
ar
X

iv
:2

31
0.

05
05

4v
2

 [
cs

.N
I]

 2
5

A
pr

 2
02

4

Low-Latency Video Conferencing via Optimized

Packet Routing and Reordering

Yao Xiao§¶, Sitian Chen†, Amelie Chi Zhou†∗, Shuhao Zhang‡, Yi Wang§¶, Rui Mao§¶ and Xuan Yang§¶

§Shenzhen University †Hong Kong Baptist University
‡Nanyang Technological University

¶Guangdong Provincial Key Laboratory of Popular High Performance Computers

Abstract—In the face of rising global demand for video
meetings, managing traffic across geographically distributed
(geo-distributed) data centers presents a significant challenge
due to the dynamic and limited nature of inter-DC network
performance. Facing these issues, this paper introduces two novel
techniques, VCRoute and WMJitter, to optimize the performance
of geo-distributed video conferencing systems. VCRoute is a
routing method designed for audio data packets of video con-
ferences. It treats the routing problem as a Multi-Armed Bandit
issue, and utilizes a tailored Thompson Sampling algorithm for
resolution. Unlike traditional approaches, VCRoute considers
transmitting latency and its variance simultaneously by using
Thompson Sampling algorithm, which leads to effective end-
to-end latency optimization. In conjunction with VCRoute, we
present WMJitter, a watermark-based mechanism for managing
network jitter, which can further reduce the end-to-end delay
and keep an improved balance between latency and loss rate.
Evaluations based on real geo-distributed network performance
demonstrate the effectiveness and scalability of VCRoute and
WMJitter, offering robust solutions for optimizing video confer-
encing systems in geo-distributed settings.

I. INTRODUCTION

Due to the outbreak of the COVID-19 pandemic, the need

for video conferencing increases dramatically throughout the

world. According to Zoom statistics, the annual Zoom meeting

minutes have increased by 3300% from October 2019 to

October 2020 and the number continues to grow [1]. With

the large number of businesses requiring global cooperation

and communication, video conferencing systems such as Zoom

and VooV have been commonly used in a geographically

distributed (geo-distributed) manner, where global participants

join an online meeting session from local clients to send

and receive audio and video messages. Users’ Quality of

Experience (QoE) is heavily dependent on how well video

conferencing systems transfer and process the messages be-

tween clients.

Due to the global distribution of users, most video con-

ferencing systems are also architected and deployed glob-

ally to achieve good scalability and low latency. For exam-

ple, Zoom has 19 interconnected data centers (DCs) spread

across the world and can also scale to public clouds when

needed [2]. Existing video conferencing systems may have

different architectures. For example, Figure 1 shows two

service architectures adopted by popular video conferencing

systems [3], [4]. For both architectures, large amounts of

data are transferred across geo-distributed data centers, either

(a) Single service endpoint (b) Distributed service endpoints

Fig. 1: video conferencing system service architectures.

between endpoints and users (Figure 1a) or between multiple

endpoints (Figure 1b). The existing studies show that the

inter-DC network latency can be up to hundreds milliseconds

(see Section II-A). The high variance of inter-DC network

performance also cause high jitter, which leads to challenges

when reducing the end-to-end latency of geo-distributed video

conferencing. Below we summarize the challenges faced by

existing video conferencing systems.

First, large cloud providers, with geographically dispersed

data centers connected by a managed backbone network, allow

the creation of efficient overlay alternatives to the default Inter-

net path [5], [6], [7]. Existing studies have proposed various

online [5], [8] algorithms to find the best routing for video

conferencing applications. However, when making the routing

decisions, existing methods mainly focus on minimizing the

packet transmitting latency from source to target, while in

video conferencing applications, the end-to-end latency of

a packet contains not only the data transmitting time but

also packet reordering time sensitive to network jitter (i.e.,

Figure 3). Due to the dynamic and heterogeneous network

performance in geo-distributed DCs, it is highly possible that

the routing decisions which lead to the minimum average

packet transmitting latency do not guarantee the lowest av-

erage end-to-end latency. To provide low end-to-end latency

video conferencing, we need to redesign the packet routing

approach to find routing path with low and stable transmitting

latency.

Second, inter-DC network latency varies greatly overtime.

This is especially true on public Internet paths [9] with

the fastly increasing video conferencing traffic [10]. Higher

network dynamics lead to higher jitter, hence causing more

packets to arrive at the destination out-of-order. Packets that

are arriving too late will be discarded which results in packet

loss to data streams. Existing systems mostly adopt jitter

buffers [11], [12] to handle the out-of-order problem, where

http://arxiv.org/abs/2310.05054v2

the buffer size is an important parameter to balance between

packet reordering latency and loss rate. By analyzing the

jitter management in existing systems, we found that the

buffer-based methods are essentially in-order-processing (IOP)

methods and can cause unnecessary delay for packets in the

buffer when there are stragglers. Due to the highly dynamic

feature of geo-distributed networks, the IOP-based jitter buffer

methods will inevitably cause more latency waste.

In this paper, we tackle two critical challenges in improving

the quality of video conferencing in geo-distributed DCs by

proposing two novel techniques: VCRoute and WMJitter.

First, VCRoute is a packet routing method specifically

designed for video conferencing systems. VCRoute treats the

routing problem as a Multi-Armed Bandit problem and applies

a custom version of Thompson Sampling to solve it. In

contrast to the previous approaches [5], our method leverages

the Bayesian framework inherent in Thompson Sampling

to derive probability distributions for individual arms. This

innovative approach naturally considers transmitting latency

and its variance simultaneously, which allows us to tackle the

highly dynamic nature of geo-distributed network performance

effectively.

Second, we propose WMJitter, a watermark-based Out-Of-

Order (OOP) processing mechanism to handle network jitter.

WMJitter leverages the advantages of using watermarks in

streaming processing systems, enabling a further reduction in

end-to-end delay. Leveraging window-based statistic method

for real-time network jitter estimation used in WebRTC NetEQ

module [12], we facilitate timely and accurate adjustments to

the watermark. This efficient buffering management provided

by WMJitter can further reduce end-to-end latency, thus en-

hancing the overall system performance by striking a balance

between latency and loss rate. These two methods, VCRoute

and WMJitter, offer a comprehensive and scalable solution to

address the challenges of performance optimization for video

conferencing systems in geo-distributed environments.

We evaluate our techniques on two sets of real-world

geo-distributed environments with complementary features.

By comparing to state-of-the-art routing and jitter managing

approaches, we found that 1) VCRoute greatly outperforms

existing approaches when the inter-DC network performance

is highly heterogeneous (Section VI-B2); 2) watermark-based

jitter management has shown great improvement on average

end-to-end latency when the inter-DC network performance is

highly dynamic (Section VI-B1). In summary, we make the

following contributions:

• To the best of our knowledge, we are the first to jointly

consider transmitting latency and its variance during packet

routing, which is important to reduce the end-to-end latency

for data packets in video conferencing systems.

• Existing video conferencing systems adopt buffer-based

jitter handling, which may lead to unnecessary packet delay.

We are the first to introduce watermark-based Out-of-Order-

Processing (OOP) into the jitter management of video

conferencing systems, which further reduced the end-to-end

latency for data packets.

19:12 20:24 21:36 22:48 00:00 01:12 02:24
0

200
400
600
800

1000
1200

R
TT

 (m
s)

Time of Day

 Shanghai-Tokyo
 Guangzhou-Tokyo
 Shanghai-Guangzhou

Fig. 2: RTT variation over time between different Tencent

cloud DCs. We measure RTT once per minute and plot the

average of every ten minutes.

• We extensively evaluated our design on two sets of

geo-distributed environments with complementary features.

Evaluation results have shown that our design can effectively

reduce the end-to-end latency of packets by up to 44%

compared to the state-of-the-art. We believe the results are

insightful for video conferencing service providers from

different businesses (clouds, ISPs, etc.).

The remainder of this paper is organized as follows. We

introduce the background and motivation in Section II, present

the system overview in Section III, unfold design details

in Section IV and Section V, introduce our evaluation in

Section VI, present the related literature in Section VII and

finally conclude the paper in Section VIII.

II. BACKGROUND AND MOTIVATION

A. Geo-Distributed Network Features

Geo-distributed data communications go through the Wide

Area Network (WAN), which is much different from intra-DC

network due to its high latency and high dynamicity [13]. In

the following, we present observations from existing studies

as well as our measurement of real inter-DC network perfor-

mance on Tencent cloud, to mimic the deploying environment

of a geo-distributed video conferencing system using public

network connections.

First, the inter-DC network latency of different regions

vary a lot. Existing measurement results of popular public

clouds [14], [15], [16] show that the maximum medium value

of iter-DC network latency (330ms) can be up to 33 times

of the minimum value. And a rich of studies [5], [17], [6],

[7] have demonstrate that overlay routing is an applicable and

effective way to reduce the iter-DC network latency. Second,

inter-DC network latency can vary greatly over time. We

measure the RTT between two instances located in different

Tencent cloud DCs for a few hours and plot the variation

of RTT along time in Figure 2. The highest RTT between

Guangzhou and Tokyo can be over ten times larger than the

average. There are also inter-DC links with low performance

variations, such as that between Shanghai and Guangzhou.

This may depend on the distance between two DCs as well as

the traffic on the link.

The dynamicity of network latency in the geo-distributed

network can lead to jitter problem, which refers to the variation

in the delay of packets as they traverse a network. Jitter

can be caused by a variety of factors, including network

congestion, packet queuing, and routing issues. High levels

of jitter can result in poor network performance and may

cause problems for real-time applications such as voice and

video conferencing. Although packet loss rate between inter-

DC network paths can also impact the quality of real-time

applications, in this paper, we assume existing techniques

such as packet loss concealment [18] can adequately address

the issue and focus mainly on the high heterogneity and

dynamicity issues of network latency.

B. video Conferencing Systems

In the past few years, especially since the outbreak of

COVID-19 pandemic, video conferencing systems have played

an important role in our day-to-day communications. Opti-

mizing the quality of video/audio calls is urgent considering

the large number of end users distributed globally. Existing

studies have revealed the relationship between call quality and

network performance [5], which shows that network metrics

such as RTT and jitter can be used to accurately measure

the quality of video/audio calls. That is, any improvement

in RTT or jitter is likely to improve the call quality [5].

However, the special network features in geo-distributed DCs

(e.g., high RTT, heterogeneous relay paths and high jitter)

make it especially challenging to obtain good optimizations.

Popular video conferencing systems such as Zoom and

Webex adopt the single service endpoint architecture shown

in Figure 1a [3], where a single service endpoint is scheduled

for each meeting session and all participants communicate

with the endpoint for audio streaming. The endpoint is used

to select and forward video/audio streams. Due to the high

latency of inter-DC network, this can clearly lead to large

delay for users far from the endpoint if without any rout-

ing optimizations. Whats ’more, data packets in the same

stream using default Internet paths (e.g., BGP-derived) are

routed individually, they may take different underlay paths and

encounter varying network latency, leading to high jitter. As

discussed in the last subsection, using other service nodes as

relays and providing efficient routing policy between endpoint

and users may be able to reduce the delay and jitter for packets.

Existing network communication systems usually adopt

jitter buffers to compensate the quality degradation caused

by jitter. For example, Figure 3 shows the jitter buffer man-

agement in webRTC [12], a popular open-source framework

for creating video conferencing systems. Data packets travel

through the Internet and arrive at users’ end. A jitter buffer

at the user’s end temporarily stores incoming packets which

are usually out-of-order, and then plays them back by reorder-

ing the packets according to their timestamps of generation.

Packets arriving too late are discarded. Jitter buffer absorbs the

variability in packet arrival times, allowing the communication

system to maintain a consistent quality of service. The buffer

size is an important parameter. A large buffer can provide

better jitter compensation, at the expense of increased delay,

while a small buffer may cause more packets being discarded

due to out-of-order. Existing studies [19], [20] proposed to

adapt the buffer size according to network jitter.

Internet

Ordered

Packets

Jitter Buffer Manager

Jitter

Evaluator

Ordered

Insertion

Manager

Jitter Buffer

Buffer Size

Insert Position

Packets

Arrived

 Out of Order

Decoder Player

Transmiting

Latancy
Reordering Latancy

End-to-end Latancy

Fig. 3: Jitter Buffer Manager in webRTC

0 100 200 300 400 500 600
0

50

100

150

200

800
900

packet

la
te

nc
y

(m
s)

 Direct
 Via
 VCRoute

(a) Transmitting

0 100 200 300 400 500 600
0

50

100

150

200

800
900

packet

la
te

nc
y

(m
s)

 Direct
 Via
 VCRoute

(b) Reordering

0 100 200 300 400 500 600
0

50

100

150

200

800
900

packet

la
te

nc
y

(m
s)

 Direct
 Via
 VCRoute

(c) End-to-end

Fig. 4: Latencies of 30,000 packets communicated between

two ends in a video conferencing system. Average latency of

every 50 packets is plotted.

C. Motivations

With the global pandemic of COVID-19, some ISPs have

reported a more than 300% increase on video conferencing

traffic from February to October 2020 [10]. As a result,

the network congestion and variation will cause more severe

impact on the performance of video conferencing systems.

Existing studies optimize the performance of video confer-

encing systems by reducing the end-to-end latency of data

streams. As shown in Figure 3, the end-to-end latency of a

data stream is composed of two parts, including the time for

transmitting a packet through the Internet (i.e., transmitting

latency) and the lag that a packet stays in the jitter buffer

(i.e., reordering latency). Existing studies tried to reduce

the transmitting latency and reordering latency individually

through finding good dissemination paths [5] or designing

smart buffering schemes [17]. However, we found that op-

timizing the two components individually does not guarantee

good overall performance for video conferencing systems.

In a global video conferencing session, data streams are

transmitted through WAN composed of multiple autonomous

systems. Data packets in a stream are routed individually

and thus may end up with different underlay paths. Existing

routing methods such as Via [5] mainly focus on selecting

the best relay paths for packets in geo-distributed overlay

networks [21] to minimize packet transmitting time. However,

this does not guarantee low end-to-end latency for packets,

due to ignorance of packet reordering lag.

Consider a simple example with two communicating ends

and four relay nodes (17 paths between the two ends con-

sidering only direct paths and indirect paths with one or

two relays). The network performance between each pair of

nodes are adopted from real measurements in Tencent cloud.

Consider a stream of 30,000 packets sent from one end to

the other (emulating a 5min call). We adopt three different

ways to make routing decisions for each packet in the stream,

User1Relay/Endpoint

Relay/Endpoint

User2 Direct Path

Relay Path

(The service

endpoint of the

session)

Control Information

WM-based

Jitter Manager

U

WM-based

Jitter Manager

VCRoute

Scheduler

Fig. 5: System Overview

including Direct, Via [5] and VCRoute. The same packet

reordering approach is used for all comparisons. As shown

in Figure 4a, both Via and VCRoute can find relay paths

leading to much lower data transmitting time than directly

communicating between the two ends (i.e., Direct). However,

due to ignorance of the packet reordering lag, Via tend to

explore different routes to find paths with lower transmitting

latency, thus leading to higher jitter. As a result, Via has the

highest packet reordering latency among the three as shown

in Figure 4b. By jointly considering packet transmitting and

reordering, VCRoute obtains the lowest end-to-end latency.

The above results have shown the necessity to jointly con-

sider network latency and jitter during packet routing in

video conferencing systems. This is especially important for

geo-distributed video conferencing, where the time-variation

and heterogeneity of WAN performance gets more significant.

Data packets transmitted through the WAN are usually out-

of-order and need to be reordered for good user experience.

Existing studies mostly adopt jitter buffer to reorder packets

at the receivers’ end [22]. Although one can dynamically

change buffer size to adapt system latency to different network

variations, jitter buffer is essentially an in-order-processing

(IOP) method. The buffering mechanism inevitably causes

latency penalty for all packets as they wait for stragglers to

arrive [23]. However, the processing stage that comes after

packet reordering (e.g., decoding) does not necessarily require

all packets to be strictly in-order.

In this paper, we found that it is possible to leverage out-of-

order processing (OOP) paradigm to further reduce the

latency of video conferencing systems. OOP is an archi-

tecture commonly used in streaming processing for flexible

and efficient execution of stream queries [24]. Compared to

conventional jitter buffer based approaches, OOP allows more

packets to come out of reordering in time while ensuring the

required order, resulting in reduced latency.

In summary, special features of geo-distributed network

require revisiting the routing and jitter handling in current

video conferencing systems to optimize end-to-end latency.

III. SYSTEM OVERVIEW

Motivated by the deficiencies of existing work, this paper

aims at proposing a low-latency video conferencing system

for geo-distributed DCs. We make two efforts to achieve this

goal. First, we designed an application-aware routing mecha-

nism named VCRoute, which jointly considers the network

latency and jitter during routing to reduce the end-to-end

latency for data packets. Second, we designed a novel jitter

manager named WMJitter at the users’ end, which utilizes the

Watermark-based OOP mechanism to make sure packets come

out of the jitter manager in the correct order under low latency.

Figure 5 gives an overview of our system.

Application-aware packet routing. Existing routing stud-

ies mainly focus on reducing the time that a packet travels

on the route, and thus do not guarantee low end-to-end

latency for video conferencing applications. In this paper, we

propose VCRoute, which is a centralized packet scheduler

specifically designed for optimizing the performance of video

conferencing systems. As shown in Figure 5, VCRoute aims at

selecting the best relay path for each packet travelling between

the endpoint and the end user.

We formulate the routing problem as a Multi-Armed Ban-

dit (MAB) problem, where each available path in the geo-

distributed environment is an arm of the bandit. Traditional

MAB algorithms used in existing studies [5] selects average

transmitting latency as the sole optimization objective for

routing. However, the high dynamicity of inter-DC network

latency leads to high variance in the rewards, which can

significantly impact the performance and effectiveness of these

algorithms. To address the above challenges, we carefully

adapt the Thompson Sampling algorithm [25] to our MAB

problem. Thompson Sampling can estimate the distribution

function of transmitting latency for each arm, allowing for

the simultaneous consideration of both transmitting latency

and its variance when routing, which can effectively handle

uncertainty and high variance in the rewards of arms.

Low-latency jitter management. Network jitter determines

the degree of disorder of the packets. The purpose of jitter

management is to absorb the impact of jitter as much as

possible, under a low latency. As mentioned above, existing

buffer-based jitter management is essentially doing in-order

processing and thus can cause unnecessary delay of packets

in the buffer. In this paper, we propose watermark-based jitter

management [23] at users’ end. Watermarks are quantitative

markers associated with a stream, indicating that no events

in the stream will have a timestamp preceding that of the

watermark. Thus, we can use watermarks to safely determine

when to emit packets and keep track of the progress of packet

handling. No extra latency will be introduced due to existence

of straggler packets.

IV. VCROUTE SCHEDULER

VCRoute provides a centralized routing scheduler for each

packet in the audio streams, so that the end-to-end latency of

the packets can be minimized. To achieve this goal, VCRoute

needs to answer the following questions:

• First, as VCRoute is designed to be centralized, how can

we mitigate the system overhead introduced by transmitting

scheduling decisions to users and endpoints? (Section IV-A)

• Second, given the high latency and dynamicity of inter-DC

network performance, how can VCRoute find a good path

for each packet in a timely manner? (Section IV-B)

Fig. 6: Overview of VCRoute

We have carefully designed VCRoute to solve the above

questions. Figure 6 gives an overview of VCRoute.

A. Reducing overhead

Many existing routing algorithms such as Via make one

routing plan for an entire call at offline time. Thus, the

scheduling overhead is not a major concern. However, this is

not good enough for our problem due to the highly dynamic

and heterogeneous network performance in geo-distributed

video conferencing. For example, in Figure 4, the Direct

method which uses a fixed routing plan for an entire stream

leads to high packet transmitting time. On the other hand,

making different routing plans for each individual packet leads

to high scheduling overhead. We address the overhead issue

from two aspects.

First, for each communicating <endpoint, user> pair, we

set a default routing plan. All packets in the stream are

scheduled according to the default plan. VCRoute updates the

default routing plan according to real-time network perfor-

mance. Thus, we only need to transmit the routing decisions

when they are updated. As a result, we are able to greatly

reduce the overhead of the centralized scheduler. For example,

in Figure 4, VCRoute transmits only 447 times of routing

plans for 30,000 packets, resulting in a 1.5% extra overhead

compared to a decentralized design. Further, we found that

among the 447 times of routing plan updates, only 4 paths out

of 17 were selected. This motivates our second optimization

of selecting the top-k low-latency paths from all relay paths

to reduce the solution space (Stage 2 of Figure 6). The

top-k paths are obtained based on the analysis of long-term

network performance history. Similar to Via [5], the k value

is dynamically decided based on confidence bounds for each

relay on a specific <endpoint, user> pair (refer to [5] for more

details). By using these confidence bounds to dynamically

decide the top-k relaying options, it ensures that any relay

option not included in the top-k is worse than any that is with

a high degree of confidence. Given the pruned set of relay

paths, VCRoute selects the path that results in the best end-

to-end latency at runtime, with a much lower overhead.

B. Making good routing decisions

Given the top-k paths, we design an online routing method

to dynamically select the best path for each packet (Stage

3 of Figure 6). As mentioned previously, selecting the best

path from the k options can be defined as a classic MAB

problem. Each path can be considered as an arm of the

bandit, and the transmitting latency of the path is used as the

reward of the arm. The MAB problem has been extensively

studied. However, the high-variance and dynamically changing

reward distributions of the bandits could make traditional

MAB algorithms such as UCB1 [26], [5] to choose path with

low average transmitting latency but high variance.

1) Thompson Sampling algorithm: In this paper, we care-

fully adapt the Thompson Sampling algorithm (TSA) [25] to

solve our MAB problem. TSA uses a Bayesian framework to

model the uncertainty in reward distributions of arms. It starts

from a guess that the rewards follow a prior distribution. When

getting more evidence (real rewards), the TSA iteratively

updates the hyperparameters of the prior and use them to

maintain a posterior distribution following the same parametric

form as the prior distribution. In our problem, we assume that

the likelihood of the reward of each arm (i.e., transmitting la-

tency of each path) follows a Normal distribution with known

variance. The variance can be calculated using historical calls

collected offline. Then, according to Bayesian probability

theory, the prior and posterior probability distributions both

follow the Normal distribution with hyperparameters mean µ
and variance σ2. We use the observed rewards to update the

hyperparameters for the posterior distribution.

Below we introduce how the hyperparameters are updated.

For simplicity, we use precision τ (τ = 1/σ2) instead of the

variance σ2 to update the posterior distribution. According to

Bayesian probability theory, we have:

τ ← τ + n ∗ τ0 (1)

µ← (τ ∗ µ+ τ0 ∗
∑n

i xi)/(τ + n ∗ τ0) (2)

where τ0 is the precision of calculated using historical end-to-

end latency traces, n is the number of times the arm has been

tested and xi is the end-to-end latency received at the i-th test

of the arm.

At each time step, TSA samples reward from the posterior

predictive normal distribution of each arm and select the arm

with the highest returned value. TSA transparently combines

both exploration and exploitation. Once an arm is tested and a

reward is obtained, the belief in the likelihood of the reward of

that arm is modified. By employing sampling strategies based

on posterior probabilities associated with the optimality of

different actions, the algorithm ensures continued exploration

of all actions that hold plausible optimality potential while

reducing sampling emphasis on actions deemed less likely to

be optimal.

V. WATERMARK-BASED JITTER MANAGER

The jitter manager sits on packet receivers’ side to ensure

ordered emit of packets. To achieve low-latency audio stream-

ing, we propose a novel jitter management method named

WMJitter using the watermark-based OOP mechanism. We

mainly address the following challenges:

• No existing studies have considered watermarks for jitter

management in video conferencing systems. How can we

use watermarks to handle disorder packets with low latency?

(Section V-A)

Algorithm 1 Main process of WMJitter.

1: Q,O ← Null;

2: When a packet p arrives:

3: if p.ts < wm then

4: Discard p and return;

5: Q ∪ {p};
6: lag = CalculateLag(p);

7: wm = UpdateWM(wm, p, lag);

8: for p in Q do

9: if p.ts < wm then

10: O ∪ {p} and Q.pop(p);

11: Sort and output packets in O;

• Existing buffer-based jitter management adapt buffer sizes

to trade-off buffering delay and packet loss. How can we

achieve the same goal using watermarks? (Section V-B)

A. Incorporating Watermarks in Jitter Management

We propose the integration of watermarks to provide precise

indications of streaming packet progress. Specifically, any

newly arriving packet with a timestamp greater than the

watermark is deemed timely, while packets arriving later are

considered tardy and subsequently discarded. Timely packets

are retained in the buffer, awaiting output. Upon updating the

watermark, packets in the buffer that possess timestamps lower

than the new watermark are sorted and output collectively.

Our watermark-based OOP method effectively reduces the

reordering time and waiting time compared to the conventional

approach of selecting the packet with the smallest timestamp

when the buffer reaches its capacity.

Algorithm 1 shows the main process of WMJitter. Specifi-

cally, when a packet arrives at the receiver, the jitter manager

first estimates the jitter of the packet transmitting lag (Line

6) and updates the watermark accordingly (Line 7). It then

determines which packets can safely be sorted and output by

comparing the updated watermark and the timestamps of the

packets that have not yet been output (Line 8-11). In this way,

WMJitter can guarantee ordered delivery of packets.

B. Balancing Latency with Packet Loss

To dynamically strike a balance between latency and packet

loss rate, we propose a novel event-driven watermark genera-

tion method (i.e., the UpdateWM() function in Algorithm 1)

that adapts to the changing network conditions.

The UpdateWM() function uses an adaptive watermark

generation algorithm to indicate the progress of data streams

affected by network jitter. Upon the arrival of a new packet,

we calculate an alternative watermark by subtracting the

timestamp with a designated lag, subsequently selecting the

larger value between the alternative watermark and the current

watermark as the updated watermark. Formally:

WM = max (LPWM, p.ts− lag) (3)

where LPWM (last published watermark) represents the

watermark before the update, p.ts represents the timestamp

of the new packet, and lag represents the tolerated delay for

late data due to network fluctuations. The max operation in

the equation ensures that the watermark is non-decreasing,

indicating that packets are progressing with time.

TABLE I: Location of endpoints and users

Provider Endpoint Location User Location

Tencent
cloud

Tokyo, Guangzhou,
Singapore, Frankfurt,

Sao Paulo

Shenzhen, Singapore,
Hong Kong

Wonder
Proxy

Brazil, Australia,
Singapore, South
Africa, Greece

Argentina, Indonesia,
Uganda, United
States, Lithuania

The lag is a key parameter that directly impacts the balance

between buffering delay and loss rate. A larger lag leads to in-

creased buffering delay and reduced loss rate, while a smaller

lag leads to an opposite scenario. Intuitively, a lag value that

closely approximates the real-time jitter of transmitting latency

optimizes the balance between buffer delay and loss rate. To

enable adaptive and timely watermark adjustment, we employ

the window-based statistical method of estimating jitter used

in WebRTC NetEQ module [12] to determine the lag value.

VI. EVALUATION

To evaluate the effectiveness of our design on reducing

the end-to-end latency of video conferencing systems, we

perform experiments using network performance traces from

real geo-distributed environments. Our trace-driven simulator

is implemented based on WebRTC [12].

A. Experimental Setup

Geo-distributed setting. We perform our experiments

based on the network performance traces collected from Ten-

cent cloud [16] and WonderProxy [27], as shown in Table I.

With Tencent cloud, we select five data centers as the

geo-distributed environment. One S5.Medium2 instance is

launched in each data center as the endpoint/relay point. Three

users are setup locally using servers located in Shenzhen, Hong

Kong and Singapore (outside of Tencent cloud). To measure

the network performance, we send one packet every 10ms

between each pair of servers and record the round trip time

(RTT). Each measurement lasts for 100 minutes.

WonderProxy provides a global network of 250 servers for

businesses to simulate web traffic from different countries and

regions. We adopt five servers as endpoints/relays and five

servers as users, as shown in the table. The latency between

each pair of servers are adopted from the one day measurement

using Ping, open-sourced by the provider [27].

As shown in Figure 7, which illustrates the average network

performance and variance, the two platforms have very differ-

ent features. First, the latency between WonderProxy servers

are higher and more dynamic than Tencent cloud. Second,

the network latency between different <source, destination>
pairs of WonderProxy are less heterogeneous. Since the two

platforms differ a lot on the network features, we believe our

trace-driven evaluation results are representative to show the

effectiveness of our proposed algorithms.

Compared approaches. To show the superiority of our

methods, we adopt three routing methods and two jitter

management approaches for comparison. End-to-end latency

is the main metric for comparing different approaches.

(a) WonderProxy (b) Tencent Cloud

Fig. 7: Average network performance and variance on two

platforms. Values in the figure represent average latency (ms)

and the temperature represent standard deviation.

We evaluate the following routing methods:

• Direct is the baseline routing method that transmits a packet

directly from the source to target (DRT for short).

• Via [5] is an online routing algorithm which selects the best

overlay path for each meeting session to minimize the data

transmitting latency. For fair comparison, we use it to make

the best routing decision for each packet. Via is considered

as the state-of-the-art comparison.

• VCRoute is the routing method proposed in this paper that

minimizes the end-to-end latency for each single packet

(VCR for short).

We consider the following jitter management approaches:

• Jitter Buffer represents the standard jitter buffer algorithm

used in the NetEQ module of WebRTC [12]. The buffer size

is dynamically changed to accommodate the varying jitter

conditions (BF for short).

• WMJitter is the watermark-based jitter management

method proposed in this paper (WM for short).

Putting it all together, we compare five different system

solutions, namely DRT-BF, DRT-WM, VIA-BF, VIA-WM

and VCR-WM. VCR-WM stands for the optimized video

conferencing system of this paper.

Configurations. For each geo-distributed setting, we simu-

late five meeting sessions hosted on the five endpoint servers.

When one endpoint is selected to host a meeting, the other

four endpoints are adopted as relays. As we only consider

relay routes with less than two hops, there are 17 possible

paths for each <endpoint, user> pair. For each meeting,

600,000 packets are sent between each <endpoint, user> pair

to simulate a meeting session of 100 minutes long. During

the packet handling, some late packets are dropped and cause

packet loss. We report the loss rate and the end-to-end latency

of successful packets as evaluation metrics.

B. Trace-Driven Evaluation Results

1) End-to-end latency on WonderProxy: To compare the

end-to-end latency results obtained by different methods, we

plot the CDFs of streaming lag experienced by clients in

Figures 8-10. Results of meeting sessions hosted on the Brazil

and Australia endpoints are similar to those shown in the

figures, and thus are not plotted. We have the following

observations.

First, across all the meeting sessions hosted in different data

centers, VCR-WM obtains the best end-to-end latency for all

users distributed globally, while DRT-BF obtains the worst

results in most cases. Take the results of Greece endpoint as

an example. Figures 8c shows that, VCR-WM guarantees all

packets to arrive within 640ms for users located in Uganda,

which is even lower than the shortest end-to-end latency

results obtained by DRT-BF. Compared to VIA-BF, VCR-

WM reduces the average end-to-end latency by 4%-13%. Note

that, for some cases, the VCR-WM and DRT-WM obtains

similar end-to-end latency results (i.e., <ZA, UserAR>). This

is because that the best relay path is the direct path, and the

transmitting latency is far less than the other paths. Similarly,

for some cases, the VCR-WM and VIA-WM obtains similar

end-to-end latency results (i.e., <SG, UserUGA>) because the

best path is far better than others. Comparing different users

in the same meeting session, users closer to the endpoint are

more likely to obtain better video conferencing experiences.

For example, Lithuania, which is also in Europe as Greece,

is geographically the closest to the endpoint and thus has the

lowest average end-to-end latency among all users. What’s

more, all compared methods work similarly for Lithuania,

since the direct route has much lower transmitting latency

compared to the other relay routes. As a result, Direct, Via and

VCRoute all select the same direct path. This further increases

the stability of latency and reduces jitter.

Second, to study the effectiveness of WMJitter, we compare

the results of DRT-BF with those of DRT-WM and the results

of VIA-BF with those of VIA-WM. As shown in Figure 7a,

the network performance between endpoints and users IDN,

UGA and US are much more dynamic than the other two users.

As a result, we have observed much higher improvement of

the watermark-based jitter management methods compared to

the buffer-based method on reducing the end-to-end latency.

For example, DRT-WM reduces the end-to-end latency by 8%-

12%, 9%-16% and 10%-16% compared to DRT-BF for clients

in IDN, UGA and US, respectively, across the three meeting

sessions. Similarly, VIA-WM reduces the end-to-end latency

by 8%-13%, 2%-9% and 5%-10% compared to VIA-BF for

clients in IDN, UGA and US, respectively, across the three

meeting sessions. The above results have demonstrated the

effectiveness of WMJitter.

2) End-to-end latency on Tencent Cloud: Evaluation results

on Tencent cloud has shown similar observations as those from

WonderProxy. Below we only discuss the differences between

Tencent cloud and WonderProxy.

Figure 11 and 12 show the CDFs of end-to-end latency re-

sults of users obtained by VCR-WM, DRT-WM and VIA-WM

when meetings are hosted on the Tokyo and Sao Paulo servers.

We deliberately removed the results of DRT-BF and VIA-BF

from the figures since they performed very closely to DRT-

WM and VIA-WM due to the low variances of the network

performances. On these two cases, VCR-WM obtains much

lower end-to-end latency compared to VIA-WM and DRT-

 VCR-WM

(a) GR-UserAR

 VCR-WM

(b) GR-UserIDN

 VCR-WM

(c) GR-UserUGA

 VCR-WM

(d) GR-UserUS

 VCR-WM

(e) GR-UserLT

Fig. 8: End-to-end latency (ms) of a meeting session with endpoint located in Greece (WonderProxy).

 VCR-WM

(a) ZA-UserAR

 VCR-WM

(b) ZA-UserIDN

 VCR-WM

(c) ZA-UserUGA

 VCR-WM

(d) ZA-UserUS

 VCR-WM

(e) ZA-UserLT

Fig. 9: End-to-end latency (ms) of a meeting session with endpoint located in South Africa (WonderProxy).

 VCR-WM

(a) SG-UserAR

 VCR-WM

(b) SG-UserIDN

 VCR-WM

(c) SG-UserUGA

 VCR-WM

(d) SG-UserUS

 VCR-WM

(e) SG-UserLT

Fig. 10: End-to-end latency (ms) of a meeting session with endpoint located in Singapore (WonderProxy).

WM. For example, the 50%-percentile latency of VCR-WM

is 0%-16% and 6%-18% lower than those of DRT-WM and

VIA-WM, respectively. This demonstrates the effectiveness of

VCRoute on finding better routes than other state-of-the-art

routing schedulers for video conferencing systems.

3) Loss rate results: We further study the loss rate of

audio streams resulted from different comparisons. Figure 13

shows the loss rate results per meeting session on both

WonderProxy and Tencent cloud. As expected, the loss rate on

WonderProxy is in general much larger than that on Tencent

cloud, due to the much higher network performance variances

on WonderProxy. The loss rates of meeting sessions using

Direct routing on Tencent cloud are almost zero since there’s

no significant jitter on the route. Thus no packet arrives too

late to be dropped. In contrary, the loss rate is high even on

direct routes on WonderProxy due to the high network perfor-

mance variances. Further, watermark-based jitter management

method can slightly reduce the loss rate compared to buffer-

based methods. For example, DRT-WM and VIA-WM reduce

the loss rate by 2%-3% and 2%-4% compared to DRT-BF

and VIA-BF, respectively, on WonderProxy. The Via routing

method (i.e., VIA-BF and VIA-WM) generated much higher

loss rates on Tencent cloud than the other methods, due to its

tendency to explore which leads to more path changes. For

example, there are 34,020 times of path changes with Via for

the <Tokyo, Shenzhen> data stream with 600,000 packets.

Although VCRoute also explores during the search for a good

route, it deliberately reduces the number of path changes to

reduce network jitter. In all cases, VCR-WM yields lower or

comparable packet loss rates compared to the other methods,

while providing much lower end-to-end latency.

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

End-to-end Latency

 DRT-WM
 VIA-WM
 VCR-WM

(a) TYO-UserSZ

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

End-to-end Latency

 DRT-WM
 VIA-WM
 VCR-WM

(b) TYO-UserSG

Fig. 11: End-to-end latency (ms) of a meeting session with

endpoint located in Tokyo (Tencent).

 VCR-WM

(a) SP-UserSZ

 VCR-WM

(b) SP-UserSG

Fig. 12: End-to-end latency (ms) of a meeting session with

endpoint located in Sao Paulo (Tencent).

4) System overhead: With our top-k pruning, the overhead

of VCRoute searching for the best route is very low (∼0.3ms

for each packet). Due to the centralized design of VCRoute,

the main overhead introduced by our system to audio streams

comes from the extra time needed to transfer routing decisions

from endpoints to users. Figure 14 shows the additional

overhead per packet caused by transmitting routing decisions

for each meeting session hosted on different endpoints in

WonderProxy and Tencent. Similar to our observations above,

the additional overhead is larger for users with higher network

variances (e.g., UserIDN on WonderProxy and UserSG on

Tencent). The largest overhead for UserIDN is 9.1ms, which

BR AUS SG ZA GR
0
1
2
3
4
5

Lo
ss

 R
at

e
(%

)
 DRT-BF
 DRT-WM
 VIA-BF
 VIA-WM
 VCR-WM

(a) WonderProxy
TYO FRA GZ SP SG

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Lo
ss

 R
at

e
(%

)

 DRT-BF
 DRT-WM
 VIA-BF
 VIA-WM
 VCR-WM

(b) Tencent cloud

Fig. 13: Overall loss rate of meeting sessions hosted on

different endpoints in WonderProxy and Tencent.

6.9

0.2

9.1

0.1

User
AR

User
ID

N

User
UGA

User
US

User
LT

0

8

9

10
 GR
 ZA
 SG

O
ve

rh
ea

d
(m

s)

(a) WonderProxy

1.0

7.2

User
SZ

User
HK

User
SG

0

7

8
 TYO
 SP

O
ve

rh
ea

d
(m

s)

(b) Tencent cloud

Fig. 14: Additional overhead per packet of VCRoute

is neglectable compared to the end-to-end latency per packet

as shown in Figure 9b. It means that our design introduces an

additional overhead less than 1% of the average end-to-end

latency for each packet.

C. Discussions

The above results show that our proposed methods are ef-

fective and efficient to different geo-distributed environments.

• VCRoute is effective for DCs with highly heterogeneous

network, as demonstrated by the results on Tencent cloud.

• The WM-based jitter manager is effective for highly dy-

namic network environments (i.e., high jitter) as demon-

strated by the results on WonderProxy.

• Our methods introduces an additional overhead less than 1%

of the average end-to-end latency and can scale well with

the increase of network sizes.

VII. RELATED WORK

A. Conferencing Systems

Wu et al. [17] presented a conferencing system vSkyConf,

which use decentralized routing algorithm to reduce streaming

latency. vSkyConf also adapt streaming rate according to the

bandwidth limitation, and utilize buffer fro streaming synchro-

nization. Fouladi et al. [22] proposed to achieve low-latency

video streaming by integrating video codec and transport

protocol. Yan et al. [28] used a neural network to predict

the transfer time of a chunk in a video, which is used for

decision of bit rate selection for video streaming. Fang et al.

[29] also choose to control the sending rate of video streaming

based on the bandwidth evaluation on the receiver. It used

a RL-based method to change the sending rate. Zhang et

al. [30] also proposed to adapt transport protocol and video

codec based on network dynamics. It proposed to train a RL-

based model online, and used it to predict network dynamics.

Chang et al. [3] presented a detailed measurement study which

compares Zoom, Webex and Google Meet. They found that

users in different regions can have big difference streaming

lag. Hu et al. [31] proposed to enhancing video quality at

the endpoint without changing the transmitting condition of

the video. Although these studies shed some lights on how

to model video conferencing systems, none of them have

addressed the latency issues studied in this paper.

B. Data Stream Processing

Data stream processing research has delved into parallelism,

synchronization, and resource optimization. Zhang et al. [32]

introduced BriskStream, a NUMA-aware in-memory system

for shared-memory multicore architectures. Mencagli et al.

[33] developed a framework for parallel continuous pref-

erence queries on out-of-order, bursty data streams. Traub

et al. [34] presented Scotty, a high-throughput operator for

streaming window aggregation, while Miao et al. [35] es-

tablished StreamBox, an engine for out-of-order record pro-

cessing on multicore servers. Zhang et al. [36] developed

TStream, supporting efficient concurrent state access with

dynamic restructuring execution. Distinguishing our work, we

introduce watermark-based jitter management, departing from

traditional buffer-based approaches, enabling more efficient

data processing and further reducing latency in geo-distributed

environments.

C. Geo-distributed Stream Processing

Network optimizations for geo-distributed stream process-

ing have aimed to minimize communication costs, balance

resource utilization, and adapt to bandwidth capacities. Gu

et al. [37] developed a framework for communication cost

minimization using VM placement and flow balancing. Rabkin

et al. [38] created JetStream, a wide-area data analysis sys-

tem addressing bandwidth limitations. Zhang et al. [39] pre-

sented AWStream, offering low latency and high accuracy

in bandwidth-constrained operations. Liu et al. [40] designed

Bellini, a system for rapid prototyping of inter-datacenter

protocols and efficient VM resource utilization. Xu and Li

[41] optimized joint request mapping and response routing for

distributed data centers. Zhao et al. [42] designed HPS+, a co-

ordinated task scheduling and routing system. Mostafaei et al.

[43] devised SNR, a worker node placement approach balanc-

ing bandwidth, latency, and cost. Li et al. [44] extended Spark

Streaming for optimal task scheduling and data flow routing.

Zoom [45] ensures optimized connection paths through geo-

distributed infrastructure. Our work advance state-of-the-art

through application-aware network routing and watermark-

based low-latency jitter management, offering new strategies

for optimizing low-latency systems, focusing on video confer-

encing applications in geo-distributed environments.

VIII. CONCLUSION

In this paper, we address two challenges for video con-

ferencing systems across geo-distributed DCs. First, existing

routing methods mainly focus on minimizing packet trans-

mitting latency, which does not necessarily translate to low

end-to-end latency. In response, we introduced VCRoute,

an application-specific packet routing technique that jointly

considers network transmission time and packet reordering

time to reduce end-to-end latency. Second, inter-DC network

latency can drastically fluctuate, resulting in high jitter detri-

mental to video conferencing applications. Traditional buffer-

based jitter management methods often introduce unnecessary

delays, especially when handling stragglers. To overcome

this, we proposed WMJitter, a watermark-based Out-of-Order

Processing mechanism tailored to manage jitter at the users’

end. Evaluations using two distinct real-world geo-distributed

environments have demonstrated the efficacy and viability of

our proposed solutions on enhancing the performance of video

conferencing systems.

REFERENCES

[1] B. Dean, “Zoom User Stats: How Many People Use Zoom in 2022?”
https://backlinko.com/zoom-users, 2022.

[2] J. Novet, “Zoom CFO explains how the com-
pany is grappling with increased demand,”
https://www.cnbc.com/2020/03/18/zoom-cfo-explains-how-the-company-is-grappling-with-increased-demand.html,
2020.

[3] H. Chang, M. Varvello, F. Hao, and S. Mukherjee, “Can you see me
now? a measurement study of zoom, webex, and meet,” in IMC ’21,
2021, pp. 216–228.

[4] K. MacMillan, T. Mangla, J. Saxon, and N. Feamster, “Measuring
the performance and network utilization of popular video conferencing
applications,” in IMC ’21, 2021, pp. 229–244.

[5] J. Jiang, R. Das, G. Ananthanarayanan, P. A. Chou, V. Padmanabhan,
V. Sekar, E. Dominique, M. Goliszewski, D. Kukoleca, R. Vafin,
and H. Zhang, “Via: Improving internet telephony call quality using
predictive relay selection,” in SIGCOMM ’16, 2016, pp. 286–299.

[6] Y. Xu, C. Yu, J. Li, and Y. Liu, “Video telephony for end-consumers:
measurement study of google+, ichat, and skype,” 2012.

[7] O. Haq and F. R. Dogar, “Leveraging the power of cloud for reliable
wide area communication,” in HotNets ’15, 2015.

[8] M. H. Hajiesmaili, L. T. Mak, Z. Wang, C. Wu, M. Chen, and
A. Khonsari, “Cost-effective low-delay cloud video conferencing,” in
ICDCS ’15, 2015, pp. 103–112.

[9] O. Haq, M. Raja, and F. R. Dogar, “Measuring and improving the
reliability of wide-area cloud paths,” in WWW ’17, 2017, pp. 253–262.

[10] Bitag, “2020 pandemic network performance,”
https://bitag.org/documents/bitag report.pdf, 2021.

[11] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service,” in SIGCOMM ’14, 2014, pp. 187–198.

[12] J. Uberti and C. Jennings, “Webrtc: Real-time communication
between browsers,” RFC 7478, 2013. [Online]. Available:
https://tools.ietf.org/html/rfc7478

[13] R. Zhu, B. Liu, D. Niu, Z. Li, and H. V. Zhao, “Network latency estima-
tion for personal devices: A matrix completion approach,” IEEE/ACM

Transactions on Networking, vol. 25, no. 2, pp. 724–737, 2017.

[14] S. Agarwal, “Public cloud inter-region network latency as heat-maps,”
https://medium.com/@sachinkagarwal/public-cloud-inter-region-network-latency-as-heat-maps-134e22a5ff19,
2018.

[15] Matt, “Aws latency monitoring,” https://www.cloudping.co/grid, 2024.

[16] zartbot, “Interconnection Test of Public Cloud,”
https://mp.weixin.qq.com/s/rEO6ICeNvWIIBUIEHYewIg, 2020.

[17] Y. Wu, C. Wu, B. Li, and F. C. Lau, “Vskyconf: Cloud-assisted multi-
party mobile video conferencing,” in MCC ’13, 2013, pp. 33–38.

[18] E. Kurdoglu, Y. Liu, and Y. Wang, “Perceptual quality maximization
for video calls with packet losses by optimizing fec, frame rate, and
quantization,” IEEE Transactions on Multimedia, vol. 20, no. 7, pp.
1876–1887, 2018.

[19] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service,” SIGCOMM ’14, vol. 44, no. 4, pp. 187–198, aug
2014.

[20] B. Briscoe, A. Brunstrom, A. Petlund, D. Hayes, D. Ros, I.-J. Tsang,
S. Gjessing, G. Fairhurst, C. Griwodz, and M. Welzl, “Reducing internet
latency: A survey of techniques and their merits,” IEEE Communications

Surveys and Tutorials, vol. 18, no. 3, pp. 2149–2196, 2016.

[21] B. Renl, D. Guo, G. Tang, W. Wang, L. Luo, and X. Fu, “Sruf: Low-
latency path routing with srv6 underlay federation in wide area network,”
in ICDCS ’21, 2021, pp. 910–920.

[22] S. Fouladi, J. Emmons, E. Orbay, C. Wu, R. S. Wahby, and K. Winstein,
“Salsify: Low-latency network video through tighter integration between
a video codec and a transport protocol,” in NSDI ’18, USA, 2018, pp.
267–282.

[23] T. Akidau, E. Begoli, S. Chernyak, F. Hueske, K. Knight, K. Knowles,
D. Mills, and D. Sotolongo, “Watermarks in stream processing systems:
Semantics and comparative analysis of apache flink and google cloud
dataflow,” VLDB ’21, vol. 14, no. 12, pp. 3135–3147, jul 2021.

[24] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson, and D. Maier,
“Out-of-order processing: A new architecture for high-performance
stream systems,” VLDB ’08, vol. 1, no. 1, pp. 274–288, 2008.

[25] O. Chapelle and L. Li, “An empirical evaluation of thompson sampling,”
in NIPS’11, 2011, pp. 2249–2257.

[26] P. Auer, “Finite-time analysis of the multiarmed bandit problem,” in
Advances in neural information processing systems, 2002, pp. 160–167.

[27] “A day in the life of the internet,”
https://wonderproxy.com/blog/a-day-in-the-life-of-the-internet/,
accessed on April 5, 2023.

[28] F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis,
and K. Winstein, “Learning in situ: a randomized experiment in video
streaming,” in NSDI ’20, Santa Clara, CA, feb 2020, pp. 495–511.

[29] J. Fang, M. Ellis, B. Li, S. Liu, Y. Hosseinkashi, M. Revow, A. P.
Sadovnikov, Z. Liu, P. Cheng, S. Ashok, D. Zhao, R. Cutler, Y. Lu,
and J. Gehrke, “Reinforcement learning for bandwidth estimation
and congestion control in real-time communications,” ArXiv, vol.
abs/1912.02222, 2019.

[30] H. Zhang, A. Zhou, J. Lu, R. Ma, Y. Hu, C. Li, X. Zhang, H. Ma,
and X. Chen, “Onrl: Improving mobile video telephony via online
reinforcement learning,” in MobiCom ’20, 2020.

[31] P. Hu, R. Misra, and S. Katti, “Dejavu: Enhancing videoconferencing
with prior knowledge,” in HotMobile ’19, 2019, pp. 63–68.

[32] S. Zhang, J. He, A. C. Zhou, and B. He, “Briskstream: Scaling
data stream processing on shared-memory multicore architectures,” in
SIGMOD ’19, 2019, pp. 705–722.

[33] G. Mencagli, M. Torquati, M. Danelutto, and T. De Matteis, “Par-
allel continuous preference queries over out-of-order and bursty data
streams,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 9, pp. 2608–2624, 2017.

[34] J. Traub, P. M. Grulich, A. R. Cuellar, S. Breß, A. Katsifodimos, T. Rabl,
and V. Markl, “Scotty: Efficient window aggregation for out-of-order
stream processing,” in ICDE ’18, 2018, pp. 1300–1303.

[35] H. Miao, H. Park, M. Jeon, G. Pekhimenko, K. S. McKinley, and F. X.
Lin, “Streambox: Modern stream processing on a multicore machine,”
in USENIX ATC ’17, 2017, pp. 617–629.

[36] S. Zhang, Y. Wu, F. Zhang, and B. He, “Towards concurrent stateful
stream processing on multicore processors,” in ICDE ’20, 2020, pp.
1537–1548.

[37] L. Gu, D. Zeng, S. Guo, Y. Xiang, and J. Hu, “A general communication
cost optimization framework for big data stream processing in geo-
distributed data centers,” IEEE Transactions on Computers, vol. 65,
no. 1, pp. 19–29, 2015.

[38] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman, “Aggregation
and degradation in jetstream: Streaming analytics in the wide area,” in
NSDI ’14, 2014, pp. 275–288.

[39] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“Awstream: Adaptive wide-area streaming analytics,” in SIGCOMM ’18,
2018, pp. 236–252.

[40] Z. Liu, Y. Feng, and B. Li, “Bellini: Ferrying application traffic flows
through geo-distributed datacenters in the cloud,” in GLOBECOM ’13,
2013, pp. 1753–1759.

[41] H. Xu and B. Li, “Joint request mapping and response routing for geo-
distributed cloud services,” in INFOCOM ’13, 2013, pp. 854–862.

[42] L. Zhao, Y. Yang, A. Munir, A. X. Liu, Y. Li, and W. Qu, “Optimizing
geo-distributed data analytics with coordinated task scheduling and rout-
ing,” IEEE Transactions on Parallel and Distributed Systems, vol. 31,
no. 2, pp. 279–293, 2019.

[43] H. Mostafaei, S. Afridi, and J. H. Abawajy, “Snr: Network-aware geo-
distributed stream analytics,” in CCGrid ’21, 2021, pp. 820–827.

[44] W. Li, D. Niu, Y. Liu, S. Liu, and B. Li, “Wide-area spark streaming:
Automated routing and batch sizing,” IEEE Transactions on Parallel

and Distributed Systems, vol. 30, no. 6, pp. 1434–1448, 2018.

https://backlinko.com/zoom-users
https://www.cnbc.com/2020/03/18/zoom-cfo-explains-how-the-company-is-grappling-with-increased-demand.html
https://bitag.org/documents/bitag_report.pdf
https://tools.ietf.org/html/rfc7478
https://medium.com/@sachinkagarwal/public-cloud-inter-region-network-latency-as-heat-maps-134e22a5ff19
https://www.cloudping.co/grid
https://mp.weixin.qq.com/s/rEO6ICeNvWIIBUIEHYewIg
https://wonderproxy.com/blog/a-day-in-the-life-of-the-internet/

[45] Z. V. C. Inc., “Zoom Connection Process White Paper,”
https://bit.ly/3D1oeAw, 2021.

https://bit.ly/3D1oeAw

	Introduction
	Background and Motivation
	Geo-Distributed Network Features
	video Conferencing Systems
	Motivations

	System Overview
	VCRoute Scheduler
	Reducing overhead
	Making good routing decisions
	Thompson Sampling algorithm

	Watermark-based Jitter Manager
	Incorporating Watermarks in Jitter Management
	Balancing Latency with Packet Loss

	Evaluation
	Experimental Setup
	Trace-Driven Evaluation Results
	End-to-end latency on WonderProxy
	End-to-end latency on Tencent Cloud
	Loss rate results
	System overhead

	Discussions

	Related Work
	Conferencing Systems
	Data Stream Processing
	Geo-distributed Stream Processing

	Conclusion
	References

