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We study spectral correlations in many-body quantum mixtures of fermions, bosons, and qubits
with periodically kicked spreading and mixing of species. We take two types of mixing, namely,
Jaynes-Cummings and Rabi, respectively, satisfying and breaking the conservation of a total number
of species. We analytically derive the generating Hamiltonians whose spectral properties determine
the spectral form factor in the leading order. We further analyze the system-size (L) scaling of
Thouless time t∗, beyond which the spectral form factor follows the prediction of random matrix
theory. The L-dependence of t∗ crosses over from logL to L2 with an increasing Jaynes-Cummings
mixing between qubits and fermions or bosons in a finite-sized chain, and it finally settles to t∗ ∝
O(L2) in the thermodynamic limit for any mixing strength. The Rabi mixing between qubits and
fermions leads to t∗ ∝ O(logL), previously predicted for single species of qubits or fermions without
total number conservation.

A series of recent microscopic studies has explored
quantum chaos and spectral correlations in periodically
driven (Floquet) many-body systems [1–18] to show the
emergence of universal random matrix theory (RMT)
description of the spectral form factor (SFF) in these
models by going beyond the semiclassical periodic-orbit
approaches [19, 20]. These investigations have further
strengthened our understanding of the quantum chaos
conjecture [21–29] for describing the spectral fluctuations
of many-body nonintegrable quantum systems by RMT.
Till now, such microscopic derivation of SFF in many-
body quantum models has been restricted to systems
with single components/species, e.g., fermions, bosons,
and qubits. Nature, however, is full of systems con-
sisting of multiple species, such as the crystalline solids
of electrons and phonons and the black-body radiation
comprising thermal electromagnetic radiation within or
surrounding a matter in thermodynamic equilibrium. In-
spired by these examples, we derive the leading order con-
tributions to SFF in various mixed many-body quantum
systems with two different types of species, e.g., qubits
and bosons or fermions [30].

We consider many-body quantum mixtures where a
base Hamiltonian with the entries diagonal in the Fock
space basis of two different species is kicked periodically
by another Hamiltonian with terms consisting of mixing
between two species and nearest-neighbor hopping of any
one species. The diagonal entries in the base Hamilto-
nian include random chemical potentials and transition
frequencies along with pairwise long-range interactions of
one species. We consider two forms of the mixing Hamil-
tonian: (a) Jaynes-Cummings (JC) [31–35] and (b) Rabi
(R) [36, 37] interaction between different species. While
the JC preserves the total number of excitations of both
species, the R does not. Thus, we have U(1)) symme-
try in the JC mixing system, which is absent for the R
mixing. Our models’ two different components are either
qubit and spinless boson or qubit and spinless fermion.
Since spinless fermions are related to spin-1/2s or qubits,
our results here are valid for many different types of mix-
ture, e.g., the results for a compound model of qubits and
spinless bosons are also helpful for a mix between spinless

fermions and bosons. Similarly, the results for a mixture
of qubits and spinless fermions apply to a mixture of spin-
1/2s of different species, e.g., electrons and atomic nuclei
in solids.

First, we rewrite the spectral form factor of the com-
pound systems in terms of a bi-stochastic many-body
process [7, 13] generated by an effective Hamiltonian.
The effective Hamiltonian describes the leading order
contributions of SFF within the random phase approxi-
mation (RPA) in the Trotter regime of small perturba-
tion parameters. We identify symmetries of the effec-
tive Hamiltonian controlling dynamical processes for the
emergence of RMT behavior in these models [13, 38].
These symmetries are important in determining system-
size (L) scaling of the Thouless timescales t∗ beyond
which the SFF has a universal RMT/COE form for our
time-reversal invariant models of a circular orthogonal
ensemble (COE). For JC mixing, we find, t∗ ∝ L2 when
L → ∞, which is a characteristics of U(1)-symmetric
model [5, 7, 13, 39]. However, we show an exciting com-
petition between the hopping and mixing of the driving
Hamiltonian, leading to a crossover behavior in the L-
dependence of t∗ when a finite-size system is considered.
For a finite system, t∗ ∝ logL when the mixing strength
is smaller than the hopping, and t∗ ∝ L2 for a higher mix-
ing strength compared to hopping. The above crossover
in L scaling of t∗ is inevitable in many experimental
studies with highly controlled laboratory settings of fi-
nite size [18, 35, 40–45]. For R mixing between fermions
and qubits, t∗ ∝ logL or L0 for large L, which is simi-
lar to the single species of fermion or spin-1/2 models in
the absence of U(1) symmetry. In contrast to fermions
or spin-1/2s, the only boson model lacking U(1) sym-
metry shows an algebraic L-dependence of t∗ [13]. We
offer numerical evidence that the L-dependence of t∗ for
R mixing between bosons and qubits seems to behave
similarly to R mixing between fermions and qubits.

The base (kicked) Hamiltonian Ĥ0 of our systems de-
notes a one-dimensional lattice of length L consisting of
spinless fermions or bosons and qubits with no coupling
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between these two entities/species.

Ĥ0 =

L∑

i=1

(ωin̂i +Ωiσ̂
†
i σ̂i) +

∑

i<j

Uij n̂in̂j , (1)

where n̂i = â†i âi is the number operator with â†i being a
fermion or boson creation operator at site i. The rais-

ing and lowering operators σ̂†
j ≡ (σ̂x

j + iσ̂
y
j )/2, σ̂j ≡ (σ̂x

j −
iσ̂y

j )/2 are for the qubit at site j. Here, ωi and Ωi are, re-

spectively onsite energy/frequency of the fermion/boson
and the transition frequency of the qubit at site i. We
choose one or both of ωi and Ωi random as Gaussian iid
variables of zero mean and finite standard deviation. We
further take long-range interaction between fermions or
bosons at sites i and j given by Uij = U0/|i − j|α with

an exponent in the interval 1 < α < 2. The form of Ĥ0

is fixed by minimal requirements for analytical calcula-
tion as well as physical relevance. Our analytical calcula-
tion requires the RPA and integration out of the param-
eters of Ĥ0, and both are met by the above choice of Ĥ0.
The model with bosons and qubits and its close variants
can physically represent light-matter interactions in real
systems and engineered meta-materials [32, 35, 37] and
electron-phonon interactions in crystalline solids.

The driving/kicking Hamiltonian consists of a term de-
noting the mixing between fermions/bosons and qubits
locally and another term indicating nearest-neighbor
hopping of fermions/bosons. The driving Hamiltonian
with JC and R interactions are, respectively,

ĤJC =

L∑

i=1

g(â†i σ̂i + σ̂†
i âi) +

L∑

i=1

(−Jâ†i âi+1 + h.c.), (2)

ĤR =

L∑

i=1

g(â†i + âi)(σ̂i + σ̂†
i ) +

L∑

i=1

(−Jâ†i âi+1 + h.c.),

(3)

where g and J are the strength of mixing and hop-
ping. The total excitation number operator, N̂ =∑L

i=1(n̂i + σ̂†
i σ̂i), commutes with both Ĥ0 and ĤJC , but

not with ĤR. Thus, the time-dependent total Hamil-
tonian, Ĥ(t) = Ĥ0 + ĤJC/R

∑
m∈Z δ(t − m), commutes

with N̂ for JC interaction but not for R interaction show-
ing the presence or absence of a U(1) symmetry, which
corresponds respectively to conservation or violation of
the total excitation number in our models. We here use
periodic boundary condition (PBC) in real space, i.e.,
âi ≡ âi+L, σ̂i ≡ σ̂i+L.

The SFF, K(t), is defined as a time (t) Fourier trans-
formation of the two-point correlation of the spectral den-
sity of quasienergies, which are eigenvalues of the unitary
one-cycle Floquet propagator Û of our periodically driven
systems. K(t) can be written as [1, 7]

K(t) = ⟨(trÛ t)(trÛ−t)⟩ − (N β
ζ )

2δt,0, (4)

where N β
ζ is the dimension of the Hilbert space of the

system with ζ = JC,R mixing for fermions (β = F ) and

bosons (β = B). Here, ⟨. . . ⟩ denotes an average over
the quench disorders {Ωi} and/or {ωi}. The one-cycle

time-evolution operator Û can be expressed as

Û = V̂ Ŵ , Ŵ = e−iĤ0 and V̂ = e−iĤJC/R . (5)

We consider the basis states |nσ⟩ ≡ |n1, . . . , nL⟩ ⊗
|σ1, . . . , σL⟩, where the occupation number of spinless
fermion/boson and qubit at the lattice site j are respec-
tively given nj = 0, 1 (F ) and 0, 1, 2, . . . (B), and σj =

0, 1. The total number of excitations N ≡ ⟨nσ|N̂ |nσ⟩ =∑L
j=1(nj + σj) is conserved in the whole system only for

JC mixing.

For JC mixing of fermions and qubits, we can dis-
tribute total excitations N(< 2L) among 2L states con-
sisting of L spatially localized qubit excitations and an-
other L spatially delocalized fermionic excitations. Thus,
the dimension of the Hilbert space for this system with
N excitations NF

JC = (2L)!/((2L − N)!N !). We further

have, NF
R =

∑2L
N=0,2.. NF

JC = 22L−1, which is the dimen-
sion of the even sector of Hilbert space for R mixing of
fermions and qubits.

For JC mixing between bosons and qubits, the number

of qubit excitations M (≡ ∑L
j=1 σj) can be 0 ≤ M ≤

min(N,L). The total number of bosons there would be
N −M . We can find the dimension NB

JC of the Hilbert
space by summing over allowed M . Thus, we get

NB
JC =

min(N,L)∑

M=0

L!

M !(L−M)!

(N −M + L− 1)!

(N −M)!(L− 1)!
. (6)

The Hilbert space dimension NB
R becomes infinite for R

mixing of bosons and qubits as N is not conserved and
has no upper bound. However, as discussed later, it is
possible to introduce a truncation for a maximum num-
ber of total excitation Nmax in the lattice for numerical
calculation.

Both for fermionic and bosonic models, these basis
states |nσ⟩ are eigenstates of Ĥ0 and Ŵ , which al-

lows us to integrate out Ĥ0 from Û and K(t) through
the RPA by disorder averaging over different realiza-
tions. We further make an identity permutation ap-
proximation to achieve the following simple form of the
SFF [7, 13] by including the leading order contributions

at times t ≪ tH ≡ N β
ζ : K(t) = 2t trMt, where M is

a N β
ζ × N β

ζ double stochastic square matrix whose ele-

ments are Mnσ,nσ′ = |⟨nσ|V̂ |nσ′⟩|2. The largest eigen-

value of M is one due to the unitarity of V̂ . Thus, we
can write the eigenvalues of M as 1, λ1, λ2, λ3, . . . with
1 ≥ |λi| ≥ |λi+1|. Using these eigenvalues, we express
the SFF as (see Sec. I of SM[46] for a derivation):

K(t) = 2t
(
1 +

Nβ
ζ −1∑

i=1

λti
)
, (7)
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FIG. 1: Spectral form factor K(t) using Eq. 7 for different system sizes L of the kicked chain with JC mixing
between fermions and qubits for g = 0.1, J = 0.4 in (a,b), and g = 0.4, J = 0.1 in (c,d). We take half-filling

N/L = 1/2. In (b) and (d), we show data collapse in scaled time t/ logL and t/L1.85, respectively.

where K(t) ≃ 2t is a leading order in t/tH result of
RMT/COE. The RMT/COE form ofK(t) ≃ 2t in a lead-
ing order appears beyond the Thouless timescales t∗(L)
when the contribution from the second term in Eq. 7 be-
comes negligible. The contribution from the second term
depends on the properties of λi for i ≥ 1. We next try to
understand the features ofM and its eigenvalues. We can
find Hermitian quantum Hamiltonians generating M in
the Trotter regime of small g, J for fermionic and bosonic
models with JC and R mixing. The Hamiltonians are
derived by writing M using an element-wise commuta-
tive product (also known as the Hadamard product) of

V̂ with V̂ ∗ in the basis |nσ⟩, and then expanding V̂ in

the Trotter regime of small parameters of ĤJC (ĤR) up

to second order in ĤJC (ĤR). The emergent symmetries
of these generating Hamiltonians control the dynamical
properties of these models, such as t∗(L), and they can

be significantly different from the symmetries of Ĥ(t).
We first analyze M for the fermionic model with JC

mixing. The generating Hamiltonian for PBC is (see Sec.
II of SM[46] for a derivation)

MF
JC =

(
1− (g2 + J2)L

2

)
1NF

JC
+

L∑

i=1

∑

ν

(J2

2
τ̂νi τ̂

ν
i+1

+
g2

2
τ̂νi σ̂

ν
i

)
+O(J4, g4), (8)

where τ̂νi and σ̂ν
i are the νth component of Pauli ma-

trix at site i and ν ∈ {x, y, z}. Here, τ̂νi and σ̂ν
i repre-

sent, respectively, the spinless fermions and qubits. The
largest eigenvalue one of MF

JC corresponds to a state in
which all τ and σ spins are polarized in one particular
direction, say along z axis. MF

JC commutes with the

operators,
∑L

j=1(τ̂
ν
j + σ̂ν

j )/2 for ν ∈ {x, y, z}, which sat-

isfy SU(2) algebra. Thus, MF
JC has SU(2) symmetry,

which implies that there would be degenerate symme-
try multiplets of the subleading eigenvalues of MF

JC for
different N (= 1, 2, 3, . . . 2L − 1). Nevertheless, other
energy eigenvalues can also appear between different de-
scendent states for higher N . Since we are interested in
L-dependence of t∗ at finite filling fractions (N/L), the
ordering of descendant states in the full spectrum ofMF

JC

for N > 1 is important. It can be shown that the value
of λ1 is the same for all N , including N = 1 at any value
of g, J . The eigenvalues of MF

JC excluding the largest
eigenvalue one for N = 1 are

λi = 1− g2 − J2
(
1− cos

2iπ

L

)
+

√
J4
(
1− cos

2iπ

L

)2
+ g4,

(9)

for i = 1, 2, 3 . . . , L − 1. In the thermodynamic limit of
L → ∞, we find from Eq. 9, λ1 ≈ 1 − (2π2J2)/L2 for
any value of g, J . However, such approximation of Eq. 9
is also applicable for large L (> lc ≡ π/ sin−1(g/

√
2J),

a critical length-scale depending on g, J) when (1 −
cos 2π

L

)
≪ (g/J)2. We then further approximate K(t)

at long time t, 1 ≪ t ≪ NF
JC , by keeping up to the

second largest eigenvalue λ1 of MF
JC . Thus, we get for

SFF

K(t) ≃ 2t(1 + λt1) ≃ 2t(1 + e−t/t∗(L)), (10)

where we take the scaling of λ1 with system size L as
1 − 1/t∗ and t∗ = L2/(2π2J2) [7, 13]. The above L-
dependence of t∗ is similar to our earlier result in Ref. [7]
for a U(1) symmetric fermionic model without the qubits.
However, there is another interesting parameter regime

when (1 − cos 2iπ
L

)
≫ (g/J)2 for a finite L, which is the

case in many proposed highly controlled laboratory set-
tings to test predictions for SFF [18, 43–45, 47]. For
(1 − cos 2iπ

L

)
≫ (g/J)2 at finite L (< lc), we have

λi ≈ 1−g2+(g2/2J)2 csc2(iπ/L) for i = 1, 2, 3 . . . , L−1.
Therefore, the second largest eigenvalues for small g/J
are approximately L− 1 fold degenerate. These features
of λi give a different form of SFF, and the system-size

scaling of t∗: K(t) ≃ 2t(1 +
∑L−1

i=1 λ
t
i), which leads to

t∗ ≈ O(logL) (check Sec. II of SM[46]). Such loga-
rithmic system size dependence of t∗ has been previously
reported for U(1) symmetry-broken models in the ab-
sence of total particle number conservation [1]. We can
also increase the value of g/J at a fixed finite L to access
the other condition, (1 − cos 2iπ

L

)
≪ (g/J)2, to get the

SFF in Eq. 10, and t∗ ∝ L2. Thus, we find a crossover
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in system size scaling of t∗ with a varying scaled mix-
ing strength g/J at finite lengths in our model with JC
mixing between fermions and qubits.

To demonstrate two different L scaling of t∗, we plot
K(t) with t using Eq. 7, which is obtained by apply-
ing the RPA and identity permutation for leading order
contributions. In Figs. 1(a,c), we show K(t) with t for
g = 0.1, J = 0.4 (lc ∼ 17) and g = 0.4, J = 0.1 (lc ∼ 0),
respectively. We take the half-filled case withN/L = 1/2.
We can understand the L dependence of t∗ for these two
parameter sets by scaling t and K(t) by predicted L de-
pendence. For this, we plot K(t)/ logL against t/ logL
in Fig. 1(b) and K(t)/L1.85 against t/L1.85 in Fig. 1(d).
Figs. 1(b,d) display a nice data collapse for different L at
a time above t∗ for the universal RMT behavior of the
SFF. Such data collapse confirms our above-predicted
crossover of the L dependence of t∗ with an increasing
g/J . We could not get t∗ growing exactly as L2 for a
large g/J in our numerics with limited L. Still, our ob-
tained exponent (∼ 1.85) in this region is close to the
predicted value of 2.

The generating Hamiltonian for JC mixing between
bosons and qubits in the Trotter regime reads as (see
Sec. III of SM[46] for a derivation)

MB
JC =

(
1 +

(g2 + J2)L

2

)
1NB

JC
+

L∑

i=1

(
2J2

(
K̂1

i K̂
1
i+1

+ K̂2
i K̂

2
i+1 − K̂0

i K̂
0
i+1

)
+ g2(K̂1

i σ̂
x
i − K̂2

i σ̂
y
i

+ K̂0
i − σ̂†

i σ̂i)
)
+O(J4, g4), (11)

where K̂1
j = (K̂+

j + K̂−
j )/2, K̂2

j = (K̂+
j − K̂−

j )/2i. We

define a set of local operators K̂0
j = −(n̂j + 1/2), K̂+

j =

âj
√
n̂j , K̂

−
j =

√
n̂j â

†
j , which satisfy the commutation re-

lations of SU(1, 1) algebra at the same site, and commute

otherwise: [K̂+
i , K̂

−
j ] = −2K̂0

i δij , [K̂0
i , K̂

±
j ] = ±K̂±

i δij .

However, MB
JC in Eq. 11 does not commute with K̂α =∑L

i=1 K̂
α
i , α ∈ {+,−, 0} for a non-zero g. Thus, MB

JC
does not possess SU(1, 1) symmetry unlike the only bo-
son model investigated in Roy et al. [13]. Nevertheless,

we find [MB
JC ,
∑

i(K̂
0
i + σ̂†

i σ̂i)] = 0, which indicates a
U(1) symmetry of MB

JC . As shown in SM[46], the L-
dependence of t∗ for this model is similar to that of
fermions and qubits. For a finite L, there is a crossover
in the L-dependence of t∗ from logL to L2 with an in-
creasing g/J for JC mixing between bosons and qubits.
The eigenvalues of MB

JC are identical to those of MF
JC

for N = 1. The largest eigenvalues of MB
JC for any finite

N become degenerate with those for N = 1 with an in-
creasing L due to an emergent approximate symmetry of
MB

JC . The above features lead to the similarity between
the fermionic and bosonic models with JC mixing.
Next, we consider R mixing between fermions or

bosons and qubits. We start with the fermionic case
having a finite-dimensional Hilbert space. The gener-
ating Hamiltonian in this case is (see Sec. IV of SM[46]

for a derivation)

MF
R =

(
1− (2g2 + J2)L

2

)
1NF

R
+

L∑

i=1

(∑

ν

J2

2
τ̂νi τ̂

ν
i+1

+ g2τ̂zi σ̂
z
i

)
+O(J4, g4), (12)

which commutes with
∑L

i=1 τ̂
z
i and σ̂z

j for j ∈
{1, 2, 3, . . . , L}, indicating a global U(1) symmetry for
fermions and local U(1) symmetry for each qubit. In-

terestingly, Ĥ(t) does not have a global U(1) symme-
try for R mixing. The generating Hamiltonian for R
mixing does not have SU(2) symmetry due to magnetic
anisotropy created by coupling to the qubits in contrast
to that in Eq. 8 for JC mixing between fermions and
qubits. The eigenvalues λi of MF

R can be determined by

fixing
∑L

i=1 τ̂
z
i and σ̂z

j for j ∈ {1, 2, 3, . . . , L} as these are
good quantum numbers. The eigenvalues are doubly de-

generate since MF
R is invariant under

∏L
i=1 τ̂

x
i σ̂

x
i , which

implies a state obtained by flipping all the τ and σ spins
of an eigenstate of MF

R is also an eigenstate with the
same eigenvalue. The largest eigenvalue one of MF

R is a
state |λ0⟩ in which all τ and σ spins are polarized in z di-
rection. The second largest eigenvalues of MF

R are L+1
and L fold degenerate, respectively, for (g/J)2 < 2/3 and
(g/J)2 > 2/3 (see SM[46] for details). For (g/J)2 < 2/3,
the second largest eigenvalues are 1 − 2g2, which con-
sist of L eigenstates with anyone σ spin being flipped in
|λ0⟩ and another superposition state with a single τ spin
flipping in |λ0⟩. For (g/J)2 > 2/3, the second largest

eigenvalues are 1− 4g2 − 2J2(1−
√

1 + 4(g/J)4), which
are L eigenstates with one τ spin flipping and one σ spin
being flipped in |λ0⟩. Thus, the second largest eigenval-
ues for any g/J are L independent. So we get t∗ ∝ logL
or log(L+1) for R mixing between fermions and qubits.
Such L-dependence of t∗ is similar to that in a period-
ically kicked transverse-field Ising model in Kos et al.
[1] with local kicking terms. Interestingly, a similar L-
scaling of t∗ can also be obtained for the U(1)-symmetry
broken model explored in Ref. [7] when the pairing ∆
and tunneling J strengths are the same. We can also get
t∗ ∝ L0 of Roy and Prosen [7] for arbitrary ∆ and J
when g is different/random for different qubits to lift the
degeneracy in the second largest eigenvalues.
Finally, we consider the mixture of bosons and qubits

with R mixing between them. The generating Hamilto-
nian for this case in the Trotter regime reads as (see Sec.
V of SM[46] for a derivation)

MB
R =

(
1 +

J2L

2

)
1NB

R
+

L∑

i=1

(
2J2

(
K̂1

i K̂
1
i+1 + K̂2

i K̂
2
i+1

− K̂0
i K̂

0
i+1

)
+ 2g2(K̂1

i σ̂
x
i + K̂0

i )
)
+O(J4, g4),(13)

which commutes with σ̂x
j for j ∈ {1, 2, 3, . . . , L}. We

could not calculate the spectrum of MB
R analytically. In-

stead, we determine it numerically by varying Nmax for
a fixed L to get an estimate of λ1 in the large Nmax
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limit. We use linear extrapolations in 1/Nmax towards
1/Nmax = 0 to find evidence for a gap between the largest
and second largest eigenvalues, as shown in Sec. V of
SM[46]. The second largest eigenvalues are also L-fold
degenerate, suggesting a scaling of t∗ ∝ logL. We re-
mind here that a periodically kicked boson model with-
out particle number conservation shows t∗ ∝ O(Lγ), γ =
0.7± 0.1 [13], which is sharply different from the present
case of bosons and qubits without total number conser-
vation.

We have analytically calculated the SFF in many-body
quantum mixtures of fermions, bosons and qubits with
periodically kicked spreading and mixing of species. Dif-
ferent types of mixing between species can drastically
alter the timescale for the emergence of RMT behavior
of K(t) in quantum mixtures. We show how competi-
tion between mixing and hopping/spreading of species in

U(1)-symmetric finite-size systems can lead to a logarith-
mic L scaling of t∗, which has been predicted before only
for U(1)-symmetry broken single-species models [1, 4].
This finding is practical and vital as quantum mixtures
of different species are abundant in nature as well as con-
trolled experimental set-ups of cold atoms and photonic
systems, and many of these systems are finite-sized. We
further show the t∗ scaling for R mixing of fermions and
qubits is similar to those obtained for a single species
of spin-1/2s or fermions. Finally, our results indicate
that the R mixing of species with different statistics (e.g.,
bosons and qubits) can lead to completely new features
for the main species (e.g., bosons) with individual hop-
ping.
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I. SPECTRAL FORM FACTOR FOR
PERIODICALLY KICKED SYSTEMS

The spectral form factor (SFF) is defined as the Fourier
transform of the two-point correlation function of spec-
tral density. For a periodically kicked system, the spec-

tral density is, ρ(φ) = (2π/N )
∑N

n=1 δ(φ − φn), where

φn’s are the eigenphases of the Floquet propagator, Û ,
and N is the dimension of the system’s Hilbert space.
The prefactor, 2π/N , is chosen such that the averaged
spectral density is normalized to unity, i.e.,

⟨ρ(φ)⟩φ =

∫ 2π

0

dφ ρ(φ) = 1. (S1)

We define a two-point correlation function of ρ(φ) as

R(ϑ) = ⟨ρ(φ+ ϑ/2)ρ(φ− ϑ/2)⟩φ − ⟨ρ(φ)⟩2φ. (S2)

We can then write the SFF as

K(t) =
N 2

2π

∫ 2π

0

dϑR(ϑ)e−iϑt = (trÛ t)(trÛ−t)−N 2δt,0.

(S3)

Since K(t) in Eq. S3 is not self-averaging over disorder
in onsite energy and transition frequency, we average it
over different disorder realizations of them.

K(t) = ⟨(trÛ t)(trÛ−t)⟩ − N 2δt,0, (S4)

where ⟨...⟩ represent averaging over disorder realizations.
In the main paper, we consider periodically kicked quan-
tum mixtures of multiple species whose Hamiltonian
reads

Ĥ(t) = Ĥ0 + ĤJC/R

∑

m∈Z
δ(t−m), (S5)

where Ĥ0 is the base Hamiltonian and ĤJC/R is the driv-
ing Hamiltonian. These Hamiltonians are given in the
main paper. The Floquet propagator over the unit cycle
of kicking is

Û = T e−i
∫ 1
0
dtĤ(t) = lim

ϵ→0
e−i

∫ 1+ϵ
ϵ

dtĤ(t) = V̂ Ŵ , (S6)

where Ŵ = e−iĤ0 , V̂ = e−iĤJC/R . To proceed with the
calculation of the SFF in Eq. S4, we choose the occu-
pation number basis, |nσ⟩ ≡ |n1, ..., nL⟩ ⊗ |σ1, ..., σL⟩,
which are the eigenbasis of H0 [7, 13]. Here, nj , σj are

respectively the numbers of fermions/bosons and qubit
excitation at site j. Thus, we have

Ŵ |nσ⟩ = e−iθnσ |nσ⟩, (S7)

θnσ =

L∑

i=1

(ωini +Ωiσi) +
∑

i<j

Uijninj . (S8)

We derive trÛ t by inserting the identity operator∑
nσµ

|nσµ⟩⟨nσµ| = 1N , at different time steps µ =

1, 2, ..., t:

trÛ t =
∑

nσ1,...,nσt

⟨nσ1|V̂ Ŵ |nσ2⟩⟨nσ2|V̂ Ŵ ...|nσt⟩

× ⟨nσt|V̂ Ŵ |nσ1⟩, (S9)

where trace requires periodic boundary condition (PBC)
in time, nσt+1 = nσ1. Using Eq. S7 in Eq. S9, we get for
the SFF:

K(t) =
∑

nσ1,...,nσt

∑

nσ′
1,...,nσ

′
t

⟨e−i
∑t

µ=1

(
θnσµ

−θnσ′
µ

)
⟩

×
t∏

µ=1

Vnσµ,nσµ+1
V ∗
nσ′

µ,nσ
′
µ+1

. (S10)

For the randomness in the parameters of Ĥ0 and the long
range interaction, we take θnσµ

(mod 2π) as uniform iid’s

over [0, 2π). The last consideration is a random phase
approximation (RPA). Within the RPA, we approximate

⟨e−i
∑t

µ=1

(
θnσµ

−θnσ′
µ

)
⟩ ≃ δ{nσ1,...,nσt},{nσ′

1,...,nσ
′
t}, where

δ{nσ1,...,nσt},{nσ′
1,...,nσ

′
t} =





1, if {nσ′
1, ..., nσ

′
t} is a

permutation of

{nσ1, ..., nσt}
0, otherwise

.

(S11)

For t ≪ tH (where tH is the Heisenberg time) when
a fraction (≈ t2/tH + O

(
1/t2H

)
) of configurations in

{nσ1, ..., nσt} with repeated basis vectors is negligible,
Kos et al. [1] have also shown that such configurations
with repeated basis do not contribute to leading order
term in the SFF. We also perform exact numerical com-
putations of the SFF using Eq. S4 to compare it to
that obtained using RPA. We show these comparisons
in Figs. S2,S5 to validate the RPA analysis for certain
parameter regimes of Ĥ0 in finite systems. Therefore,
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we can safely assume that the relevant permutations are,
π ∈ St, where, St, is the permutation group of t distinct
objects. Thus, the Eq. S10 reduces to

K(t) =
∑

nσ1,...,nσt

∑

π∈St

t∏

µ=1

Vnσµ,nσµ+1
V ∗
nσπ(µ),nσπ(µ+1)

.

(S12)

Considering t cyclic and t anti-cyclic permutations, the
SFF can be written as

K(t) = 2t
∑

nσ1,...,nσt

t∏

µ=1

|Vnσµ,nσµ+1
|2 = 2t trMt, (S13)

where, the elements of M are Mnσ,nσ′ = |⟨nσ|V̂ |nσ′⟩|2.
Here, M is a doubly stochastic matrix due to unitarity of
V̂ , therefore, the largest eigenvalue of M is 1 and other
eigenvalues (λ1, ..., λN−1) satisfy, 1 ≥ |λ1| ≥ |λ2| ≥ ... ≥
|λN−1|. Now, the SFF in Eq. S13 in terms of eigenvalues
of M reads

K(t) = 2t

(
1 +

N−1∑

i=1

λti

)
, (S14)

which is given in the main paper. For circular orthogo-
nal ensemble (COE), the leading order behavior of uni-
versal RMT form 2t, which appears at long time be-
yond the Thouless timescale t∗(L) when the second term,∑N−1

i=1 λti, diminishes as |λi| < 1. Since, λti vanishes
faster for smaller value of |λi|, the nature of Thouless
time is mainly determined by the largest eigenvalues. To
find Thouless time, t∗(L), we study the eigenspectrum of
M in the Trotter regime of small parameters of the driv-
ing Hamiltonian. We write M in terms of the Hadamard
product of ĤJC/R by Taylor expanding V̂ :

M =

∞∑

k=0

k∑

l=−k

(−1)l

(
ĤJC/R

)k+l

•
(
ĤJC/R

)k−l

(k + l)!(k − l)!
. (S15)

We approximate M by keeping the terms in Eq. S15 upto
two leading orders (k = 0, 1) in the Trotter regime:

M = 1+ ĤJC/R • ĤJC/R − (ĤJC/R)
2 • 1+O(Ĥ4

JC/R).

(S16)

We explicitly calculate M in the Trotter regime for dif-
ferent types of mixing between fermions or bosons and
qubits investigated in the main paper.

II. JAYNES-CUMMINGS MIXING BETWEEN
FERMIONS AND QUBITS

The driving Hamiltonian ĤJC for Jaynes-Cummings
(JC) mixing between fermions and qubits is given in Eq.

(2) of the main paper.

ĤJC =

L∑

i=1

(
gâ†i σ̂i − Jâ†i âi+1 +H.c.

)
. (S17)

We rewrite the fermion creation and annihilation oper-
ators in terms of spin-1/2 operators using the Jordan-
Wigner transformation.

âi =

i−1∏

j=1

(
−τ̂zj

)
τ̂i , â†i = τ̂ †i

i−1∏

j=1

(
−τ̂zj

)
, (S18)

where τ̂j =
(
τ̂xj − iτ̂yj

)
/2 and τ̂ †j =

(
τ̂xj + iτ̂yj

)
/2 are

the spin-1/2 lowering and raising operators, respectively.
Here, τ̂x,y,zj are the Pauli matrices at jth site. Substitut-
ing Eq. S18 in Eq. S17, we get with PBC:

ĤJC = g

L∑

i=1


τ̂ †i

i−1∏

j=1

(
−τ̂zj

)
σ̂i +

i−1∏

j=1

(
−τ̂zj

)
τ̂iσ̂

†
i




−J
L−1∑

i=1

(
τ̂ †i τ̂i+1 + τ̂ †i+1τ̂i

)
+ J(−1)N̂f

(
τ̂ †Lτ̂1 + τ̂ †1 τ̂L

)
,

(S19)

where, N̂f =
∑L

i=1 â
†
i âi =

∑L
i=1 τ̂

†
i τ̂i, is the total number

of fermions or corresponding qubit excitations. We notice
that the chosen occupation number basis are equivalent

to the eigenbasis of
∏L

i=1 τ̂
z
i σ̂

z
i . To calculate ĤJC • ĤJC,

we need to find the matrix elements of ĤJC. In the cho-
sen basis,

∏i−1
j=1

(
−τ̂zj

)
|nσ⟩ = ±|nσ⟩, and the operators

τ̂i, τ̂
†
i , σ̂i, σ̂

†
i flip the related spin states. Thus, the nonzero

matrix elements of τ̂ †i
∏i−1

j=1

(
−τ̂zj

)
σ̂i are ±1. Similarly,

the nonzero matrix elements of τ̂ †i τ̂i+1 are 1. Therefore,

(τ̂ †i

i−1∏

j=1

(
−τ̂zj

)
σ̂i) • (τ̂ †i′

i′−1∏

j=1

(
−τ̂zj

)
σ̂i′) = τ̂ †i σ̂iδii′ , (S20)

(τ̂ †i τ̂i+1) • (τ̂ †i′ τ̂i′+1) = τ̂ †i τ̂i+1δii′ . (S21)

The Eqs. S20,S21 are true in the chosen basis but not in
an arbitrary basis. This implies that

ĤJC • ĤJC =

L∑

i=1

(g2(τ̂ †i σ̂i + τ̂iσ̂
†
i ) + J2(τ̂ †i τ̂i+1 + τ̂iτ̂

†
i+1))

=

L∑

i=1

(
g2

2
(τ̂xi σ̂

x
i + τ̂yi σ̂

y
i ) +

J2

2
(τ̂xi τ̂

x
i+1 + τ̂yi τ̂

y
i+1)

)
.

(S22)

Since (ĤJC)
2 • 1 is a matrix of diagonal elements of

(ĤJC)
2, we find

(ĤJC)
2 • 1 =

L∑

i=1

(
g2

1− τ̂zi σ̂
z
i

2
+ J2 1− τ̂zi τ̂

z
i+1

2

)
.

(S23)
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FIG. S1: The largest eigenvalues λi of MF
JC with i ∈ {0, 1, 2, ..., 49} for g = 0.1, J = 0.4 in (a), and i ∈ {0, 1, 2, ..., 20}

for g = 0.4, J = 0.1 in (b). The plots (a) and (b) show respectively L and 3 largest λi being the same for different N .

Plugging Eqs. S22,S23 in Eq. S16, we get

MF
JC =

(
1− (g2 + J2)L

2

)
1NF

JC

+

L∑

i=1

∑

ν

(
J2

2
τ̂νi τ̂

ν
i+1 +

g2

2
τ̂νi σ̂

ν
i

)
+O

(
J4, g4

)
,

(S24)

where ν = x, y, z and σ̂x
j = σ̂†

j + σ̂j , σ̂
y
j =

(
σ̂†
j − σ̂j

)
/i.

The generating Hamiltonian MF
JC commutes with the

operators
∑

i (τ̂
ν
i + σ̂ν

i ) /2 for ν = x, y, z. These opera-
tors satisfy SU(2) algebra, which suggests a SU(2) sym-
metry of MF

JC. The operator for total number of excita-

tions in the present model is N̂ =
∑L

i=1

(
â†i âi + σ̂†

i σ̂i

)
=

∑L
i=1

(
τ̂ †i τ̂i + σ̂†

i σ̂i

)
. The total number of excitations

in a state can be changed by the action of opera-

tors, Ŝ+ =
∑

j

(
τ̂ †j + σ̂†

j

)
, Ŝ− =

∑
j (τ̂j + σ̂j). Since,

[N̂ , Ŝ±] = ±Ŝ±, the application of Ŝ± once on a state
leads to a change of the total number of excitations by
±1, respectively. We notice Ŝ± commutes with MF

JC.
Thus, if |ψ⟩ is an eigenstate of MF

JC with an eigenvalue

λ and total excitation N = 1, Ŝ+|ψ⟩ is another eigenstate
with the same eigenvalue but N = 2. We can then con-
struct eigenstates of MF

JC with a higher number of total
excitations but with the same eigenvalue λ by repeating
the applications of Ŝ+.
We find from the numerics in Fig. S1 that the sec-

ond largest eigenvalue λ1 of MF
JC is the same for N =

1, ..., 2L−1. We further notice that L largest eigenvalues

of MF
JC are the same for any N in finite-length chains

when g = 0.1, J = 0.4. The L largest eigenvalues can be
computed analytically for N = 1 sector for any value of
g, J . They are

λi = 1− g2 − J2

(
1− cos

2πi

L

)

+

√
J4

(
1− cos

2πi

L

)2

+ g4, (S25)

where i = 0, 1, ..., L − 1. We have λ0 = 1 for i = 0
as expected for a double stochastic square matrix. The
eigenvalues λ1, λ2, . . . λL−1 in Eq. S25 are approximately
degenerate when g/J ≪ 1 as shown in Fig. S1(a). We
try to find how the Thouless time scales with system size
L using these eigenvalues. We approximate the SFF in
Eq. S14 as

K(t) = 2t

(
1 +

L−1∑

i=1

λti

)
. (S26)

We can approximate λi in Eq. S25 for g/J ≪ 1 and finite
L as

λi ≈ 1− g2 +
g4

2J2
(
1− cos 2πi

L

) . (S27)

Plugging λi from Eq. S27 in Eq. S26, the SFF reads

K(t) = 2t


1 +

L−1∑

i=1

(
1− g2 +

g4

2J2
(
1− cos 2πi

L

)
)t

 .

(S28)
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We can further simplify the second part of SFF in Eq. S28

since 1 − g2 ≫ g4

2J2(1−cos 2πi
L )

for g/J ≪ 1 and finite L.

We thus write

L−1∑

i=1

(
1− g2 +

g4

2J2
(
1− cos 2πi

L

)
)t

= (1− g2)t(L− 1) +
tg4(1− g2)t−1

4J2

L−1∑

i=1

1

sin2
(
πi
L

)

= (1− g2)t(L− 1) +
tg4(1− g2)t−1

4J2

L2 − 1

3
, (S29)

where we apply the identity
∑L−1

i=1 csc2
(
πi
L

)
= L2−1

3 in
the last line. The Thouless time t∗ is defined as the time
t when the contribution in Eq. S29 becomes order of one.
Thus, we have

(1− g2)t
∗−1

(
(L− 1)(1− g2) +

t∗g4

4J2

L2 − 1

3

)
≈ 1.

(S30)

From the first part of left hand side of Eq. S30, we find
t∗(L) ≈ − log(L−1)/ log(1−g2). To get a better estimate
of L-dependence of t∗(L) including the second part in
Eq. S30, we numerically solve the above equation to find
t∗ for different L ∈ [6, 12] when g = 0.1, J = 0.4. Then we
fit the data to find L-dependence of t∗(L) to get t∗(L) =
129.24116 log(L+0.10467)−67.74830, which implies that
t∗(L) ∼ log(L+0.10467)− 0.52420 explaining the log(L)
scaling of t∗(L) observed in our numerical study of the
SFF using the eigenvalues of MF

JC in the main paper.
Even for g/J ≪ 1, the above analysis only works for

finite system sizes because of the requirement, g4 ≪
min

(
J4
(
1− cos 2πi

L

))
, which breaks down in the thermo-

dynamic limit of L→ ∞ for any finite i. For L→ ∞, the

second-largest eigenvalue, λ1 ≈ 1− 2π2J2

L2 , determines the
Thouless-time scaling for any value of g, J as the largest
eigenvalues λi are no longer nearly degenerate. By relat-
ing λt

∗

1 ≈ 1/e, we find

t∗ ≈ −1/ log λ1 ≈ L2

2π2J2
∝ O(L2). (S31)

For finite system sizes, the largest eigenvalues λi are no
longer nearly degenerate when g/J ≫ 1 as shown in
Fig. S1(b). Thus, the scaling of t∗(L) with L is again

determined by λ1 ≈ 1 − 2π2J2

L2 , which again leads to

t∗(L) ∝ L2. Thus, we find a change in the L-dependence
of t∗(L) in finite-sized systems when the ratio of mixing
and hopping parameters are increased from low to high
value. We discuss such a crossover in Fig. 1 of the main
paper.

In the main paper, we show K(t) vs. t calculated us-
ing λi of MF

JC obtained applying the RPA. We numeri-
cally compute the SFF for JC mixing between fermions
and qubits using Eq. S4 to compare it to that obtained
within the RPA using the identity permutation yielding

the first-order term in time and also the second-order
term of RMT form [1]. We show a good match be-
tween two different computations in Fig. S2 to validate
the RPA analysis in finite-length chains for high values of
long-range interaction and random energies to ensure the
RPA. We clarify here that we use the full MF

JC instead
of its Trotter-regime form in Eq. S24 for our numerics in
Fig. S2.

0 200 400 600 800 1000

t

0

500

1000

1500

2000

2500

K
(t

)

L = 10, N = 5, g = 0.4, J = 0.4
Direct Numerics

RPA, 2t
(

1 +
∑N−1

i=1 λti

)
− 2t2

N

RPA, 2t
(

1 +
∑N−1

i=1 λti

)

FIG. S2: Comparison between the exact numerically
computed SFF, K(t) vs. t, with that obtained using
the RPA for Jaynes-Cummings mixing between fermions
and qubits. The red curve is exact SFF computed nu-
merically using Eq. S4 and the blue (black dashed) curve
is that calculated using the first-order and second-order
term (only the first-order term) in time within the RPA.
All, NF

JC = 15504, eigenvalues of MF
JC are used for the

RPA result. For exact numerical computation, we fix
U0 = 10, α = 1.4, and ωi,Ωi are chosen as Gaussian
random variables with a mean ⟨ωi⟩ = ⟨Ωi⟩ = 1 and a
standard deviation σωi

= σΩi
= 0.3. Averaging over 520

realizations of disorder is performed for the direct SFF
computation.

III. JAYNES-CUMMINGS MIXING BETWEEN
BOSONS AND QUBITS

The driving Hamiltonian for JC mixing between
bosons and qubits is the same as ĤJC in Eq. S17, where

â†i , âi are now bosonic creation and annihilation opera-
tors. Similar to the fermionic case, the hopping (and/or

mixing) terms in ĤJC at any two different bonds (and/or
sites) have no simultaneously non-zero matrix elements
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in the occupation number basis. Therefore, we get

ĤJC • ĤJC = g2
L∑

i=1

(
â†i σ̂i • â†i σ̂i + âiσ̂

†
i • âiσ̂†

i

)

+J2
L∑

i=1

(
â†i âi+1 • â†i âi+1 + âiâ

†
i+1 • âiâ†i+1

)
. (S32)

Since ⟨nσ|â†i σ̂i • â†i σ̂i|nσ′⟩ = ⟨nσ|â†i σ̂i|nσ′⟩2 =

⟨nσ|
√
n̂iâ

†
i σ̂i|nσ′⟩, and ⟨nσ|â†i âi+1 • â†i âi+1|nσ′⟩ =

⟨nσ|â†i âi+1|nσ′⟩2 = ⟨nσ|
√
n̂iâ

†
i âi+1

√
n̂i+1|nσ′⟩, we can

simplify as

ĤJC • ĤJC = g2
L∑

i=1

(
√
n̂iâ

†
i σ̂i + âi

√
n̂iσ̂

†
i )

+J2
L∑

i=1

(
√
n̂iâ

†
i âi+1

√
n̂i+1 +

√
n̂i+1â

†
i+1âi

√
n̂i). (S33)

Since (ĤJC)
2 • 1 is a matrix of diagonal elements of

(ĤJC)
2, we get

(ĤJC)
2 • 1 = g2

L∑

i=1

(n̂i + σ̂†
i σ̂i)

+ J2
L∑

i=1

(n̂i + n̂i+1 + 2n̂in̂i+1) . (S34)

Substituting Eqs. S33,S34 in Eq. S16, we find

MB
JC = 1NB

JC
+ g2

L∑

i=1

(√
n̂iâ

†
i σ̂i + âi

√
n̂iσ̂

†
i − n̂i − σ̂iσ̂

†
i

)

+ J2
L∑

i=1

(√
n̂iâ

†
i âi+1

√
n̂i+1 +

√
n̂i+1â

†
i+1âi

√
n̂i

− n̂i − n̂i+1 − 2n̂in̂i+1

)
+O(J4, g4). (S35)

The above expression can be written in terms of op-

erators, K̂−
i =

√
n̂iâ

†
i , K̂

+
i = âi

√
n̂i, and K̂0

i =

− (n̂i + 1/2), satisfying SU(1, 1) algebra, [K̂+
i , K̂

−
j ] =

−K̂0
i δij , [K̂

0
i , K̂

±
i ] = ±K̂±

i δij , as

MB
JC = (1 +

(g2 + J2)L

2
)1NB

JC
+ g2

L∑

i=1

(
K̂−

i σ̂i + K̂+
i σ̂

†
i

+ K̂0
i − σ̂†

i σ̂i
)
+ J2

L∑

i=1

(
K̂+

i K̂
−
i+1 + K̂−

i K̂
+
i+1

− 2K̂0
i K̂

0
i+1

)
+O(J4, g4). (S36)

We can further define these operators, K̂1
j = (K̂+

j +

K̂−
j )/2, K̂2

j = (K̂+
j − K̂−

j )/2i, and rewrite Eq. S36 as

MB
JC = (1 +

(g2 + J2)L

2
)1NB

JC
+ g2

L∑

i=1

(
K̂1

i σ̂
x
i − K̂2

i σ̂
y
i

+ K̂0
i − σ̂†

i σ̂i
)
+ 2J2

L∑

i=1

(
K̂1

i K̂
1
i+1 + K̂2

i K̂
2
i+1

− K̂0
i K̂

0
i+1

)
+O(J4, g4), (S37)

where σ̂x
i = σ̂†

i + σ̂i, σ̂
y
i =

(
σ̂†
i − σ̂i

)
/i. The generat-

ing Hamiltonian MB
JC commutes with

∑L
i=1 K̂

0
i + σ̂†

i σ̂i,
which suggests a U(1) symmetry of MB

JC. But unlike
the fermionic case, the lowering and raising operators like∑L

i=1(K̂
+
i + σ̂i),

∑L
i=1(K̂

−
i + σ̂†

i ) do not commute with
MB

JC, which indicates an absence of SU(2) or SU(1, 1)
symmetry of MB

JC. Thus, the second-largest eigenvalue
λ1 of MB

JC is not required to be the same for different to-
tal number of excitations N . Numerical study in Fig. S3
confirms that λ1 is different for different N at a fixed
L when g = 0.4, J = 0.1. However, Fig. S3 also shows
that λ1 for different N seems to converge with an in-
creasing L. For system sizes L ∈ [10, 26], we numerically
find λ1(N) ≈ 1 − cN/L

2 for different N ’s, and the dif-
ference (λ1(N) − λ1(N + 1)) falls as c′N/L

3, where cN
and c′N are N -dependent constants. These scaling sug-
gests that λ1 becomes independent of N at large L due to
an emergent approximate symmetry of MB

JC. A similar
N -independence of L largest eigenvalues of MB

JC is also
observed with increasing L when g/J ≪ 1.

Similar to the fermionic case in the earlier section, λi
of MB

JC can be calculated analytically for N = 1, and λi
are then identical to those in Eq. S25. Incorporating the
above observations for an emergent approximate symme-
try of MB

JC with λi for N = 1, we then expect a change
in the L-dependence of t∗(L) from logL to L2 with an
increasing g/J from much lower than one to much larger
than one at any filling fraction N/L in finite-size systems
of bosons and qubits. We demonstrate such a crossover
in the L-scaling of t∗(L) by studying K(t) vs. t within
the RPA in Fig. S4 at half filling N/L = 1/2 for finite
system sizes.

IV. RABI MIXING BETWEEN FERMIONS
AND QUBITS

The driving Hamiltonian ĤR for Rabi (R) mixing be-
tween fermions and qubits is given in Eq. (3) of the main
paper.

ĤR = g

L∑

i=1

(â†i + âi)(σ̂
†
i + σ̂i)− J

L∑

i=1

(
â†i âi+1 +H.c.

)
.

(S38)

Following the steps presented for deriving the generating
Hamiltonian in the Trotter regime for JC mixing between
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FIG. S3: The second-largest eigenvalue λ1 of MB
JC vs.

L for different total excitations N when
g = 0.4, J = 0.1. λ1 for different N ’s approach the same
value with an increasing L suggesting emergence of an

approximate symmetry of MB
JC.

fermions and qubits in Sec. II, we find

MF
R =

(
1− (2g2 + J2)L

2

)
1NF

R
+

L∑

i=1

(J2

2

∑

ν

τ̂νi τ̂
ν
i+1

+ g2τ̂xi σ̂
x
i

)
+O(J4, g4), (S39)

where ν = x, y, z. By performing a rotation
(
Ry

θ ≡
exp(iθ

∑L
j=1(τ̂

y
j + σ̂y

j )/2)
)
around y-axis by θ = π/2, we

transform the operators as Ry
θ τ̂

x
i Ry†

θ = ˆ̃τzi ,Ry
θ τ̂

y
i Ry†

θ =
ˆ̃τyi ,Ry

θ τ̂
z
i Ry†

θ = −ˆ̃τxi ,Ry
θ σ̂

x
i Ry†

θ = ˆ̃σz
i ,Ry

θ σ̂
y
i Ry†

θ =
ˆ̃σy
i ,Ry

θ σ̂
z
i Ry†

θ = −ˆ̃σx
i , which lead to M̃F

R = Ry
θMF

RRy†
θ :

M̃F
R =

(
1− (2g2 + J2)L

2

)
1NF

R
+

L∑

i=1

(J2

2

∑

ν

ˆ̃τνi ˆ̃τ
ν
i+1

+ g2 ˆ̃τzi ˆ̃σ
z
i

)
+O(J4, g4). (S40)

The generating Hamiltonian M̃F
R commutes with ˆ̃σz

i

for each i ∈ [1, L]. We call this symmetry collec-

tively as u⊗L(1). M̃F
R also commutes with

∑L
i=1

ˆ̃τzi ,

which is a global U(1) symmetry. So, M̃F
R has U(1) ⊗

u⊗L(1) symmetry. Thus, the eigenvalues and eigenstates

of M̃F
R can be labelled by excitation of individual σ̃

qubit, σ̃i

(
≡ ˆ̃σ†

i
ˆ̃σi

)
, and total excitations of τ̃ qubits,

Ñf

(
≡∑L

i=1
ˆ̃τ †i
ˆ̃τi

)
. The states with the largest eigenvalue

λ0 = 1 have Ñf = 0, σ̃i = 0 or Ñf = L, σ̃i = 1, for all
i ∈ [1, L]. The degeneracy of 2 for the largest eigenvalue

is due to the invariance of M̃F
R under the transformation,∏L

i=1
ˆ̃τxi ˆ̃σ

x
i . The last operator flips all the spins to trans-

form Ñf = 0 → L, σ̃i = 0 → 1 for all i ∈ [1, L] leading to
the degeneracy of 2. This is equivalent to Z2 symmetry
also present in Ĥ(t) (the U(1) breaking ĤR does not mix
between the even and odd number of total excitation sec-
tors). To study chaos, we choose either the even or odd

sector of the Hilbert space of Ĥ(t) only. Similarly, we

choose only one largest eigenvalue of M̃F
R, and study ex-

citations (second-largest eigenvalues) around it. We here

choose the largest eigenvalue state with Ñf = 0, σ̃i = 0,
for all i ∈ [1, L]. The numerical study for different val-
ues of g, J shows that there are two type of τ̃ and σ̃
spin configurations giving the second-largest eigenvalue
of M̃F

R depending on the ratio g/J in the Trotter regime.
We describe them below.
Case 1: For g/J ≪ 1, the configurations leading

to the second-largest eigenvalues appear by one change
in the excitation from the largest eigenvalue state, e.g.,
Ñf = 0, σ̃j = 1, σ̃i ̸=j = 0, i = 1, ..., j − 1, j + 1, ..., L, and

Ñf = 1, σ̃i = 0 for all i ∈ [1, L]. We find

L∑

i=1

∑

ν

ˆ̃τνi ˆ̃τ
ν
i+1|Ñf = 0, {σ̃} = {0, ..., 0, 1, 0, ..., 0}⟩

= L|Ñf = 0, {σ̃} = {0, ..., 0, 1, 0, ..., 0}⟩, (S41)

L∑

i=1

ˆ̃τzi ˆ̃σ
z
i |Ñf = 0, {σ̃} = {0, ..., 0, 1, 0, ..., 0}⟩

= (L− 2)|Ñf = 0, {σ̃} = {0, ..., 0, 1, 0, ..., 0}⟩.
(S42)

Therefore,

M̃F
R|Ñf = 0, {σ̃} = {0, ..., 0, 1, 0, ..., 0}⟩

= (1− 2g2)|Ñf = 0, {σ̃} = {0, ..., 0, 1, 0, ..., 0}⟩,
(S43)

and we get λ1 = 1 − 2g2 with L-fold degeneracy, which
is due to appearance of σ̃j = 1 at any j = 1, 2, .., L. For

Ñf = 1, σ̃i = 0, M̃F
R becomes the XXX Heisenberg spin-

1/2 chain for τ̃ spin in a uniform external magnetic field
(2g2).

M̃F
R|Ñf=1,σ̃i=0 =

(
1− (2g2 + J2)L

2

)
1NF

R

+

L∑

i=1

(
J2

2

∑

ν

ˆ̃τνi ˆ̃τ
ν
i+1 − g2 ˆ̃τzi

)
+O(J4, g4). (S44)

For total number of τ̃ excitations, Ñf = 1, the eigenvalues
of M̃F

R are

λkm = 1− 2g2 − 2J2(1− cos km), (S45)

where km = 2πm/L,m = 0, 1, ..., L − 1. For km = 0, we
get the second-largest eigenvalue λ1 = 1−2g2. Therefore,
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FIG. S4: Spectral form factor K(t) using Eq. S14 for different system sizes L of the kicked chain with JC mixing
between bosons and qubits for g = 0.1, J = 0.4 in (a, b), and g = 0.4, J = 0.1 in (c, d). We take half-filling

N/L = 1/2. In (b) and (d), we show data collapse in scaled time t/ logL and t/L1.86, respectively.

we get total (L + 1)-fold degeneracy in this case. The
Thouless-time scaling in the thermodynamic limit of L→
∞ can be obtained by setting (L+ 1)λt

∗

1 ≈ 1 as

t∗(L) ≈ − log(L+ 1)

log(1− 2g2)
≈ O(logL). (S46)

Case 2: For g/J ≫ 1, the configurations leading to the
second-largest eigenvalues appear by one change in the
excitation from the largest eigenvalue state, e.g., Ñf =
1, σ̃j = 1, σ̃i ̸=j = 0, i = 1, ..., j − 1, j + 1, ..., L. We can

cast M̃F
R in this case as a tight-binding chain with an

impurity in the onsite energy:

M̃F
R|Ñf=1,σ̃j=1 = 1− 4g2 − 2J2 + 4g2 ˆ̃τ †j

ˆ̃τj

+J2
L∑

i=1

(ˆ̃τ †i
ˆ̃τi+1 + ˆ̃τi ˆ̃τ

†
i+1). (S47)

The spectrum of the Hamiltonian in Eq. S47 can be de-
rived using the Dyson equation to treat the impurity as
a perturbation following Economou [48]. We separate

M̃F
R|Ñf=1,σ̃j=1 in two parts as

M̃F
R|Ñf=1,σ̃j=1 = M0 +M1, (S48)

where M0 = 1 − 4g2 − 2J2 + J2
∑L

i=1(
ˆ̃τ †i
ˆ̃τi+1 +

ˆ̃τi ˆ̃τ
†
i+1),M1 = 4g2 ˆ̃τ †j

ˆ̃τj = 4g2|j⟩⟨j|. Here, |j⟩ = ˆ̃τ †j |φ⟩,
where |φ⟩ is a vacuum state. We consider G0(z) as the
Green’s function for M0, and G(z) as that for M0+M1.
The Dyson equation [48] gives,

G = G0

+G0 (M1 +M1G0M1 +M1G0M1G0M1 + ...)G0

= G0 +G0

(
(2g)2 + (2g)4G0(j, j; z)

+ (2g)6 (G0(j, j; z))
2
+ ...

)
|j⟩⟨j|G0

= G0 +G0
(2g)2

1− (2g)2G0(j, j; z)
|j⟩⟨j|G0, (S49)

where G0(j, j; z) = ⟨j|G0(z)|j⟩. We find from Eq. S49
that G has an isolated pole at

G0(j, j;Eb) =
1

4g2
, (S50)

which gives the eigenvalue of the corresponding bound
state. The free Green’s function can be determined us-
ing the eigenvalues and eigenstates of M0 as G0(z) =∑

m |km⟩⟨km|/(z − E(km)), where |km⟩ are eigenstates
of M0 with eigenvalues E(km) = 1 − 4g2 − 2J2 +
2J2 cos km, km = 2πm/L form = 0, 1, 2, ..., L−1. There-
fore, we get

G0(j1, j2; z) =
∑

m

⟨j1|km⟩⟨km|j2⟩
z − E(km)

=
1

L

∑

m

eikm(j1−j2)

z − E(km)
.

(S51)

It is easy to evaluate the above sum in the thermody-
namic limit of L→ ∞ as

G0(j1, j2; z) =
1

2π

∫ 2π

0

dk
eik(j1−j2)

z − E(k)

=
1

2π

∫ 2π

0

dk
eik(j1−j2)

z − 1 + 4g2 + 2J2 − 2J2 cos k
. (S52)

We observe G0(j1, j2; z) = G0(j2, j1; z) as k → 2π − k,
which implies that G0(j1, j2; z) is a function of |j1 − j2|.
We define w = eik, ϵ = (z − 1 + 4g2 + 2J2)/(2J2) to
rewrite as

G0(j1, j2; z) = − 1

2πiJ2

∮
dw

w|j1−j2|

w2 − 2ϵw + 1
, (S53)

where the contour is a unit circle on complex w plane.
The integrand has poles at w = w± = ϵ ±

√
ϵ2 − 1. We

further notice w+w− = 1, which implies that |w+||w−| =
1. Thus, we get

|w+| =
{
< 1, π

2 < arg(ϵ) < 3π
2

> 1, otherwise
, (S54)

|w−| =
{
> 1, π

2 < arg(ϵ) < 3π
2

< 1, otherwise
. (S55)
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For ϵ real, and −1 < ϵ < 1, |w±| = 1, and the
poles exist on the integration contour. This happens for
1 − 4g2 − 4J2 < z < 1 − 4g2, which is a range of con-
tinuous spectrum of M0. We have w+ or w− inside the
integration contour depending on the argument of ϵ. We
finally get

G0(j1, j2; z) = − 1

J2

w
|j1−j2|
±

w± − w∓
. (S56)

Equating Eqs. S56 and S50 at z = Eb, we find

ϵ = ±
√
1 +

4g4

J4
, (S57)

=⇒ Eb± = 1− 4g2 − 2J2 ± 2J2

√
1 +

4g4

J4
. (S58)

We have two bound states in Eq. S58, and the one corre-
sponding to the second-largest eigenvalue of M̃F

R in this
case is

λ1 ≡ Eb+ = 1− 4g2 − 2J2 + 2J2

√
1 +

4g4

J4
. (S59)

Here, σ̃j = 1 can be possible at any one site of L sites,
which leads to an L-fold degeneracy. Thus, we again get,
t∗(L) ∝ O(logL) for this case also.
There is a transition in the gap between λ0 and λ1 from

case 1 to case 2 as g/J changes. We can find the precise
transition point by equating the eigenvalue obtained for
the two cases. The transition point turns out to be

( g
J

)
c
=

√
2

3
. (S60)

We notice that the L-fold degeneracy is due to the spa-
tially uniform coupling (g) between fermions and qubits.
Instead, we can consider the driven Hamiltonian with
site-dependent coupling gi at site i for R mixing as

ĤR =

L∑

i=1

gi(â
†
i + âi)(σ̂

†
i + σ̂i)− J

L∑

i=1

(
â†i âi+1 +H.c.

)
,

(S61)

which would transform the generating Hamiltonian in
Eq. S39 as

MF
R =

(
1− J2L

2
−

L∑

i=1

g2i
)
1NF

R
+

L∑

i=1

(J2

2

∑

ν

τ̂νi τ̂
ν
i+1

+ g2i τ̂
x
i σ̂

x
i

)
+O(J4, g4i ). (S62)

The second-largest eigenvalues of MF
R are 1− 2g2i . Since

gi is different for different i, the L-fold degeneracy of the
second-largest eigenvalue is lifted for site-dependent R
mixing, and we get t∗(L) ∼ L0.

We next numerically compute the SFF for R mixing
between fermions and qubits using Eq. S4 to compare it

to that obtained within the RPA using the full MF
R in-

stead of its Trotter-regime form in Eq. S40. For R mix-
ing violating the total excitation number conservation,
we show a better match between two different computa-
tions in Fig. S5 in comparison to that in Fig. S2 for the
JC mixing satisfying the total excitation number conser-
vation.
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K
(t

)

L = 7, g = 0.4, J = 0.4

Direct Numerics

RPA, 2t
(

1 +
∑N−1

i=1 λti

)
− 2t2

N

RPA, 2t
(

1 +
∑N−1

i=1 λti

)

FIG. S5: Comparison between the exact numerically
computed SFF, K(t) vs. t, with that obtained using
the RPA for Rabi mixing between fermions and qubits.
The red curve is exact SFF computed numerically using
Eq. S4 and the blue (black dashed) curve is that cal-
culated using the first-order and the second-order term
(only the first-order term) in time within the RPA.
All, NF

R = 8192, eigenvalues of MF
R are used for the

RPA result. For exact numerical computation, we fix
U0 = 10, α = 1.4, and ωi,Ωi are chosen as Gaussian
random variables with a mean ⟨ωi⟩ = ⟨Ωi⟩ = 1 and a
standard deviation σωi

= σΩi
= 0.3. Averaging over 500

realizations of disorder is performed for the direct SFF
computation.

V. RABI MIXING BETWEEN BOSONS AND
QUBITS

The driving Hamiltonian for R mixing between bosons

and qubits is the same as ĤR in Eq. S38, where â†i , âi are
now bosonic creation and annihilation operators. Fol-
lowing the steps presented for deriving the generating
Hamiltonian in the Trotter regime for JC mixing be-
tween bosons and qubits in Sec. III, we get

MB
R =

(
1 +

J2L

2

)
1NB

R
+ 2g2

L∑

i=1

(
K̂1

i σ̂
x
i + K̂0

i

)

+ 2J2
L∑

i=1

(
K̂1

i K̂
1
i+1 + K̂2

i K̂
2
i+1 − K̂0

i K̂
0
i+1

)

+O(J4, g4). (S63)
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The dimension of the Hilbert space NB
R is infinite for

R mixing between bosons and qubits due to the non-
conservation of total excitation N and no bound to num-
ber of bosons at any site. We could not find the spectrum
of NB

R analytically. Rather, we introduce a truncation
to the maximum number of total excitations Nmax for
our numerical study of λi of MB

R as in Roy et al. [13].
For a fixed L, we vary Nmax to find the asymptotic be-
havior (Nmax → ∞) of the second-largest eigenvalue of
MB

R. Following R mixing between fermions and qubits,
we explore two different parameter regimes, g/J ≪ 1 and
g/J ≫ 1 in our numerics as given in Figs. S6,S7.

We further notice that MB
R commutes with σ̂x

i for all
i ∈ [1, L]. Thus, we can label the eigenvalues and eigen-
vectors of MB

R by mi = (σx
i +1)/2, where σx

i is an eigen-
value of σ̂x

i . Nevertheless, we again need to introduce a
truncation to the maximum number of bosons N b

max for
our numerical study of λi of MB

R by fixing the qubit ex-
citations. We find from our numerics for g = 0.1, J = 0.4
that the eigenstates with largest eigenvalue of MB

R have
mi = 0 or mi = 1 for all i ∈ [1, L]. The degeneracy
of 2 in the largest eigenvalue is due to a Z2 symmetry
of MB

R as like of MF
R. Let us choose the first configu-

ration (mi = 0) with the largest eigenvalue. The state
corresponding to the second-largest eigenvalue λ1 of MB

R
also has the same qubit configuration. The states cor-
responding to the third-largest eigenvalue are L-fold de-
generate and nearly degenerate with the second-largest
eigenvalue state. The qubit configuration for these states
with the third-largest eigenvalue is mj = 1,mi ̸=j = 0 for
i = 1, ..., j − 1, j + 1..., L. This is similar to the results
obtained for R mixing between fermions and qubits.

Interestingly, we find from our numerics that the trend
of λ1 with increasing N b

max matches nicely to that with
increasing Nmax at large values of N b

max and Nmax when
g/J ≪ 1 as shown in Fig. S6 for L = 4. Since largerN b

max

is accessible with a fixed qubit configuration in numer-
ics with a fixed L, we employ the numerics by changing
N b

max to find λ1 for different L’s as N b
max → ∞. We

show them in Fig. S6 for L = 4, 5, 6, 7, which depict λ1 at
asymptotic N b

max slowly drifting towards smaller values
with increasing L. The decrease in λ1 with an increasing
L at N b

max → ∞ is probably appearing from the linear
extrapolation of the last few large N b

max points, which
are not so large for longer L. Nevertheless, since the
L-dependence of λ1 is small and there are nearly (L+1)-
fold degeneracy around the second-largest eigenvalue, we
predict t∗(L) ≈ logL when g/J ≪ 1.

The similarity between the asymptotic trend of λ1 with
increasing Nmax and N b

max is lost when g/J ≫ 1. There-
fore, we can only rely on numerics of λ1 with an increas-
ing Nmax to understand the Thouless-time scaling. We
show the behavior λ1 with an increasing Nmax for three
different lengths in Fig. S7, which seems to suggest a
L-independent gap between the first- and second-largest
eigenvalues of MB

R for g/J ≫ 1. We also observe an
L-fold degeneracy for the second-largest eigenvalues in
our numerics. Therefore, we expect t∗(L) ≈ logL in
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FIG. S6: Second-largest eigenvalue λ1 of MB
R with

inverse maximum number of bosons (1/N b
max) (also

inverse maximum number of total excitations 1/Nmax

for L = 4) for four different lengths (L). The dashed
curves indicate a linear extrapolation of the last few

large N b
max (also Nmax for L = 4) points. The

parameters are g = 0.1, J = 0.4. The inset shows a
finite gap for λ1 as 1/N b

max → 0.

this regime of parameters too. Nevertheless, our predic-
tions here for the Thouless-time scaling for R mixing be-
tween bosons and qubits are based on finite-size numerics
with limited data, and there is good scope to improve the
current study with more data for more extended system
sizes.
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FIG. S7: Second-largest eigenvalue λ1 of MB
R with in-

verse maximum number of total excitations (1/Nmax) for
three different lengths (L). The dashed curves indicate
a linear extrapolation of the last few large Nmax points.
The parameters are g = 0.4, J = 0.1.
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