
On the Two Sides of Redundancy
in Graph Neural Networks

Franka Bause1,2, Samir Moustafa1,2, Johannes Langguth3,
Wilfried N. Gansterer1, and Nils M. Kriege1,4

1
Faculty of Computer Science, University of Vienna, Vienna, Austria

2
UniVie Doctoral School Computer Science, University of Vienna, Vienna, Austria

3
Simula Research Laboratory, Oslo, Norway

4
Research Network Data Science, University of Vienna, Vienna, Austria

{firstname.lastname}@univie.ac.at

Abstract

Message passing neural networks iteratively generate node embeddings by aggregating

information from neighboring nodes. With increasing depth, information from more dis-

tant nodes is included. However, node embeddingsmay be unable to represent the growing

node neighborhoods accurately and the influence of distant nodes may vanish, a problem

referred to as oversquashing. Information redundancy in message passing, i.e., the repeti-

tive exchange and encoding of identical information amplifies oversquashing. We develop

a novel aggregation scheme based on neighborhood trees, which allows for controlling

redundancy by pruning redundant branches of unfolding trees underlying standard mes-

sage passing. While the regular structure of unfolding trees allows the reuse of interme-

diate results in a straightforward way, the use of neighborhood trees poses computational

challenges. We propose compact representations of neighborhood trees and merge them,

exploiting computational redundancy by identifying isomorphic subtrees. From this, node

and graph embeddings are computed via a neural architecture inspired by tree canoniza-

tion techniques. Our method is less susceptible to oversquashing than traditional mes-

sage passing neural networks and can improve the accuracy on widely used benchmark

datasets.

1. Introduction

Graph neural networks (GNNs) have emerged as the dominant approach for machine learn-

ing on graph data, with the class of message passing neural networks (MPNNs) [12] being

widely-used. These networks update node embeddings layer wise by combining the current

embedding of a node with those of its neighbors, involving learnable parameters. Suitable

1

ar
X

iv
:2

31
0.

04
19

0v
2

 [
cs

.L
G

]
 2

8
M

ar
 2

02
4

neural architectures, which admit a parametrization such that each layer represents an injec-

tive function uniquely encoding the input, have the same expressive power as the Weisfeiler-

Leman algorithm [37]. The Weisfeiler-Leman algorithm distinguishes two nodes if and only

if the unfolding trees representing their neighborhoods are non-isomorphic. These unfolding

trees correspond to the computational trees of MPNNs [30, 15]. Hence, nodes with isomor-

phic unfolding trees will obtain the same embedding, while for nodes with non-isomorphic

unfolding trees, there exist parameters such that their embeddings differ. This implies that

deeper unfolding trees lead to more expressive methods. Despite this theoretical connection,

shallow MPNNs are often favored in practice. Challenges arise from the observed convergence

of node embeddings for deep architectures, referred to as oversmoothing [20, 21], and the issue
of oversquashing [5], where the neighborhood of a node grows exponentially with the number

of layers, and therefore, cannot be supposed to be accurately represented by a fixed-sized em-

bedding. Recently, oversquashing has been investigated by analyzing the sensitivity of node

embeddings to the initial features of distant nodes, relating the phenomenon to the graph cur-
vature [34], the effective resistance [7] and the commute time [13]. On this basis several graph

rewiring strategies have been proposed to mitigate oversquashing [34, 7].

We address the problem of oversquashing by modifying the message passing scheme for elimi-

nating the encoding of repeated information. For example, in an undirected graph, when a node

sends information to its neighbour, futuremessages sent back via the same edgewill contain the

exact information previously sent, leading to redundancy. In the context of walk-based graph

learning this problem iswell-known and referred to as tottering [22]. Recentwork byChen et al.
[8] established a first result formalizing the relation between redundancy and oversquashing

by sensitivity analysis. Several recent GNNs replace the walk-based aggregation by mecha-

nisms based on simple or shortest paths reporting promising results [2, 26, 16]. PathNNs [26]

and RFGNN [16] are closely related approaches, defining path-based trees for nodes and em-

ploying custom aggregation schemes. However, these methods suffer from high computational

costs compared to standardMPNNs and often have an exponential time complexity. The crucial

advantage of MPNNs is the regular structure of aggregations applied through all layers, while

reducing information redundancy leads to a less regular structure, rendering it challenging to

exploit computational redundancy.

Our contribution. We systematically explore the issue of information redundancy within

MPNNs and introduce principled techniques to eliminate superfluous messages. Our investiga-

tion is based on the implicit tree representation used by bothMPNNs and theWeisfeiler-Leman

algorithm. We first develop a neural tree canonization approach that systematically processes

trees in a bottom-up fashion and extend it to directed acyclic graphs (DAGs). To exploit com-

putational redundancy, wemerge multiple trees representing node neighborhoods into a single

DAG identifying isomorphic subtrees. Our approach, termed DAG-MLP, recovers the compu-

tational graph of MPNNs for unfolding trees, while avoiding redundant computations in the

presence of symmetries. We employ the canonization technique on neighborhood trees, which
are derived from unfolding trees by eliminating nodes that appear multiple times. We show

that neighborhood trees allow distinguishing nodes and graphs that are indistinguishable by

2

Table 1: Time complexity of preprocessing, size of computation graph and expressivity of

our method compared to related work. 𝑛: number of nodes, 𝑚: number of edges,

𝑏: maximum node degree, 𝐾 : path length, ℎ: tree height, 𝐿: number of layers, and

𝑚2 = 0.5
∑
𝑣∈𝑉 |𝑁2(𝑣) |.

Method Preprocessing Size Comp. Graph/Runtime Expressivity

PathNet 𝑂 (𝑚𝑏) 𝑂 (2𝐿 (𝑚 +𝑚2)) n/a

PathNN-SP 𝑂 (𝑛𝑏𝐾) 𝑂 (𝑛𝑏𝐾) incomparable

PathNN-SP+ 𝑂 (𝑛𝑏𝐾) 𝑂 (𝑛𝑏𝐾) > 1-WL

RFGNN 𝑂 (𝑛!/(𝑛−ℎ−1)!) 𝑂 (𝑛!/(𝑛−ℎ−1)!) incomparable

DAG-MLP (0-/1-NTs) 𝑂 (𝑛𝑚) 𝑂 (𝑛𝑚) incomparable

theWeisfeiler-Leman algorithm. The DAGs derived from neighborhood trees have size at most

𝑂 (𝑛𝑚) for input graphs with 𝑛 nodes and𝑚 edges making the approach computational feasi-

ble. We formally show by sensitivity analysis that our approach reduces oversquashing. Our

approach achieves high accuracy across various node and graph classification tasks.

2. Related Work

The graph isomorphism network (GIN) [37] is an MPNN that generalizes theWeisfeiler-Leman

algorithm, achieving its expressive power. The limited expressivity of simple MPNNs has led

to an increased interest in researching more powerful architectures, such as encoding graph

structure as additional features or modifying the message passing procedure. Shortest Path

Networks [2] use multiple aggregation functions for different shortest path lengths, allowing

direct communication with distant nodes. While this might help mitigate oversquashing, infor-

mation about the structure of the neighborhood can still not be represented adequately and the

gain in expressivity is limited. Distance Encoding GNNs [19] encode the distances of nodes to a

set of target nodes. While being provably more expressive than the standardWL algorithm, the

approach is limited to solving node-level tasks, as the encoding depends on a fixed set of target

nodes and has not been employed for graph-level tasks. MixHop [3] concatenates results from

activation functions for each neighborhood, but in contrast to Shortest Path Networks [2], the

aggregation is based on normalized powers of the adjacency matrix, not shortest paths, which

fails to solve the problem of redundant messages. SPAGAN [38] proposes a path-based atten-

tion mechanism, sampling shortest paths and using them as features. However, a theoretical

investigation is lacking and the approach utilizes only one layer. Short-rooted random walks

in [33] capture long-range dependencies, but have notable limitations due to sampling paths.

The evaluation is restricted to node classification datasets and an extensive study of their ex-

pressive power is lacking. IDGNN [39] tracks the identity of the root node in unfolding trees,

achieving higher expressivity than 1-WL, but failing to reduce redundant information aggre-

gation. PathNNs [26] define path-based trees and a custom aggregation scheme, but overlook

exploiting computational redundancy. RFGNNs [8] aim to reduce redundancy by altering the

3

Figure 1: Graph 𝐺 and its unfolding trees 𝐹 𝑣
2
for all 𝑣 ∈ 𝑉 (𝐺).

message flow to only include each node (except for the root node) at most once in each path

of the computational tree. While this reduces redundancy to some extent, nodes and even the

same subpaths may repeatedly occur in the computational trees. The redundancy in computa-

tion is not addressed resulting in a highly inefficient preprocessing and computation, limiting

the method to a maximum of 3 layers in the experiments. We discuss further differences be-

tween our approach and RFGNN in Appendix A.

These architectures lack thorough investigation of their expressivity and connections to other

approaches. Importantly, they do not explicitly investigate both types of redundancy inMPNNs

– redundancy in the information flow and in computation. We compare the time complexity,

as well as the expressivity of our method DAG-MLP and other relevant methods in Table 1 and

further discuss it in Section 4.5.

3. Preliminaries

In this section, we provide an overview of essential definitions and the notation used through-

out this article, accompanied by the introduction of fundamental techniques.

Graph theory. A graph𝐺 = (𝑉 , 𝐸, 𝜇, 𝜈) consists of a set of vertices𝑉 , a set of edges 𝐸 ⊆ 𝑉 ×𝑉
between them, and functions 𝜇 : 𝑉 → 𝑋 and 𝜈 : 𝐸 → 𝑋 assigning arbitrary attributes to the

vertices and edges, respectively.
1
An edge from𝑢 to 𝑣 is denoted by𝑢𝑣 , and in undirected graphs

𝑢𝑣 = 𝑣𝑢. The vertices and edges of a graph𝐺 are denoted by𝑉 (𝐺) and 𝐸 (𝐺), respectively. The
neighbors (or in-neighbors) of a vertex 𝑢 ∈ 𝑉 are denoted by 𝑁 (𝑢) = {𝑣 | 𝑣𝑢 ∈ 𝐸}, and the

out-neighbors of a vertex 𝑢 ∈ 𝑉 are denoted by 𝑁𝑜 (𝑢) = {𝑣 | 𝑢𝑣 ∈ 𝐸}. A multigraph is a graph,

where 𝐸 is a multiset, allowing multiple edges between a pair of vertices. Two graphs 𝐺 and

𝐻 are isomorphic, denoted by 𝐺 ≃ 𝐻 , if there exists a bijection 𝜙 : 𝑉 (𝐺) → 𝑉 (𝐻), such that

∀𝑢, 𝑣 ∈ 𝑉 (𝐺) : 𝜇 (𝑣) = 𝜇 (𝜙 (𝑣)) ∧ 𝑢𝑣 ∈ 𝐸 (𝐺) ⇔ 𝜙 (𝑢)𝜙 (𝑣) ∈ 𝐸 (𝐻) ∧ ∀𝑢𝑣 ∈ 𝐸 (𝐺) : 𝜈 (𝑢𝑣) =
𝜈 (𝜙 (𝑢)𝜙 (𝑣)). We refer to 𝜙 as an isomorphism between 𝐺 and 𝐻 .

An in-tree 𝑇 is a connected, directed, acyclic graph with a distinct vertex 𝑟 ∈ 𝑉 (𝑇) with no

outgoing edges, referred to as root (𝑟 (𝑇)), in which ∀𝑣 ∈ 𝑉 (𝑇)\𝑟 (𝑇) : |𝑁𝑜 (𝑣) | = 1. For 𝑣 ∈
𝑉 (𝑇)\𝑟 (𝑇) the parent 𝑝 (𝑣) is the unique vertex 𝑢 ∈ 𝑁𝑜 (𝑣), and ∀𝑣 ∈ 𝑉 (𝑇) the children are

defined as chi(𝑣) = 𝑁 (𝑣). We refer to vertices without incoming edges as leaves, denoted by

𝑙 (𝑇) = {𝑣 ∈ 𝑉 (𝑇) | chi(𝑣) = ∅}. Conceptually an in-tree is a directed tree, in which there is a

1
Edge attributes are not considered in the following for clarity of presentation, though the proposed methods can

be extended to incorporate them.

4

(a) Graph 𝐺 (b) 𝐹 𝑣
2

(c) 𝑇 𝑣
2,0 (d) 𝑇 𝑣

2,1

Figure 2: Graph 𝐺 and the unfolding, 0- and 1-redundant neighborhood trees of height 2 of

vertex 𝑣 (vertex in the upper left of 𝐺).

unique directed path from each vertex to the root [25]. In our paper, we only consider in-trees

and will therefore refer to them simply as trees. In-trees are generalized by directed, acyclic

graphs (DAGs). The leaves of a DAG 𝐷 and the children of a vertex are defined as in trees.

However, there can be multiple roots, and a vertex may have more than one parent. We refer

to all vertices in𝐷 without outgoing edges as roots, denoted by 𝑟 (𝐷) = {𝑣 ∈ 𝑉 (𝐷) | 𝑁𝑜 (𝑣) = ∅},
and define the parents 𝑝 (𝑣) of a vertex 𝑣 as 𝑝 (𝑣) = 𝑁𝑜 (𝑣). The height hgt of a node 𝑣 is the length
of the longest path from any leaf to 𝑣 : hgt(𝑣) = 0, if 𝑣 ∈ 𝑙 (𝐷) and hgt(𝑣) = max𝑐∈chi(𝑣) hgt(𝑐) +
1, otherwise. The height of a DAG 𝐷 is defined as hgt(𝐷) = max𝑣∈𝑉 (𝐷) hgt(𝑣). For clarity we

refer to the vertices of a DAG as nodes to distinguish them from the graphs that are the input

of a graph neural network.

Weisfeiler-LemanandMessagePassingNeuralNetworks. The 1-dimensionalWeisfeiler-

Leman (WL) algorithm, also known as color refinement, starts with vertices having a color cor-

responding to their label (or a uniform coloring for unlabeled vertices). In each iteration the

vertex color is updated based on the multiset of colors of its neighbors according to

𝑐
(𝑖+1)
wl (𝑣) = ℎ

(
𝑐
(𝑖)
wl (𝑣), {{𝑐

(𝑖)
wl (𝑢) | 𝑢 ∈ 𝑁 (𝑣)}}

)
∀𝑣 ∈ 𝑉 (𝐺),

where ℎ is an injective function, typically using integers to represent colors.

The color of a vertex encodes its neighborhood through a tree 𝑇 , which may contain multiple

representatives of each vertex. Let 𝜙 : 𝑉 (𝑇) → 𝑉 (𝐺) be a mapping such that 𝜙 (𝑛) = 𝑣 if the

node 𝑛 in 𝑉 (𝑇) represents the vertex 𝑣 in 𝑉 (𝐺). The unfolding tree 𝐹 𝑣𝑖 with height 𝑖 of the

vertex 𝑣 ∈ 𝑉 (𝐺) consists of a root 𝑛𝑣 with 𝜙 (𝑛𝑣) = 𝑣 and child subtrees 𝐹𝑢𝑖−1 for all 𝑢 ∈ 𝑁 (𝑣),
where 𝐹 𝑣

0
= ({𝑛𝑣}, ∅). The attributes of the original graph are preserved, as illustrated in

Figure 1. The unfolding trees 𝐹 𝑣𝑖 and 𝐹𝑤
𝑖

of two vertices 𝑣 and 𝑤 are isomorphic if and only if

𝑐
(𝑖)
wl (𝑣) = 𝑐

(𝑖)
wl (𝑤).

Message passing neural networks such asGIN [37] can be seen as a neural variant of theWeisfeiler-

Leman algorithm. The embedding of a vertex 𝑣 in layer 𝑖 of GIN is defined as

𝑥𝑖 (𝑣) = MLP𝑖
©«(1 + 𝜖𝑖) · 𝑥𝑖−1(𝑣) +

∑︁
𝑢∈𝑁 (𝑣)

𝑥𝑖−1(𝑢)ª®¬ , (1)

5

where the initial features 𝑥0(𝑣) are usually acquired by applying amulti-layer perceptron (MLP)

to the vertex features.

4. Non-Redundant Graph Neural Networks

Wepropose to restrict the information flow inmessage passing to regulate redundancy through

the use of 𝑘-redundant neighborhood trees. We first develop a neural tree canonization tech-

nique, and obtain an MPNN via its application to unfolding trees. Subsequently, we explore

computational methods on graph level, reusing information computed for subtrees and derive

a customized GNN architecture. Finally, we prove that 𝑘-redundant neighborhood trees and

unfolding trees are incomparable regarding their expressivity on node-level.

4.1. Removing Information Redundancy

As previously discussed, two vertices obtain the same WL color if and only if their unfolding

trees are isomorphic. This concept directly carries over to message passing neural networks

and their computational tree [30, 15]. However, unfolding trees were mainly used as tools in

expressivity analysis and as a conceptual framework for explaining mathematical properties in

graph learning [18, 29]. We propose a novel perspective on MPNNs through tree canonization.

From this perspective, we derive a non-redundant GNN architecture based on neighborhood

trees.

In their classical textbook, Aho, Hopcroft, and Ullman [4, Section 3.2] describe a linear time

isomorphism test for rooted unordered trees, detailed in Appendix C. We give a high-level

description to establish the foundation for our neural variant without focusing on the running

time. The algorithm proceeds in a bottom-up manner, assigning integers cahu(𝑣) to each node

𝑣 in the tree. The function 𝑓 injectively maps a pair consisting of an integer and a multiset of

integers to a new, unused integer. Initially, all leaves 𝑣 are assigned integers cahu(𝑣) = 𝑓 (𝜇 (𝑣), ∅)
based on their label 𝜇 (𝑣). Then internal nodes are processed level-wise in a bottom-up manner,

ensuring that whenever a node is processed, all its children have been considered. Hence, the

algorithm computes for all nodes 𝑣 of the tree

cahu(𝑣) = 𝑓 (𝜇 (𝑣), {{cahu(𝑢) | 𝑢 ∈ chi(𝑣)}}). (2)

This process ensures the unique representation of non-isomorphic trees, serving as the foun-

dation of our neural tree canonization technique.

GNNsvia unfolding tree canonization. We combine Eq. (2) and the definition of unfolding

trees, denoting the root of an unfolding tree of height 𝑖 of a vertex 𝑣 by 𝑛𝑖𝑣 . This yields

cahu(𝑛𝑖𝑣) = 𝑓 (𝜇 (𝑛𝑖𝑣), {{cahu(𝑛𝑖−1𝑢) | 𝑛𝑖−1𝑢 ∈ chi(𝑛𝑖𝑣)}}) = 𝑓 (𝜇 (𝑣), {{cahu(𝑛𝑖−1𝑢) | 𝑢 ∈ 𝑁 (𝑣)}}). (3)

6

By implementing the function 𝑓 using a suitable neural architecture and replacing its codomain

with embeddings in R𝑑 , we readily obtain a GNN based on our canonization approach. The

key difference to standard GNNs is that the first component of the pair in Eq. (3) is the initial

vertex feature instead of the embedding from the previous iteration. Utilizing the technique

proposed by Xu et al. [37] and replacing the first addend in Eq. (1) with the initial embedding,

we formulate the unfolding tree canonization GNN

𝑥𝑖 (𝑣) = MLP𝑖
©«(1 + 𝜖𝑖) · 𝑥0(𝑣) +

∑︁
𝑢∈𝑁 (𝑣)

𝑥𝑖−1(𝑢)
ª®¬ . (4)

It is established that MPNNs cannot distinguish two vertices with the same WL color or un-

folding tree. Given that the function cahu(𝑛𝑖𝑣) uniquely represents the unfolding tree for an

injective function 𝑓 , realizable by Eq. (4) [37], we infer the following proposition.

Proposition 1. Unfolding tree canonization GNNs, as defined in Eq. (4), are as expressive as

GIN, as defined in Eq. (1).

Despite the equivalence in expressivity, the canonization-based approach avoids redundancy

since 𝑥𝑖−1(𝑣) represents the entire unfolding tree rooted at 𝑣 of height 𝑖 − 1, while using the

initial vertex features 𝑥0(𝑣) is sufficient. We proceed by investigating redundancy within un-

folding trees themselves.

GNNs via neighborhood tree canonization. We leverage the concept of neighborhood

trees to manage redundancy in unfolding trees.
2
A 𝑘-redundant neighborhood tree (𝑘-NT)

𝑇 𝑣
𝑖,𝑘

is derived from the unfolding tree 𝐹 𝑣𝑖 by removing all subtrees with roots that occurred

more than 𝑘 levels before (seen from root to leaves). Here, depth(𝑣) denotes the length of the

path from 𝑣 to the root, and 𝜙 (𝑣) denotes the original vertex in 𝑉 (𝐺) represented by 𝑣 in the

unfolding or neighborhood tree.

Definition 2 (𝑘-redundant Neighborhood Tree). For 𝑘 ≥ 0, the 𝑘-redundant neighborhood tree
(𝑘-NT) of a vertex 𝑣 ∈ 𝑉 (𝐺) with height 𝑖 , denoted by 𝑇 𝑣

𝑖,𝑘
, is defined as the subtree of the

unfolding tree 𝐹 𝑣𝑖 induced by the nodes 𝑢 ∈ 𝑉 (𝐹 𝑣𝑖) satisfying

∀𝑤 ∈ 𝑉 (𝐹 𝑣𝑖) : 𝜙 (𝑢) = 𝜙 (𝑤) ⇒ depth(𝑢) ≤ depth(𝑤) + 𝑘.

Figures 2 and 3 provide examples of unfolding and neighborhood trees. It is worth noting that

for 𝑘 ≥ 𝑖 the 𝑘-redundant neighborhood tree is equivalent to the WL unfolding tree.

We can directly apply the neural tree canonization technique to neighborhood trees. However,

a simplifying expression based on the neighbors in the input graph, as given by Eq. (3) for

unfolding trees, is not possible for neighborhood trees. Therefore, we explore techniques to

systematically exploit computational redundancy.

2
In a parallel work, neighborhood trees were investigated for approximating the graph edit distance [6].

7

Figure 3: Graph 𝐺 and its 0-NTs 𝑇 𝑣
2,0 for all 𝑣 ∈ 𝑉 (𝐺).

(a) Merged unfolding trees (b) Merged 0-NTs (c) E1 (d) E2

Figure 4: Computation DAGs for unfolding (a) and 0-NTs (b) of height 2 of graph𝐺 . And edges

in the different layers of the merge DAG of 0-NTs (c), (d).

4.2. Removing Computational Redundancy

The computation DAG of an MPNN involves the embedding of a set of trees representing the

vertex neighborhoods of a single or multiple graphs. Results computed for one tree can be

reused for others by identifying isomorphic substructures, thereby minimizing computational

redundancy. We first describe how to merge trees in a general context and then discuss its

application to unfolding and neighborhood trees.

Merging trees into a DAG. The neural tree canonization approach developed in the last

section can be directly applied to DAGs. Given a DAG 𝐷 , it computes an embedding for each

node 𝑛 in 𝐷 that represents the tree 𝐹𝑛 obtained by recursively following its children, similar

as in unfolding trees, cf. Section 3. Since 𝐷 is acyclic, the height of 𝐹𝑛 is bounded. A detailed

description of a neural architecture is postponed to Section 4.3.

Given a set of trees T = {𝑇1, . . . ,𝑇𝑛}, a merge DAG of T is a pair (𝐷, 𝜉), where 𝐷 is a DAG,

𝜉 : {1, . . . 𝑛} → 𝑉 (𝐷) is a mapping, and for all 𝑖 ∈ {1, . . . , 𝑛} we have 𝑇𝑖 ≃ 𝐹𝜉 (𝑖) . The definition
guarantees that the neural tree canonization approach applied to the merge DAG produces the

same result for the nodes in the DAG as for the nodes in the original trees. A trivial merge

DAG is the disjoint union of the trees with 𝜉 (𝑖) = 𝑟 (𝑇𝑖). However, depending on the structure

of the given trees, we can identify the subtrees they have in common and represent them only

once, such that two nodes of different trees share the same child, resulting in a DAG instead of

a forest.

We propose an algorithm that builds a merge DAG by successively adding trees to an initially

empty DAG, creating new nodes only when necessary. Our approach maintains a canonical

labeling for each node of the DAG and computes a canonical labeling for each node of the tree to

be added using the AHU algorithm (cf. Appendix C). Then, the tree is processed starting at the

root. If the canonical labeling of the root is present in the DAG, then the algorithm terminates.

8

Otherwise, the subtrees rooted at its children are inserted into the DAG by recursive calls.

Finally, the root is created and connected to the representatives of its children in the DAG. We

introduce a node labeling 𝐿 : 𝑉𝑇 → O used for tree canonization, where𝑉𝑇 =
⋃𝑛
𝑖=1𝑉 (𝑇𝑖) and O

an arbitrary set of labels, refining the original node attributes, i.e., 𝐿(𝑢) = 𝐿(𝑣) ⇒ 𝜇 (𝑢) = 𝜇 (𝑣)
for all 𝑢, 𝑣 in 𝑉𝑇 . When O consists of integers from the range 1 to |𝑉𝑇 |, the algorithm runs in

𝑂 (|𝑉𝑇 |) time (see Appendix E for details). When two siblings that are the roots of isomorphic

subtrees are merged, this leads to parallel edges in the DAG. Parallel edges can be avoided by

using a labeling satisfying 𝐿(𝑢) = 𝐿(𝑣) ⇒ 𝜇 (𝑢) = 𝜇 (𝑣) ∧ 𝑝 (𝑢) ≠ 𝑝 (𝑣) for all 𝑢, 𝑣 in 𝑉𝑇 .

Unfolding trees and 𝑘-NTs can grow exponentially in size with increasing height. However,

this is not case for merge DAGs obtained by the algorithm described above, as we will show

below. Moreover, we can directly generate DAGs of size𝑂 (𝑚 · (𝑘 + 1)) representing individual
𝑘-NTs with unbounded height in a graph with𝑚 edges (see Appendix D for details).

Merging unfolding trees. Merging the unfolding trees of a graph with the labeling 𝐿 = 𝜙

leads to the computation DAG of GNNs. Figure 4a shows the computation DAG for the graph

from Figure 1. The roots in this DAG correspond to the representation of the vertices after

aggregating information from the lower layers. Each vertex occurs once at every layer of the

DAG, and the links between any two consecutive layers are given by the adjacency matrix of

the original graph. While this allows computation based on the adjacency matrix widely-used

for MPNNs, it involves the encoding of redundant information. Our method has the potential

to compress the computational DAG further by using the less restrictive labeling 𝐿 = 𝜇, leading

to a DAG where at layer 𝑖 all vertices 𝑢, 𝑣 with 𝑐
(𝑖)
wl (𝑢) = 𝑐

(𝑖)
wl (𝑣) are represented by the same

node. This compression appears particularly promising for graphs with symmetries.

Mergingneighborhood trees. Whenmerging𝑘-redundant neighborhood trees in the same

way using the labeling 𝐿 = 𝜇 (or 𝐿 = 𝜙 to avoid parallel edges), it results in a computation DAG

with a more irregular structure, as illustrated in Figure 4b. Firstly, there might be multiple

nodes at the same level representing the same original vertex. Secondly, the adjacency matrix

of the original graph cannot be used to propagate the information. A straightforward upper

bound on the size of the merge DAG for a graph with 𝑛 nodes and𝑚 edges is𝑂 (𝑛𝑚𝑘 +𝑛𝑚).

We apply the neural tree canonization approach to the merge DAG in a bottom-up fashion,

starting from the leaves and progressing to the roots. Each edge is used exactly once in this

computation. Let 𝐷 = (V, E) be a merge DAG. The nodes can be partitioned based on their

height, leading to L𝑖 = {𝑣 ∈ V | hgt(𝑣) = 𝑖}. This induces an edge partition E𝑖 = {𝑢𝑣 ∈ E |
𝑣 ∈ L𝑖}, where all edges with the same end node 𝑣 are in the same layer, and all incoming

edges of children of 𝑣 belong to a previous layer. Note that, since L0 contains all leaves of the

DAG, there is no E0. Figures 4c and 4d depict the edge sets E1 and E2 for the example merge

DAG illustrated in Figure 4b.

9

4.3. Non-Redundant Neural Architecture (DAG-MLP)

We propose a neural architecture to compute embeddings for nodes in a merge DAG, allowing

to retrieve embeddings of the contained trees from their roots. The process involves a prepro-

cessing step that transforms the node labels, using MLP0 to map them to an embedding space

of fixed dimensions. Subsequently, an MLP𝑖 is used to process nodes at each layer L𝑖 .

𝜇′(𝑣) = MLP0 (𝜇 (𝑣)) , ∀𝑣 ∈ V
𝑥 (𝑣) = 𝜇′(𝑣), ∀𝑣 ∈ L0

𝑥 (𝑣) = MLP𝑖

(
(1 + 𝜖𝑖) · 𝜇′(𝑣) +

∑︁
∀𝑢 : 𝑢𝑣∈E𝑖

𝑥 (𝑢)
)
, ∀𝑣 ∈ L𝑖 , 𝑖 ∈ {1, . . . , 𝑛}

The DAG-MLP can be computed through iterated matrix-vector multiplication analogous to

standard GNNs. Let L𝑖 be a square matrix with ones on the diagonal at position 𝑗 if 𝑣 𝑗 ∈ L𝑖 ,
and zeros elsewhere. Let E𝑖 represent the adjacency matrix of (V, E𝑖), and let F denote the

node features of V , corresponding to the initial node labels. The transformed features F′ are
obtained through MLP0, and X[𝑖] represents the updated embeddings at layer 𝑖 of the DAG.

F′ = MLP0 (F) , X[0] = L0F′,

X[𝑖] = MLP𝑖

(
(1 + 𝜖𝑖) · L𝑖F′ + E𝑖X[𝑖−1]

)
+ X[𝑖−1] ,

In the above equation, MLP𝑖 is applied to the rows associatedwith nodes inL𝑖 . The embeddings

X[𝑖] are initialized to zero for inner nodes and computed level-wise. To preserve embeddings

from all previous layers, we add X[𝑖−1] during the computation of X[𝑖] . Suppose the merge

DAG (𝐷, 𝜉) contains the trees {𝑇1, . . . ,𝑇𝑛}. We obtain a node embedding X[𝑛]
𝜉 (𝑖) for each tree

𝑇𝑖 with 𝑖 ∈ {1, . . . , 𝑛}. This approach allows for obtaining the final embedding for a vertex by

using a single tree (Fixed Single-Height) or combining trees of different heights, for example

all NTs of size up to a certain maximum (Combine Heights). Further details on the resulting

architecture are described in Appendix F.

4.4. Expressivity of k-NTs

Here, we investigate how expressive 𝑘-NTs are compared to unfolding trees. While it is evident

that 𝑘-NTs are a node invariant, providing the same result for nodes that can be mapped to

each other by an isomophism or automorphism, they might also produce the same results for

nodes that cannot. This means that, similar to unfolding trees, they are not a complete node

invariant.

We show that there are vertices that 1-WL cannot distinguish, but 𝑘-NTs can, and vice versa,

proving that both methods are incomparable regarding their expressivity on node level. We

10

(a) Hexagon (b) Two triangles (c) Unfolding trees (d) 1-NTs

Figure 5: Two graphs (a), (b) that cannot be distinguished by unfolding trees, but by 𝑘-NTs.

Figure (c) shows the unfolding tree 𝐹3, which is the same for all vertices of both graphs,

while (d) shows the 1-NTs of the vertices in the hexagon (left) and the triangle (right).

(a) 𝐺1 (b) 𝐺2 (c) 1-NTs of red vertices

Figure 6: Two graphs (a), (b) in which the red vertices can be distinguished by unfolding trees,

but not by 𝑘-NTs. Figure (c) shows the 1-NTs of the red vertices, which are the same.

However, 𝐺1 and 𝐺2 can be distinguished by their multisets of 1-NTs.

further conjecture that, while 𝑘-NTs cannot distinguish certain vertices that 1-WL can, they

can still distinguish the graphs containing such vertices, making 𝑘-NTs more expressive on the

graph level.

Theorem 3. The expressivity of 𝑘-NT and unfolding trees is incomparable, i.e.,

1. ∃𝑢, 𝑣 : 𝐹𝑢∞ = 𝐹 𝑣∞ ∧𝑇𝑢∞,𝑘 ≠ 𝑇 𝑣∞,𝑘 .

2. ∃𝑢, 𝑣 : 𝐹𝑢∞ ≠ 𝐹 𝑣∞ ∧𝑇𝑢∞,𝑘 = 𝑇 𝑣∞,𝑘

Proof. We prove the statement by giving concrete examples. In Figure 5 an example for 1. is

given: as commonly known, the Weisfeiler-Leman algorithm is unable to distinguish the two

graphs, indicating identical unfolding trees of the vertices in the two graphs. However, for any

𝑘 the 𝑘-NT of the vertices will differ for ℎ ≥ 𝑘 + 2. In Figure 6 an example for 2. (for 1-NTs)

is given: the unfolding trees of the two marked vertices differ, while the 1-NTs are identical.

This serves as an instance where 1-WL can distinguish vertices that 𝑘-NTs cannot. □

We have shown that on node level, the expressivity of 𝑘-NTs and unfolding trees is incompara-

ble. However, the examples, where 𝑘-NTs fail to distinguish nodes that 1-WL can, can actually

be distinguished on the graph level. This arises from the fact, that the graphs have a different

number of vertices and the 𝑘-NTs of the other nodes differ.

11

4.5. Computational Complexity, Expressivity and Oversquashing

The DAG representing the 𝑘-NT of a single vertex has a size in 𝑂 (𝑚𝑘 +𝑚), where 𝑚 is the

number of edges in the graph. The lexicographic encoding and merging of 𝑘-NTs to generate

the DAG can be done in time linear in its size. A trivial upper bound on the size of the merge

DAG of a graph with 𝑛 nodes and𝑚 edges is 𝑂 (𝑛𝑚𝑘 + 𝑛𝑚). Overall, this means that prepro-

cessing can be done in 𝑂 (𝑛𝑚𝑘) time, where 𝑘 can be considered constant. For 0- and 1-NTs,

we obtain time 𝑂 (𝑛𝑚). Table 1 compares the complexity and expressivity of our method to

related work.

Understanding and relating the expressivity of different approaches is non-trivial. In the case of

PathNet, its expressivity concerning the WL-hierarchy remains unexplored. PathNN-SP+ has

been shown to be more expressive than 1-WL. While it is claimed that RFGNNs are maximally

expressive, the proof claiming higher expressivity on node level as presented in Chen et al. [8,

Lemma 7] is not correct (rather it is incomparable on node level, as detailed in Appendix A).

Consequently, it remains uncertain, whether RFGNN is strictly more expressive on graph level.

PathNN-SP [26] states that it can only disambiguate graphs at least as well as 1-WL and is not

strictly more powerful. This is because, due to sampling, isomorphic graphs could be mapped

to different representations, indicating that it is not a graph invariant.

RFGNN and PathNN-SP+ involve enumerating all possible paths and all shortest paths, respec-

tively. A straightforward example of a graph consisting of a chain of joined 4-cycles, shows

that there is an exponential number of such paths, and that these paths still contain redun-

dancy. In our approach, we avoid this redundancy by not explicitly building NTs, but instead

generate DAGs, resulting in a much more compact representation (refer to Appendix D).

In Appendix B, we investigate the theoretical connection of our method and RFGNN in terms

of relative influence, and show that 0- and 1-NTs can address the oversquashing problem more

effectively.

To summarize, our method is the first to address both types of redundancy in GNNs, informa-

tional and computational redundancy, with polynomial running time, and can mitigate over-

squashing better than comparable approaches. Therefore, our method addresses a gap in GNN

research that has not been previously considered.

5. Experimental Evaluation

We assess the performance of DAG-MLP with 𝑘-NTs on a range of synthetic [1, 28] and real-

world datasets [9, 24, 11, 31, 27] (additional details can be found in Appendix H).
3

3
Our implementation is available (anonymized) at https://anonymous.4open.science/r/k-RedundancyGNNs/
and will be uploaded to GitHub upon publication.

12

https://anonymous.4open.science/r/k-RedundancyGNNs/

Table 2: Average classification accuracy for EXP-Class and CSL across 𝑘-folds (4-folds and 5-

folds), and the number of indistinguishable pairs of graphs in EXP-Iso. Best results are

highlighted in gray, best results from methods with polynomial time complexity are

highlighted in bold.

Model EXP-Class ↑ EXP-Iso ↓ CSL ↑
GIN [37] 50.0 ± 0.0 600 10.0 ± 0.0

3WLGNN [23] 100.0 ± 0.0 0 97.8 ± 10.9

PathNN-SP+ [26] 100.0 ± 0.0 0 100.0 ± 0.0

PathNN-AP [26] 100.0 ± 0.0 0 100.0 ± 0.0

DAG-MLP (0-NTs) 100.0 ± 0.0 0 100.0 ± 0.0
DAG-MLP (1-NTs) 100.0 ± 0.0 0 100.0 ± 0.0

Experimental setup. For synthetic datasets, we determine the number of layers in DAG-MLP

based on the average graph diameter, ensuring effective aggregation during message propaga-

tion. The embeddings at each layer are obtained using readouts, concatenated, and then fed

through two learnable linear layers for prediction. In the evaluation of TUDataset, we adopt

the 10-fold splits proposed by [10], allowing a grid search for optimal hyper-parameters on

each dataset. The architecture for combined heights involves using each “readout𝑖” to extract

the embeddings for each layer, with mean of the average-pooled embeddings being passed to a

final MLP layer responsible for prediction (see Appendix F). For the fixed single-height archi-

tecture, only the last readout is used, pooled, and passed to the final MLP layer. Further details

on hyper-parameters can be found in Appendix J.

Graph classification. Table 2 presents the results on synthetic expressivity datasets. In line

with our theoretical expectations, the experimental results support our hypothesis: NTs exhibit

greater expressivity than GIN on a graph level. However, a formal theoretical proof of this

observation remains a direction for future work.

In Table 3, we investigate the impact of the parameter 𝑘 and the number of layers 𝑙 on the

accuracy for the EXP-Class dataset. Cases where 𝑘 > 𝑙 can be disregarded, as the computation

for NTs remains the same as when 𝑘 = 𝑙 . Empirically, 0- and 1-NTs yield the highest accuracy.

This observation aligns with our discussions on expressivity in Section 4.4. The decrease in

accuracy with increasing 𝑘 indicates that information redundancy leads to oversquashing. We

investigate this theoretically in Appendix B.

For TUDataset, we report the accuracy compared to related work in Table 4. We report only

the best results for the different parameter combinations reported in Michel et al. [26], and the

best result for our different combine methods. Due to the high standard deviation across all

methods, we present a statistical box plot for the accuracy based on three runs on the test set

of 10-fold cross-validation in Appendix G. We group the methods by their time complexity.

Note that, while PathNN performs well on ENZYMES and PROTEINS, the time complexity

of this method is exponential. Therefore, we also highlight the best method with polynomial

time complexity. For IMDB-B and IMDB-M, which have small diameters, we see that 𝑘-NTs

13

Table 3: Average accuracy for DAG-MLP using 4-fold cross-validation on EXP-Class [1], eval-

uated with varying number of layers.

𝑘-NTs 1 layer 2 layers 3 layers 4 layers 5 layers 6 layers

0-NTs 51.1 ± 1.6 57.5 ± 6.6 91.7 ± 11.6 99.7 ± 0.3 100.0 ± 0.0 100.0 ± 0.0
1-NTs 50.1 ± 0.2 58.9 ± 4.6 59.4 ± 5.7 99.6 ± 0.5 99.9 ± 0.2 100.0 ± 0.0
2-NTs - 52.6 ± 3.4 54.9 ± 5.3 52.4 ± 3.8 97.6 ± 1.9 100.0 ± 0.0
3-NTs - - 56.2 ± 5.7 51.1 ± 1.9 52.4 ± 4.1 87.1 ± 21.4

4-NTs - - - 50.1 ± 0.2 50.6 ± 1.0 50.4 ± 0.7

5-NTs - - - - 50.4 ± 0.7 50.0 ± 0.0

6-NTs - - - - - 53.2 ± 5.2

Table 4: Classification accuracy (± standard deviation) over 10-fold cross-validation on the

datasets from TUDataset, taken from Michel et al. [26]. Best performance is high-

lighted in gray, best results from methods with polynomial time complexity are high-

lighted in bold. “-” denotes not applicable and “NA” means not available.

Model IMDB-B IMDB-M ENZYMES PROTEINS

L
i
n
e
a
r

GIN [37] 71.2 ± 3.9 48.5 ± 3.3 59.6 ± 4.5 73.3 ± 4.0

GAT [35] 69.2 ± 4.8 48.2 ± 4.9 49.5 ± 8.9 70.9 ± 2.7

SPN (𝑙 = 1) [2] NA NA 67.5 ± 5.5 71.0 ± 3.7

SPN (𝑙 = 5) [2] NA NA 69.4 ± 6.2 74.2 ± 2.7

E
x
p

PathNet [33] 70.4 ± 3.8 49.1 ± 3.6 69.3 ± 5.4 70.5 ± 3.9

PathNN-P [26] 72.6 ± 3.3 50.8 ± 4.5 73.0 ± 5.2 75.2 ± 3.9

PathNN-SP+ [26] - - 70.4 ± 3.1 73.2 ± 3.3

O
u
r
s

DAG-MLP (0-NTs) 72.9 ± 5.0 50.2 ± 3.2 67.9 ± 5.3 70.1 ± 1.7

DAG-MLP (1-NTs) 72.4 ± 3.8 51.3 ± 4.4 70.6 ± 5.5 70.2 ± 3.4

outperform all other methods. For ENZYMES a variant of our approach achieves the best result

among the approaches with non-exponential time complexity, and 𝑘-NTs lead to a significant

improvement over GIN.

Node classification. We investigate the performance of our approach on node classification

datasets. These datasets differ regarding their homophily ratio, i.e., the fraction of edges in a

graph that connect vertices with the same class label [40]. Heterophily tasks are particularly

challenging for standard GNNs [40] as they require capturing the structure of neighborhoods

instead of “averaging” over the neighboring features. In Table 5 we present results from [14]

including the state-of-the-art graph rewiring technique SJLR combined with SGC and GCN,

which performs best in the evaluation. We also performed experiments with GIN and DAG-

MLP using the same data splits as [14] to ensure a fair comparison. We report the best results

for 𝑙 layers with 𝑙 ∈ {2, 3, 4} and four different combine methods for GIN and DAG-MLP.

As observed, DAG-MLP outperforms GIN on the heterophily datasets (those with low ho-

mophily ratio), while GIN performs better on homophily ones. These results indicate that

14

Table 5: Accuracy and standard deviation on node classification tasks (GCN, SJLR-GCN, SGC

and SJLR-GCN taken from [14]).

Model Texas Wisconsin Cornell Cora CiteSeer PubMed
Homophily ratio 0.11 0.21 0.3 0.8 0.74 0.8

GCN 58.05 ± 0.9 52.10 ± 0.9 67.34 ± 1.5 81.81 ± 0.2 68.35 ± 0.3 78.25 ± 0.3

SJLR-GCN 60.13 ± 0.8 55.16 ± 0.9 71.75 ± 1.5 81.95 ± 0.2 69.50 ± 0.3 78.60 ± 0.3
SGC 56.69 ± 1.7 47.90 ± 1.7 53.40 ± 2.1 76.90 ± 1.3 67.45 ± 0.8 71.79 ± 2.1

SJLR-SGC 58.40 ± 1.4 55.42 ± 0.9 67.37 ± 1.6 81.24 ± 0.7 68.39 ± 0.6 76.28 ± 0.9

GIN 73.78 ± 6.0 71.76 ± 5.1 60.81 ± 8.5 76.76 ± 1.4 64.49 ± 1.5 76.46 ± 1.1

DAG-MLP (0-NTs) 85.68 ± 4.8 81.35 ± 4.1 79.02 ± 6.8 74.01 ± 2.0 60.55 ± 3.6 75.33 ± 1.1

DAG-MLP (1-NTs) 80.54 ± 6.0 81.62 ± 3.4 79.41 ± 4.6 74.54 ± 1.4 61.09 ± 1.5 75.53 ± 1.1

neighborhood trees can capture the relevant neighborhood structure more accurately than un-

folding trees used by GIN. Additionally, our method outperforms SJLR on the two heterophily

datasets Texas and Wisconsin by a large margin.

6. Conclusion

We introduce a neural tree canonization technique and combine it with neighborhood trees,

which are pruned versions of unfolding trees used by standard MPNNs. By merging trees

in a DAG, we create compact representations that serve as the foundation for our neural ar-

chitecture termed DAG-MLP. It inherits the advantageous properties of the GIN architecture,

while being more expressive than 1-WL on many graphs. Notably, our method is only less

expressive on node level for specific examples. Our work contributes general techniques for

constructing compact computation DAGs for tree structures that encode node neighborhoods.

This exploration reveals a complex interplay between information redundancy, computational

redundancy, and expressivity. The delicate balance of these factors is an avenue for future

work.

Acknowledgments

We would like to thank Christian Permann for his contribution to the conception of neighbor-

hood trees and their efficient generation. This work was supported by the Vienna Science and

Technology Fund (WWTF) [10.47379/VRG19009]. The computational results presented have

been achieved in part using the Vienna Scientific Cluster (VSC).

15

Author Contributions

NK devised the project and the main conceptual ideas. FB made significant contributions to

the conception of 𝑘-redundant neighborhood trees and their efficient generation. NK and FB

jointly developed the methods for redundancy removal presented in Sections 4.1, 4.2. FB de-

veloped Theorem 3, and implemented the 𝑘-redundant neighborhood trees, merge DAGs, and

algorithmic components of the implementation. NK, SM, and FB collaborated on the develop-

ment of the DAG-MLP architecture. SM implemented DAG-MLP, conducted the experimen-

tal evaluation, and wrote parts of the corresponding sections in the manuscript. SM extended

support to directed graphs and graphs with edge attributes, implemented the learning pipeline,

wrapped the DAG to be used within the learning pipeline, and configured the necessary envi-

ronments to reproduce results. FB and NK jointly drafted the manuscript with input from all

authors. FB revised the manuscript with feedback from reviewers. NK, WG, and JL supervised

the project. All authors provided critical feedback, participated in discussions, contributed to

the interpretation of the results, and approved the final manuscript.

References

[1] R. Abboud, I. I. Ceylan, M. Grohe, and T. Lukasiewicz. The Surprising Power of Graph

Neural Networks with RandomNode Initialization. In Proceedings of the 30th International
Joint Conference on Artificial Intelligence, pages 2112–2118, 2021.

[2] R. Abboud, R. Dimitrov, and İ. İ. Ceylan. Shortest path networks for graph property

prediction. In LoG 2022, volume 198 of PMLR, 2022. URL https://proceedings.mlr.
press/v198/abboud22a.html.

[3] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman, H. Harutyunyan, G. V.

Steeg, and A. Galstyan. MixHop: Higher-order graph convolutional architectures via

sparsified neighborhood mixing. In ICML 2019, volume 97 of PMLR, 2019. URL http:
//proceedings.mlr.press/v97/abu-el-haija19a.html.

[4] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, 1974. ISBN 0-201-00029-6.

[5] U. Alon and E. Yahav. On the bottleneck of graph neural networks and its practical im-

plications. In ICLR 2021. OpenReview.net, 2021. URL https://openreview.net/forum?
id=i80OPhOCVH2.

[6] F. Bause, C. Permann, and N. Kriege. Approximating the graph edit distance with compact

neighborhood representations. 2023.

[7] M. Black, Z. Wan, A. Nayyeri, and Y. Wang. Understanding oversquashing in GNNs

through the lens of effective resistance. In International Conference on Machine Learn-
ing, volume 202 of PMLR, pages 2528–2547. PMLR, 23–29 Jul 2023. URL https://
proceedings.mlr.press/v202/black23a.html.

16

https://proceedings.mlr.press/v198/abboud22a.html
https://proceedings.mlr.press/v198/abboud22a.html
http://proceedings.mlr.press/v97/abu-el-haija19a.html
http://proceedings.mlr.press/v97/abu-el-haija19a.html
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://proceedings.mlr.press/v202/black23a.html
https://proceedings.mlr.press/v202/black23a.html

[8] R. Chen, S. Zhang, L. H. U, and Y. Li. Redundancy-free message passing for graph neural

networks. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,

Advances in Neural Information Processing Systems, volume 35, pages 4316–4327. Curran

Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/1bd6f17639876b4856026744932ec76f-Paper-Conference.pdf.

[9] M.W. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. M. Mitchell, K. Nigam, and S. Slat-

tery. Learning to extract symbolic knowledge from the world wide web. In AAAI/IAAI,
1998.

[10] F. Errica, M. Podda, D. Bacciu, and A.Micheli. A fair comparison of graph neural networks

for graph classification. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=HygDF6NFPB.

[11] C. L. Giles, K. D. Bollacker, and S. Lawrence. Citeseer: an automatic citation indexing

system. In Digital library, 1998.

[12] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing

for quantum chemistry. In International Conference on Machine Learning, 2017.

[13] F. D. Giovanni, L. Giusti, F. Barbero, G. Luise, P. Lio, and M. M. Bronstein. On over-

squashing inmessage passing neural networks: The impact of width, depth, and topology.

volume 202 of PMLR. PMLR, 2023.

[14] J. H. Giraldo, K. Skianis, T. Bouwmans, and F. D. Malliaros. On the trade-off between

over-smoothing and over-squashing in deep graph neural networks. In CIKM, 2023.

[15] S. Jegelka. Theory of graph neural networks: Representation and learning. CoRR,
abs/2204.07697, 2022.

[16] Z. Jia, S. Lin, R. Ying, J. You, J. Leskovec, and A. Aiken. Redundancy-free computation

for graph neural networks. In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, pages 997–1005.
ACM, 2020. doi: 10.1145/3394486.3403142. URL https://doi.org/10.1145/3394486.
3403142.

[17] N. M. Kriege. Weisfeiler and leman go walking: Random walk kernels revisited. In

NeurIPS, 2022.

[18] N. M. Kriege, P.-L. Giscard, and R. C. Wilson. On valid optimal assignment kernels and

applications to graph classification. In International Conference on Neural Information
Processing Systems, NIPS, 2016.

[19] P. Li, Y. Wang, H. Wang, and J. Leskovec. Distance encoding: Design prov-

ably more powerful neural networks for graph representation learning. In

NeurIPS, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
2f73168bf3656f697507752ec592c437-Abstract.html.

17

https://proceedings.neurips.cc/paper_files/paper/2022/file/1bd6f17639876b4856026744932ec76f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/1bd6f17639876b4856026744932ec76f-Paper-Conference.pdf
https://openreview.net/forum?id=HygDF6NFPB
https://doi.org/10.1145/3394486.3403142
https://doi.org/10.1145/3394486.3403142
https://proceedings.neurips.cc/paper/2020/hash/2f73168bf3656f697507752ec592c437-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/2f73168bf3656f697507752ec592c437-Abstract.html

[20] Q. Li, Z. Han, and X. Wu. Deeper insights into graph convolutional networks for semi-

supervised learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence. AAAI Press, 2018. URL https://www.aaai.org/ocs/index.php/AAAI/
AAAI18/paper/view/16098.

[21] M. Liu, H. Gao, and S. Ji. Towards deeper graph neural networks. In KDD ’20: The
26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM, 2020. doi:

10.1145/3394486.3403076.

[22] P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. Extensions of marginalized

graph kernels. In Proceedings of the twenty-first international conference on Machine learn-
ing. ACM, 2004. ISBN 1-58113-838-5. URL http://doi.acm.org/10.1145/1015330.
1015446.

[23] H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. Provably Powerful Graph Net-

works. In Advances in Neural Information Processing Systems, 2019.

[24] A. McCallum, K. Nigam, J. D. M. Rennie, and K. Seymore. Automating the construction

of internet portals with machine learning. Information Retrieval, 3:127–163, 2000.

[25] K. Mehlhorn and P. Sanders. Algorithms and Data Structures: The Basic Toolbox. Springer,
2008. ISBN 978-3-540-77977-3. URL https://doi.org/10.1007/978-3-540-77978-0.

[26] G. Michel, G. Nikolentzos, J. Lutzeyer, and M. Vazirgiannis. Path neural networks: Ex-

pressive and accurate graph neural networks. In Proceedings of the 40th International
Conference on Machine Learning (ICML), 2023.

[27] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann. TUDataset:

A collection of benchmark datasets for learning with graphs. In ICML 2020 Workshop on
Graph Representation Learning and Beyond, 2020. URL http://www.graphlearning.io.

[28] R. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro. Relational Pooling for Graph Represen-

tations. In Proceedings of the 36th International Conference on Machine Learning, pages
4663–4673, 2019.

[29] G. Nikolentzos, M. Chatzianastasis, and M. Vazirgiannis. Weisfeiler and leman go hy-

perbolic: Learning distance preserving node representations. In International Confer-
ence on Artificial Intelligence and Statistics, volume 206 of PMLR, 2023. URL https:
//proceedings.mlr.press/v206/nikolentzos23a.html.

[30] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. Computational

capabilities of graph neural networks. IEEE Transactions on Neural Networks, 20(1):81–
102, 2009. doi: 10.1109/TNN.2008.2005141.

[31] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad. Collective classi-

fication in network data. In The AI Magazine, 2008.

[32] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and K. M. Borgwardt.

Weisfeiler-lehman graph kernels. Journal ofMachine Learning Research, 12(77):2539–2561,
2011.

18

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
http://doi.acm.org/10.1145/1015330.1015446
http://doi.acm.org/10.1145/1015330.1015446
https://doi.org/10.1007/978-3-540-77978-0
http://www.graphlearning.io
https://proceedings.mlr.press/v206/nikolentzos23a.html
https://proceedings.mlr.press/v206/nikolentzos23a.html

[33] Y. Sun, H. Deng, Y. Yang, C. Wang, J. Xu, R. Huang, L. Cao, Y. Wang, and L. Chen. Beyond

Homophily: Structure-aware Path Aggregation Graph Neural Network. In Proceedings of
the 31st International Joint Conference on Artificial Intelligence, pages 2233–2240, 2022.

[34] J. Topping, F. D. Giovanni, B. P. Chamberlain, X. Dong, and M. M. Bronstein. Understand-

ing over-squashing and bottlenecks on graphs via curvature. In International Conference
on Learning Representations, ICLR. OpenReview.net, 2022. URL https://openreview.
net/forum?id=7UmjRGzp-A.

[35] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention

networks. In 6th International Conference on Learning Representations, 2018.

[36] K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka. Representation learning

on graphs with jumping knowledge networks. volume 80 of PMLR. PMLR, 2018.

[37] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In

7th International Conference on Learning Representations, ICLR, 2019.

[38] Y. Yang, X. Wang, M. Song, J. Yuan, and D. Tao. SPAGAN: shortest path graph attention

network. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence. IJCAI, 2019. URL https://doi.org/10.24963/ijcai.2019/569.

[39] J. You, J. M. G. Selman, R. Ying, and J. Leskovec. Identity-aware graph neural networks.

In Thirty-Fifth AAAI Conference on Artificial Intelligence. AAAI Press, 2021. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/17283.

[40] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra. Beyond homophily in

graph neural networks: Current limitations and effective designs. In NeurIPS, 2020.

19

https://openreview.net/forum?id=7UmjRGzp-A
https://openreview.net/forum?id=7UmjRGzp-A
https://doi.org/10.24963/ijcai.2019/569
https://ojs.aaai.org/index.php/AAAI/article/view/17283
https://ojs.aaai.org/index.php/AAAI/article/view/17283

A. Comparison to RFGNN and TPTs

In RFGNN [8], truncated epath trees (TPTs) are introduced to represent the information flow

with the goal of reducing redundancy. While the motivation aligns with our approach, there

are significant differences between TPTs and 𝑘-redundant neighborhood trees and the compu-

tational properties of the techniques. In RFGNN the focus is solely on reducing redundancy in

information flow, not computation. Additionally, the definition of TPTs allows for much more

redundancy than that of 𝑘-NTs. We first introduce the concepts used by Chen et al. [8], and

then discuss differences and disadvantages in detail.

An epath is defined as a path with no repeated vertices, except the starting vertex, which is

allowed to be the ending vertex if the length of the epath is larger than 2.

Definition 4 (Truncated ePath Tree [8]). Given graph 𝐺 and 𝑣 ∈ 𝑉 (𝐺), the TPT 𝑇𝑃𝑇ℎ
𝐺,𝑣

with

height ℎ is an epath search tree obtained by running a BFS from 𝑣 , where all epaths of length

up to ℎ are accessed.

Firstly, the definition of TPTs allows for vertices to redundantly appear multiple times in a tree.

If a vertex appeared at depth 1, for example, it can still appear elsewhere in the TPT, but not

as its own descendant. In TPTs, parts of paths that differ will be repeated, without the ability

to compress them. In contrast, neighborhood trees allow for compressed representations, as

demonstrated in Appendix D. Chen et al. [8], Lemma 7 claims that TPTs are more expressive

than unfolding trees of the same height by providing two example graphs, which can also be

distinguished by 1-NTs of the same height, cf. Theorem 3. Chen et al. [8], Lemma 6 states,

that for any two nodes, if the unfolding trees of height 𝑘 differ, the TPTs of height 𝑘 differ as

well, however, this is not true. Figure 7 shows two nodes that can be distinguished by their

unfolding trees (of height ≥ 4), but not by their TPTs. The problem is the same as for NTs -

they have a maximum height, whereas unfolding trees will grow indefinitely. Hence, TPTs are

not strictly more expressive than unfolding trees on node level, for the same reason that 𝑘-NTs

are not. Unlike NTs, TPTs have several other disadvantages.

The size and running time complexity of RFGNN are very restrictive. While the term BFS in

the definition implies linear running time, the BFS has to be modified, leading to exponen-

tial running time. The compression of TPTs (or even the forest of TPTs for the vertices of a

graph) is not discussed in the publication, making preprocessing and computation much more

time-consuming. In the experimental evaluation, only TPTs up to height 3 are used due to

resource-intensity, indicating that the full expressivity of TPTs cannot be utilized in practice.

This limitation is also reflected in the experimental results in [8], where the outcomes using

RFGNN are only marginally better.

With our proposed approach, we address not only redundancy in information flow using 𝑘-

NTs, but also remove redundancy in computation by incorporating merge DAGs. This strat-

egy enables our approach to reach its full expressive potential in practice while maintaining a

reasonable running time.

20

(a) 𝐺1 (b) 𝐺2 (c) TPTs of red vertices

Figure 7: Two graphs (a), (b) in which the red vertices can be distinguished by unfolding trees,

but not by TPTs. Figure (c) shows the TPTs of the red vertices (the red vertex in the

middle of 𝐺2), which are the same.

B. Theoretical Analysis of Oversquashing in Comparison with
RFGNN

Several authors [8, 36, 34, 13, 7] developed and refined techniques to measure the influence of

a vertex 𝑣 with an initial vertex feature x𝑣 on the output h(𝑘)𝑢 of a vertex 𝑢 after layer 𝑘 by the

Jacobian 𝜕h(𝑘)𝑢 /𝜕x𝑣 . Following Chen et al. [8, Lemma 3], the relative influence of a node 𝑣 on a

node 𝑢 in an MPNN is

𝐼 (𝑣,𝑢) = E
(

𝜕h(𝑘)𝑢 /𝜕x𝑣∑
𝑤∈𝑉 𝜕h

(𝑘)
𝑢 /𝜕x𝑤

)
=

[𝐴𝑘]𝑢,𝑣∑
𝑤∈𝑉 [𝐴𝑘]𝑢,𝑤

,

where 𝐴 = 𝐴 + 𝐼 is the adjacency matrix of the graph 𝐺 with added self-loops. Note that

[𝐴𝑘]𝑢,𝑣 is the number of walks of length 𝑘 from 𝑢 to 𝑣 (and vice versa) in 𝐺 with added self-

loops. Oversquashing occurs when 𝐼 (𝑣,𝑢) becomes small, indicating that only a small fraction

of walks of length up to 𝑘 ending at 𝑢 start at 𝑣 .

This idea can easily be linked to the concept of unfolding trees underlying our work. Consider

the unfolding tree 𝐹𝑢
𝑘
of vertex 𝑢 with height 𝑘 . It follows from its construction that there is a

bijection between walks of length at most 𝑘 ending at 𝑢 in 𝐺 and paths in 𝐹𝑢
𝑘
from some node

to the root (see [17] for details on unfolding trees and walks). Therefore, pruning the unfolding

tree has an effect on walk counts and, thus, on the relative influence. Consider the example

in Figure 1 and let 𝑢 be the red vertex (upper left) and 𝑣 the yellow vertex (lower right). We

obtain a relative influence of 𝐼MPNN(𝑣,𝑢) = 1

8
for unfolding trees, and 𝐼0NT(𝑣,𝑢) = 1

4
for 0-NTs,

showing that NTs have the potential to reduce oversquashing.

We formally show that our method is less susceptible to oversquashing than MPNNs and

RFGNN [8]. Consider a vertex 𝑣 and a vertex 𝑢 with shortest-path distance of 𝑘 . To pass

information from 𝑣 to 𝑢, at least 𝑘 layers are required. Comparing the unfolding tree (MPNN),

the 0- and 1-NT (our approach) and the TPT (RFGNN), all of height 𝑘 , reveals that the vertex

𝑣 occurs in the last level only, i.e., as a leaf of the tree, and the number of occurrences of 𝑣 is

equal in all trees, since all walks and simple paths of length 𝑘 reaching 𝑣 are shortest paths.

21

Hence, the numerator of the relative influence is equal for all methods. However, since 0- and

1-NTs are subtrees of unfolding trees, and 0-NTs/1-NTs are subtrees of TPTs (they contain only

shortest paths/some simple paths, instead of all simple paths), the total number of nodes in the

trees, i.e., walks contributing to the denominator of the relevant information can be compared,

obtaining

𝐼MPNN(𝑣,𝑢) ≤ 𝐼TPT(𝑣,𝑢) ≤ 𝐼1NT(𝑣,𝑢) ≤ 𝐼0NT(𝑣,𝑢).

This theoretical analysis shows that our proposedmethod offers advantages in mitigating over-

squashing, leveraging the formalization developed in recent papers. Additionally, it establishes

a theoretical connection between the proposed approach and RFGNN, highlighting that our

method more effectively addresses the oversquashing problem.

C. The AHU Algorithm

Aho, Hopcroft and Ullman describe a linear-time algorithm for deciding whether two rooted

unordered trees are isomorphic [4, Section 3.2]. The algorithm forms the basis for our neural

tree canonization technique, as discussed in Section 4.1, and serves as a fundamental subroutine

for combining trees into a single merge DAG, as detailed in Appendix E. Here, we give a com-

plete description of the original algorithm, its extension to trees with node labels or features,

and the required modification for tree canonization.

In its original version, the algorithm solves the subtree isomorphism problem for two rooted

unordered unlabeled trees 𝑇1 and 𝑇2. Algorithm 1 shows the pseudocode of the algorithm.
4

First, the nodes in the disjoint union of the input trees𝑇1∪𝑇2 are partitioned into levels accord-
ing to their depth distinguishing leaves and internal nodes, see Figure 8. Note that the levels are

numbered in reverse order of depth, i.e., for a node 𝑣 on level 𝑖 the equality depth(𝑣) = hgt(𝑇)−𝑖
holds. The lists L∗𝑖 and L𝑖 contain all leaves and internal nodes, respectively, on level 𝑖 . The

labels cahu of the leaves are set to 0 and the tree is processed in bottom-up-fashion. In iteration

𝑖 of the for-loop, the labels of all nodes L𝑘 for all 𝑘 < 𝑖 have been computed and L𝑘 is sorted
according to them. Note that L∗𝑖 contains only nodes 𝑣 with cahu(𝑣) = 0 for all 0 ≤ 𝑖 ≤ hgt(𝑇).
Tuples ĉahu(𝑣) are generated for the nodes 𝑣 inL𝑖 by iterating overL∗𝑖−1 and thenL𝑖−1 append-
ing the label of the current node to the tuple of its parent. Each tuple contains an integer label

for each child and is in ascending order. In the next step, the nodes in L𝑖 are sorted according

to the tuples using radix sort. Then, the Relabel function assigns new integers cahu(𝑣) to all

nodes 𝑣 in L𝑖 based on their tuples. Since L𝑖 is sorted, all nodes with the same label form a

contiguous sub-list. New integers are computed by scanning the list assigning 1 to the first

entry and increasing the integer whenever the current tuple differs from the previous one. Us-

ing this approach, the Relabel function computes an injection between tuples and integers

appearing for the nodes in L𝑖 . Two trees are isomorphic if and only if their nodes yield the

4
For clarity of presentation, we adapted and simplified the textual description of the textbook [4]. In contrast to

the original description, our algorithm operates on the disjoint union of both trees instead of applying the same

operations to 𝑇1 and 𝑇2 individually.

22

3

Level

2

1

0

1

(1, 2, 3)

1

(2)

2

(0, 0)

0 0

3

(0, 0, 2)

0 2

(0, 0)

0 0

0

2

(0, 1)

0 1

(0)

0

1

(1, 2, 3)

2

(0, 1)

1

(0)

0

0

3

(0, 0, 2)

2

(0, 0)

0 0

0 0

1

(2)

2

(0, 0)

0 0

Figure 8: Two isomorphic trees𝑇1 (left) and𝑇2 (right) and the labels cahu (inside each node) and

ĉahu (right of each node) computed by the AHU algorithm.

same multiset of labels on all levels. Figure 8 shows an example of two trees that are identified

as isomorphic. The algorithm can be implemented in linear time by applying RadixSort to

sort tuples of labels from a bounded range.

As noted by Aho et al. [4], the algorithm can be extended to trees with initial integer labels in

range 1 to𝑛 with𝑛 = 𝑂 (|𝑉 (𝑇) |), by including the label of a node as the first element in its tuple.

In this case, the Relabel function assigns integers that were not used as initial labels and the

leaves in L∗𝑖 have to be sorted according to their label after initialization. The overall running

time remains linear.
5

If the labels are not integers from a bounded range, e.g., continuous

values, an initial mapping to integers is required, which can be realized by comparison-based

sorting in 𝑂 (𝑛 log𝑛).

In order to generalize the method to tree canonization, it is no longer sufficient that the re-

labeling function is injective for the tuples appearing on each level, but it has to be injective

for all possible tuples that can occur in any tree. We discuss this situation in Section 4.1 and

propose a learnable function with this property.

D. Building Compact Trees

Since unfolding trees can grow exponentially in size and our goal is to avoid redundant com-

putation, we do not build unfolding trees and 𝑘-NTs explicitly. Rather, we build DAGs that

represent them, corresponding to the merge DAG of only that tree using 𝐿 = 𝜙 . This way, the

𝑘-NTs can be generated by a simple, slightly modified BFS algorithm, and the size of 𝑘-NTs is

in 𝑂 (|𝐸 (𝐺) | · (𝑘 + 1)), which means it is linear in the size of the input graph 𝐺 .

5
A similar technique including level-wise processing, creation of tuples sorted by radix sort and relabeling has

been proposed by Shervashidze et al. [32, Section 2.1] in the context of the Weisfeiler-Leman kernel to achieve

a linear running time.

23

MLP0Xinitial DAG-MLP1

E1

X

Pooling

Non-learnable

Learnable

DAG-MLPi

Ei

X

Pooling

DAG-MLPn

En

X

Pooling

X

Pooling

MeanYpredict

Readoutn-1ReadoutiReadout0 Readoutn

MLP

Figure 9: DAG-MLP architecture with 𝑛 layers for graph-level prediction tasks.

E. Merging Trees – Algorithm

Algorithm 2 describes how to merge a set of trees {𝑇1, . . . ,𝑇𝑛} into a DAG under a labeling

function 𝐿 :
⋃
𝑖∈{1,...,𝑛} 𝑉 (𝑇𝑖) → O, where O is some arbitrary labeling. All substructures that

are isomorphic under 𝐿 are merged. For that, the canonization of all vertices is computed first.

Then each tree is merged to the DAG separately: Starting at the root 𝑟 (𝑇) of the tree that is
added, if a node with the same canonization as 𝑟 (𝑇) exists in the DAG, nothing needs to be

done. Otherwise,the subtrees rooted at the children of 𝑟 (𝑇) are added first (using the same

procedure as for 𝑟 (𝑇)), and then a new node for 𝑟 (𝑇) is added along with edges to the nodes in

the DAG that have the same canonization as the children of 𝑟 (𝑇). Note that, if some children

have the same canonization, in this step multiedges can occur. The algorithm can easily be

extended to merge DAGs by iterating over all roots in merge and adding them to the DAG.

The running time of the algorithm depends on the canonization, which can be done in time

linear in the numbers of nodes (see Appendix C), and the time needed to add the trees to the

DAG. Since we add each node at most once, and can check whether a canonization is already

present in the DAG in constant time, this also only needs time linear in the number of tree

nodes.

F. DAG-MLP Architecture for Graph Classification

Figure 9 shows an example of the architecture when using unfolding or neighborhood trees

of height up to 𝑛 for graph classification requiring 𝑛 DAG-MLP layers. The vertex features

are initially transformed into embedding with fixed dimension using MLP0. Messages are then

propagated using the DAG from height 0 to 1 (E1), which corresponds to layer 1. This process

is repeated for 𝑛 layers, where the 𝑖th step computes embeddings for nodes of height 𝑖 in the

DAG. After 𝑛 layers, all node embeddings in the DAG (𝑋) have been updated. Using readouts,

we extract the embeddings of each vertex from 𝑘-NTs of different heights within the DAG.

These extracted embeddings correspond to the embeddings of different layers. A pooling op-

eration is then applied to the output of each layer, and the pooled outputs are averaged. These

averaged outputs are passed through a final MLP, transforming them into probabilities for class

prediction.

24

Table 6: Average accuracy of DAG-MLP using 5-fold cross-validation on CSL [28], evaluated

with varying parameters 𝑘 and 𝑙 .

𝑘-NTs 1 layer 2 layers 3 layers 4 layers 5 layers 6 layers

0-NTs 10.0 ± 0.0 20.0 ± 0.0 40.0 ± 0.0 70.0 ± 0.0 84.0 ± 4.9 100.0 ± 0.0

1-NTs 10.0 ± 0.0 10.0 ± 0.0 30.0 ± 0.0 48.0 ± 4.0 78.0 ± 9.8 100.0 ± 0.0

2-NTs - 10.0 ± 0.0 16.0 ± 4.9 20.0 ± 12.6 50.0 ± 8.9 80.0 ± 12.6
3-NTs - - 10.0 ± 0.0 10.0 ± 0.0 20.0 ± 12.6 38.0 ± 14.7
4-NTs - - - 10.0 ± 0.0 16.0 ± 8.0 34.0 ± 12.0
5-NTs - - - - 10.0 ± 0.0 10.0 ± 0.0
6-NTs - - - - - 10.0 ± 0.0

Table 7: Classification accuracy for 10-folds (± standard deviation) on MUTAG comparing

DAG-MLP that combines layers of different heights to DAG-MLP that only uses layers

at a fixed height.

𝑘-NTs Combine Heights Fixed Single-Height
1 layer 2 layers 3 layers 1 layer 2 layers 3 layers

0-NTs 84.6 ± 6.2 86.7 ± 5.3 86.9 ± 6.0 85.3 ± 6.3 89.0 ± 4.7 87.2 ± 5.1

1-NTs 84.9 ± 6.0 83.3 ± 7.3 88.6 ± 6.7 85.8 ± 6.0 88.8 ± 4.4 90.4 ± 5.1

G. Additional Experiments

Following the same experimental setup as in Table 3, Table 6 shows the accuracy with varying

parameters 𝑘 and 𝑙 . Since the expressive capabilities are the same as those of GIN when the

number of layers 𝑙 equals the redundancy parameter 𝑘 , all results with 𝑙 = 𝑘 are not better than

guessing.

Table 7 shows a comparison of 0- or 1-NTs, with combined heights and fixed single-height,

for 10-fold cross-validation on MUTAG. The results as well as those shown in Table 8 indicate

that using multiple different tree heights does not improve the generalization capabilities of

the model.

Figure 10 shows box plot charts for the accuracy obtained in Table 4. Due to the use of 10-

fold cross-validation and the random initialization of the MLPs, the results tend to have high

variance. For all datasets, the accuracy of DAG-MLP is statistically within the same boundaries

as those of the best related methods reported in Table 4.

H. Datasets

We provide information about the datasets used in the experimental evaluation. Table 9 pro-

vides an overview of the datasets, along with their corresponding characteristics.

25

IM
D

B-
B

(0
-N

Ts
)

IM
D

B-
B

(1
-N

Ts
)

IM
D

B-
M

 (
0-

N
Ts

)

IM
D

B-
M

 (
1-

N
Ts

)

EN
ZY

M
ES

 (
0-

N
Ts

)

EN
ZY

M
ES

 (
1-

N
Ts

)

PR
O

TE
IN

 (
0-

N
Ts

)

PR
O

TE
IN

 (
1-

N
Ts

)

Dataset Name

40

50

60

70

80
Ac

cu
ra

cy
 (

%
)

(a) Fixed Single-Height

IM
D

B-
B

(0
-N

Ts
)

IM
D

B-
B

(1
-N

Ts
)

IM
D

B-
M

 (
0-

N
Ts

)

IM
D

B-
M

 (
1-

N
Ts

)

EN
ZY

M
ES

 (
0-

N
Ts

)

EN
ZY

M
ES

 (
1-

N
Ts

)

PR
O

TE
IN

 (
0-

N
Ts

)

PR
O

TE
IN

 (
1-

N
Ts

)

Dataset Name

40

50

60

70

80

Ac
cu

ra
cy

 (
%

)
(b) Combine Heights

Figure 10: Graph classification test accuracy box plot over three runs of 10-fold cross-validation

of the DAG-MLP on the datasets from the TUDataset.

Synthetic datasets. (1) EXP-Classification (EXP-Class) and EXP-Isomorphic (EXP-Iso) eval-

uate GNN expressivity, featuring graph pairs with varying SAT outcomes and 1-WL distin-

guishability [1]. EXP-Class extends EXP-Iso by including 50% “corrupted” data, making the

learning task more challenging. (2) Circulant Skip Links (CSL) graphs [28] are highly symmet-

ric, 4-regular graphs that consist of a cycle with additional ’skip links.’ Despite their symmetry,

these graphs present a challenge for the WL test and GNNs based onWL, as these methods fail

to distinguish between non-isomorphic instances of such graphs.

Real-world datasets. We examine Texas, Wisconsin, Cornell, Cora, CiteSeer, PubMed, MU-

TAG, IMDB-B, IMDB-M, ENZYMES, and PROTEINS from [9, 24, 11, 31, 27]. Texas, Wisconsin,

and Cornell are web page datasets, each representing a different university’s web domain. Cora

dataset comprises scientific publications classified into seven categories, making it a standard

benchmark for citation network studies. CiteSeer is another citation network dataset, including

academic papers for document classification. The PubMed dataset, derived from biomedical lit-

erature, leveraging its rich metadata encompassing abstracts, citations, and other bibliometric

information. IMDB-B and IMDB-M are movie network datasets for binary and multi-class clas-

sification, respectively. ENZYMES has six protein graph classes, while PROTEINS represents a

binary classification task from bioinformatics.

26

1 2 3
Number of Layers

0

1

2

3

4
Ti

m
e

(s
ec

on
ds

)
ENZYMES

0-NT
1-NT

1 2 3 5
Number of Layers

0

10

20

30

40

50

60

Ti
m

e
(s

ec
on

ds
)

IMDB-B
0-NT
1-NT

1 2 3 5
Number of Layers

0

5

10

15

20

25

30

Ti
m

e
(s

ec
on

ds
)

IMDB-M
0-NT
1-NT

1 2 3 5
Number of Layers

0

10

20

30

40

50

60

70

Ti
m

e
(s

ec
on

ds
)

PROTEINS
0-NT
1-NT

Figure 11: Running time for building the 0- and 1-redundant NTs.

I. Running Time

The running time for generating and merging 0- and 1-NTs with different layers on different

datasets is presented in Figure 11. We employ a parallelized algorithm to construct the NTs,

where each graph is also processed in parallel.

J. Hyper-Parameters

The hyper-parameters used for the synthetic datasets can be seen in Table 10. The hyper-

parameters for the TUDataset experiments were chosen as follows: The batch size for training

is set to 64. Learning rate (LR) is set to 0.001. The classifier trained for 500 epochs. The

dimension of the embedding is set to 128. The optimizer used is Adam, and the scheduler is set

to StepLR with a step size of 100 and a gamma value of 0.5. The aggregation method (pooling)

is defined as mean and a dropout rate of 0.5 is specified. Early stopping is configured with a

patience of 250 epochs and uses accuracy instead of loss. The number of layers for each dataset

is set as in Table 11, and shuffling of the dataset is enabled.

27

K. Hardware

The hardware configuration consists of dual AMD 7252 CPUs, each with 8 cores, and two

NVIDIA A40 GPUs. The system is supplemented with 256 GB of RAM. Each NVIDIA A40 GPU

comes with 10,752 CUDA cores and a clock frequency of 1.305 GHz. The GPUs have 48 GB

of memory and a bandwidth of 696 GB/s, operating at a Thermal Design Power (TDP) of 300

Watts. In terms of performance, the GPUs can deliver 37,400 GFLOPs in single-precision (FP32)

and 1,169 GFLOPs in double-precision (FP64) computations.

28

Algorithm 1 AHU algorithm for tree isomorphism

function Relabel(nodes L, labels ĉahu, cahu) ⊲ Replaces tuple labels ĉahu(𝑣) by integer

labels cahu(𝑣) for the nodes 𝑣 in the list L = (𝑙1, 𝑙2, . . . , 𝑙𝑁) sorted according to ĉahu.

prev← ĉahu(𝑙1)
𝑘 ← 1

for 𝑖 ← 1 to 𝑁 do
if ĉahu(𝑙𝑖) = prev then

cahu(𝑙𝑖) ← 𝑘

else
𝑘 ← 𝑘 + 1 ⊲ Next integer label

cahu(𝑙𝑖) ← 𝑘

prev← ĉahu(𝑙𝑖)
return cahu

function TreeIsmorphism(𝑇1,𝑇2)

𝑇 ← 𝑇1 ∪𝑇2
𝐻 ← hgt(𝑇)
for 𝑖 ← 0 to 𝐻 do
L∗𝑖 ← {𝑣 ∈ 𝑉 (𝑇) | depth(𝑣) = 𝐻 − 𝑖 ∧ chi(𝑣) = ∅} ⊲ Leaves with the same depth

L𝑖 ← {𝑣 ∈ 𝑉 (𝑇) | depth(𝑣) = 𝐻 − 𝑖 ∧ chi(𝑣) ≠ ∅} ⊲ Non-leaves with the same depth

for each leaf 𝑣 ∈ 𝑉 (𝑇) do
cahu(𝑣) ← 0 ⊲ Initialize labels for leaves

for 𝑖 ← 1 to 𝐻 do
for each 𝑙 in ordered list L∗𝑖−1 + L𝑖−1 do ⊲ Iterate over concatenated ordered list

Append cahu(𝑙) to the tuple ĉahu(𝑝 (𝑙)) ⊲ Pass label of previous level upwards

L𝑖 ←RadixSort(L𝑖 , ĉahu) ⊲ Sort list according to their tuples

cahu ←Relabel(L𝑖 , cahu, ĉahu)
if {{cahu(𝑣) | (L∗𝑖 ∪ L𝑖) ∩𝑉 (𝑇1)}} ≠ {{cahu(𝑣) | (L∗𝑖 ∪ L𝑖) ∩𝑉 (𝑇2)}} then

return false
return true

29

Algorithm 2Merging trees

function merge(set of trees T , labeling 𝐿) ⊲ merges T into a DAG 𝐷

𝐷 ← empty DAG ⊲ start with empty DAG

initialize 𝐷.𝑐𝑎𝑛_𝑚𝑎𝑝 as an empty map ⊲ maps canonization to node in DAG

for each 𝑇 ∈ T do
compute canonization 𝑐𝑎𝑛(𝑣) for 𝑣 ∈ 𝑉 (𝑇) under 𝐿
add(𝐷 , 𝑇 , 𝑟 (𝑇), 𝐿) ⊲ add tree, starting at root

return 𝐷

function add(DAG 𝐷 , tree 𝑇 , vertex 𝑣 , labeling 𝐿) ⊲ adds substructure rooted at 𝑣 ∈ 𝑉 (𝑇)
to 𝐷

if 𝑐𝑎𝑛(𝑣) ∈ 𝐷.𝑐𝑎𝑛_𝑚𝑎𝑝 then ⊲ node (and substructure) already present in 𝐷

return
for each 𝑐 ∈ chi(𝑣) do ⊲ add all children first (if necessary)

add(𝐷 , 𝑇 , 𝑐 , 𝐿)

add new node 𝑣2 with 𝐿(𝑣2) = 𝐿(𝑣) to 𝐷 ⊲ add new node

set 𝑐𝑎𝑛(𝑣2) = 𝑐𝑎𝑛(𝑣) and 𝐷.𝑐𝑎𝑛_𝑚𝑎𝑝 (𝑐𝑎𝑛(𝑣2)) = 𝑣2
for each 𝑐 ∈ chi(𝑣) do

if edge exists from 𝐷.𝑐𝑎𝑛_𝑚𝑎𝑝 (𝑐𝑎𝑛(𝑐)) to 𝑣2 then
increase multiplicity of edge by 1 ⊲ a sibling had the same canonization

else
add edge from 𝐷.𝑐𝑎𝑛_𝑚𝑎𝑝 (𝑐𝑎𝑛(𝑐)) to 𝑣2 ⊲ add edges from children to new node

30

Table 8: Performance comparison of GIN and DAG-MLP architectures with different combina-

tion strategies between layers across datasets. The best result for each method on each

dataset is marked in bold.

Model Texas Wisconsin Cornell

GIN (l=2) - Without Combine 61.89 ± 7.0 57.65 ± 5.6 46.22 ± 6.0

GIN (l=2) - Sum Combine 69.46 ± 7.3 68.04 ± 6.0 58.11 ± 5.8

GIN (l=2) - Mean Combine 70.81 ± 7.1 68.82 ± 5.8 54.86 ± 8.2

GIN (l=2) - Concat Combine 73.78 ± 6.0 69.22 ± 6.7 60.81 ± 8.5

GIN (l=3) - Without Combine 67.03 ± 7.2 58.82 ± 6.5 43.51 ± 7.3

GIN (l=3) - Sum Combine 67.03 ± 5.0 66.08 ± 5.8 50.81 ± 7.8

GIN (l=3) - Mean Combine 64.86 ± 6.6 63.92 ± 6.5 52.97 ± 9.5

GIN (l=3) - Concat Combine 72.70 ± 4.6 71.76 ± 5.1 59.73 ± 11.3

GIN (l=4) - Without Combine 67.57 ± 5.5 59.41 ± 3.8 42.70 ± 5.0

GIN (l=4) - Sum Combine 66.49 ± 8.4 63.14 ± 6.2 52.16 ± 10.1

GIN (l=4) - Mean Combine 70.54 ± 4.6 63.73 ± 8.9 49.73 ± 9.8

GIN (l=4) - Concat Combine 69.73 ± 6.1 68.63 ± 7.9 57.30 ± 7.7

GIN (l=5) - Without Combine 62.70 ± 6.8 52.16 ± 8.0 44.86 ± 7.0

GIN (l=5) - Sum Combine 67.57 ± 6.6 60.59 ± 6.4 47.03 ± 8.4

GIN (l=5) - Mean Combine 70.54 ± 6.7 57.84 ± 7.7 48.11 ± 10.9

GIN (l=5) - Concat Combine 73.24 ± 4.6 66.27 ± 3.7 51.89 ± 7.7

DAGMLP (l=2; 0-NTs) - Without Combine 74.59 ± 4.7 65.10 ± 6.6 60.81 ± 4.6

DAGMLP (l=2; 0-NTs) - Sum Combine 85.68 ± 4.8 77.84 ± 5.3 68.38 ± 4.5

DAGMLP (l=2; 0-NTs) - Mean Combine 77.03 ± 6.3 76.67 ± 3.7 65.95 ± 5.7

DAGMLP (l=2; 0-NTs) - Concat Combine 81.35 ± 7.1 79.41 ± 4.6 68.92 ± 5.4

DAGMLP (l=3; 0-NTs) - Without Combine 74.86 ± 8.8 66.08 ± 4.3 57.84 ± 2.5

DAGMLP (l=3; 0-NTs) - Sum Combine 78.11 ± 6.6 76.67 ± 4.5 64.59 ± 5.9

DAGMLP (l=3; 0-NTs) - MEAN Combine 77.57 ± 5.1 74.31 ± 5.1 63.24 ± 4.0

DAGMLP (l=3; 0-NTs) - Concat Combine 80.27 ± 8.1 78.82 ± 5.2 64.05 ± 5.8

DAGMLP (l=2; 1-NTs) - Without Combine 65.68 ± 5.4 64.51 ± 7.4 55.95 ± 6.7

DAGMLP (l=2; 1-NTs) - Sum Combine 80.54 ± 6.0 79.22 ± 6.3 67.03 ± 6.7

DAGMLP (l=2; 1-NTs) - Mean Combine 78.38 ± 5.7 79.61 ± 3.9 66.49 ± 5.0

DAGMLP (l=2; 1-NTs) - Concat Combine 79.73 ± 3.7 79.61 ± 5.1 69.19 ± 4.6

DAGMLP (l=3; 1-NTs) - Without Combine 65.95 ± 6.3 60.98 ± 7.9 54.59 ± 6.3

DAGMLP (l=3; 1-NTs) - Sum Combine 78.38 ± 6.2 79.61 ± 5.2 64.59 ± 5.0

DAGMLP (l=3; 1-NTs) - Mean Combine 73.51 ± 5.4 75.29 ± 4.9 66.49 ± 4.9

DAGMLP (l=3; 1-NTs) - Concat Combine 80.27 ± 6.0 78.63 ± 4.8 67.03 ± 2.6

31

Table 9: Summary of characteristics for the synthetic datasets [28, 1] and TUDatasets [27]. The

table provides information on the dataset name, number of graphs (|G|), average num-

ber of nodes (|𝑽 |), average number of edges (|𝑬 |), and average diameter (𝑫) for each

dataset.

Dataset |G| |𝑽 | |𝑬 | 𝑫

CSL 150 41.0 164.0 6.0

EXP-Class 1200 55.8 139.6 12.6

EXP-Iso 1200 44.4 110.2 8.5

MUTAG 188 17.93 39.59 8.22

IMDB-B 1000 19.8 193.1 1.9

IMDB-M 1500 13.0 131.9 1.5

ENZYMES 600 32.6 124.3 10.9

PROTEINS 1113 39.1 145.6 11.6

Texas 1 183 325 8

Wisconsin 1 251 515 8

Cornell 1 183 298 8

Cora 1 2708 10556 19

CiteSeer 1 3327 9104 28

PubMed 1 19717 88648 18

Table 10: Synthetic dataset hyper-parameter configuration details.

Dataset Task Embedding Target Layers Batch Size Epochs LR

EXP-Class Classification 64 10 15 32 200 10
−3

EXP-Iso Isomorphism Test 1 1 6 1 - -

CSL Classification 64 10 6 32 200 10
−3

Table 11: TUDatasets layer configuration details.

Dataset IMDB-B IMDB-M ENZYMES PROTEINS

Layers 5, 3, 2 5, 3, 2 3, 2 5, 3, 2

32

	Introduction
	Related Work
	Preliminaries
	Non-Redundant Graph Neural Networks
	Removing Information Redundancy
	Removing Computational Redundancy
	Non-Redundant Neural Architecture (DAG-MLP)
	Expressivity of k-NTs
	Computational Complexity, Expressivity and Oversquashing

	Experimental Evaluation
	Conclusion
	Comparison to RFGNN and TPTs
	Theoretical Analysis of Oversquashing in Comparison with RFGNN
	The AHU Algorithm
	Building Compact Trees
	Merging Trees – Algorithm
	DAG-MLP Architecture for Graph Classification
	Additional Experiments
	Datasets
	Running Time
	Hyper-Parameters
	Hardware

