
Published as a conference paper at ICLR 2024

LEMUR: INTEGRATING LARGE LANGUAGE MODELS
IN AUTOMATED PROGRAM VERIFICATION

Haoze Wu∗, Clark Barrett
Department of Computer Science
Stanford University
{haozewu, barrett}@stanford.edu

Nina Narodytska
VMware Research
VMware by Broadcom
n.narodytska@gmail.com

ABSTRACT

The demonstrated code-understanding capability of LLMs raises the question of
whether they can be used for automated program verification, a task that demands
high-level abstract reasoning about program properties that is challenging for veri-
fication tools. We propose a general methodology to combine the power of LLMs
and automated reasoners for automated program verification. We formally de-
scribe this methodology as a set of transition rules and prove its soundness. We
instantiate the calculus as a sound automated verification procedure and demon-
strate practical improvements on a set of synthetic and competition benchmarks.

1 INTRODUCTION

AI-powered language models are being routinely used to help developers. Examples include pro-
gram synthesis from natural language descriptions by GPT-4 (OpenAI, 2023) or Github Copi-
lot (Chen et al., 2021; GitHub, 2021), and repairing code (White et al., 2019), among others. These
models have shown impressive results in generating correct code in many programming languages.

An important research question is whether modern AI models are capable of understanding the
logic behind the programs they analyze. Recently, several approaches have been proposed to com-
bine the strengths of formal verification and Large Language Models (LLMs) that demonstrate such
capabilities. For example, Pei et al. (2023) made an important step in this direction by investigat-
ing whether LLMs can generate program properties, namely, program invariants, which remains a
crucial and challenging task for automated program verification (Clarke et al., 2018). The authors
demonstrated that LLMs are effective in generating program invariants on a set of synthetic Java
programs. Another example is the recent work by Charalambous et al. (2023), who demonstrated
that LLM models can be used to repair vulnerabilities in code, given examples of incorrect behav-
ior. They provided compelling evidence of the complementary strengths of LLMs, which serve as a
generator for code repair snippets, and formal techniques, which are used to check the correctness
of the generated code. While these approaches show promise in program analysis tasks, they do not
provide a formalization of the interaction between LLMs and formal verifiers, they require manual
effort, or they are limited to the invariant generation process as a stand-alone procedure.

In this work, we propose a novel LLM-powered framework, LEMUR, for automated program veri-
fication tasks. Our key idea is to combine LLMs’ ability to perform abstract high-level reasoning
and automated reasoners’ ability to perform precise low-level reasoning. Specifically, LLMs are em-
ployed to propose program invariants in the form of sub-goals, which are then checked by automated
reasoners. This transforms the program verification tasks into a series of deductive steps suggested
by LLMs and subsequently validated by automated reasoners. Our main contributions are:

• a novel framework for combining LLMs and automated reasoners for program verification;
• a presentation of LEMUR as a proof system and a proof of its soundness, which to the best of our

knowledge, is the first formalization of such a hybrid approach;
• an instantiation of the LEMUR calculus that gives a sound and terminating algorithm;
• an implementation of the proposed framework (using OpenAI’s GPT models);

∗This work was mostly done during an internship at VMware Research.

1

ar
X

iv
:2

31
0.

04
87

0v
5

 [
cs

.F
L

]
 2

5
A

pr
 2

02
4

Published as a conference paper at ICLR 2024

• an experimental evaluation of LEMUR on two sets of benchmarks that demonstrates its efficiency
compared with both existing AI-powered and conventional verification tools.

We highlight that LEMUR is the first fully automated framework combining LLMs and reasoners.

2 DEFINITIONS

Given a program P : Prog, a reachability property, or simply property, is a tuple p = ⟨ϕ, l⟩, where
ϕ : Pred is a Boolean predicate of the program state and l : N is a program line. The negation of p,
denoted ¬p, is defined as ⟨¬ϕ, l⟩. Next we introduce several useful definitions and their properties.
Definition 2.1. A property p = ⟨ϕ, l⟩ is an invariant on P , denoted Inv(P, p), iff p holds (i.e., ϕ
always evaluates to true at line l) for all possible executions of the program P .
Example 2.1. Consider the simple program P in Figure 2 (the first frame, top row). P instantiates
an unsigned 32-bit integer variable x to 0 and increases its value by 4 on each loop iteration. A
property p = ⟨ϕ, l⟩ is specified on the 4th line, so ϕ = (x != 30) and l = 4 for this property. It is
easy to see that p is an invariant as x will never be divisible by 3, for example. ■

An assumption q = ⟨ϕ, l⟩ is a condition that is assumed in a program.
Definition 2.2. An assumption q = ⟨ϕ, l⟩ modifies a program P as follows:

1. if ϕ holds at line l during some execution of P , then P continues execution without changes;
2. if ϕ does not hold at line l during some execution of P , then that execution terminates at l.

We use P ′ = Asm(P, q) to denote the modification of P with the assumption q. An assumption can
itself be an invariant. We now introduce a special notion of an implication.
Definition 2.3. Let P be a program, and p, q be properties on P . We say that q implies p with
respect to P , denoted q −→

P
p, iff p is an invariant on Asm(P, q).

Example 2.2. Consider the program P in Figure 2 and an assumption q = ⟨ϕ = (x%4==1), l = 3⟩,
with P ′ = Asm(P, q) (depicted in the first frame in the bottom row of Figure 2). To see the difference
between P and P ′, observe that the loop is executed only once in P ′. This is because x=0 when
entering the loop, so (x%4)!=1, which is the formula ϕ in q, does not hold, and therefore, P ′

terminates. If we consider an alternative assumption q′ = ⟨ϕ = (x%4==0), l = 3⟩ (depicted in
the fourth frame at the bottom of Figure 2), we can see that its predicate ϕ holds for all executions.
Hence, q′ is an invariant for P . Finally, we can see q′ −→

P
p, where p is from Example 2.1. ■

The following propositions follow from the definitions above.
Proposition 2.1. Let P be a program, and p, q be properties on P:

• The property p is an invariant on P if q is an invariant on P and q implies p with respect
to P . More formally, (Inv(P, q) ∧ q −→

P
p) ⇒ Inv(P, p).

• The property p is not an invariant on P if the property p is not an invariant on P ′ =
Asm(P, q). More formally, ¬Inv(P ′, p) ⇒ ¬Inv(P, p) .

Proposition 2.2. For any property p on a program P , p −→
P
p.

Proposition 2.3. For any properties p, q, r on a program P , if p −→
P
q and q −→

P
r, then p −→

P
r.

Note that it is possible that neither a property p nor its negation ¬p is an invariant on a program.
Example 2.3. Consider again our example from Example 2.1 and two properties at line 3: p =
⟨ϕ = (x%8==4), l = 3⟩ and p′ = ⟨ϕ′ = (x%8!=4), l = 3⟩. Neither p nor p′ is an invariant on P .
On the first loop iteration, we have that x=0 before line 3, so ϕ′ holds and ϕ does not at line 3. But
on the second loop iteration, we have that x=4 before line 3, so ϕ holds and ϕ′ does not. ■
Definition 2.4. A property p = ⟨ϕ, l⟩ is stable for P , denoted S(P, p), if, for each execution of the
program, either ϕ always evaluates to true at line l or ϕ always evaluates to false at line l.
Example 2.4. Consider an example to illustrate the definition of stability.

Line 1: uint32_t x=rand();
Line 2: assert(x==1);

The property in Line 2 is stable, as it always evaluates to true or false within a single execution.■

2

Published as a conference paper at ICLR 2024

An invariant must be stable, but a property that is not an invariant might still be stable. For example,
any property on a program without loops is stable. If p is stable, then ¬p is also stable. Lemma 2.1
exploits stable invariants (see a proof in App. B).
Lemma 2.1. Consider a program P , two properties p, q on P , and a program P ′ = Asm(P, q).
The property p is an invariant on P if: (i) q is stable for P; (ii) q implies p with respect to P; and
(iii) ¬q implies p with respect to P . More formally: S(P, q)∧ (q −→

P
p)∧ (¬q −→

P
p) ⇒ Inv(P, p).

Assume we have a verifier V : Prog×P(Prop) × Prop 7→ {TRUE, FALSE,UNKNOWN}, which
takes as inputs a program P , a set of assumptions A and a property p, and checks whether A
implies p. More precisely, given set of assumptions A = {q1, . . . , qn}, we construct a new program
P ′ = Asm(Asm((. . . ,Asm(P, q1)), qn−1), qn), and the verifier checks if p is an invariant on this
program. Hence, a statement that A implies p on P means that p is an invariant on P ′. We further
assume that V is sound, meaning if V returns TRUE, then A implies p, and if V returns FALSE, then
A does not imply p. Note that A can be empty, in which case the verifier just checks whether p is
an invariant. When the verifier V returns TRUE, we say p is proven; and when V returns FALSE, we
say the property is falsified. V is incomplete, meaning that V can return UNKNOWN.

In practice, V can be instantiated with an automated program verifier such as CBMC (Kroening &
Tautschnig, 2014), ESBMC (Gadelha et al., 2018), or UAUTOMIZER (Heizmann et al., 2013). We
provide an overview of the main techniques employed by these tools in App. A and note here that a
crucial challenge shared across existing verifiers is the automatic decomposition of a verification task
into smaller, more manageable sub-tasks. This decomposition requires high-level reasoning that is
difficult to automate using conventional formal methods, but plausibly could be performed by LLMs,
with their documented code-understanding capability. However, it is crucial to preserve soundness
when LLMs are used to automatically perform this high-level reasoning in program verification
tasks.

3 LEMUR: INTEGRATING LLMS IN PROGRAM VERIFICATION

We present LEMUR, a proof calculus that combines LLMs and automated reasoners to prove proper-
ties of programs. The calculus operates over a configuration, which is either one of the distinguished
symbols {SUCCESS, FAIL} or a tuple ⟨P,A,M⟩, where P is a program, A is either ∅ or a singleton
representing the assumption, and M is a list of properties referred to as proof goals. M itself is
referred to as a trail. The last element of M represents the current property to prove. We use the
notation : : to denote a concatenation of two lists. In particular, M = M′ : : p means that M is a
concatenation of a trail M′ and a property p, where p is the last element of M. The rules describe
the conditions under which a certain configuration can transform into another configuration. In this
calculus, deciding whether Inv(P, p) holds reduces to finding a sequence of valid rule applications
from the starting configuration ⟨P,∅, [p]⟩ to either SUCCESS or FAIL.

Our calculus performs oracle calls to LLMs to propose new properties and revise them. The oracle
Opropose : Prog×Prop 7→ P(Prop) proposes new properties, given a program and the current proof
goal as inputs. A key hypothesis here is that LLMs are capable of generating new properties that
are likely to (i) be invariants, and (ii) imply the proof goal given in a prompt. We will discuss
strategies to generate prompts in Section 4. Importantly, properties generated by an LLM are treated
as assumptions until we can prove that they are invariants of the original program. The oracle Orepair
revises previously proposed properties, e.g., if we determine that a property q previously produced
by Opropose does not hold or does not imply the current proof goal. In this case, we request an LLM to
repair q. We have Orepair : Prog×Prop×Prop×{FALSE,UNKNOWN} 7→ P(Prop), whose inputs
comprise a program, two properties, and a solver return value. The first property is the current proof
goal, and the second property q is an assumption previously proposed by oracles. The output of
Orepair is a new set of properties. In practice, we implement it with a prompt to an LLM to either
correct or strengthen q (see Section 4). Finally, the calculus performs an external call to a verifier V
to check whether a property holds.

The proof rules of LEMUR are shown in Fig. 1. Each rule defines a set of conditions that must hold
for the rule to be applicable. Note again that these conditions permit invocations of LLMs and/or
verifiers. The rules within the calculus can be partitioned into four groups.

The first group contains rules that are responsible for generating new proof goals for specific con-
figurations. These rules are Propose, Repair 1, and Repair 2. The Propose rule states that if the

3

Published as a conference paper at ICLR 2024

M = M′ : : p V(P,A, p) = UNKNOWN q ∈ Opropose(P, p)
(Propose)

P,A,M =⇒ P, {q},M

A = {q} M = M′ : : p V(P,A, p) = TRUE
(Decide)P,A,M =⇒ P,∅,M : : q

M = M′ : : p : : q V(P,A, q) ̸= TRUE q′ ∈ Opropose(P, p)
(Backtrack)

P,A,M =⇒ P, {q′}, M′ : : p

A = {q} M = M′ : : p V(P,A, p) = UNKNOWN q′ ∈ Orepair(P, p, q, UNKNOWN)
(Repair 1)

P,A,M =⇒ P, {q′}, M′ : : p

A = ∅ M = M′ : : p : : q V(P,A, q) = FALSE q′ ∈ Orepair(P, p, q, FALSE)
(Repair 2)

P,A,M =⇒ P, {q′}, M′ : : p

A = ∅ M = M′ : : p V(P,A, p) = TRUE
(Success 1)P,A,M =⇒ SUCCESS

A = ∅ M = M′ : : p : : q S(P, q) V(P, {¬q}, p) = TRUE
(Success 2)P,A,M =⇒ SUCCESS

M = [p] V(P,A, p) = FALSE
(Fail)P,A,M =⇒ FAIL

Figure 1: Deductive rules of the LEMUR calculus.

verifier is unable to prove or disprove the current proof goal p, we can invoke the Opropose oracle
to obtain a property q and update A to be {q}. The Repair 1 rule can be applied when the current
assumption q is not sufficient for the verifier to prove the current proof goal p. In this case, we
can use the oracle Orepair to propose ways to strengthen q and choose one of them, q’, as the new
assumption. The Repair 2 rule can also be applied when q is already in the trail but is falsified by
the verifier V . In this case, we can use Orepair to repair q and update A accordingly.

The second group contains only the Decide rule. This rule allows an assumption q to become a new
goal (i.e., be appended to M) if the verifier V is able to prove that q implies the current goal.

The third group allows LEMUR to recover from faulty assumptions. The Backtrack rule is applicable
when there are at least two elements in the trail and the verifier cannot prove the current proof goal.
It allows LEMUR to revert to the previous proof goal (the second to last property in the trail M)
and pick a different assumption suggested by Opropose. Note that Backtrack might not be the only
applicable rule. For example, Repair 1 or Repair 2 could also be applicable. In practice, we use a
strategy to decide between multiple applicable rules. This is discussed in Sec. 4.

The final group specifies three termination conditions for the calculus. The Success 1 rule states that
whenever the assumption is empty and the verifier is able to prove the current proof goal (i.e., the
last property p in the trail M), we can transition into the SUCCESS state. Note that if the verifier can
prove the original property, then this rule can be directly applied to the starting configuration to reach
SUCCESS. Success 2 states that if the last two elements of the trail M are p and q, the current proof
goal q := ⟨ϕ, l⟩ is stable (as defined in Sec. 2), and the verifier is also able to also prove p under the
assumption⟨¬ϕ, l⟩, then p is an invariant (as a consequence of Lemma 2.1), and we can transition to
SUCCESS. The Success 2 rule constitutes a way to utilize an incorrect sub-goal q proposed by the
LLM-based oracles to decompose the verification task: we separately reason about the cases when
q holds and when it does not hold. Finally, if the verifier V proves that the original property is not
an invariant, whether under an assumption or not, then we transition to the FAIL state using Fail.

Note that the program P remains unchanged in every rule. We keep it as part of the state for two
reasons. First, it is convenient for keeping the calculus self-contained, as P is an input to the verifiers
and the oracles. Second, in the future, it might be possible to augment the calculus with rules that
update P , by, for example, rewriting the program using LLMs in an invariant-preserving manner.

We state the following soundness properties about LEMUR. The proof is presented in App. C.1.

4

Published as a conference paper at ICLR 2024

uint32_t x=0;
while (rand()){
x+=4;
assert(x!=30);
}

V : UNKNOWN

Propose

Opropose
uint32_t x=0;
while (rand()){
assume(x%2==0);
x+=4;
assert(x!=30);
}

V : UNKNOWN

Rep. 1

Orepair
uint32_t x=0;
while (rand()){
assume(x%4==0);
x+=4;
assert(x!=30);
}

V : TRUE

Decide

uint32_t x=0;
while (rand()){
assert(x%4==0);
x+=4;
}

V : TRUE

Succ. 1

uint32_t x=0;
while (rand()){
assume(x%4==1);
x+=4;
assert(x!=30);
}

V : TRUE

Decide

uint32_t x=0;
while (rand()){
assert(x%4==1);
x+=4;
}

V : FALSE

Backtrack

Opropose
uint32_t x=0;
while (rand()){
assume(x%4==0);
x+=4;
assert(x!=30);
}

V : TRUE

...

Propose

O
propose...

x+=4;
assert(x!=30);
...
List invariants that prove
the assertion. Your answer
should look like
assert(...) //Line number

assert(x % 2 == 0); //Line 2
assert(x % 4 == 1); //Line 2

Figure 2: A running example of executing the LEMUR calculus.

Theorem 3.1 (Soundness). Given a property p0 and a program P , if SUCCESS is reached by a
sequence of valid rule applications starting from ⟨P,∅, [p0]⟩, then p is an invariant on P .

Theorem 3.2 (Soundness 2). Given a property p0 and a program P , if FAIL is reached by a sequence
of valid rule applications starting from ⟨P,∅, [p0]⟩, then p is not an invariant on P .

Example 3.1. To provide more intuition about the proof system and to motivate the design choices
when instantiating LEMUR, we consider again our running example. Figure 2 illustrates how
LEMUR can be used to verify properties in practice. In Figure 2 each frame represents a state
of the program. Transitions between states are depicted by arrows, with each arrow marked with the
rule applied to execute this transition. In this example, our goal is to prove the property x!=30 in
a while loop that keeps adding 4 to an unsigned 32-bit integer variable x. We note that this partic-
ular verification task is adapted from a similar one in the SV-COMP competition.1 While seemingly
trivial, during the competition, 19 out of the 24 participating tools (including the overall winner of
the competition UAUTOMIZER) were not able to solve this benchmark.

The initial configuration is ⟨P,∅, [p])⟩, where P is the given program and p = ⟨x!=30, 3⟩.2 Sup-
pose the verifier V is unable to solve this problem and returns UNKNOWN. In this case, we need to
generate a new proof goal, so the only rule we can apply is Propose. To do so, we invoke the LLM-
based oracle Opropose to obtain a set of new properties that are potentially themselves invariants
and might help prove the property. An example prompt is given in the bottom left of Figure 2. Note
that this is not the exact prompt we found most useful, but we defer a full discussion of prompts and
prompting strategies to Sec. 4. Suppose the oracle returns two potential predicates, both of which
should hold at the beginning of the while loop (line 3): x%2==0 and x%4==1. The Propose rule
allows us to make one of them the current assumption.

Case (x%2==0): The top row illustrates what happens when we transition to ⟨P, {q =
⟨x%2==0, 3⟩}, [p]⟩. While q is indeed an invariant, it does not help to prove the assertion, and
V still returns UNKNOWN. This means that the Repair 1 rule is applicable, which invokes the oracle
Orepair to strengthen q. Suppose in this case, the oracle suggests the predicate q′ = x%4==0, which
clearly implies the original property x!=30. Now, suppose V(P, {q′}, p) returns TRUE. We can
apply the Decide rule and transition to ⟨P,∅, [p, q′]⟩, making q’ the current proof goal. Proving q’
is arguably easier because x%4==0 is inductive (i.e., if it holds in one iteration, then it will hold in
the next iteration), making conventional automated reasoning techniques such as k-induction appli-
cable. Now, if V(P,∅, q′) = TRUE, we can apply Success 1 and transition to the SUCCESS state,
thus completing the proof.

We discuss the case x%4==1 in App. C.1. ■

1https://sv-comp.sosy-lab.org/2023/results/results-verified/META_
ReachSafety.table.html#/table?filter=id_any(value(jain_5-2))

23 is the line number (in the snippet) where the predicate is asserted.

5

https://sv-comp.sosy-lab.org/2023/results/results-verified/META_ReachSafety.table.html#/table?filter=id_any(value(jain_5-2))
https://sv-comp.sosy-lab.org/2023/results/results-verified/META_ReachSafety.table.html#/table?filter=id_any(value(jain_5-2))

Published as a conference paper at ICLR 2024

Algorithm 1 The LEMUR procedure
1: Input: A program P , a property p.
2: Output: SUCCESS only if Inv(P, p); FAIL only if ¬Inv(P, p); and UNKNOWN if inconclusive.
3: Parameters: Verifier V , oracles Opropose and Orepair (which satisfy Condition 1), number of proposals k
4: function lemur check(P, p)
5: d 7→ V(P,∅, p)
6: if d = FALSE then return FAIL ▷ Fail
7: else if d = TRUE then return SUCCESS ▷ Success 1
8: else
9: i, Q 7→ 0,Opropose(P, p)

10: while i < k ∧ |Q| > 0 do
11: i 7→ i+ 1
12: q 7→ pop(Q)
13: e 7→ V(P, {q}, p) ▷ Propose/Backtrack
14: if e = FALSE then return FAIL ▷ Fail
15: else if e = TRUE then
16: f 7→ lemur check(P, q) ▷ Decide
17: if f = SUCCESS then return SUCCESS ▷ Success 1
18: else if S(P, q) ∧ (V(P, {¬q}, p) = TRUE) then return SUCCESS ▷ Success 2
19: else if f = FAIL then Q 7→ join(Q,Orepair(P, p, q, FALSE)) ▷ Repair 2
20: else continue
21: else Q 7→ join(Q,Orepair(P, p, q, UNKNOWN)) ▷ Repair 1
22: return UNKNOWN

4 INSTANTIATING THE LEMUR CALCULUS

In this section, we present strategies for instantiating LEMUR as an automated procedure. While we
showed that the LEMUR calculus is sound, there are no guarantees that it terminates. Here, we will
discuss two sources of non-termination.

The first one corresponds to an unbounded sequence of suggestions for new sub-goals. Concretely,
when trying to prove a particular proof goal p, we could get stuck if V(P, {q}, p) = UNKNOWN or
V(P,∅, q) = FALSE for each proposed assumption q. This could occur as a result of limitations in
either the LLM or the verifier. One way to avoid this type of non-termination is by putting an upper
bound on the number of proposed assumptions for each proof goal. That is, for any proof goal p, we
require that V(P, {q}, p) is invoked for at most k different values of q.

The second source of non-termination is the potentially unbounded depth of the trail M. Concretely,
it is possible to construct an infinite sequence of Propose and Decide transitions, where: (i) the
verifier returns UNKNOWN on the current proof goal; (ii) the oracle proposes an assumption that
is not invariant but implies the current proof goal; (iii) the verifier proves the implication; (iv) the
assumption becomes the new proof goal; and (v) this process repeats. This can be avoided by adding
a side condition to the rules requiring that properties proposed by oracles (q = ⟨ψ, l′⟩) must contain
a smaller program line number than the one in the current proof goal (p = ⟨ϕ, l⟩), that is,

⟨ψ, l′⟩ ∈ O∗(P, ⟨ϕ, l⟩, . . .) ⇒ l′ < l (Condition 1)

Based on these strategies, a terminating (by Thm. 4.1 at the end of this section) and sound (by
Thm. 3.1) algorithm for checking whether a property p is an invariant on a program P is presented
in Alg. 1. Alg. 1 is a recursive procedure lemur check. It takes a program P and a property p as
inputs. If lemur check returns SUCCESS, then the property is an invariant. If lemur check returns
FAIL, then the property is not an invariant. The function can also return UNKNOWN if the analysis
is inconclusive. At a high level, Alg. 1 searches for a potential subgoal q that implies the current
goal p (lines 9–21). If such a q is identified in line 13, we recurse to prove q (line 16). The while
loop starting at line 10 ensures that at most k attempts can be utilized to generate a new subgoal for
p. The comments in Alg. 1 indicate which lines correspond to specific proof rules. The algorithm is
sound as it only applies the rules of the calculus. A full description of Alg 1, including a proof of
termination can be found in App. D.

Theorem 4.1 (Termination). Given a program P , and a property p on the program, Alg. 1 terminates
with either SUCCESS, FAIL, or UNKNOWN.

6

Published as a conference paper at ICLR 2024

Note that, Alg. 1 is one of many possible instantiations of the LEMUR calculus. One can develop
alternative strategies to apply the rules, e.g., by changing the frequency of the repair rules and the
Propose rules to balance the cost of LLM oracle calls. We evaluate one of the alternatives in App. G.

5 EXPERIMENTS

We have presented the LEMUR calculus and described a sound and terminating algorithm based on
LEMUR. In this section, we investigate the following questions:

• Can we develop a practical automated verification procedure based on Alg 1? [Yes]

• Is LEMUR competitive with existing end-to-end learning-based verification approaches? [Yes]

• Can LEMUR already prove hard benchmarks that are beyond the reach of state-of-the-art conven-
tional program verifiers? [In several cases]

5.1 BUILDING AN LLM-BASED PROGRAM VERIFIER

We report on several practical considerations when building a prototype of Alg. 1. There are two
types of external calls that Alg. 1 depends on. The first type is calls to V . We use off-the-shelf
verifiers in our framework that are extensively tested by the community (described in later para-
graphs), so we have some expectations about their reliability and performance. On the other hand,
the second type of calls, calls to LLM oracles, introduces more uncertainty, as LLMs are newer and
are treated as black boxes. In our framework, the oracles Opropose and Orepair automatically prompt
a GPT-family model through the OpenAI API and parse the output. We found that while GPT has
great potential for generating sensible loop invariants, it still has practical limitations. We report
several tactics that we found useful in practice.

• Formatting the output: While investigating whether chain-of-thought (CoT) (Wei et al., 2022)
reasoning is useful when seeking new properties for P and p, We found that GPT’s outputs,
even when containing useful information, were verbose and often contained irrelevant or incorrect
statements, making it difficult to extract invariants. To address this, we use in-context learning to
encourage the LLM to format the output in a specific way. For example, adding Your output
should be "assert(...);// Line number" to the prompt is sufficient for GPT to
consistently generate outputs of exactly this format, without providing verbose explanations.

• Inserting markers in the program: We found that GPT is not good at counting program lines.
Often, the generated predicate is otherwise correct, but the line number is slightly off. Unfortu-
nately, an invariant at a wrong position is of no use to the verifier. To mitigate this challenge, we
insert placeholder lines of the form "// Line A", "// Line B" and prompt GPT to gener-
ate invariants of the form assert(...);// Line name (for those specific locations). As a
simple practical heuristic, we insert placeholders right before loops and at the beginning of loops.

• Ordering the proposal: The output of an oracle call is non-deterministic for a given prompt,
depending on the hyper-parameters of the call. Moreover, the oracles produce a set of properties
and we need good heuristics to choose the order of trying those properties. A heuristic we found
useful is to prompt GPT multiple times and order the properties by the frequency with which they
are proposed (breaking ties by preferring shorter expressions). Moreover, instead of relying on
string matching, we treat two proposals the same if their abstract syntax trees are equivalent.

The exact prompts are described in App. F. For V , we consider two state-of-the-art formal tools for
C program verification, ESBMC (Gadelha et al., 2018) and UAUTOMIZER (Heizmann et al., 2013).
The former is based on k-induction and the latter is based on predicate abstraction. ESBMC and
UAUTOMIZER were the top two performing non-portfolio solvers in the reachability track of the
most recent edition of the software verification competition (SV-COMP (Beyer, 2023)). Further-
more, UAUTOMIZER was the overall winner. By default, we impose a 30-second time limit for
each invocation of the verifier. That is, if the verifier does not terminate within 30 seconds, then the
verifier returns UNKNOWN.3

3The source code and the benchmarks are publicly available at https://github.com/wu-haoze/
Lemur-program-verification.

7

https://github.com/wu-haoze/Lemur-program-verification
https://github.com/wu-haoze/Lemur-program-verification

Published as a conference paper at ICLR 2024

Configurations Solved Time (s) # proposal

Code2Inv 92 – -
ESBMC 68 0.34 0

LEMUR(GPT3) 103 35.6 8.6
LEMUR(GPT4) 107 32.9 4.7

(a) The Code2Inv benchmarks.

Configurations Solved Time (s) # proposals

UAUTOMIZER 1 824.3 0
ESBMC 1 675.7 0

LEMUR(GPT3) 14 162.2 8.5
LEMUR(GPT4) 25 234.5 7.2

(b) The 47 SV-COMP benchmarks.

Table 1: Solved instances by ESBMC, LEMUR, and Code2Inv (1a) or UAUTOMIZER (1b) on two
benchmark sets. We also report the average time and number of proposals for solved instances.

5.2 LOOP INVARIANT GENERATION BENCHMARKS

A prominent approach in learning-based end-to-end program verification is Code2Inv (Si et al.,
2020), which uses reinforcement learning to train an invariant synthesizer to propose loop invariants.
At a high level, to infer a loop invariant for a given program, Code2Inv learns a generative neural
network whose goal is to repeatedly propose candidate invariants until an automated reasoning tool
determines that the candidate is correct. Throughout this process, the generator is fine-tuned using
the feedback from the automated reasoning tool. In this section, we study how LEMUR compares
with this approach on the same benchmark set considered in the original Code2Inv work. The
benchmark set contains 133 benchmarks, each containing a C program and a property expressed as
an assert statement in the program. Each program contains a single loop and each loop can have
nested if-then-else blocks (without nested loops). The assertion to check is always after the loop.
Code2Inv is designed to generate invariants at the beginning of the while loop. We prompt the
oracles to generate invariants at the same location.

We use the k-induction-based verifier, ESBMC, to check the implication (line 13 in Alg. 1) which
aligns with the verification procedure used in Code2Inv. We report the number of solved instances
as well as the number of failed suggestions (either the suggestion itself cannot be verified or ESBMC
times out on the implication check). As a point of comparison, we report the statistics from the
original Code2Inv approach. Code2Inv was given a one-hour timeout. In addition, we also report
ESBMC’s performance on this set of benchmarks. The result is shown in Table 1a (the Time column
shows the average time in seconds to solve a benchmark).

Figure 3: Nb. of proposals
for LEMUR(GPT4) to solve a
Code2Inv benchmark.

With a 10-minute timeout, ESBMC alone can solve 68 problems.
On the other hand, LEMUR(GPT4) can solve 107 problems within
the same time limit. Surprisingly, this approach solves more in-
stances than Code2Inv, which is specifically designed for invariant
synthesis tasks. For problems unsolved by ESBMC but solved by
LEMUR(GPT4), a histogram of the values of Log2 of the number
of proposals is shown in Fig. 3. While in most cases, Alg. 1 can
produce the correct proposals within 4 attempts, there are bench-
marks for which LEMUR(GPT4) requires many iterations to find
the desired loop invariant, e.g., one of the benchmarks took 90 pro-
posals. In addition, we experimented with the GPT-3.5 turbo LLM
model, denoted LEMUR(GPT3), as shown in Table 1a. Note that
LEMUR(GPT3) solved four fewer benchmarks and required more
time and more calls to the GPT-3.5 turbo oracle.

5.3 SOLVING HARD SV-COMP BENCHMARKS

Next, we study LEMUR’s ability to solve hard benchmarks from the 2003 edition of SV-
COMP (Beyer, 2023). We focus on benchmarks with less than 150 tokens (after removing com-
ments and unnecessary headers, and after applying clang-formatting).We select 47 benchmarks that
ESBMC and UAUTOMIZER are unable to solve within 10 minutes. The property is expected to hold
in all benchmarks. We use a 15-minute per-instance timeout.

The results are shown in Table 1b. Impressively, with the guidance of the proof goals suggested
by the LLM, LEMUR(GPT4) is able to solve 25 of the 47 SV-COMP benchmarks. While ESBMC
and UAUTOMIZER can each solve only 1 benchmark. Upon closer examination, 8 of the solved

8

Published as a conference paper at ICLR 2024

instances contain two loops and 5 contain three or more loops. This suggests that LEMUR is capable
of (i) handling programs with more than one loop; and (ii) boosting the performance of state-of-the-
art conventional C program verifiers.

Figure 4: Nb. of proposals
for LEMUR(GPT4) to solve
an SV-COMP benchmark.

The average number of proposals before solving a problem is higher
compared to the Code2Inv benchmarks (7.2 vs. 4.7). Fig. 4 sheds
more light on the behavior of LEMUR(GPT4). We observe that 12
of the 26 solved instances require at least 5 proposals in total.

We found that LLM oracles can produce surprisingly insightful loop
invariants which are difficult for conventional formal methods to
synthesize. While predicate-abstraction-based techniques typically
generate predicates that involve only the operators and values in the
program and follow a particular template, LLMs are not constrained
by these limitations. For example, for the program in Fig. 2, GPT-4
can consistently generate x%4==0 as the loop invariant although
the modulo operator is not present in the program. In another ex-
ample, the LLM correctly understands the range of an unsigned
char and suggests variable bounds as the assumption, which ends up being the key to proving the
property. This example is shown in App. F.1. There are also several cases where the LLM generates
disjunctive invariants that precisely characterize the behavior of the loops.

Finally, we observe that LEMUR(GPT4) significantly outperforms LEMUR(GPT3) across all met-
rics. This suggests that the choice of oracle is also crucial for performance. Additional experiments
are presented in App. G). They include running the baseline solvers with a 12 hour timeout, using a
configuration in which repair rules are not employed in Alg. 1, and running LEMUR multiple times
to account for the stochasticity of the oracles.

6 DISCUSSION OF LIMITATIONS AND EXTENSIONS

In this work, we propose a novel framework, LEMUR, which combines automated reasoning and
LLMs. To the best of our knowledge, LEMUR is the first framework to provide a theoretical founda-
tion for such an integration via a formal calculus. We also implemented LEMUR as a fully automated
framework and demonstrated its efficiency on standard benchmark sets. We conclude by discussing
the current limitations of LEMUR, which also point to future research directions.

As mentioned above, the practical performance of LEMUR depends on two types of external calls:
the verifiers and the LLMs. Any improvements in these tools should translate into LEMUR im-
provements. Currently, modern verifiers are capable of handling only relatively small programs (see
SV-COMP’23 (Beyer, 2023)). Interestingly, even when provided with a strong invariant, they some-
times cannot solve the verification problem. One research direction that we envision is to customize
LEMUR to a particular back-end verifier to obtain better performance and solve larger programs.

We also note that LEMUR primarily focuses on imperative languages. Extending it to functional
languages is a direction for future research.

While our experience with LLMs was largely positive (see Section 5.1 for a discussion of limitations
that have already been at least partially addressed), there are more interesting challenges to tackle.
First, current LLMs have token limits, and many practical programs exceed those limits. Second,
it is sometimes challenging for LLMs to generate complex logical formulas such as those with
nested if-then-else expressions. We believe that to overcome this limitation, we need to (i) develop a
prompting language for LLM invariant generation, and (ii) fine-tune LLMs for invariant generation
tasks using this language. Third, reasoning about programs with multiple loops remains challenging
for LLMs. We believe fine-tuning could help address this challenge. Fourth, we observed that the
performance of LEMUR may vary depending on the LLM oracle. For example, our experiments
demonstrate that GPT-4 is superior to GPT-3.5 turbo on tested benchmarks. Finally, due to the
limitations of LLMs and automated reasoners, our framework does not yet offer a significant boost
for complex properties of real-world C libraries. However, a modular approach, where large parts
of the program are abstracted and summarized in the form of pre- and post-conditions, can benefit
from frameworks like LEMUR.

9

Published as a conference paper at ICLR 2024

REFERENCES

Dirk Beyer. Competition on software verification and witness validation: Sv-comp 2023. In Sriram
Sankaranarayanan and Natasha Sharygina (eds.), Tools and Algorithms for the Construction and
Analysis of Systems, pp. 495–522, Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-
30820-8.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Yiannis Charalambous, Norbert Tihanyi, Ridhi Jain, Youcheng Sun, Mohamed Amine Ferrag, and
Lucas C. Cordeiro. A new era in software security: Towards self-healing software via large
language models and formal verification, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Pe-
ter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021.
URL https://arxiv.org/abs/2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways,
2022.

Edmund M Clarke, Thomas A Henzinger, Helmut Veith, Roderick Bloem, et al. Handbook of model
checking, volume 10. Springer, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–
4186. Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1423. URL
https://doi.org/10.18653/v1/n19-1423.

10

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/n19-1423

Published as a conference paper at ICLR 2024

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and
repair with large language models. CoRR, abs/2303.04910, 2023. doi: 10.48550/arXiv.2303.
04910. URL https://doi.org/10.48550/arXiv.2303.04910.

Mikhail R Gadelha, Felipe R Monteiro, Jeremy Morse, Lucas C Cordeiro, Bernd Fischer, and De-
nis A Nicole. Esbmc 5.0: an industrial-strength c model checker. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, pp. 888–891, 2018.

Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. Learning invariants using decision trees
and implication counterexamples. In Rastislav Bodı́k and Rupak Majumdar (eds.), Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pp. 499–512. ACM, 2016. doi:
10.1145/2837614.2837664. URL https://doi.org/10.1145/2837614.2837664.

Inc. GitHub. GitHub Copilot. https://copilot.github.com/, 2021. Accessed: September
2023.

Matthias Heizmann, Jürgen Christ, Daniel Dietsch, Evren Ermis, Jochen Hoenicke, Markus Lin-
denmann, Alexander Nutz, Christian Schilling, and Andreas Podelski. Ultimate automizer with
smtinterpol: (competition contribution). In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pp. 641–643. Springer, 2013.

Daniel Kroening and Michael Tautschnig. Cbmc–c bounded model checker: (competition contribu-
tion). In Tools and Algorithms for the Construction and Analysis of Systems: 20th International
Conference, TACAS 2014, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings 20, pp. 389–391.
Springer, 2014.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay V. Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-
Solo, Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solv-
ing quantitative reasoning problems with language models. In NeurIPS, 2022.
URL http://papers.nips.cc/paper_files/paper/2022/hash/
18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html.

OpenAI. Gpt-4 technical report, 2023.

Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. Can large language
models reason about program invariants? In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 27496–27520. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.
press/v202/pei23a.html.

Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang, and Aditya V. Nori.
A data driven approach for algebraic loop invariants. In Matthias Felleisen and Philippa Gard-
ner (eds.), Programming Languages and Systems - 22nd European Symposium on Programming,
ESOP 2013, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7792 of Lecture Notes in
Computer Science, pp. 574–592. Springer, 2013. doi: 10.1007/978-3-642-37036-6\ 31. URL
https://doi.org/10.1007/978-3-642-37036-6_31.

Xujie Si, Aaditya Naik, Hanjun Dai, Mayur Naik, and Le Song. Code2inv: A deep learning frame-
work for program verification. In Shuvendu K. Lahiri and Chao Wang (eds.), Computer Aided
Verification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24,
2020, Proceedings, Part II, volume 12225 of Lecture Notes in Computer Science, pp. 151–164.
Springer, 2020. doi: 10.1007/978-3-030-53291-8\ 9. URL https://doi.org/10.1007/
978-3-030-53291-8_9.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

11

https://doi.org/10.48550/arXiv.2303.04910
https://doi.org/10.1145/2837614.2837664
https://copilot.github.com/
http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
https://proceedings.mlr.press/v202/pei23a.html
https://proceedings.mlr.press/v202/pei23a.html
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1007/978-3-030-53291-8_9
https://doi.org/10.1007/978-3-030-53291-8_9

Published as a conference paper at ICLR 2024

Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys Poshyvanyk. Sort-
ing and transforming program repair ingredients via deep learning code similarities. In 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, feb 2019. doi: 10.1109/saner.2019.8668043. URL https://doi.org/10.1109%
2Fsaner.2019.8668043.

12

https://doi.org/10.1109%2Fsaner.2019.8668043
https://doi.org/10.1109%2Fsaner.2019.8668043

Published as a conference paper at ICLR 2024

A BACKGROUND

Automated reasoning tools. We overview several popular techniques that are used by modern
program verification solvers, like CBMC (Kroening & Tautschnig, 2014), ESBMC (Gadelha et al.,
2018), and UAUTOMIZER (Heizmann et al., 2013).

The Bounded Model Checking (BMC) approach is an iterative technique that verifies the program
for each unwind bound up to a maximum value, m, e.g. it can perform m loop unwinding. It
either finds a counterexample within m steps or returns UNKNOWN. This approach usually employs
SMT solvers to find counterexamples very efficiently at each step. However, for non-trivial systems
unrolling can be expensive and memory-consuming. Moreover, vanilla BMC can only check finite
reachability, e.g. it cannot prove loop invariants, for example.

Another popular technique is the k-induction method, which allows BMC-style methods to prove
properties like loop invariants. This approach is also iterative. First, we check whether a property
holds for k steps from a valid state. If it does not, we find a counterexample. Otherwise, we check
an inductive hypothesis that if the property holds for k steps from a state then the property holds
for the k + 1th step. If it does, the property holds for any number of steps. If not, k-induction
either increases k or returns UNKNOWN. As in the case of BMC, unrolling can be computationally
expensive. Moreover, k-induction is not complete; there are properties that are not k-inductive for
any k.

The last approach we consider is abstract interpretation verification methods. Such methods create
abstract representations of program states and variables. These abstract representations are simpli-
fied versions of the actual program states, focusing on relevant aspects while ignoring irrelevant
details. The choice of abstraction depends on the specific properties to verify. Moreover, if a prop-
erty holds for an abstract program, then it holds for the original program. The reverse is not true.
Hence, if a property does not hold for an abstract program, we need to refine the abstract repre-
sentation to exclude the counterexample. The main challenge here is how to come up with a good
abstraction and how to design a refinement procedure.

Large Language Models. Large Language Models belong to a class of artificial intelligence mod-
els used in natural language processing tasks. These models are designed to process and gener-
ate both human language and structured inputs, such as code in various programming languages.
Examples of large language models include Generative Pre-trained Transformer models like GPT-
3 (Brown et al., 2020) or GPT-4 (OpenAI, 2023), Bidirectional Encoder Representations from Trans-
formers, BERT (Devlin et al., 2019), and others. LLMs are getting increasingly popular as an AI-
assistance for code generation tasks, like PaLM (Chowdhery et al., 2022), GitHub Copilot (Chen
et al., 2021; GitHub, 2021), etc.

LLMs are usually trained in two steps. The main phase is training, where these models are exposed
to very large corpora of data, usually collected over the internet. The architecture of LLMs is based
on transformers and has a very large number of parameters. Therefore, it can capture relations
between different parts of the input text to produce coherent outputs. For some applications, we
need to perform fine-tuning to expose the model to application-specific inputs. During inference,
when a user provides inputs and a prompt that contains instructions to an LLM, it generates the
output with respect to these instructions.

B DEFINITIONS

Lemma 2.1. Consider a program P , two properties p, q on P , and a program P ′ = Asm(P, q).
The property p is an invariant on P , if 1) q is stable for P; 2) q implies p with respect to P; and 3)
¬q implies p with respect to P . More formally: S(P, q) ∧ (q −→

P
p) ∧ (¬q −→

P
p) ⇒ Inv(P, p).

Proof. Let q = ⟨ϕ, l⟩. By the definition of stability, for any execution of P , either ϕ always evaluates
to true at line l or ¬ϕ always evaluates to true at line l. In either case, the property p holds by the
definition of implication. Therefore, p holds for all executions of P , i.e., Inv(P, p).

13

Published as a conference paper at ICLR 2024

C LEMUR: INTEGRATING LLMS IN PROGRAM VERIFICATION

C.1 SOUNDNESS OF LEMUR

Lemma C.1. For any configuration ⟨P,A,M⟩ created by a sequence of valid rule applications
starting from an initial configuration ⟨P,∅, [p0]⟩, M is not empty.

Proof. This can be proven by induction on the length of the sequence. In the base case, M is [p0].
In the inductive case, the length of M does not reduce except in the Backtrack rule which requires
M to have at least 2 elements in the pre-condition. Thus, M is not empty.

Lemma C.2. Let ⟨P,A,M⟩ be a configuration created by a sequence of valid rule applications
starting from an initial configuration ⟨P,∅, [p0]⟩, and let p be the last element of M. We have
p −→

P
p0.

Proof. We prove a stronger property, that for each element p in M, p −→
P

p0. We induct on the

length of the sequence. In the base case, p0 −→
P

p0 by proposition 2.2. In the inductive case, we

proceed by cases. Success 1, Success 2, Fail cannot be applied. In the post conditions of Propose,
Backtrack, Repair 1, and Repair 2, M either shrinks or remains the same. Therefore, the inductive
hypothesis can be directly applied. If Decide rule is to be applied. In the pre-condition, the trail is
M : : p, the current assumption is {q} and q −→

P
p. In the post condition, M becomes M : : p : : q.

By the inductive hypothesis, p −→
P
p0. Furthermore, by Proposition 2.3, q −→

P
p0.

Lemma C.3. Let ⟨P,A,M : : p : : p′⟩ be a configuration created by a sequence of valid rule
applications starting from an initial configuration ⟨P,∅, [p0]⟩, we have p′ −→

P
p.

Proof. This can be proven by induction on the length of the sequence.

Theorem 3.1. Given a property p0 and a program P , if SUCCESS is reached by a sequence of valid
rule applications starting from ⟨P,∅, [p0]⟩, then p0 is an invariant on P .

Proof. We can transition into SUCCESS by either the Success 1 rule or the Success 2 rule. In the
pre-condition of Success 1, the trail is of the form M : : p, and the verifier V proves that Inv (P ,
p). By Lemma C.2, p −→

P
p0. Further by Proposition 2.1, we have Inv(P, p0). On the other hand,

in the pre-condition of Success 2, the trail is of the form M : : p : : p′. By Lemma C.3, p′ −→
P

p.

In addition, p′ is stable and ¬p′ −→
P

p. Therefore, by Lemma 2.1, p is an invariant of P . Since we

also know from Lemma C.2 that p −→
P

p0, it follows from Proposition 2.1 that p0 is an invariant of

P .

Theorem 3.2. Given a property p0 and a program P , if FAIL is reached by a sequence of valid rule
applications starting from ⟨P,∅, [p0]⟩, then p0 is not an invariant on P .

Proof. We transition into the FAIL state only when the verifier V(P,A, p0) = FALSE. Even if A is
not empty, p0 is still not an invariant by Prop. 2.1.

Example C.1. To provide more intuition about the proof system and to motivate the design choices
when instantiating LEMUR, we consider again our running example. Figure 2 illustrates how
LEMUR can be used to verify properties in practice. In Figure 2 each frame represents a state
of the program. Transitions between states are depicted by arrows, with each arrow marked with the
rule applied to execute this transition. In this example, our goal is to prove the property x!=30 in
a while loop that keeps adding 4 to an unsigned 32-bit integer variable x. We note that this partic-
ular verification task is adapted from a similar one in the SV-COMP competition.4 While seemingly

4https://sv-comp.sosy-lab.org/2023/results/results-verified/META_
ReachSafety.table.html#/table?filter=id_any(value(jain_5-2))

14

https://sv-comp.sosy-lab.org/2023/results/results-verified/META_ReachSafety.table.html#/table?filter=id_any(value(jain_5-2))
https://sv-comp.sosy-lab.org/2023/results/results-verified/META_ReachSafety.table.html#/table?filter=id_any(value(jain_5-2))

Published as a conference paper at ICLR 2024

trivial, during the competition, 19 out of the 24 participating tools (including the overall winner of
the competition UAUTOMIZER) were not able to solve this benchmark.

Given such a verification problem, we create an initial configuration ⟨P,∅, [p])⟩ where P is the
given problem and p = ⟨x!=30, 3⟩.5 Suppose the verifier V is unable to solve this problem and
returns UNKNOWN. In this case, we need to generate a new proof goal, so the only rule we could
apply is Propose. To do so, we invoke the LLM-based oracle Opropose to obtain a set of new properties
that are potentially themselves invariants and might help prove the property. An example prompt is
given on the left bottom part. This is not the exact prompt that we found the most effective in
practice and we defer the discussion of prompting strategies to Sec. 4. Suppose the oracle returns
two potential predicates at the beginning of the while loop: x%2==0 and x%4==1 at line 3. The
Propose allows us to make one of them the current assumption.

Case (x%2==0): The top row illustrates what happens when we transition into ⟨P, {q =
⟨x%2==0, 2⟩}, [p]⟩. While q is indeed an invariant, it does not help to prove the assertion and
V would return UNKNOWN. This satisfies the condition to apply the Repair 1 rule, which would
invoke the oracle Orepair to strengthen q. Suppose in this case, the oracle suggests the predicate
q′ = x%4==0, which clearly implies the original property x!=30. Suppose then V(P, {q′}, p)
returns TRUE. We could apply the Decide rule and transition to ⟨P,∅, [p, q′]⟩, making q’ the cur-
rent proof goal. Proving q’ is arguably easier because x%4==0 is inductive (i.e., if it holds in one
iteration and then it will hold in the next iteration), making conventional automated reasoning tech-
niques such as k-induction applicable. Suppose V(P,∅, q′) = TRUE, we could apply Success 1
and transition into the SUCCESS state, thus completing the proof.

Case (x%4==1): The bottom row illustrates a different chain of rule applications when we picked the
property r = ⟨x%4==1, 2⟩ from the first proposal. While r does not hold, it does imply x!=30. Sup-
pose this implication is proven by the verifier. We could apply Decide and transition to ⟨P,∅, [p, r]⟩.
Since r is not an invariant, V(P,∅, r) would be either UNKNOWN or FALSE. Either way, we could
apply Backtrack and try a new assumption proposed by Opropose. In practice, we could either invoke
the stochastic Opropose again or pick an un-attempted property (e.g., ⟨x%2==0, 2⟩ proposed previ-
ously). In the illustration, we invoke Opropose again and obtain the “correct” predicate x%4==0,
which would allow us to prove the property in two more steps. ■

D INSTANTIATING THE LEMUR CALCULUS

Here, we describe Alg. 1. First, the algorithm checks whether the current p can be verified by V
or if a counterexample exists (line 5). If so, it returns either SUCCESS or FAIL to the upper level
of recursion or terminates if lemur check is at the top level. If V cannot prove p, i.e. it returns
UNKNOWN, lemur check enters a new phase of subgoal generation, where LLM oracles are used
to propose new or repair existing properties (lines 9–21). In this phase, we start by calling Opropose
to generate a new subgoal (line 9). The while loop at line 10 ensures that at most k attempts
can be unitized to generate a new subgoal for p. In line 13, we call V to check whether q implies
p. If V returns FALSE, we know that p is not an invariant and return FAIL (line 14). If V returns
UNKNOWN, then we need to repair q; for example, we might strengthen q and try again to prove
implication. Otherwise, if q does imply p, we recurse to prove q (line 16). The last logical block
of lemur check in lines 17–20 addresses the output of the recursive call. If we have successfully
proved that q is an invariant, we return SUCCESS. Otherwise, if q is stable (see Definition 2.4),
we can check whether ¬q implies p (line 18). If so, by Lemma 2.1, we can conclude that p is an
invariant and also return SUCCESS. If we prove that q is FALSE, we can repair q by informing an
LLM oracle that the property does not hold (line 19). Finally, if f is UNKNOWN then we continue
to the next iteration of the while loop and consider the next proposed sub-goal.

Second, we present a proof of Theorem 4.1.
Theorem 4.1. Given a program P , and a property p on the program, Alg. 1 terminates with either
SUCCESS, FAIL, or UNKNOWN.

Proof. Suppose p = ⟨ϕ, l⟩. We prove with a decreasing argument on l. When l = 0, the al-
gorithm terminates without entering the while loop, because Opropose satisfies Condition 1 and

53 is the line number (in the snippet) where the predicate is asserted.

15

Published as a conference paper at ICLR 2024

Opropose(P, p) = ∅. In the recursive case, the while loop is executed for at most k iterations.
In each iteration, we show that for the second input to lemur check (Line 16), q = ⟨ψ, l′⟩, we
have l′ < l. This is true because q is generated either by Opropose(P, p) or Orepair(P, p, . . .), both
satisfying Condition 1.

E RELATED WORK

ML model Learning scheme Restrictions on Framework purpose
Garg et al. (2016) Decision trees Dynamic learning via examples invariant structure invariant generation

Code2Inv(Si et al., 2020) NNs RL-based training program structure verification (single invariant)
Pei et al. (2023) LLMs LLMs’ fine-tuning 18 invariant types invariant generation

LEMUR (this work) LLMs – – verification (a chain of invariants)

Table 2: A comparison of representative learning-based invariant generation techniques.

There has been a lot of interest in using LLMs to augment formal reasoning. Charalambous et al.
(2023) proposed a novel framework, ESBMC-AI, that integrated LLMs reasoning and formal verifi-
cation. They also applied their framework to the analysis of C programs focusing on memory safety
properties. The main idea is to use LLMs as a code repair generator that can fix faulty code using a
carefully designed prompt, a program, and a counterexample provided by a bounded model checker.
However, ESBMC-AI assumes that program rewriting done by an LLM is valid, i.e. syntactically
and semantically correct. The latter is challenging to prove in an automatic manner as it requires pro-
gram equivalence checking. Our framework does not use LLMs to modify code and treat the outputs
of the LLM as suggestions until we prove that they are correct. Another example of an automated
framework is Baldur (First et al., 2023), which uses an LLM, Minerva (Lewkowycz et al., 2022), to
generate theorem proofs that are checked by Isabelle theorem prover. They also proposed a proof
repair procedure. In contrast, our interactive decision procedure relies on an automated reasoner to
generate proofs and only uses LLMs generated program properties.

There are a number of learning approaches to automatically generate invariants (Si et al., 2020;
Garg et al., 2016; Sharma et al., 2013). Sharma et al. (2013) proposed a data-driven iterative ap-
proach to derive algebraic equation invariants from data generated through concrete executions of
the program. Garg et al. (2016) proposed a decision tree-based approach to learn invariants from
examples; however, the space of possible invariants is limited to a logical combination of binary
linear constraints. The most related work to our framework is Code2Inv (Si et al., 2020), which
proposed learning program invariants using machine learning techniques and employed automatic
reasoning to verify the programs. The main principle of partitioning responsibilities between auto-
mated reasoners and LLMs is similar to our framework. However, we provide a formalization for
such interactive procedures with formal calculus and a strategy to use it in practice. Our procedure is
more general as it allows the generation of sequences of logically related properties, and we demon-
strate that it is more efficient in practice. Finally, recent work by Pei et al. (2023) investigates the
potential of invariant generation for Java programming language. While this framework does not
incorporate automated reasoning components, it shows the potential of LLMs to uncover program
properties. Table 2 presents a summary of learning-based approaches.

F PROMPTING THE GPT

In this section, we describe how we automatically constructed the prompts in Opropose and Orepair, and
show examples of the prompts and the GPT outputs. We provided in the supplementary materials
the execution traces of LEMUR on solved benchmarks used in our experiments.

F.1 PROPOSING NEW PROPERTIES

Given a program P and a property represented as a C assert statement in P , we inserted the place-
holder lines “// Line A”, “// Line B”... to dedicated program lines as described in 5.1. Our
prompt has the following structure:

16

Published as a conference paper at ICLR 2024

[P1]
Print [P2] as valid C assertions at line[P3] [P4] that
help prove the assertion. Use ’&&’ or ’||’ if necessary.
Don’t explain. Your answer should be ’assert(...); // line [P5]’

P1 is the program with the placeholder lines and the C assertion; P2 is either facts or loop
invariants depending on whether all the placeholder lines are in loops; P3 is either empty or s
depending on the number of placeholder lines; P4 are the placeholder line names (e.g., A, B); and
P5 is either A, if there is only one placeholder line, or name, if there are multiple.

Below is an example extracted from the execution of our prototype on an SV-COMP benchmark:

int main() {
unsigned char n = (unsigned char) rand();
if (n == 0) {
return 0;
}
unsigned char v = 0;
unsigned int s = 0;
unsigned int i = 0;
while (i < n) {
// Line A
v = (unsigned char) rand();
s += v;
++i;
}
assert(s >= v);
return 1;
}
Print loop invariants as valid C assertions at line A that
help prove the assertion. Use ’&&’ or ’||’ if necessary.
Don’t explain. Your answer should be ’assert(...); // line A’

Below are GPT-4’s responses on multiple attempts as well as the final set of extracted properties our
prototype proceeds to prove.

GPT output 1 with penalty 1.5:
assert(i <= n); // line A
assert(s >= i); // line A
GPT output 2 with penalty 1.5:
assert(i <= n); // line A
assert(s >= 0 && v >= 0); // line A
GPT output 3 with penalty 1.5:
assert(i <= n); // line A
assert(s >= 0 && s <= i*UCHAR_MAX); // line A
GPT output 4 with penalty 1.5:
assert(i <= n); // line A
assert(s >= 0 && s <= i*UCHAR_MAX); // line A
GPT output 1 with penalty 2:
assert(i <= n); // line A
assert(s >= 0 && s <= UCHAR_MAX * i); // line A
GPT output 2 with penalty 2:
assert(i <= n); // line A
assert(s >= i*v && s <= (i*255)); // line A
GPT output 3 with penalty 2:
assert(i <= n); // line A
assert(s >= 0 && s <= i*UCHAR_MAX); // line A
GPT output 4 with penalty 2:
assert(i <= n); // line A

17

Published as a conference paper at ICLR 2024

assert(s >= 0 && s <= UCHAR_MAX * i); // line A

Found 6 potential sub-goals
Goal 1: i <= n after line 8
Goal 2: s >= 0 && s <= i*0xff after line 8
Goal 3: s >= 0 && s <= 0xff * i after line 8
Goal 4: s >= i after line 8
Goal 5: s >= 0 && v >= 0 after line 8
Goal 6: s >= i*v && s <= (i*255) after line 8

F.2 REPAIRING A PREVIOUS PROPOSAL

The oracle Orepair uses a similar prompting template:

[P1]
Print [P2] as valid C assertions at line A that
help prove the assertion. Your previous answer [P3]
is [P4]. Use ’&&’ or ’||’ if necessary. Don’t explain.
Your answer should be ’assert(...);’

P1 is the program with the placeholder line (corresponding to the assumption p = ⟨ϕ, l⟩ to repair)
and the C assertion; P2 is either facts or loop invariants depending on whether p is in a
loop; P3 is p; P4 is either incorrect or too weak.

Below is an example extracted from the execution of our prototype on another SV-COMP bench-
mark:

int main() {
unsigned int n = (unsigned int) rand();
unsigned int x = n, y = 0, z;
while (x > 0) {
x--;
y++;
}
z = y;
// Line A
while (z > 0) {
x++;
z--;
}
assert(y + z == n);
return 1;
}
Print facts as valid C assertions at line A that help
prove the assertion. Your previous answer ’x + z == n’
is too weak. Use ’&&’ or ’||’ if necessary. Don’t explain.
Your answer should simply be ’assert(...);’

The GPT outputs on different prompting attempts with different penalties and the extracted proper-
ties:

GPT output 1 with penalty 1.5:
assert(x + y == n); // Line A
assert(x + z == y); // Line B
GPT output 2 with penalty 1.5:
assert(x + y == n); // Line A
assert(x + z == n); // Line B
GPT output 1 with penalty 2:

18

Published as a conference paper at ICLR 2024

assert(x + y == n); // Line A
assert(x + z == n); // Line B
GPT output 2 with penalty 2:
assert(x + y == n); // Line A
assert(z + x == n); // Line B

Found 4 potential adapted sub-goals
Goal 1: x + y == n after line 7
Goal 2: x + z == n after line 7
Goal 3: x + z == y after line 7
Goal 4: z + x == n after line 7

G ADDITIONAL EXPERIMENTAL RESULTS.

In this section, we report additional results on the SV-COMP benchmarks. First, we run the baseline
solvers with a 12-hour timeout instead of just 15 minutes; second, we consider an additional LEMUR
configuration, LEMUR(GPT4, NO REPAIR), which is the same as LEMUR(GPT4) except that we do
not apply the repair rules (Repair 1, Repair 2); finally, we run each LEMUR configurations three
times (A, B, and C), to account for the stochasticity of the oracles. Results are shown in Tab. 3.

We observe that 1) running the baseline solvers with a longer runtime does not result in significantly
more solutions; 2) the repair rules contribute to the solving of more instances; 3) while an un-
negligible variance exist across different runs of the same LEMUR configuration, the conclusions
drawn in Sec. 5, that LEMUR can boost the performance of traditional program verifiers, and that the
choice of the underlying oracle can significantly affect performance, remain valid.

Configurations Time limit Run Solved Time (s) # proposals

UAUTOMIZER 15 mins - 1 824.3 0
ESBMC 15 mins - 1 675.7 0

UAUTOMIZER 12 hrs - 2 1304.0 0
ESBMC 12 hrs - 4 1637.7 0

LEMUR(GPT3) 15 mins A 14 162.2 8.5
LEMUR(GPT3) 15 mins B 15 179.3 5.4
LEMUR(GPT3) 15 mins C 15 103.3 4.8

LEMUR(GPT4, NO REPAIR) 15 mins A 19 139.0 4.3
LEMUR(GPT4, NO REPAIR) 15 mins B 20 146.1 4.8
LEMUR(GPT4, NO REPAIR) 15 mins C 20 145.1 5.4

LEMUR(GPT4) 15 mins A 25 234.5 7.2
LEMUR(GPT4) 15 mins B 24 170.2 6.1
LEMUR(GPT4) 15 mins C 24 201.9 6.3

Table 3: All experiments conducted on the 47 SV-COMP benchmarks.

19

	Introduction
	Definitions
	lemur: Integrating LLMs in Program Verification
	Instantiating the lemur calculus
	Experiments
	Building an LLM-based program verifier
	Loop invariant generation benchmarks
	Solving hard SV-COMP benchmarks

	Discussion of limitations and extensions
	Background
	Definitions
	lemur: Integrating LLMs in Program Verification
	Soundness of lemur

	Instantiating the lemur calculus
	Related work
	Prompting the GPT
	Proposing new properties
	Repairing a previous proposal

	Additional experimental results.

