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ELEMENTARY PROPERTIES OF FREE LATTICES

J.B. NATION AND GIANLUCA PAOLINI

Abstract. We start a systematic analysis of the first-order model theory of
free lattices. Firstly, we prove that the free lattices of finite rank are not
positively indistinguishable, as there is a positive ∃∀-sentence true in F3 and
false in F4. Secondly, we show that every model of Th(Fn) admits a canonical
homomorphism into the profinite-bounded completion Hn of Fn. Thirdly,
we show that Hn is isomorphic to the Dedekind-MacNeille completion of Fn,
and that Hn is not positively elementarily equivalent to Fn, as there is a
positive ∀∃-sentence true inHn and false in Fn. Finally, we show that DM(Fn)
is a retract of Id(Fn) and that for any lattice K which satisfies Whitman’s
condition (W) and which is generated by join prime elements, the three lattices
K, DM(K), and Id(K) all share the same positive universal first-order theory.

1. Introduction

The model theoretic analysis of free objects (in the sense of universal algebra) has
a long tradition, dating back to the 1940’s with the work of Tarski and his school.
Problems in this areas are often pretty hard and they require advanced technology
to be solved. A canonical example of this phenomenon is the solution of Tarski’s
problem on the elementary equivalence of free groups, which was solved in 2006
independently by Sela [19] and Kharlampovich & Myasnikov [12]: all non-abelian
finitely generated free groups are elementarily equivalent, regardless of the number
of generators. As for any naturally arising mathematical structure (or class of
structures), many are the model-theoretic questions that can be asked about it. In
the context of free objects we might argue that the focus has been on the following
four fundamental problems:

(A) (positive) elementary equivalence of free objects of different rank;
(B) characterization of the finitely generated models elementarily equivalent to a

given free object of finite rank;
(C) decidability of (fragments of) the (positive) first-order theory of a free object;
(D) analysis of the stability (in the sense of Shelah [20]) properties of a free object.

The model theoretic literature is full of such results, where, once again, prob-
ably the most advanced results are on the model theory of free groups. Another
important case worth mentioning is the one of free abelian groups. In this case it
follows easily from [22] that free abelian groups of different rank are not elementar-
ily equivalent and that free abelian groups of finite rank are superstable. Another
important piece of literature is on the model theory of free algebras in the context

Date: March 28, 2024.
The second author was supported by project PRIN 2022 “Models, sets and classifications”,

prot. 2022TECZJA. The second author also wishes to thank the group GNSAGA of the “Istituto
Nazionale di Alta Matematica “Francesco Severi”” (INDAM) to which he belongs.

1

http://arxiv.org/abs/2310.03366v3


2 J.B. NATION AND GIANLUCA PAOLINI

of infinitary logic, cf. in particular the fundamental work of Eklof, Mekler, and
Shelah [7, 15].

In universal algebra, among the most natural classes of algebraic structures that
occur in nature there are certainly lattices, and so, as for any variety of alge-
bras, there are free lattices. In the last 30 years or so, the algebraic study of
free lattices has reached a very mature state, as witnessed by the canonical ref-
erence [8] on this topic (the “blue book”). Despite the widespread interest of
model theorists in free objects and despite the advanced development of the theory
of free lattices, at the best of our knowledge, very little is known on the model
theory of free lattices. We consider this a sad state of affairs and we think of
this paper as a starting point for a remedy, hoping that it will sparkle interest.

To start our model theoretic analysis we test what is the situation against Prob-
lems (A)-(D) above in the context of free lattices. With regard to (D), as it is easy
to see, free lattices fail the stability property (once again, in the sense of Shelah
[20]) very badly, and so, although more refined questions can still be meaningfully
asked, this might not be the right starting point. Concerning (A), it is easy to see
that free lattices of different finite rank can be distinguished by a ∃∀-sentence of
first-order logic, because the generating set is unique. This leaves us then with the
following three questions, where we denote by Fn the free lattice of rank n.

(A) Are Fn and Fm elementarily equivalent in positive first-order logic?
(B) Which are the finitely generated lattices elementarily equivalent to Fn?
(C) Is the first-order theory of Fn decidable?

Unfortunately, Question (C) resisted our tries, but we hope that this paper will
spark some interest in this fundamental question. Notice that in his celebrated pa-
per [25], Whitman solved the word problem for free lattices, exhibiting a natural al-
gorithmic procedure to decide whether two lattice terms are equivalent (modulo the
theory of lattices)1. In logical terms this means that the positive universal theory of
a free lattice is decidable. Thus, as a starting point toward Question (C), we ask:

Problem 1.1. Let 3 6 n 6 ω. Is the ∀-theory of Fn decidable?

We then move to Questions (A) and (B), in this respect the situation is more
favorable. In particular, concerning (A) we were able to show the following:

Theorem 1.2. The free lattices Fn (for 3 6 n < ω) are not positively indistin-
guishable. In fact there is a ∃∀-positive sentence true in F3 and false in F4.

Interestingly, our proof does not extend to n > 4. We naturally wonder if this
is a limitation of our methods or if there is an intrinsic reason for this. Also, we
want to mention that Theorem 1.2 was motivated by the analysis of the positive
first-order theory of free semigroups and free monoids from references [6, 18].

Finally, we move to Question (B). This is the venue that inspired the most
interesting results of this paper, with applications also to infinitely generated models
of Th(Fn). The crucial result in this direction is the following “Profinite Theorem”.

1As an historical note: it turns out that Skolem in a famous 1920 paper [21] solved the word
problem not only for free lattices but for any finitely presented lattice; see [9] for Skolem’s solution.
However, this section of Skolem’s paper remained unknown until it was found by Stanley Burris
late in the 20th century.
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Theorem 1.3. Let 3 6 n < ω and K ≡ Fn. Then K admits a canonical ho-
momorphism hK into the profinite-bounded completion Hn of Fn (cf. Fact 4.7).
Furthermore, Hn is isomorphic to the Dedekind-MacNeille completion of Fn and
Hn 6≡ Fn, in fact there is a positive ∀∃-sentence true in Hn and false in Fn.

Theorem 1.3 led us to investigations related to an old question of Grätzer, that
is, which first-order conditions are preserved in passing from K to Id(K)? An
old result of Baker & Hales [2] says that K and Id(K) share the same positive
universal theory. On the other hand, as observed by Funayama in 1944 [10], there
are distributive lattices K such that DM(K) is not distributive, and so in the case
of DM(K) this preservation of the positive universal theory of K is not at all to be
taken for granted. In this direction, in our next and final theorem we isolate two
properties (satisfied by free lattices) of an arbitrary lattice K which ensure that the
three lattices K, DM(K), and Id(K) all share the same positive universal theory.

Whitman’s solution to the word problem for free lattices uses the following con-
dition, which holds in free lattices:

(W) s ∧ t 6 u ∨ v implies s 6 u ∨ v or t 6 u ∨ v or s ∧ t 6 u or s ∧ t 6 v.

Theorem 1.4. Let K be a lattice satisfying Whitman’s condition (W) and which
is generated by join prime elements. Then the three lattices K, DM(K), and Id(K)
all share the same positive universal theory. Furthermore, in the case K = Fn, then
DM(K) is a retract of Id(K) and so, in particular, the first-order positive theory
of Id(Fn) is contained in the first-order positive theory of DM(Fn).

Motivated by Theorem 1.4, in Corollary 5.5 we show that DM(Fn) and Id(Fn)
are not elementarily equivalent. But we leave open the following question.

Question 1.5. Are DM(Fn) and Id(Fn) positively elementarily equivalent?

What we find particularly interesting about Theorem 1.3 is that this theorem
is reminiscent of the model theory of free abelian groups. In fact in that case the
same thing happens, with the crucial difference, though, that Zn is elementarily
equivalent to its profinite completion. We notice that the lattice Hn plays a cru-
cial role also in the lattice theoretic literature, in particular in connection with
Day’s Theorem, see [8, Section 2.7]. The realization that Hn is isomorphic to the
Dedekind-MacNeille completion of Fn was the crucial ingredient in showing that
Hn and Fn are not elementarily equivalent, and in fact this model theoretic ques-
tion inspired this result, but we believe that this fact is of independent interest and
could be further explored by lattice theorists. Furthermore, despite the hopelessness
of a classification of the models of Th(Fn) (recall the instability mentioned above),
Theorem 1.3 reduces the understanding of models of Th(Fn) to understanding Hn

and to understanding the equivalence classes induced by ker(hK). In fact the source
of instability present in Fn reduces to the fact that such equivalence classes can
be in general very complicated. On the other hand, under further assumptions on
models of Th(Fn) there is hope to prove some positive results. For example, in
light of Theorem 1.3 we might say that a lattice K |= Th(Fn) is standard if the
map hK has range in Fn, that is each element of K is congruent modulo ker(hK)
to an element of Fn (notice that the equivalence relation ker(hK) can be described
explicitly, cf. Section 4). In this direction we propose the following conjecture:

Conjecture 1.6. There is no finitely generated standard elementary extension of Fn.
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We actually further believe that Fn is the only finitely generated model of its the-
ory, this property is known in the model theoretic community as first-order rigidity,
a property which received quite some attention in recent years, see e.g. the result of
Avni-Lubotzky-Meiri showing that irreducible non-uniform higher-rank character-
istic zero arithmetic lattices (e.g. SLn(Z) for n > 3) are first-order rigid [1]. Note
that “lattices” in topological groups are not the same as “lattices” in our sense of
ordered sets with meet and join.

2. Notation

We write lattices in boldface latters, so L,K, etc. Given a lattice L, we write the
sup and inf of L as ∨ and ∧, but when convenient we switch to the “field notation”,
so + and · for sup and inf, respectively. We write tuples of elements (or variables)
as x = (x1, ..., xn). Given a cardinal number κ we denote by Fκ the free lattice
on κ-many generators. By the language of lattice theory we mean the language
L = {∨,∧}. In particular we do not require 0 and 1 to be in the language (as we
also consider Fκ for infinite κ and such lattices do not have max or min).

An element a of a lattice L is join irreducible if it is not a proper join, i.e., there
do not exist b < a and c < a such that a = b∨ c. Equivalently, a is join irreducible
if it is not the join of a finite nonempty set of elements strictly below a. In any
lattice satisfying (W), no element can be a proper join and a proper meet. Thus in
a free lattice every element is either join irreducible or meet irreducible; generators
are both.

On the other hand, in any lattice, the least upper bound of {b ∈ L : b < a} is
either a or the unique largest element a∗ below a. In the latter case, we say that a
is completely join irreducible. Denote the set of completely join irreducible elements
of L by CJI(L). A join irreducible element in a free lattice need not be completely
join irreducible: some are, and some are not.

The terms meet irreducible and completely meet irreducible are defined dually,
along with the notation CMI(L).

3. The positive theory of free lattices

Let PTh(L) denote the positive first-order theory of L. Since Fn is a homo-
morphic image of Fn+1, we have PTh(Fn) ⊇ PTh(Fn+1). To distinguish them, we
seek a positive sentence π(x) that holds in Fn but not in Fn+1. The aim of this
section is to show that we can do this for n = 3. However, for n > 4 it remains
open whether there is a positive sentence that holds in Fn but not in Fn+1.

Consider the following positive first-order formulas in the language of lattice theory:

NI(x1, . . . , xm) : (OR16i6m xi 6
∑

j 6=i

xj) OR (OR16i6m xi >
∏

j 6=i

xj);

t(u) : ∀w w 6 u;

b(u) : ∀w w > u.

The last one is more complicated. For a finite set X and bounded intervals
I1, . . . , In, write CI(X, I1, . . . , In) to mean X ⊆

⋃
16j6n Ij . The inclusion can be

written as &x∈X OR1≤j≤n(x ∈ Ij). This is a positive first-order condition as we re-
quire each Ij to be bounded, so e.g. x ∈ I = [c, d] gets written out as c 6 x & x 6 d,
and so on.
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Moreover, for a set {x, y, z} we define the following intervals:

Ix = [x+ yz, x+ (x+ y)(x+ z)(y + z)]

Jx = [x(xy + xz + yz), x(y + z)]

K = [xy + xz + yz, (x+ y)(x+ z)(y + z)].

Theorem 3.1. The following sentence π3 holds in F3 but not in F4:

∃z1∃z2∃z3 t(z1 + z2 + z3) & b(z1z2z3) &

∀x1∀x2∀x3∀x4 [NI(x1, x2, x3, x4) OR

ORi6=j CI({x1, . . . , x4}, I
zi , Jzj ,K) OR

ORi≤3 CI({x1, . . . , x4}, [zi, zi],K)],

where Izi , Jzj ,K are with respect to the set {z1, z2, z3}.

Proof. First we show that the sentence holds in F3. Let F3 be generated by x, y, z
and take z1 = x, z2 = y, z3 = z. Let x1, . . . , x4 be elements of F3. In the presence
of (W), NI(x1, x2, x3, x4) says exactly that those elements do not generate a copy
of F4 by [8, Corollary 1.12]. On the other hand, Whitman showed that F3 contains
Fω [25], see [8, Theorems 1.28 and 9.10]. In particular, F3 contains many copies of
F4, and the sentence π3 restricts their location.

The free distributive lattice FD3 is a bounded lattice. Also, Alan Day’s dou-
bling construction preserves the property of being bounded [4, 5],[8, Sec. II.3]. By
doubling the elements in FD3 that are the join of two atoms, or the meet of two
coatoms, we obtain the lattice A in Figure 1. Thus the natural homomorphism
h : F3 → A is bounded. The algorithm for computing lower and upper bounds for
congruence classes of the kernel of a bounded homomorphism, which goes back to
Jónsson [11] and McKenzie [14], is given in Theorem 2.3 of [8]. Applying this to
the homomorphism h decomposes F3 into a disjoint union the congruence classes
of kerh. These turn out to be intervals of the following forms (up to permutations
of variables):

[u, u] (T u)

for u = (x+ y)(x+ z), x+ y, x+ z, x+ y + z

[x+ yz, x+M ] (Ix)

[x, x] (Gx)

[xm, x(y + z)] (Jx)

[v, v] (Bv)

for v = xy + xz, xy, xz, xyz

[m,M ] (K).

where m = xy + xz + yz and M = (x+ y)(x + z)(y + z). Except for the singleton
classes T u with u ∈ {x+y, x+z, y+z, x+y+z}, and Bv with v ∈ {xy, xz, yz, xyz},
this decomposition is sketched schematically in Figure 2.

The claim is that if x1, . . . , x4 generate a copy of F4, then x1, . . . , x4 is contained
in a union of intervals of the form Ix ∪ Jy ∪K or {x} ∪K, up to permutations of
variables. Certainly we cannot have xi ∈ T u, that is xi = u, or xi ∈ Bv for the
elements at the top or bottom of F3, as each such ↑u and ↓v contains only finitely
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x z y

Figure 1. Lattice A obtained by doubling six elements in FD3

K

Ix

Jx

Iy

Jy

xy + xz

m

xy + yz

M

(x+ y)(x+ z) (x+ y)(y + z)

x+ yz

x

x(y + z)

y

y(x+ z)

Figure 2. Schematic of interval decomposition of F3.
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many elements, whereas ↑ xi and ↓ xi are infinite. Moreover, {x1, . . . , x4} cannot
contain elements from both sets of any of the following pairs of intervals:

{x} & Ix {x} & Jx Ix & Jx

{y} & Ix {y} & Jx {y} & {x}

Iy & Ix Jy & Jx

The first line is because it would make some pair xi, xj comparable. For the second
line, note if t ∈ Ix or t = x, then y + t = x + y, and similarly for the third line,
if u ∈ Ix and v ∈ Iy, then u + v = x + y. But x + y is a coatom of F3, and you
cannot have xi + xj being a coatom, no matter where the remaining xk’s lie, since
the filter ↑(xi + xj) has at least 4 elements. Thus you cannot have the first entries
in the 2nd and 3rd lines inhabited, and dually for the second entries, and for the
same reason {xi, xj} 6= {y, x}. That leaves options contained in unions of the form
Ix ∪ Jy ∪K or {x} ∪K, as claimed.

Now to show that π3 fails in F4. The logical form of π3 is the following:

∃z∀x A & (B or C).

Its negation would be the following:

∀z∃x A→ (¬B & ¬C).

We will show, switching the quantifiers, that the following holds:

∃x∀z A→ (¬B & ¬C),

which is slightly stronger, since it means that x is chosen uniformly.

We take x1, . . . , x4 to be the standard generators of F4, for which NI(x1, . . . , x4)
fails, and intend to show that there do not exist z1, z2, z3 with z1 + z2 + z3 = 1 and
z1z2z3 = 0 satisfying - up to symmetry - one of the following two conditions:

CI({x1, . . . , x4}, I
z1 , Jz2 ,K) or CI({x1, . . . , x4}, [z1, z1],K).

Case 1. CI({x1, . . . , x4}, I
z1 , Jz2 ,K) holds.

Then the least element of Jz2 , which is z2(z1z2 + z1z3 + z2z3), is 0 = x1x2x3x4. A
fortiori z1z2 + z2z3 = 0, whence z1z2 = 0 = z2z3. By (SD∧), z2(z1 + z3) = 0. But
that is the top element of Jz2 , so there are no xi’s in that interval. Dually, there are
no xj ’s in I

z1 . Thus they are all inK = [z1z2+z1z3+z2z3, (z1+z2)(z1+z3)(z2+z3)].
But then z1z2 + z1z3 + z2z3 = 0. Again all 3 joinands are 0, and applying (SD∧)
twice (in its more general form, u = ab = cd implies u = (a+ c)(a+d)(b+ c)(b+d),
cf. [8, Theorem 1.21]) we get (z1+z2)(z1+z3)(z2+z3) = 0. However, (z1+z2)(z1+
z3)(z2 + z3) = 1 since it is the top of K and all the xj ’s are in K. Therefore, that
is a contradiction.
Case 2. CI({x1, . . . , x4}, [z1, z1],K) holds.
W.l.o.g. z1 = x1 and x2, x3, x4 ∈ K, else we revert to the previous case where
everything is in K. If, say, z2 6 z3, then the bottom of K is z1z2 + z1z3 + z2z3 =
z2+z1z3. Thus z2 and x1z3 are both below x2x3x4, and since each xj is meet prime
in F4, we get z3 6 x2x3x4. That contradicts z1+z2+z3 = 1 = x1+ · · ·+x4. Hence
the zj ’s are incomparable and distinct. On the other hand, from z1z2z3 = 0 we
get {x2, x3, x4} ≫ {z2, z3}, and dually from z1 + z2 + z3 = 1 we get {x2, x3, x4} ≪
{z2, z3}. (A ≫ B if ∀a∃b a > b; C ≪ D is dual; these are not symmetric.) Thus
each of x2, x3, x4 is above some zj and below some zk, with {j, k} ⊆ {2, 3}. Assume
say x2 > z2. By {x2, x3, x4} ≪ {z2, z3} either x2 6 z2 or x2 6 z3. The latter gives
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z3 6 x2 6 z2, contradicting the argument above. Thus x2 = z2. Similarly x3 = z3.
That makes x4 > z2 and x4 > z3 both impossible.

Hence, both cases lead to a contradiction, and we are done.

4. The profinite-bounded completion of Fn

Definition 4.1. Let L be a lattice, we say that a ∈ L is doubly prime if it is both
join prime and meet prime, that is for every b, c ∈ L, the following hold:

(1) a 6 b ∨ c implies a 6 b or a 6 c;
(2) b ∧ c 6 a implies b 6 a or c 6 a.

Fact 4.2. Let a be an element in a free lattice F(X). The following are equivalent:

(1) a ∈ X,
(2) a ∈ F(X) is doubly prime (cf. Definition 4.1).

Definition 4.3. We say that the a model A is prime if it embeds elementarily in
every model of its first-order theory. We say that A is minimal if it has no proper
elementary substructures.

Fact 4.4 ([17, Proposition 5.1]). Let A be a countable structure. Then A is a prime
model of its theory iff, for every 0 < n < ω, each orbit under the natural action of
Aut(A) on An is first-order definable without parameters in A.

Lemma 4.5. Let κ be a cardinal.

(1) If κ is finite, then Fκ is a prime and minimal model of its theory.
(2) If κ = ω, then Fκ is a prime model of its theory but it is not minimal.
(3) If κ > ω, then Fω embeds elementarily in Fκ.

Proof. We first prove that if κ 6 ℵ0, then Fκ = F(X) (so |X | = κ) is a prime model
of its theory. To this extent, by Fact 4.4 it suffices to show that for every n < ω
and for every n-tuple ā of elements of Fκ, the Aut(Fκ)-orbit of ā = (a1, ..., an) is
first-order definable in Fκ without paramenters (notice that under our assumptions
Fκ is countable). For every 1 6 i 6 n, let ti(x̄) be a term in the variables x̄ ⊆ X
(adding variables possibly not actually occurring in ti(x̄) we can assume that x̄

is the same for all the i’s) such that tFκ

i (x̄) = ai. Then b̄ = (b1, ..., bn) is in the
Aut(Fκ)-orbit of ā iff there is a tuple ȳ of the same length as x̄ of doubly prime

elements of Fκ such that for every 1 6 i 6 n we have tFκ

i (ȳ) = bi, and by Fact 4.2
this is first-order. This proves that Fκ is prime for κ 6 ℵ0. The claim about the
minimality and not minimality of Fκ = F(X) is clear, as if |X | = ℵ0 is infinite, then
the sublattice generated by an infinite proper subset of X is also a prime model of
its theory, while if X is finite this is not the case, as the existence of exactly n < ω
doubly prime elements is expressible in first order logic. Finally, concerning (3), it
suffices to show that for every finite subset {a1, ..., am} of Fω and every element
b ∈ Fκ there exists an automorphism of Fκ which fixes {a1, ..., am} and maps b into
Fω, and this is easy to see (this is a well-known general fact).

We now introduce the crucial notions of lower and upper bounded lattices. Our
treatment of the subject will be brief, for more see e.g. [8, Chapter II] or [16].

Definition 4.6. Let K and L be lattices. A homomorphism f : K → L is said to
be lower bounded if for every a ∈ L, the set {u ∈ K : f(u) > a} is either empty or
has a least element. A finitely generated lattice L is called lower bounded if every
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homomorphism f : K → L, where K is finitely generated, is lower bounded. Let
D0(L) denote the set of join prime elements of L, i.e., those elements which have no
nontrivial join-cover (cf. [8, pg. 29]). For k > 0, let a ∈ Dk(L) if every nontrivial
join-cover V of a has a refinement U ⊆ Dk−1(L) which is also a join-cover of a.
Then a finitely generated lattice L is lower bounded if and only if

⋃
k<ωDk(L) = L.

Observe that, from the definition, D0(L) ⊆ D1(L) ⊆ D2(L) ⊆ · · · . Thus, if L is
lower bounded and a ∈ L, we define ρ(a), the D-rank of a, to be the least integer k
such that a ∈ Dk(L). Every finitely generated lower bounded lattice has the minimal
join-cover refinement property [8, Cor. 2.19], which implies that every element is
a finite join of join irreducible elements. Thus we can define the D-rank of a
lower bounded lattice L to be sup{ρ(a) : a ∈ J(L)}. The notions of upper bounded
homomorphism, upper bounded lattice, etc. are defined dually. In the upper case we
write Dop-rank of a, to distinguish the two notions.

Fact 4.7 ([16]). Let k < ω. The class of lattices all of whose finitely generated
sublattices are lower and upper bounded of D-rank and Dop-rank 6 k (cf. Defini-
tion 4.6) forms a variety Vk. We denote by B(n,k) the free object of rank n in the
variety Vk and with hk the canonical homomorphism of Fn onto B(n,k). Also, for
k < ℓ < ω, the variety Vk is contained in the variety Vℓ, and so, for fixed n < ω,
we let f(k,ℓ) be the canonical homomorphism from B(n,ℓ) onto B(n,k). Further,
(B(n,k), f(k,ℓ) : ℓ 6 k < ω) is an inverse system.

Finally, we denote by Hn the inverse limit of the inverse system (B(n,k), f(k,ℓ) :
ℓ 6 k < ω). The lattice Fn embeds canonically into Hn. We refer to Hn as the
profinite-bounded completion of Fn.

Lemma 4.8. Let K be an elementary extension of Fn = F(X) with X = {x1, ..., xn}
and let L be a finite, upper and lower bounded lattice generated by {a1, ..., an}. Then
the homomorphism f : Fn → L such that xi 7→ ai extends canonically to a homo-

morphism f̂K = f̂ : K → L. Further, in the context of Fact 4.7, (K, ĥKk : k < ω)
is a cone of the inverse system (B(n,k), f(k,ℓ) : ℓ 6 k < ω), and thus there is a
homomorphism h : K → Hn which commutes with (B(n,k), f(k,ℓ) : ℓ 6 k < ω).

Proof. As L is bounded, necessarily f : Fn → L is bounded, i.e., the kernel of
f partitions Fn into bounded congruence classes, that is, every congruence class
f−1(a)/ker(f), for a ∈ L, has a least element β(a) and a greatest element α(a).
Thus, the equivalence classes of this partition are intervals of the form [β(a), α(a)]
for a ∈ L, and for u ∈ Fn we have that f(u) = a iff β(a) 6 u 6 α(a). Again, the
algorithm for computing lower and upper bounds β and α for congruence classes
of the kernel of a bounded homomorphism is given in Theorem 2.3 of [8].

As K is an elementary extension of Fn, this also determines a partition of K, let

ψK be the corresponding equivalence relation on K. Define then f̂K = f̂ : K → L

as f̂(u) = a iff u ∈ a/ψK. We claim that f̂ is a homomorphism. We show that

f̂ preserves joins, a dual argument works for meets. To this extent, remember
that β(c) ∨ β(d) = β(c ∨ d), and α(c) ∨ α(d) 6 α(c ∨ d). Thus if u, v ∈ K and
β(c) 6 u 6 α(c) and β(d) 6 v 6 α(d), then β(c ∨ d) 6 u ∨ v 6 α(c ∨ d). Finally,
the “further part” of the lemma is easy as Hn is the inverse limit of (B(n,k), f(k,ℓ) :
ℓ 6 k < ω).

Example 4.9. In Figure 3 we see how F3 (and thus any elementary extension K

of F3) gets partitioned into the pentagon N5 via the natural map of F3 onto N5.
Note that the pentagon is in the variety V1, since D1(N5) = N5.
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xyz

z(x+ y)

z

z + xy

x+ y + z

x ∨ y

w

y + z(x+ y)

xy

Figure 3. The bounded congruence classes of the natural map of
F3 onto the pentagon N5, where we let w = x(z + xy).

Notation 4.10. As in the proof of 4.8, letting K be an elementary extension of Fn

we denote by ψ = ψK the congruence induced by the homomorphism h : K → Hn.

Proposition 4.11. In the context of Lemma 4.8 and Notation 4.10:

(1) ψ =
⋂

k<ω ϕk, where ϕk is the kernel of the homomorphism ĥKk : K → B(n,k);
(2) ψ ↾Fn

= ∆ (the identity).

Proof. (1) is clear, (2) is because of [8, Theorem 4.1], which is Day’s theorem that
free lattices are weakly atomic [4]; see also [8, Section II.7].

Let us elaborate on Day’s theorem, which plays a crucial role in the arguments
below. For each w ∈ Fn there is a congruence ϕw which is maximal with respect
to the property that (v, w) /∈ ϕ for any v < w. It turns out that Fn/ϕw is a finite
lower bounded lattice of D-rank ρ(w). Moreover, a join irreducible element w is
completely join irreducible if and only if ϕw is both lower and upper bounded. In
that case, Fn/ϕw is in Vn where n is the complexity of w, that is, w ∈ X∧(∨∧)n .

Day’s theorem says that the completely join irreducible elements of Fn are join-
dense, i.e., if u 
 v in Fn then there exists a completely join irreducible element
w with w 6 u and w 
 v. Thus every element in a free lattice is the join of the
completely join irreducible elements below it.

Fact 4.12. As in the proof of 4.8, letting hk : Fn → B(n,k) be the canonical
homomorphism and letting αk(u) and βk(u) be, respectively, the greatest and least
element of the equivalence class u/ker(hk), then to every element u ∈ Fn we can
associate sequences (βk(u) : k < ω), (αk(u) : k < ω) ∈ (Fn)

ω such that:

(⋆) β0(u) 6 β1(u) 6 · · · 6 u 6 · · · 6 α1(u) 6 α0(u).

In fact, to every element c = (ck : k < ω) ∈ Hn, letting αk(c) be the greatest
element of h−1

k (ck) ⊆ Fn and βk(c) be the least element of h−1
k (ck) ⊆ Fn we have:

(⋆⋆) β0(c) 6 β1(c) 6 · · · 6 · · · 6 α1(c) 6 α0(c).
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For a ∈ Fn, this double sequence corresponds to the sequence (⋆) identifying Fn

with its canonical embedding into Hn (cf. what has been said at the end of 4.7). As
a piece of notation, given c ∈ H we also write c = (b, a), where we let:

b = (βj(c) = bj : j < ω) and a = (αj(c) = aj : j < ω).

With respect to this identification, the lattice order of Hn can be characterized as:

c 6 c′ ⇔ b 6 b′ ⇔ bj 6 b′j for all j < ω

c 6 c′ ⇔ a 6 a′ ⇔ aj 6 a′j for all j < ω.

An element w in a lattice L is lower atomic if for all u < w there exists v such
that u 6 v ≺ w. The dual condition is called upper atomic, and w is totally atomic
if it is both lower and upper atomic.

For an element w of a finitely generated free lattice Fn, there is a one-to-one
correspondence between the lower covers of w and its completely join irreducible
canonical joinands. If every canonical joinand is completely join irreducible, then
w is lower atomic. The dual statements hold for upper atomic and completely meet
irreducible canonical meetands. See Theorem 3.5 and Corollary 3.8 of [8], expanded
in Theorem 3.26 and Corollary 3.27.

Fact 4.13. In the context of 4.12, there are four types of elements in Fn:

(1) the ones such that the β’s and the α’s are eventually constant;
(2) the ones such that the β’s are eventually constant but the α’s are not;
(3) the ones such that the α’s are eventually constant but the β’s are not;
(4) the ones such that neither the β’s nor the α’s are eventually constant.

Furthermore, the four types above admit the following algebraic description:

(1′) c ∈ Fn is as in (1) iff c is totally atomic;
(2′) c ∈ Fn is as in (2) iff c is lower atomic but not upper atomic;
(3′) c ∈ Fn is as in (3) iff c is upper atomic but not lower atomic;
(4′) c ∈ Fn is as in (4) iff c is neither upper nor lower atomic.

Notice that by [8, Chapter 6] the number of elements of type (1′) is finite.

Concerning the Dedekind-MacNeille completion (below) see e.g. [3, pp. 165-169].

Notation 4.14. Let P be a poset. We denote by DM(P) the Dedekind-MacNeille
completion of P, i.e., the set of subsets of P such that C = Cuℓ, where for D ⊆ P :

Du = {p ∈ P : ∀d ∈ D, d 6 p} and Dℓ = {p ∈ P : ∀d ∈ D, p 6 d}.

DM(P) is ordered by inclusion. Recall that CJI(P) (resp. CMI(P)) denotes the set
of completely join irreducible (resp. completely meet irreducible) elements of P.
For k < ω, we let CJIk(P) denote the set of completely join irreducible elements of
P of D-rank 6 k. We shorten completely join irreducible with CJI and, when clear
from the context, we write CJIk and CJI instead of CJIk(P) and CJI(P).

Theorem 4.15. For Fn with n finite, Hn
∼= DM(Fn).
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Proof. For a sequence c = (b, a) in Hn, let us set notation:

A = {aj : j ∈ ω}

B = {bj : j ∈ ω}

Aℓ =
⋂

↓aj

↓B =
⋃

↓bj

Lemma 4.16. ↓B ∩ CJI = Aℓ ∩ CJI.

Proof. First we show ↓B ∩ CJI ⊆ Aℓ. Consider bj and arbitrary k, w.l.o.g. k > j
as the aj ’s are descending. Then bj 6 bk 6 ak. Next A

ℓ ∩ CJI ⊆ ↓B. Let w ∈ LHS
of rank j. Then w 6 aj implies w = hj(w) 6 hj(aj), whence w = βhj(w) 6

βhj(aj) = bj .

Lemma 4.17. Let I and J be DM-closed ideals of Fn. If I ∩ CJI = J ∩ CJI,
then I = J .

Proof. DM-closed ideals, which are of the form Dℓ, are closed under joins that exist
in Fn. On the other hand, by Day’s theorem, every element of Fn is a (possibly
infinite) join of CJI elements.

Now we set about establishing the isomorphism of Theorem 4.15. Define a map
ϕ : Hn → DM(Hn) by ϕ(c) = Aℓ for each c = (b, a) in Hn. Recall that c 6 c′ ⇔
b 6 b′ by Fact 4.12. Then:

(1) B ⊆ Aℓ and Aℓ ∈ DM(Fn).
(2) ϕ is order-preserving: b 6 b′ means bj 6 b′j for all j. It follows that aj 6 a′j

for all j, so Aℓ ⊆ (A′)ℓ.
(3) ϕ is 1-to-1: b 
 b′ implies there exists j with bj 
 b′j . Then by Day’s theorem

[4] there is a CJI u such that u 6 bj and u 
 b′j , whence hj(b
′
j) � u. Thus

a′j � u, as in general hj(u) 6 v iff u 6 α(v), whence a′j � bj .

(4) ϕ is onto: let I = Iuℓ be a DM-closed ideal. Define a sequence bj =
∨
(I∩CJIj),

which makes sense because CJIj is finite. Because every element of Fn is a join
of CJI elements and B = {bj : j ∈ ω} ⊆ I, we have I ∩ CJI = ↓ B ∩ CJI.
By Lemma 4.16 this yields I ∩ CJI = Aℓ ∩ CJI, whence by Lemma 4.17,
I = Aℓ = ϕ(c) is in the range of ϕ.

Lemma 4.18. Let L0 be a lattice admitting a fixed-point free polynomial p(x,b),
with b a finite sequence in L0 and let L1 be a complete lattice containing L0. Then
there is a positive ∀∃-sentence true in L1 and false in L0.

Proof. For j = 0, 1, let pj : Lj → Lj be such that a 7→ p(a,b) (i.e., the corre-
sponding polynomial function). Then, recalling that L1 is a complete lattice, and
recalling also the choice of p(x,b), the following two things happen:

L1 |= ∀b∃x(p(x,b) = x) and L0 6|= ∀b∃x(p(x,b) = x).

Indeed, let A1 = {a ∈ L1 : a 6 p(a,b)} and a1 =
∨
A1. It is straightforward that:

p(a1,b) = a1.

This last equality is the Tarski fixed-point theorem; see [13, 23] and the discussion
in Section I.5 of [8].
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Theorem 4.19. Let 3 6 n < ω. Then Hn is not elementarily equivalent to Fn, in
fact there is a positive ∀∃-sentence true in Hn and false in Fn.

Proof. This follows immediately from Lemmas 4.15 and 4.18 and the existence of
fixed-point free polynomials in Fn, see e.g. [8, Section I.5.].

5. Proof of Theorem 1.4

The ideals of a lattice L, ordered by set inclusion, form a complete lattice Id(L).
Likewise the filters, ordered by set inclusion, form a complete lattice Fil(L). (If
L has a least element 0, we normally take {0} to be the least ideal; if not then
the empty set is contained in Id(L). Dually for Fil(L). The filter lattice is often
ordered by reverse set inclusion; for current purposes, set inclusion is more natural.
That makes the join of two filters F ∨ G to be the filter generated by F ∪ G,
directly analogous to the join of two ideals in Id(L). Recall that DM(Fn) ∼= Hn by
Theorem 4.15, so in what follows we identify the two objects.

Theorem 5.1. Let κ : Id(Fn) → DM(Fn) via κ(I) = Iuℓ. Then the map κ
witnesses that Hn is a retract of the ideal lattice Id(Fn).

Our path to Theorem 5.1 includes a more general result, i.e., our Theorem 1.4.
To this extent, let us start by recalling some basic facts.

Lemma 5.2. Let L be a lattice. Then:

(1) For any D ⊆ L, Du ∈ Fil(L).
(2) An ideal I of L is DM-closed, i.e., κ(I) = I, if and only if I = F ℓ for some

filter F of L, where κ : Id(L) → DM(L) is defined as κ(I) = Iuℓ.

Lemma 5.3. Let K be a lattice satisfying the following assumptions:

(1) K satisfies (W);
(2) K is generated by a set X of join prime elements.

Let F , G be filters of K. Then:

(i) F ℓ ∨Gℓ = (F ∩G)ℓ;
(ii) F ℓ ∩Gℓ = (F ∨G)ℓ.

Hence DM(K) is a sublattice of Id(K).

Proof. Part (ii) is general nonsense. The other direction being trivial, we need that
F ℓ ∩ Gℓ ⊆ (F ∨ G)ℓ. If w ∈ F ℓ ∩ Gℓ, then w 6 f for all f ∈ F , and w 6 g for all
g ∈ G. Therefore w 6 f ∧ g for any f ∈ F , g ∈ G, and these are the generators for
the filter generated by F ∪G.

For part (i) we need to show the nontrivial direction F ℓ∨Gℓ ⊇ (F ∩G)ℓ. Following
a standard method of proof and using the contrapositive inclusion, let:

S = {w ∈ K : for all F,G ∈ Fil(K) : w /∈ F ℓ ∨Gℓ implies w /∈ (F ∩G)ℓ}.

We will prove that S is a sublattice of K containing the generating set X , which
means S = K and the statement is true.

If w ∈ X and w /∈ F ℓ∨Gℓ, then in particular w /∈ F ℓ∪Gℓ. Then there exist f1 ∈ F
and g1 ∈ G such that w 
 f1 and w 
 g1. As w is join prime, w 
 f1 ∨ g1 which is

in F ∩G. Hence w /∈ (F ∩G)ℓ. Therefore X ⊆ S.

If w = w1 ∨ w2 with w1, w2 ∈ S and w /∈ F ℓ ∨ Gℓ, then one join, say w1, is such
that w1 /∈ F ℓ ∨Gℓ. Since w1 ∈ S we have w1 /∈ (F ∩G)ℓ, which is an ideal. Hence
w1 ∨ w2 /∈ (F ∩G)ℓ, and so S is closed under joins.
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Now assume w = w1 ∧ w2 with w1, w2 ∈ S and w /∈ F ℓ ∨ Gℓ. Then w1 /∈ F ℓ ∨Gℓ

so as w1 ∈ S we get w1 /∈ (F ∩G)ℓ, whence there exists h1 ∈ F ∩G with w1 
 h1.

Likewise there exists h2 ∈ F ∩ G such that w2 
 h2. Also w /∈ F ℓ whence w 
 f1
for some f1 ∈ F . Similarly w 
 g1 for some g1 ∈ G.

Now we claim that by (W), we have

w1 ∧w2 = w 
 (f1 ∧ h1 ∧ h2) ∨ (g1 ∧ h1 ∧ h2) ∈ F ∩G.

Note that f1 ∧ h1 ∧ h2 ∈ F and g1 ∧ h1 ∧ h2 ∈ G, so their join is in F ∩ G. Thus
w /∈ (F ∩G)ℓ, as desired, and so S is closed under meets.

In view of Lemma 5.2, (i) and (ii) show that the join and meet of two DM-closed
ideals is another DM-closed ideal. Thus DM(K) is a sublattice of Id(K).

A classic result of K. Baker and A. Hales [2] deals with the connection between
a lattice and its ideal lattice:

Lemma 5.4. Let L be a lattice. Then

(1) Id(L) ∈ HSU(L);
(2) Id(L) and L share the same universal positive theory;
(3) if L satisfies (W), then Id(L) satisfies (W).

Lemma 5.3 and 5.4 already give the first part of our Theorem 1.4. Thus, to
establish the rest of Theorem 1.4, we are only left to show Theorem 5.1, i.e., that
κ : Id(Fn) → DM(Fn) is a homomorphism, which obviously fixes DM-closed sets.
For this we need Lemma 5.3 and the corresponding statements for Iu and Ju where
I and J are ideals, with u and ℓ interchanged. Both versions apply to free lattices
because the elements in the generating set are both join and meet prime. To this
extent, we calculate:

κ(I ∨ J) = (I ∨ J)uℓ by definition

= (Iu ∩ Ju)ℓ by (ii) dual

= Iuℓ ∨ Juℓ by (i)

= κ(I) ∨ κ(J) by definition,

κ(I ∧ J) = (I ∩ J)uℓ by definition

= (Iu ∨ Ju)ℓ by (i) dual

= Iuℓ ∩ Juℓ by (ii)

= κ(I) ∧ κ(J) by definition.

We denote by SD∨ semidistributivity with respect to ∨ and similarly for ∧.

Corollary 5.5. The ideal lattice Id(Fn) and the profinite-bounded completion DM(Fn) ∼=
Hn have the following properties:

(1) Id(Fn) satisfies (W) and SD∨, but fails SD∧ for n > 3;
(2) Hn satisfies (W) and both semidistributive laws.

Proof. Whitman’s condition for Id(Fn) follows from Lemma 5.4. Join semidistribu-
tivity of Id(Fn) is proved by F. Wehrung in Corollary 5.4 of [24]; see the comment
immediately after the corollary. By Theorem 5.1 these properties of Id(Fn) are
inherited by its retract Hn. Moreover, the construction of Hn is self-dual, so it also
satisfies SD∧.
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It remains to show that Id(Fn) fails meet semidistributivity. In F3, let

y0 = y z0 = z

yk+1 = y + xzk zk+1 = z + xyk

In Id(F3), let X =↓x, Y =
⋃

k>0 ↓yk, and Z =
⋃

k>0 ↓zk. Then X ∧Y = X ∧Z <

X ∧ (Y ∨ Z), since x(y + z) is in the latter but not the first two.
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