Philippines. c, Korea.
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Table 3: Expected percentage change of yield and rice production according to the climate
model with memory in 2026 compared with the historical year 2018.

Country Yield
change,%

General analysis Analysis with rice mask

Lands at
risk, %

Production
change, %

Lands at
risk, %

Production
change, %

Japan -2.1 10.4 -12.3 - -
Kazakhstan -4.7 16.4 -20.4 - -
Myanmar -0.8 3.2 -4.0 0.9 -1.7
Philippines 12.8 7.4 4.4 1.8 10.8
South Korea -4.7 6.5 -10.9 4.1 -8.7
Thailand -13.8 1.9 -15.4 0.4 -14.1
Turkey -9.2 9.7 -18.1 - -
Uzbekistan 9.8 2.4 7.2 - -
Vietnam -6.0 11.9 -17.3 4.6 -10.4

Fig. 6: Expected risky and potentially successful arable lands in Asia in year 2026 made
with climate model with memory.
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The primary constraint of this study pertains to the grid roughness. The spatial resolution

employed (roughly 4500 m in cell length) is larger than the field size, resulting in several diverse

areas within the same pixel. Additionally, this grid is uniform and does not correspond to the

actual shapes of the fields.

Lastly, our modeling relies on the datasets listed in Table 4. Some of these are the results of

modeling studies, which inherently approximate natural phenomena and, therefore, are impre-

cise. It influences our model and should be considered when interpreting the model outcomes.

However, there is room for improvement. Various studies conducted under the CMIP5/

CMIP6 project can assist in overcoming the limitations of mathematical simulation in reproduc-

ing natural processes. Global-scale processes are incredibly complex. Accurate reproduction of

such processes with mathematical simulations is still impossible. Each model has advantages

and disadvantages in replicating changes occurring on land, in the atmosphere, in permafrost, or

above the ocean. The appropriate work direction could be collecting the region-specific CMIP

models of reasonable quality into an ensemble [26]. This approach may separate the strengths

and weaknesses of the models to increase the reliability of the outcomes.

Materials and methods

Data and preprocessing

In this study we develop a model employing several open datasets detailed in Table 4. We

get remote sensing data with Google Earth Engine [27], and assume elevation to be invariant

through all the considered time. The land classification is based on the University of Maryland

classification [28, 29]. We transform the land cover to binary classification with crops (labeled

as class 12 in the source) and non-crops (all other classes).

Historical climate data come from TerraClimate source [31]. Its original spatial grid serves

as the foundation to project all other data. Using all the datasets in a single model requires
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Table 4: The datasets desctiption.

Dataset Name Variable Time cov-
erage

Spatial
resolution

Temporal
resolution

NASA SRTM Digital El-
evation [30]

Elevation - 1 arcsec -

MCD12Q1 Land Cover
Type[28]

LC Type2 2001–2020 1
20

◦ Yearly

TerraClimate [31] Minimum and maximum
temperatures, precipita-
tion

1958–2021 1
24

◦ Monthly

CMIP5 [7] Monthly mean of the
daily-minimum and
daily-maximum near-
surface air temperatures,
sum of precipitation at
surface

1950–2100 1
2

◦ − 3
2

◦ Daily

NESEA-Rice10 [32] Paddy rice map 2017–2019 0.0001◦ Yearly

Global Administrative
Areas [33]

Administrative bound-
aries of the countries

2022 - -

Food and Agriculture
Organization Corporate
Statistical Database [12,
13]

Rice (production quan-
tity), rice (area har-
vested), fertilizers by
nutrient (agricultural use)

1961–2021 - Yearly

aligning them in space and time.

We consider the future climate data from various CMIP5 simulations based on multiple

evaluations conducted by different groups [34, 35] to ensure the high-fidelity and robustness of

the results. The careful selection is crucial to the outcome of the model. This study focuses

on Central Asia, Tibetan, East Asia, South Asia, Southeast Asia, Siberian, and Mediterranean

regions as they are labeled in different sources [36]. Table 5 lists simulations under the moder-
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ate Representative Concentration Pathway (RCP) 4.5 scenario of greenhouse gas concentration

trajectory employed in this study.

Table 5: CMIP5 simulations used in this study.

Model name Institution

CNRM-CM5 Centre National de Recherches Météorologiques, France
GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory, United States
MPI-ESM-MR Max Planck Institute for Meteorology, Germany

The climate projections we are examining are based on a daily temporal resolution. During

the preprocessing stage, we calculate the mean maximum and minimum temperatures, as well

as cumulative precipitation figures, for each month. Furthermore, historical and future climate

data are used to calculate a few bioclimatic variables, presented in Table 6, annually. These

variables are informative in determining patterns in temperature and precipitation variations.

They help to reduce observation noise, computational requirements and training bias.

Table 6: Bioclimatic variables.

Biovariable Description

bio1 Annual mean temperature
bio2 Mean diurnal range
bio3 Isothermality
bio4 Temperature seasonality
bio5 Max temperature of warmest month
bio6 Min temperature of coldest month
bio7 Temperature annual range
bio12 Annual precipitation
bio13 Precipitation of wettest month
bio14 Precipitation of driest month
bio15 Precipitation seasonality

Evaluation of the initial data revealed an imbalanced distribution of classes, with an average

of 11% of all lands assigned to crops and up to 3% of them subject to changes in the next few
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years. The area of interest is considered as a uniform spatial grid, where each pixel has elevation

value, bioclimatic values, and designated land class as the target label.

Model

Extreme Gradient Boosting Classifier XGBClassifier [17] was chosen as a machine learning

baseline because its performs better than other tools when applied to the same data in our pilot

study (Table 2, also see [37]).

At the first step, all the features are used for training with grid search and StratifiedKFold

cross-validation among several regularizations and decision tree parameters. The procedure of

choosing optimal parameters is given in Section Model Parameters.

The proposed model involves collecting two matrices — Xtrain and ytrain — from data in

different years. The ytrain values are collected from data delayed by an integer parameter d in

time. For example, Xi corresponds to a year i, while yi corresponds to the year i+ d. We select

the parameter d based on the distribution of relevant metrics derived from data collected across

multiple time periods (for details see Section Model Parameters). Using this collected data,

we train a binary classifier to predict the probability of assigning either class 1 (arable land) or

class 0 (not arable land) to a specific sample, which is described with features listed in Table 6

along with elevation.

Numerical experiments

Data Analysis

Our study focuses on the proposed approach and its application in Central, South, and South

Eastern Asia. We cover a diverse range of countries with varying levels of social and economic

development, including Japan, Kazakhstan, Myanmar, the Philippines, South Korea, Thailand,

Turkey, Uzbekistan, and Vietnam. The region of the study is limited to a latitude range of 35◦N
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to 60◦N and a longitude range of 27◦E to 166◦E. The spatial resolution utilized is 1◦/24 , which

was determined through the algorithm described in Section Data and preprocessing.

A preliminary data analysis showed that certain samples that had changed their labels from

crop to non-crop and vice versa over the years modeled. Fig. 1 shows the density distribution

of particular biovariables for the samples that lost their crop production status (marked in red)

or acquired it (marked in green) nine years later. The figure depicts a clear shift in the profiles

of some features, which is likely to assist the model to distinguish between sample groups.

Model Parameters

We performed grid search in order to estimate optimal parameters for further modeling. Table

7 displays the initial parameter sets and the optimal values that we chose.

Table 7: Grid search parameters.

Parameter Tested set Chosen value

reg alpha 0, 10−1, 1 10−1

reg lambda 1, 10, 102 1
max depth 3, 4, 5 5
learning rate - 0.02
n estimators - 200

Fig. 1 shows the distribution of most essential features. Aside from climate data and land

class, the models listed in Table 8 include elevation (elv) and land class 5 years prior (lc). The

inclusion of “memory” within the name indicates that historical land classes, i.e., prior land

usage of this land, were also used as a part of its feature space.

Table 8: Models with features included. Biovariables are listed in Table 6.

Model Name Features

Climate model 11 biovariables, elv
Climate model with memory 11 biovariables, elv, lc
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In Section Model, we define the data collection process with a time delay of d years to

represent the number of years required for crop owners to exclude land from cultivation due to

climate conditions. Fig. 2 displays classification metrics for various d values.

The classification threshold serves as a decision threshold that maps the classifier output

probability of a sample being assigned to class 1 (presence of crops) to its actual binary cate-

gory. Balanced accuracy is a performance metric that measures the percentage of correct pre-

dictions with respect to the share of each class, making it particularly useful when dealing with

imbalanced classes where one class is underrepresented compared to the other. In this study, we

use balanced accuracy to evaluate the performance of our classifier in distinguishing between

the presence and absence of crops (denoted as class 1 and class 0, respectively). We estimate

the precision (the tendency not to predict false croplands) and recall (the ability not to predict

false non-croplands) using the optimal threshold based on maximizing the F -Measure — the

harmonic mean of precision and recall.

As our study primarily focuses on the potential decline in soil productivity, recall appears

to be of greater significance. Thus, the results highlighted in Fig. 2 lead us to choose parameter

d = 1. We acquire the training set using TerraClimate data from 2006 to 2008 and land classes

from 2007 to 2009. To avoid any potential data leakage, we take great care in selecting the train

and test data. Specifically, we ensure that the land class in any given year is never used as both

a label for training and a feature for testing.

Fitted model uses CMIP5 climate projections to make a forecast. Phase 5 is chosen since it

has a better correspondence in temperature with recently observed data [38]. We assume that

the suitability of climate models may vary depending on the chosen climate zone. To improve

consistency, we create an ensemble prediction by averaging the probabilities of each output

among the simulations listed in Table 5.
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Rice yield model

To assess the potential effects of crop yield degradation, the separate regression model estimates

the connection between climate, consumption of fertilizers, time trends, and yield as the target

variable. We develop this approach to capture the link between specific social, economic traits

and climate conditions. Climate features of the yield model include values of minimum and

maximum for temperatures and precipitations, calculated as monthly means as well as variances

of these values in the monthly distribution. We use climate data collected from the TerraClimate

source within national borders that were acquired from the Global Administrative Areas dataset

(see Table 4). This approach yields 72 climate features in total.

Fertilizer data include the agricultural use of nitrogenN (in various chemical forms), potash

K2O, and phosphate P2O5 per country from 1995 to 2019. Fig. 3 illustrates their agricultural

use F until 2019, as indicated in Table 4. The forecast for the future year y is generated sep-

arately for each country c and for each fertilizer with a simple 10-year shift of the previously

observed curve into the future:

Fcy = Fc(y−10) + s,

s = Fc2019 − Fc2009.
(1)

We utilize the specific year values F for nitrogen N , potash K2O, and phosphate P2O5 to

serve as three features in the modeling of yield. Country-specific time trends are also factored

into the model. Mathematically, we set the functional dependence and estimate the unknown

coefficients as follows:

Ycy = w1prcmy + w2pr
var
cmy + w3tmaxcmy+

+ w4tmax
var
cmy + w5tmincmy + w6tmin

var
cmy+

+ w7F
N
cy + w8F

P2O5
cy + w9F

K2O
cy +

+ ψc(y − 1995) + ϵc + γ,

(2)

where

18



• Y is rice yield,

• c, m, y represent country, month and year respectively,

• pr and prvar are precipitation level and its variance,

• tmax and tvarmax are maximum temperature and its variance,

• tmin and tvarminare minimum temperature and its variance,

• F are fertilizer consumptions,

• ψ are time trends,

• ϵ and γ are the error terms.

We train the model with the annual data spanning from 1996 to 2017, and test its per-

formance for the subsequent years of 2018 to 2019. The collected data for these years boast

complete coverage within our area of interest, allowing for a comprehensive analysis.

To determine the yield as a target variable, we divide the rice production of a specific country

by its corresponding cultivation area, with both values sourced from the FAOSTAT data (see

Table 4). National statistics and climate data are utilized to obtain the necessary information for

calculating yield forecasts. We then apply this regression model to estimate future rice yields in

a given country. When combined with the expected reduction in area, it effectively predicts the

rice production.

Available paddy rice dataset [32] offers an opportunity to improve the precision of rice

land assessment in Myanmar, Philippines, South Korea, Thailand, and Vietnam. When using

it as a mask for crop fields, we refer to this as the “rice mask” analysis and demonstrate the

significance of utilizing these data in current research. By employing this mask, we enhance
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the accuracy of climate change impact estimation on rice production, compared to the general

analysis that does not consider the specific location of rice fields.

Conclusion

This work presents evidence for the impact of climate on croplands. The study utilized a basic

climate model that gathered biovariables based on historical climate data. These biovariables,

such as annual mean temperature, maximum temperature, and annual precipitation, were used

to predict the presence or absence of cropland in the future based on climate projections. The

results showed that even moderate modeling suggests a high likelihood of severe conditions for

growing crops in Thailand, and Vietnam. Consequently, these lands will either undergo a land

transformation or experience a notable drop in yield.

Furthermore, the study allows for comparing neighboring regions. Underrated clusters were

identified where crop potential is high, but the share of cultivated fields is low. This finding calls

for local policy changes and investor initiatives, which could be used for regional development

planning, creating agricultural road maps, water management, and more.

In addition to business motivations, the topic has a more comprehensive scope as it relates

to global food security. Climate change is responsible for rearranging conventional food supply

chains on regional and international scales. Predictions based on the findings of this study can

help take measures to mitigate the impact of climate change on food security before actual

transformations occur.

We also believe that this study complements various studies on the impact of natural disas-

ters such as floods or hail to food security [39, 40, 41] often combines CMIP models with the

analysis of extremes [39].
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[3] Jonas Jägermeyr et al. “Climate impacts on global agriculture emerge earlier in new
generation of climate and crop models”. In: Nature Food 2.11 (2021), pp. 873–885.

[4] Sha Zhou, Bofu Yu, and Yao Zhang. “Global concurrent climate extremes exacerbated
by anthropogenic climate change”. In: Science Advances 9.10 (2023), eabo1638.

[5] Ralf Seppelt et al. “Agriculture and food security under a changing climate: An underesti-
mated challenge”. In: iScience 25.12 (2022), p. 105551. ISSN: 2589-0042. DOI: https:
//doi.org/10.1016/j.isci.2022.105551. URL: https://www.
sciencedirect.com/science/article/pii/S2589004222018235.

[6] Valeriy Shevchenko et al. Climate Change Impact on Agricultural Land Suitability: A
Machine Learning-Based Eurasia Case Study. In Review. 2023.

[7] Karl Taylor, Stouffer Ronald, and Gerald Meehl. “An overview of CMIP5 and the Ex-
periment Design”. In: Bulletin of the American Meteorological Society 93 (Nov. 2011),
pp. 485–498. DOI: 10.1175/BAMS-D-11-00094.1.

[8] The World Bank. Agriculture, forestry, and fishing, value added (% of GDP). data re-
trieved from World Development Indicators, http://data.worldbank.org/
indicator/NV.AGR.TOTL.ZS. 2019.

21

https://doi.org/10.5281/zenodo.8033309
https://www.un.org/sg/en/content/sg/statement/2023-03-05/secretary-generals-remarks-plenary-of-fifth-conference-of-least-developed-countries-bilingual-delivered-scroll-down-for-all-english
https://www.un.org/sg/en/content/sg/statement/2023-03-05/secretary-generals-remarks-plenary-of-fifth-conference-of-least-developed-countries-bilingual-delivered-scroll-down-for-all-english
https://www.un.org/sg/en/content/sg/statement/2023-03-05/secretary-generals-remarks-plenary-of-fifth-conference-of-least-developed-countries-bilingual-delivered-scroll-down-for-all-english
https://doi.org/https://doi.org/10.1016/j.isci.2022.105551
https://doi.org/https://doi.org/10.1016/j.isci.2022.105551
https://www.sciencedirect.com/science/article/pii/S2589004222018235
https://www.sciencedirect.com/science/article/pii/S2589004222018235
https://doi.org/10.1175/BAMS-D-11-00094.1
http://data.worldbank.org/indicator/NV.AGR.TOTL.ZS
http://data.worldbank.org/indicator/NV.AGR.TOTL.ZS


[9] The World Bank. Employment in agriculture (% of total employment) (modeled ILO esti-
mate). data retrieved from World Development Indicators, http://data.worldbank.
org/indicator/SL.AGR.EMPL.ZS. 2019.

[10] Nirote Sinnarong et al. “The potential risks of climate change and weather index insur-
ance scheme for Thailand’s economic crop production”. In: Environmental Challenges
8 (2022), p. 100575. ISSN: 2667-0100. DOI: https://doi.org/10.1016/j.
envc.2022.100575. URL: https://www.sciencedirect.com/science/
article/pii/S2667010022001317 (visited on 05/25/2023).

[11] Chuang Zhao et al. “Temperature increase reduces global yields of major crops in four
independent estimates”. In: Proceedings of the National Academy of Sciences 114.35
(2017), pp. 9326–9331. DOI: 10.1073/pnas.1701762114. eprint: https://
www.pnas.org/doi/pdf/10.1073/pnas.1701762114.

[12] Food and Agricultural Organization of the United Nations. Crops and livestock products.
data retrieved from http://www.fao.org/faostat/en/#data/QCL.

[13] Food and Agricultural Organization of the United Nations. The Fertilizers by Nutrient.
data retrieved from http://www.fao.org/faostat/en/#data/RFN.

[14] Sergio Noce, Luca Caporaso, and Monia Santini. “A new global dataset of bioclimatic
indicators”. In: Scientific Data 7 (Nov. 2020). DOI: 10.1038/s41597-020-00726-
5.

[15] Arvind Kiwelekar et al. Deep Learning Techniques for Geospatial Data Analysis. Aug.
2020.

[16] Mehmet Günen. “Performance comparison of deep learning and machine learning meth-
ods in determining wetland water areas using EuroSAT dataset”. In: Environmental Sci-
ence and Pollution Research (Nov. 2021). DOI: 10.1007/s11356-021-17177-z.

[17] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting system”. In: Pro-
ceedings of the 22nd acm sigkdd international conference on knowledge discovery and
data mining. 2016, pp. 785–794.
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