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ON EQUICONTINUITY AND RELATED NOTIONS IN
NONAUTONOMOUS DYNAMICAL SYSTEMS

SUSHMITA YADAV AND PUNEET SHARMA

Abstract

In this work, we investigate the dynamics of a general non-autonomous
system generated by a commutative family of homeomorphisms. In
particular, we investigate properties such as periodicity, equicon-
tinuity, minimality and transitivity for a general non-autonomous
dynamical system. In [10], the authors derive necessary and suffi-
cient conditions for a system to be minimal. We claim the result to
be false and provide an example in support of our claim. Further,
we correct the result to derive necessary and sufficient conditions
for a non-autonomous system to be minimal. We prove that for an
equicontinuous flow generated by a commutative family, while the
system need not exhibit almost periodic points, if x is almost periodic

then every point inOH(x) is almost periodic. We further prove that in

such a case, the setOH(x) is uniformly almost periodic and hence pro-
vide an analogous extension to a result known for the autonomous
systems. We prove that a system generated by a commutative family
is transitive if and only if it exhibits a point with dense orbit. We also
prove that any minimal system generated by commutative family is
either equicontinuous or has a dense set of sensitive points.

Introduction

Dynamical systems have been long used to investigate various nat-
ural and physical processes around us. While mathematical inves-
tigations have enriched the literature with qualitative results deter-
mining long term behavior of such systems, the field has also found
a variety of applications in areas such as complex systems, control
theory, biomechanics and cognitive sciences [3, 8, 11]. Although the
theory has been used extensively in various fields, most of problems
have been approximated using autonomous systems (systems with
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time invariant governing rule). However, as governing rule varies
with time in many natual processes around us, better approximations
can be obtained by allowing the governing rule to be time variant.
While some investigations for such a setting in the discrete case have
been made, many questions for such a setting are still unanswered.
In [9], the authors investigate the topological entropy when the fam-
ilyF is equicontinuous or uniformly convergent. In [10], ther authors
discusses minimality conditions for a non-autonomous system on a
compact Hausdorff space while focussing on the case when the non-
autonomous system is defined on a compact interval of the real line.
In [12], the authors investigate a non-autonomous system generated
by a finite family of continuous self maps. In the process, they study
properties such as transitivity, weak mixing, topological mixing, ex-
istence of periodic points, various forms of sensitivities and Li-Yorke
chaos. In [7], the authors establish that if fn → f , there is no relation
between chaotic behavior of the non-autonomous system generated
by fn and the chaotic behavior of f . Before we move further, we give
some of the basic concepts and definitions required.

Let (X, d) be a compact metric space and let F = { fn : n ∈ N} be a
family of homeomorphisms on X. For any given initial state of the
system x0, any such family generates a non-autonomous dynamical

system via the relation xn =

{

fn(xn−1) : n ≥ 1,
f−1
n (xn+1) : n < 0.

In other words,

the non-autonomous system generated by the family F can be visu-
alized as orbit of x0 under the ordered set {. . . , f−1

2 , f−1
1
, I, f1, f2, . . . , }.

For a given initial state x0 of the system, let ωn(x0) denote the state
of the system at time n. The set O(x) = {ωn(x) : n ∈ Z} is called
the orbit of any point x in X. Further, we refer to the set OH(x) =
{(ωkn◦ωkn−1

◦. . .◦ωk1
)(x) : ki ∈ Z, n ∈N} as the orbital hull of the point x.

Let Ok
H(x) = {ωrnωrn−1

...ωr2
ωr1

(x) : n ∈ N, ri ∈ {−k,−k + 1, . . . , 1, 2, ..., k}}
denote the truncation (of order k) of the orbitall hull of the point x.
It may be noted that orbital hull of a point x is the smallest invariant
set containing x.

A point x ∈ X is said to be periodic of period n ∈ N if ωnk(x) = x
∀k ∈ Z. A point x ∈ X is called almost periodic if for any ǫ > 0, the
set {n ∈ Z : d(ωn(x), x) < ǫ} is syndetic. If every point x ∈ X is al-
most periodic then (X,F) is said to be pointwise almost periodic. (X,F)
is said to be uniformly almost periodic if for every ǫ > 0 there exists
M > 0 such that the set {n ∈ Z : d(ωn(x), x) < ǫ} is M-syndetic for
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all x ∈ X. A set Y ⊆ X is said to be invariant if ωk(Y) ⊆ Y, for
all k ∈ Z. We say (Y,F) to be a minimal subsystem of (X,F) if it is a
non-empty, closed, invariant subsystem of (X,F) with no proper non-
empty subset having these properties. A system (X,F) is said to be
equicontinuous if for each ǫ > 0, there exists δ > 0 such that d(x, y) < δ
implies d(ωn(x), ωn(y)) < ǫ for all n ∈ Z, x, y ∈ X. A pair (x, y) is
proximal for (X,F) if lim inf

n
d(ωn(x), ωn(y)) = 0. Let P(X) denote the

set of proximal pairs of system (X,F), then (X,F) is said to be distal
if P(X) = ∆, where ∆ denotes the diagonal in the space X × X. A
system (X,F) is said to be point transitive if there exists a point x ∈ X

such that O(x) = X. In this case, the point x is referred as a transi-
tive point. The system is said to be topologically transitive if for every
pair of non-empty open sets U,V in X, there exists k ∈ Z such that
ωk(U) ∩ V , ∅. The system (X,F) is called r-transitive if the system
generated by the family Fr = { f(k+1)r ◦ f(k+1)r−1 ◦ . . . ◦ fkr+1 : k ∈ N} is
transitive. A system (X,F) is totally transitive if it is r-transitive for all
r ∈N. A system (X,F) is said to be sensitive at a point x if there exists
δx > 0 such that for each neighborhood Ux of x there exists k ∈ Z
such that diam(ωk(Ux)) > δx. A system (X,F) is said to be sensitive if
there exists δ > 0 such that for each x ∈ X and each neighborhood
U of x there exists k ∈ Z such that diam(ωk(U)) > δ. It may be noted
that in case the fn’s coincide, the above definitions coincide with the
known notions of an autonomous dynamical system [4, 5, 6]. Some
basic concepts and recent works in this area can be found in literature
[1, 2, 7, 9, 10, 12].

In this paper, we investigate properties such as periodicity, equicon-
tinuity, minimality and transitivity for a non-autonomous system
generated by a commutative family of homeomorphisms. We prove
that every point in the orbital hull of periodic point is periodic. We
give example to show that a pair of periodic points may form a Li-
Yorke pair and hence need not exhibit simple dynamical behavior. In
[10], the authors claim that system is minimal if and only if orbit of
each point is dense in X (page 84, line−7). Also, the authors claim that
a non-autonomous system is minimal if and only if for non-empty
every open set U in X, there exists k ∈N such that trajectory of every
point meets U in at most k iterations (Lemma 2.2). We establish both
the claims to be false. While we provide an example of a minimal
system void of any points with dense orbit, we correct the result
to derive necessary and sufficient conditions for a non-autonomous
system to be minimal. We prove that a non-autonomous system is
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minimal if and only if for non-empty every open set U in X, there
exists k ∈N such thatOk

H
(x) meets U for every point x ∈ X. We prove

that for equicontinuous systems, if x is almost periodic then every

point inOH(x) is almost periodic. In such a setting, we establishOH(x)
to be uniformly almost periodic. We prove that a system is transitive
if and only if it exhibits points with dense orbit. We prove that while
minimal systems need not be transitive, an equicontinuous transitive
system is necessarily minimal. We also prove that a minimal system
is either equicontinuous or has a dense set of points of sensitivity.

Main Results

Proposition 1. For any system (X,F) generated by a commutative family

of homeomorphisms, x is periodic for (X,F) =⇒ each point of OH(x) is
periodic (with same period).

Proof. Let (X,F) be generated by a commutative family of homeo-
morphisms and let x be periodic for (X,F) (with period r). Then,
ωnr(x) = x for all n ∈ Z. For any point ωrn ◦ωrn−1

◦ . . . ωr1
(x) in orbital

hull of x, as ωnr(ωrn ◦ ωrn−1
◦ . . . ωr1

(x)) = ωrn ◦ ωrn−1
◦ . . . ωr1

(ωnr(x)) =
ωrn ◦ ωrn−1

◦ . . . ωr1
(x) (as F is commutative), every point in OH(x) is

periodic (with same period). Finally, as the limit of periodic points of

period k is a periodic point of period k, each point ofOH(x) is periodic
point of period k and the proof is complete. �

Remark 1. The above result establishes the periodicity of the elements of
the closure of the orbital hull of a point x, when the point x is itself periodic.
It may be noted that as the governing rule is time variant, the periodicity of
x need not guarantee the periodicity of the members of the orbital hull (or
even orbit itself). Also, if the governing rule is time variant, a periodic point
may have infinite orbit and hence need not attribute to simpler dynamical
behavior. In fact, if the governing rule is time variant, a pair of periodic
points may behave in an unexpected manner and form a Li-Yorke pair. We
now give examples in support of our claim.

Example 1. Let X = [0, 1] be the unit interval and let fn : X→ X be defined

as f2n−1(x) =

{

x
2

: 0 ≤ x ≤ 1
2
,

3
2
x − 1

2
: 1

2
≤ x ≤ 1

}

. where k ∈N and f2n(x) = 1−
√

x

for all n ∈N.
Then, 1

2
∈ X is a periodic point of period 2, but f1(1

2
) = 1

4
is not periodic

for (X,F). Thus, periodicity need not be preserved in the elements of the
orbital hull when the generating maps do not commute.
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Example 2. Let X = [0, 1] and define fn : X→ X such that f2n−1(x) = x2n

and f2n(x) = x
1

2n for n ∈ N. Then, every point is periodic (with period 2).
Also as xn converges to 0 for all x in (0, 1), the pair (x, y) forms a Li-Yorke
pair for all x, y ∈ (0, 1). Consequently, periodic points may form a Li-Yorke
pair and hence need not attribute to simpler dynamical behavior.

Proposition 2. For any system (X,F), (X,F) is minimal if and only if

OH(x) = X for all x ∈ X.

Proof. As orbital hull of x is smallest invariant subset of X containing

x, (X,F) is minimal if and only if OH(x) = X for all x ∈ X. �

Remark 2. The above result provides necessary and sufficient criteria for
a non-autonomous system to be minimal. It may be noted that X is itself
invariant for the system generated by the family F, a simple application of
Zorn’s lemma establishes the existence of minimal sets for non-autonomous
systems. In [10], the authors claim that system is minimal if and only if
orbit of each point is dense in X (page 84, line −7). Further, the authors
claim that a non-autonomous system is minimal if and only if for non-empty
every open set U in X, there exists k ∈N such that trajectory of every point
meets U in at most k iterations (Lemma 2.2). However, we claim that both
of the observations fail to hold. It may be noted that as minimality in non-
autonomous systems is equivalent to orbital hull of each point being dense
in X, minimality of a system does not guarantee orbit of each point to be
dense in X (Example 3). Also, as orbit of a point is a non-invariant set, the
second assertion also fails to hold good (Example 3). In fact, as orbital hull
of x is the smallest invariant set containing x, a non-autonomous system
is minimal if and only if for non-empty every open set U in X, there exists
k ∈N such thatOk

H
(x) meets U for every point x ∈ X (Proposition 3). Also,

while minimality of a system ensures each of its points to be almost periodic
in the autonomous case, non-invariance of the governing rule forces such
an implication not to hold true for non-autonomous systems. The proof
follows from the fact that if the governing rule varies with time, any initial
point x0 may fail to return to its neighborhood even in the absence of proper
invariant sets. In fact contrary to the autonomous case, a minimal set in
a non-autonomous system may contain periodic points in the non-trivial
sense (periodic points whose orbit is proper in the minimal set). We now
give examples in support of our claim.

Example 3. Let X = S1 be the unit circle and let f1(θ) = θ+ 1
2
, f2(θ) = θ−

1
22 . For n ≥ 3, define fn(θ) =

{

θ + 1
2k : n = 2k + 1,

θ − 1
2k − 1

2k+1 : n = 2k.
where k ∈N
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As closure of the orbital hull of each x is X, the non-autonomous system
generated by the family ( fn) is minimal. However as each point settles at
the diametrically opposite end (of the initial point x0), none of the points
in the system are almost periodic. Consequently, almost periodic points are
not guaranteed to exist in the non-autonomous setting.

Example 4. Define fn : S1 → S1 as follows:

fn(θ) =

{

θ + 1
2k : n = 4k or 4k − 3,

θ − 1
2k : n = 4k − 1 or 4k − 2.

where k ∈N

It is clear that every element in S1 is periodic with period 2. However as
orbital hull of every point in dense in S1, the system (X,F) is minimal and
contains periodic points in the non-trivial sense.

Proposition 3. Any system (X,F) is minimal if and only if for every non-
empty open set U in X there exists k ∈ N such that set Ok

H
(x) ∩U , ∅ for

all x ∈ X.

Proof. Let (X,F) be minimal and let U be a non-empty open set in X.
Firstly, note that if the claim does not hold then for each k ∈ N there
exists xk such that Ok

H(xk)∩U = ∅. Let x be a limit point of (xk) and let
(r1, r2, . . . , rm) be any tuple (of any fixed length m). Let p = max{ri : i =
1, 2, . . . ,m}. AsOk

H
(xk)∩U = ∅, we have (ωrm ◦ωrm−1

◦ . . . ◦ωr1
)(xn) < U

for all n ≥ p and hence ωrm ◦ ωrm−1
◦ . . . ◦ ωr1

(x) < U. As the argument
holds for any tuple (r1, r2, . . . , rm), we have OH(x) ∩ U = ∅ (which
contradicts minimality of X). Consequently, there exists k ∈ N such
that set Ok

H
(x) ∩ U , ∅ for all x ∈ X and the proof of forward part is

complete.

Conversely, if there exists k ∈ N such that set Ok
H

(x) ∩ U , ∅ for
all x ∈ X, then orbital hull of any point x intersects every non-empty
open set U and hence X is minimal. �

Proposition 4. For any system (X,F) generated by a commutative family
of homeomorphisms, (X,F) is equicontinuous =⇒ (X,F) is distal.

Proof. Let (X,F) be equicontinuous and x and y be proximal. Then
thee exists sequence (nk) of integers such that lim

k→∞
d(ωnk

(x), ωnk
(y)) =

0. For any ǫ > 0, there exists δ > 0 such that d(a, b) < δ =⇒
d(ωn(a), ωn(b)) < ǫ ∀n ∈ Z. As d(ωnr(x), ωnr(y)) < δ (for some nr), we
have d(x, y) < ǫ. As the argument holds for any ǫ > 0, we have x = y
and hence the system (X,F) is distal. �
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Proposition 5. For any non-autonomous system (X,F) generated by a
commutative family of homeomorphisms, if x is almost periodic then every
point in O(x) is almost periodic.

Proof. Let (X,F) be generated by a commutative family of home-
omorphisms and let x be an almost periodic point. Let k ∈ Z
and let U be a neighborhood of ωk(x). Then as x is almost peri-
odic, the set {r ∈ Z : ωr(x) ∈ ω−1

k
(U)} is syndetic and hence the

set {r ∈ Z : (ωk ◦ ωr)(x) ∈ U} is syndetic. Consequently, the set
{r ∈ Z : ωr(ωk)(x) ∈ U} is syndetic and thus ωk(x) is almost periodic.
As the argument holds for any k, every point in the orbit of x is almost
periodic. �

Remark 3. The above remark establishes the almost periodicity of elements
in the orbit when the initial point x is almost periodic. The proof uses the fact
that if the initial point x is almost periodic then the syndetic bound of some
neighborhood of x carries forward to the neighborhood of the given point
in the orbit. As the arguments establish the almost periodicity of elements
in the orbit of ωk(x), a similar argument ensures almost periodicity of
elements in the orbit of ωk(x). Thus, almost periodicity of x ensures almost
periodicity of elements of OH(x). Further for any equicontinuous system,
a similar argument establishes almost periodicity of any limit of almost
periodic points and hence we get the following result.

Proposition 6. For any non-autonomous system (X,F) generated by a
commutative family of homeomorphisms, if x is almost periodic then every
point in OH(x) is almost periodic. Further, if (X,F) is equicontinuous then

every point in OH(x) is almost periodic.

Proof. Let (X,F) be a non-autonomous system and let x ∈ X. As al-
most periodicity of x guaranteesωk(x) to be almost periodic for all k ∈
Z (Proposition 3), every point inOH(x) is almost periodic. Further, let

(X,F) be equicontinuous, y ∈ OH(x)\OH(x) be fixed and ǫ > 0 be given.
As (X,F) is equicontinuous, there exists δ < ǫ

3
such that d(x, y) < δ =⇒

d(ωk(x), ωk(y)) < ǫ
3

for all k ∈ Z. Also as y ∈ OH(x) \OH(x), there exists
p(x) = ωktωkt−1

...ωk2
ωk1

(x) ∈ OH(x) such that d(p(x), y) < δ. As p(x) is
almost periodic, the set {kr : d(ωkr (p(x)), p(x)) < ǫ

3
} is syndetic. Further,

as d(ωkr (y), y) ≤ d(ωkr (y), ωkr(p(x))) + d(ωkr(p(x)), p(x)) + d(p(x), y) < ǫ
the set {m : d(ωm(y), y) < ǫ} is syndetic. Consequently every point in

OH(x) is almost periodic and the proof is complete. �

Proposition 7. For any equicontinuous system (X,F) generated by a com-
mutative family of homeomorphisms, if x ∈ X is an almost periodic point

then OH(x) is uniformly almost periodic.
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Proof. Let ǫ > 0 and u ∈ OH(x) be any arbitrary element. As (X,F)
is equicontinuous, there exists a δ > 0 such that d(x, y) < δ =⇒
d(ωk(x), ωk(y)) < ǫ

4
, ∀x, y ∈ X, k ∈ Z. Let η = min{ ǫ

4
, δ} and let F =

{x1, x2, ...xn} be a η-dense set in OH(x). As F is η-dense, there exists
xr ∈ F such that d(u, xr) < η and hence d(ωk(xr), ωk(u)) < ǫ

4
for all k ∈ Z.

Consequently, if orbit of xr returns to its ǫ
4
-neighborhood syndetically

(at times (nr)), d(u, ωnr(u)) ≤ d(u, xi)+d(xi, ωnr(xi))+d(ωnr (xi), ωnr(u)) < ǫ
and hence orbit of u returns to its ǫ-neighborhood syndetically (at
same set of times (nr)). As (X,F) is equicontinuous, there exists a
common syndetic set for {x1, x2, . . . , xr} and hence every point returns
to its ǫ-neighborhood sydetically with the same syndetic set. Thus,

OH(x) is uniformly almost periodic and the proof is complete. �

Proposition 8. For any non-autonomous system (X,F) generated by a
commutative family of homeomorphisms, if (X,F) is equicontinuous then

OH(x) = OH(y) for all y ∈ O(x).

Proof. Let (X,F) be an equicontinuous system generated by a com-

mutative family of homeomorphisms and let x ∈ X. Let y ∈ O(x) and
ǫ > 0 be given. As (X,F) is equicontinuous, there existsδ > 0 such that

d(a, b) < δ ensures d(ωn(x), ωn(y)) < ǫ ∀n ∈ Z. Also y ∈ O(x) forces
some nk ∈ Z such that d(ωnk

(x), y) < δ and hence d(x, ω−nk
(y)) < ǫ.

As the argument holds for any ǫ > 0, we have O(x) = O(y). Further,

as x ∈ O(y) ⊂ OH(y) implies OH(x) ⊂ OH(y) (as orbital hull of x is
the smallest invariant set containing x), x and y have identical orbital
hulls and hence elements in the orbit closures generate orbital hulls
identical to the original point and the proof is complete. �

Remark 1. The above result establishes that if the system (X,F) is

equicontinuous, OH(y) = OH(x) for any point y in O(x). As the ar-

guments can repeated for elements of the orbit, OH(y) = OH(x) for
any point y in OH(x). It may be noted that if {(ωkn ◦ ωkn−1

◦ . . . ◦ ωk1
) :

ki ∈ Z, n ∈ N} is an equicontinuous family, then similar arguments

establish OH(y) = OH(x) for any point y in OH(x). Consequently, all

elements in OH(x) generate the same set (equal to OH(x)) and hence
the system is minimal. However, if the family under discussion fails
to be equicontinuous, the non-autonomous system may fail to be
minimal (even when the generating family is commutative). Thus
we get the following results.
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Corollary 1. For any non-autonomous system (X,F) generated by a com-
mutative family of homeomorphisms, if {(ωkn ◦ωkn−1

◦ . . .◦ωk1
) : ki ∈ Z, n ∈

N} is equicontinuous then every point in X generates a minimal subsystem
of (X,F).

Proof. The proof follows from discussions in Remark 1. �

Example 5. Let X = [0, 1] and define fn : X → X such that f2n−1(x) = x2

and f2n(x) =
√

x for n ∈ N. Then as every point is periodic (with finite
orbit), the system (X,F) is equicontinuous. However, as 0 is a fixed point

such that 0 ∈ OH(1
2
), we have OH(0) , OH(1

2
) and the above result cannot

be generalized to elements in OH(x).

Proposition 9. For any non-autonomous dynamical system (X,F) gener-
ated by a commutative family F, (X,F) is transitive if and only if it has a
point with dense orbit.

Proof. Let (X,F) be a transitive system such that no point in X has
dense orbit in (X,F). As X is compact, for each k ∈ N there ex-
ists a finite subset Fk such that Fk is 1

k
-dense in X. As no point in

X has dense orbit, for each x ∈ X there exists r ∈ N and xr ∈ Fr

such that O(x) ∩ S(xr,
1
r
) = ∅. However, as (X,F) is transitive, Ox,r =

∞
⋃

n=0
ω−1

n (S(xr,
1
r
)) is an open dense subset of X. Thus Cx,r = Oc

x,r is a

non-empty closed nowhere dense subset of X. As choices of xr are
countable, X is countable union nowhere dense subsets of X which
contradicts compactness of X and hence X must have a point with
dense orbit.

Conversely, let x ∈ X such that O(x) is dense in X and let U and
V be non-empty open subsets of X. As orbit of x is dense, there
exists k ∈ N such that ωk(x) ∈ U. Further, note that O(ωk(x)) =
{ωn(ωk(x)) : n ∈ N} = {ωk(ωn(x)) : n ∈ N} = ωk(O(x)) is dense in X
(as F is commutative and surjective). Thus there exists r ∈ N such
that ωr(ωk(x)) ∈ V and hence ωr(U) ∩ V , ∅. Consequently, (X,F) is
transitive and the proof is complete. �

Remark 2. The above proof establishes a necessary and sufficient cri-
teria to establish transitivity of a non-autonomous dynamical system
(X,F). In particular, the result establishes existence of a dense orbit
to be an equivalent criteria for a non-autonomous system to be tran-
sitivity. In addition, if the system is equicontinuous then the points
in the space move in a synchronized manner (which may be visual-
ized better via uniform almost periodicity) and hence denseness of
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an orbit (in X) forces denseness of all the orbits (in X). Hence we get
the following result.

Proposition 10. For any equicontinuous non-autonomous system (X,F)
generated by a commutative family of homeomorphisms, (X,F) is transitive
if and only if O(x) is dense in X for all x ∈ X (and hence (X,F) is minimal).

Proof. Let (X,F) be an equicontinuous system generated by a com-
mutative family of homeomorphisms and let (X,F) be transitive. By
Proposition 9, there exists x ∈ X such that O(x) is dense in X. Let
y ∈ X be arbitrary and let U = S(z, ǫ) be any non-empty open sub-
set of X. As (X,F) is equicontinuous, there exists δ > 0 such that
d(a, b) < δ ensures d(ωk(a), ωk(b)) < ǫ

4
for all a, b ∈ X , k ∈ Z. As

O(x) is dense in X, there exists u ∈ O(x) such that d(u, y) < δ and
hence d(ωk(u), ωk(y)) < ǫ

4
for all k ∈ Z. As denseness of O(x) (in

X) forces O(u) = X, we have d(z, ωr(u)) < ǫ
4

for some r ∈ Z. Thus,
d(z, ωr(y)) < d(z, ωr(u))+ d(ωr(u), ωr(y)) < ǫ and hence orbit of y inter-
sects S(z, ǫ). As the argument holds for any y ∈ X, orbit of any point
is dense in X. As the proof of converse is trivial, O(x) is dense in X
for some x ∈ X if and only if O(x) is dense in X for all x ∈ X. Finally,
as denseness of orbit of a point forces denseness of orbital hull (of
the same point), (X,F) is minimal and the proof is complete. �

Remark 3. The above proof establishes a necessary and sufficient
criteria for an equicontinuous system to be transitive. It may be
noted that as minimality of a system does not guarantee transitiv-
ity in the non-autonomous case, a minimal equicontinuous system
mail fail to be transitive (as shown in Example 4). Further, as the
above arguments hold good when the element of the orbit is re-
placed by element of the orbital hull, a similar set of arguments
establish equivalence of denseness of orbital hulls (among elements
of the space X). Also, for autonomous systems, it is known that a
transitive system with dense set of periodic points is necessarily sen-
sitive. However, as the governing rule may vary significantly in a
non-autonomous setting, an analogous version of the result fails to
hold good in a non-autonomous setting. However, as totally transi-
tive systems guarantee visiting times to intersect multiples of each
integer, totally transitive systems with dense set of transitive points
are necessarily sensitive. We now establish our claims below.

Proposition 11. For any equicontinuous non-autonomous system (X,F)
generated by a commutative family of homeomorphisms, if OH(x) is dense
(in X) for some x ∈ X then OH(x) is dense (in X) for all x ∈ X

Proof. The proof follows from discussions in Remark 12. �
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Example 6. Let S1 be the unit circle and let the sequence ( fn) be defined as

fn(θ) =



























θ + 2π
k
∑

i=1

1
i

: n = 2k − 1,

θ − 2π
k
∑

i=1

1
i

: n = 2k.

Firstly, note that as
∞
∑

i=1

1
i
= ∞, any point traverses the circle infinitely

often (and hence passes across the origin infinitely often). Also, at the
end of n = 2k + 1 iterations, any point θ rotates effectively by an angle

(2π
k+1
∑

i=1

1
i
)(mod2π). As rotations after n iterations are of magnitude less

than 1
n
, orbit of any point is 1

n
-dense in X (for any n ∈N) and hence dense

in X and thus the system is transitive. Also, as ω2n(x) = x for all n ∈ Z,
every point in S1 is periodic (of period 2). However, as the maps involved
are isometries, the system is equicontinuous. Thus, transitive system with
dense set of periodic points need not exhibit sensitive dependence on initial
conditions.

Proposition 12. For any non-autonomous system (X,F) generated by a
commutative family of homeomorphisms, if (X,F) is totally transitive with
dense set of periodic points then (X,F) is sensitive.

Proof. Let (X,F) be totally transitive with dense set of periodic points,
x ∈ X and U be any 1

n
-neighborhood of X. As set of periodic points

is dense, U contains a periodic point p (say of order r). Also, if
diam(X) > k there exists y ∈ X such that d(x, y) > k

2
. As (X,F) is r-

transitive, there exists u ∈ U, ny ∈ Z such that d(ωrny(u), y) < 1
n
. Also

asωrny(p) = p, for a sufficiently large n, we have d(ωrny(u), ωrny(p)) > k
4
.

Consequently, neighborhood of any point in X expands to diameter
greater than k

4
and hence (X,F) is sensitive. �

Proposition 13. For any minimal non-autonomous system (X,F) gener-
ated by a commutative family of homeomorphisms, (X,F) is either equicon-
tinuous or exhibits a dense set of sensitive points.

Proof. Let (X,F) be minimal system generated by a commutative fam-
ily of homeomorphisms. If (X,F) is equicontinuous then the result
holds trivially. If not, let x be a point of sensitivity (with sensitiv-
ity constant η) and let k ∈ Z be fixed. Let ǫ > 0 be given and let
U = S(ωk(x), ǫ). As ωk is continuous, there exists δ > 0 such that
ωk(S(x, δ)) ⊂ S(ωk(x), ǫ). As each ωk is a homeomorphism, there ex-
ists η′ > 0 such that d(a, b) ≥ η implies d(ωk(a), ωk(b)) ≥ η′. Further,
as x is a point of sensitivity, there exists y ∈ S(x, δ) and r ∈ Z such
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that d(ωr(x), ωr(y)) ≥ η. Thus, we have d(ωk(ωr(x)), ωk(ωr(y))) ≥ η′
and hence d(ωr(ωk(x)), ωr(ωk(y))) > η′ (as F is commutative). As
ωk(y) ∈ U, ωk(x) is a point of sensitivity and hence sensitivity of a
point ensures sensitivity at each element of the orbit. As the argu-
ments can repeated for elements of the orbit, sensitivity at a point
x ensures sensitivity at elements of the orbital hull. Finally, as X is
minimal, orbital hull of x is dense in X and the proof is complete. �
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