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Abstract

In a quantum theory of gravity, the species scale Λs can be defined as the scale at
which corrections to the Einstein action become important or alternatively as codifying
the “number of light degrees of freedom”, due to the fact that Λ−1

s is the smallest size
black hole described by the EFT involving only the Einstein term. In this paper, we
check the validity of this picture in diverse dimensions and with different amounts of
supersymmetry and verify the expected behavior of the species scale at the boundary of
the moduli space. This also leads to the evaluation of the species scale in the interior of
the moduli space as well as to the computation of the diameter of the moduli space. We
also find evidence that the species scale satisfies the bound

∣∣∇Λs
Λs

∣∣2 ≤ 1
d−2 all over moduli

space including the interior.
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1 Introduction and Summary

The Swampland program has given detailed insights about the boundaries of moduli spaces
in quantum gravitational theories. In particular the distance conjecture [1] combined with the
emergent string conjecture [2] has led to a complete characterization of how the masses of towers
of light particles decay as asymptotic boundaries of moduli space are approached (see also [3]
and [4] for a recent review). Therefore in these regions the effective theory of gravity needs
to include a large number of light degrees of freedom. The species scale Λs [5–8] provides a
measure for the number of light species and, as anticipated from the distance conjecture, has to
decrease as we traverse large distances in field space [9,10]. As explained in [11], the emergent
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string conjecture fixes the exponential decay rate of this cut-off scale. Further detailed studies
of the species scale in asymptotic regimes have been carried out in [12].

However, since the species scale can be regarded as an invariant way to capture towers of light
states, it can also be used to study light towers of states away from asymptotic boundaries where
in general it might be difficult to identify the exact spectrum of states. For the particular case
of Calabi–Yau threefold compactifications of Type II string theory, it was shown in [13] that the
behavior of the species scale as a function of moduli can be effectively computed by considering a
certain R2-correction to the effective action. More precisely, due to supersymmetric protection,
the dependence of the R2-term on the scalars in the vector multiplets can be calculated explicitly
using the one-loop topological string free energy F1 [14] leading to the evaluation of the species
scale M2

pl/Λ
2
s = F1 everywhere in vector multiplet moduli space. And indeed, as shown in [13],

the behavior of the species scale defined via the higher-derivative term matches the results
obtained by studying the details of the light tower of states in the asymptotic regimes of moduli
space. More importantly, for the first time, the identification between F1 and the species scale
allowed one to study the behavior of the species scale in the interior of the moduli space of a
theory. The identification between F1 and the species scale has been further supported using
black hole entropy arguments in [15].1

We argued in [11] that in general the coefficients of generic higher-curvature terms in the
effective action capture the moduli dependence of the species scale. This in principle can be
used to generalize the 4d N = 2 results to any general gravitational theories — provided
the moduli dependence of the higher-derivative terms can be calculated explicitly. Still, even
without having access to the explicit coefficients of the higher-derivative terms, we showed
in [11] that consistency of the perturbative expansion is enough to constrain the slope of the
species scale as

|∇Λs|2

Λ2
s

≤ c

Md−2
pl

. (1.1)

This bound is saturated in asymptotic regions of field space where the emergent string conjec-
ture predicts an exponentially decaying species scale. The general EFT argument alone does
not, however, fix the O(1) coefficient c appearing in the above bound though the emergent
string conjecture [2] leads to the prediction [11] that, at least asymptotically, the bound is
satisfied with c = 1

d−2
. Nevertheless, the examples studied in [11] suggested that the bound

with this value of c may in fact be violated in the interior of field space.
Knowledge of the behavior of the species scale in the interior of moduli space allows us

to have some global insights into physical aspects of the moduli space. In particular, we can
identify special points where the species scale is maximized, dubbed ‘desert points’ in the spirit
of [18]. These points can be viewed as the center of moduli space where the amount of light
states is minimized. In addition, the species scale can be used to identify the effective diameter
of the moduli space at a cut-off scale µ. In order for the EFT description to be valid at a cut-
off scale µ, we need to require µ ≤ Λs. Having a moduli-dependent expression for the species
scale therefore allows us to exactly determine these regions and thus identify the diameter of
the moduli space available at any cut-off scale µ. For Type II compactifications on Calabi–Yau
threefolds with mildly broken supersymmetry, a similar notion of the diameter of the field space
was considered in [19] by considering regions available for a slowly varying positive potential
due to the condition V < Λ2

s.

1See also [16] for a detailed analysis of the relation between species scale and black hole thermodynamics
and [17] for an extension of the relation between modular invariant functions, such as F1, and the species scale
to 4d theories with potentials.
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The goal of this paper is two-fold: First we extend the study of the species scale via higher-
derivative terms to theories in higher dimensions in order to gather further evidence for the
proposed relation between species scale and higher-derivative terms. To that end we focus on
theories with eight supercharges in five and six dimensions, where we consider the R2-term
studied already in 4d N = 2 [11, 13] and theories with 16 and 32 supercharges for which R4-
couplings are used to compute the species scale. Again, we compare the asymptotic behavior
with the expected behavior predicted by the properties of light towers of states. Second we
aim to use the respective higher-curvature couplings to infer the properties of the species scale
in the interior of field space to identify the desert points and the diameter of field space in
these classes of theories. In particular, we also study the slope of the species scale in order to
confirm the bound (1.1) and find evidence that the O(1) constant appearing in it is given by
the naive expectation c = 1

d−2
. We explain why the apparent counter-examples found in [11]

may be avoided if we delete the contribution of fields within the EFT to the species scale.
The rest of this paper is structured as follows: In the remainder of this section, we provide

a summary of the main results of the analysis presented in this paper. In section 2, we provide
a review of how to extract the species scale from the coefficient of higher-derivative terms in
general effective theories of gravity and introduce the main quantities that we calculate for
the different classes of theories in the following sections. In section 3, we consider theories
with maximal supersymmetry in d ≥ 8 and study the properties of the species scale using the
coefficient of a certain R4-coupling. In section 4, we perform a similar analysis for theories with
16 supercharges focusing on d ≥ 9. In section 5, we then turn to theories with eight supercharges
in six and five dimensions and use certain supersymmetrically protected R2-couplings to study
the properties of the species scale. Based on the results of these sections, we then revisit the
bound (1.1) in section 6 and argue how a proper treatment of the massless modes suggests
c = 1

d−2
. The appendices contain some useful details about Eisenstein series that appear in the

coefficients of the R4-term in various dimensions and on the F-theory geometries considered in
section 5.

Summary of Results

We study the species scale in theories with 32, 16 and 8 supercharges by considering the moduli
dependence of higher-derivative corrections at the eight- and four-derivative level. The location
of the desert point and the value of the species scale at the desert point depend crucially on
the details of the theory in consideration. The values of the species scale at the desert points
of the different theories are summarized in table 1.1. The diameter, diam(µ), of the region of
moduli space for which Λs ≥ µ has the general form

diam(µ) = −α log

[
µ

Mpl

]
+ b . (1.2)

This diameter is defined as the maximum of the distance between any pair of points in this
region. For µ ≪ 1 this distance is maximized if at least one of the points lies in an infinite-
distance region. If the other point lies in the interior, the coefficient α is determined by the
exponent of the species scale in this asymptotic regime [19]. Alternatively, the other point may
lie in an inequivalent infinite-distance region. In this case, we find α to be given by a certain
combination of the species scale’s exponents in the two infinite-distance regimes which — in
the case that the geodesic connecting the two points traverses through the interior of the region
Λs ≥ µ — simply reduces to the sum [19]. The values of α for the theories we considered in this
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Example desert species scale diameter coef. α diameter coef. b

10d IIA 0.755 8
√
2 −2.12

10d IIB 0.756 2
√
2 −0.073

9d M-theory on T 2 0.513 14 −7.978

8d M-theory on T 3 0.504
√
42 −4.309

10d Heterotic E8 × E8 0.823 8
√
2 −1.14

10d Heterotic SO(32) 0.822 2
√
2 0.14

6d F-theory on dPr

(
1√
9−r

)∗
2

log
[

2
9−r

]∗
6d F-theory on Fn≤2

(
2−3/4

)∗
− log[

√
n]∗

6d F-theory on Fn>2

(
n1/4
√
2+n

)∗
5d M-theory on X(2,86) 0.490∗

√
3 −3.903∗

Table 1.1: Summary of the results for the maximal value of the species scale (the desert point)
and the coefficients α and b for the diameter of the field space (1.2) in the examples discussed
in this work (all in Planck units, the asterisks denote that in these cases we cannot determine
the overall normalization, and therefore only compare different backgrounds).

work are summarized in table 1.1. On the other hand, the coefficient b which is expected to
be O(1) is not as easy to determine and in most cases is negative (cf. table 1.1). This implies
that the asymptotic behavior generically gives an overestimation for the diameter of the moduli
space.

In the maximally supersymmetric case, the coupling of a certain R4 term is protected by
supersymmetry and we show that in d ≥ 8 it correctly captures the dependence of the species
scale on all moduli. In particular, comparison with the Planck mass in 11d M-theory fixes
the overall normalization of the species scale. At the perturbative level, this coupling only
receives tree-level and one-loop contributions, but it can also receive further non-perturbative
corrections depending on the details of the theory in consideration. In ten-dimensional Type
IIA string theory, these non-perturbative corrections are absent. In this case, the tree-level
term correctly captures the behavior of the species scale in the weak-coupling limit whereas the
one-loop term dominates at strong-coupling. As we will show by merely comparing the behavior
of this one-loop correction with the general expectation for the species scale, one can infer the
existence of an eleven-dimensional effective theory of gravity at strong coupling. In other words,
without using detailed information about the exact spectrum of states, the one-loop correction
to Type IIA string theory knows about the existence of M-theory!

On the other hand, for Type IIB string theory it is precisely the D(-1)-instanton corrections
that render the coefficient of the R4-coupling modular invariant and ensure that the species
scale in the strong coupling limit of Type IIB is again an emergent string limit. The species
scale of Type IIB is maximized at the value for the axio-dilaton corresponding to the third
root of unity where it evaluates roughly to 3

4
Mpl, similar but slightly higher than Type IIA.

Compactifying maximally supersymmetric theories on tori, we have the species scale of these
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theories can be expressed through generalized Eisenstein series [20–29]. The modular properties
of these functions allow us to identify the desert points as certain fixed points of the U -duality
groups of the maximally supersymmetric theories. The values for the species scale and the
dependence of the diameter of the field space as a function of the cut-off scale are summarized
in table 1.1.

In theories with 16 supercharges, the first non-vanishing higher-derivative terms continue to
arise at the eight-derivative level. The R4-coupling in this case is not protected by supersym-
metry but, as reviewed in [30], the leading perturbative corrections beyond the one-loop level
are expected to vanish. The known corrections to the R4-coupling have been calculated in [30]
and we show that, in case these give the exact expression, they reproduce the expected behavior
for the species scale. This provides further support to the claim in [30] for the exactness of their
computation. Additionally, in theories with 16 supercharges, there exists another R4 coupling
that arises at one-loop and is protected by supersymmetry. Whereas this coupling does not
capture the behavior of the species scale in emergent string limits, we show that for the heterotic
SO(32) string on S1 (with Wilson lines breaking the gauge group to SO(16) × SO(16)) this
one-loop term captures the dependence of the species scale on the radial modulus correctly and
serves as a good approximation to the actual species scale. This illustrates that generically (but
not always) the higher-derivative corrections that are protected by supersymmetry do capture
scaling behavior of the species scale correctly and provide a useful upper bound for the species
scale.

Finally, we consider theories with eight supercharges in five and six dimensions where the
species scale can be computed by the same R2-coupling considered in 4d N = 2 theories in [11,
13]. Unlike in the 4d case, the coefficient of this coupling in the higher-dimensional theories does
not receive quantum corrections and is purely given by the geometry of the compactification
manifold. We show that also in five and six dimensions the asymptotic behavior of the species
scale is correctly captured by the coefficient of the R2-term from which we infer the behavior
of the species scale also in the interior. Unlike in the theories with 16 and 32 supercharges, our
methods do not fix the overall normalization of the species scale in terms of the higher-curvature
corrections.

In general, we find that in all the examples we consider the |∇Λs|2/Λ2
s is always bounded

by 1
d−2

except for two cases: 4d N = 2 where the corrections to the coefficient of the R2-
coupling in emergent string limits force the slope to approach its asymptotic value from above
and in 8d maximal supergravity where the same happens for the slope of the coefficient of the
R4-coupling. In both cases, the correction that pushes |∇Λs|2/Λ2

s above 1
d−2

as we approach
emergent string limits is logarithmic in the moduli and can be traced back to the running
of the coupling due to the light states already present in the EFT. We argue that, since the
species scale should account for the light, but massive, states beyond the EFT, this logarithmic
running of the coupling should not be part of the definition of the species scale. Similarly the
behavior of the species scale close to a conifold point is dominated by the contribution of the
light hypermultiplet; treating this case carefully, we show that also in this case the slope is
bounded by 1

d−2
from above. Taking all of these considerations into account, we can refine the

bound in (1.1) as
|∇Λs|2

Λ2
s

≤ 1

d− 2
, (1.3)

in Planck units. As one of the main results of this paper, based on our analysis, we propose
that in a consistent theory of gravity this bound is always satisfied at any point in the moduli
space.
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2 Species Scale from higher-curvature Corrections

In this section, we review the definition of the species scale in terms of higher-curvature cor-
rections and lay out the general strategy for our example analysis in the following sections.
Consider a general theory of Einstein gravity in d-dimensions coupled to a massless (or light)
scalar field with two-derivative action

S =
Md−2

pl,d

2

∫
ddx

√
−g

(
R− 1

2
(∂ϕ)2

)
. (2.1)

Here, Mpl,d is the d-dimensional Planck scale; for most of our analysis we work in d-dimensional
Planck units and set Mpl,d = 1, unless it is needed for clarity. In general, this effective action
receives corrections by higher-derivative terms that encode the effects of quantum gravity at
the effective field theory level. These corrections can be parameterized as

Scorr. =
Md−2

pl,d

2

∫
ddx

√
−g

(
∞∑
n=2

an(ϕ)
O2n(R)

M2n−2
pl,d

)
, (2.2)

where O2n are dimension-2n operators formed from contractions of the Riemann tensor R. In
this parametrization, the coefficients an(ϕ) encode the information about the UV completion of
the effective theory of gravity. If all these coefficients were independent of ϕ and were of O(1),
the expansion of the effective gravity action in higher-derivative terms would break-down at
curvatures of order of the Planck scale. However, in consistent theories of gravity, we typically
expect that there are additional light states beyond the massless level. As argued in [5], these
effectively cause the scale at which the effective description of gravity breaks down to be lowered
below the Planck scale. This new scale is typically referred to as the species scale, Λs. Since
the number of light states in a theory varies as a function of the vev for the moduli, so does
Λs = Λs(ϕ). From the perspective of the higher-curvature terms in (2.2), a breakdown of the
perturbative expansion at scale Λs(ϕ) implies that the coefficients an(ϕ) satisfy the general
bound

an(ϕ) ≤
(
Mpl,d

Λs(ϕ)

)2n−2

ân , (2.3)

where ân is a theory-dependent moduli-independent constant. On general grounds, we expect
only a finite amount of fine-tuning among the higher-derivative terms [31]. This implies that
only a few coefficients do not saturate this bound. In other words, the field-dependence of the
coefficients of generic higher-curvature terms should capture the behavior of the species scale
as a function of moduli — up to the coefficient ân.

To infer the dependence of the species scale on the scalar fields, we hence need to calculate
the coefficients an(ϕ) of the higher-curvature corrections. In general, this is a difficult task as
typically closed expressions for an(ϕ) for general n are unknown. Still, in favorable cases certain
coefficients can be evaluated explicitly for any ϕ. This is, e.g., the case in supersymmetric
setups where certain higher-curvature corrections are protected by supersymmetry. However,
supersymmetry may also prevent certain higher-curvature terms from appearing in the effective
action. If this is the case, the parametrization (2.3) tells us that ân = 0 for this term and the
term cannot be used to infer the dependence of the species scale on ϕ. To extract non-trivial
information about the ϕ-dependence of the species scale, we therefore need to find a term in
the higher-curvature expansion that is protected by supersymmetry but has ân ̸= 0. Assuming
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that we have found an operator On0(R) whose coefficient is non-zero and can be evaluated
explicitly, we identify the species scale as

Λs

Mpl,d

=

(
an0(ϕ)

ân0

) 1
2−2n0

. (2.4)

Strictly speaking, this gives us an upper bound on the species scale since in principle we should
consider all terms in the effective action and take the supremum of all possible values. In max-
imal and half-maximal supergravities, we consider n0 = 4 where we can fix â4 by comparison
with the Planck scale of 11d M-theory. For theories with 8 supercharges, we consider n0 = 2.
However, as we cannot compute the dependence of a2(ϕ) on all moduli, â2 is not fixed here.

Once we identify a higher-derivative term whose coefficient we can calculate reliably, we
can infer important information about the theory without knowing the exact spectrum of light
states but just from the properties of the species scale.

Asymptotic behavior of Λs. According to the Distance and Emergent String Conjec-
tures [1,2], at infinite distances in moduli space, a dual weakly-coupled description emerges cor-
responding either to a perturbative string limit or a decompactification to a higher-dimensional
theory. The emergence of this dual theory is signalled by a tower of states becoming ex-
ponentially light in Planck units. In the perturbative string limit, the species scale reduces
to the string scale of the emergent string and in the decompactification limits is identified
with the higher-dimensional Planck scale. In both cases, the species scale decays exponen-
tially Λs ∼ e−γ∆ϕMpl,d in the field space distance ∆ϕ where ϕ is the field parametrizing the
infinite-distance limit. The coefficient γ for a decompactification from d to D dimensions and
a d-dimensional emergent string limit is respectively given by [11] (see also [3, 12])

γd→D
decomp. =

√
D − d

(D − 2)(d− 2)
, γstring =

1√
d− 2

. (2.5)

By computing the slope of the higher-derivative coefficient in the asymptotic limit, we can
therefore infer the nature of the asymptotic limit without detailed knowledge of the spectrum
of light states.

Slope of Λs. In [11] we argued, based on the consistency of the higher-derivative expansion,
that the slope of the species scale should be bounded from above as

|∇Λs|2

Λ2
s

≤ c

Md−2
pl

, (2.6)

for some c ∼ O(1). Given the identification (2.4), this bound can be checked in explicit setups
where certain higher-curvature corrections can be computed exactly. This bound should hold
anywhere in moduli space including the interior. On the other hand, in asymptotic infinite-
distance regimes, the slope of the species scale is expected to become constant, implying that
it decays exponentially in the field distance. Based purely on the properties of the coefficient
an0(ϕ) and without prior knowledge of the states in the theory, we can then infer import-
ant properties of the theory in the asymptotic region. Comparison with the coefficients (2.5)
suggests that the O(1) constant is fixed to

c =
1

d− 2
. (2.7)
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We verify this refined bound in the large class of examples considered in this work.

Consistency under dimensional reduction. As a simple application, we can consider the
behavior of the higher-derivative terms under dimensional reduction of the theory. Therefore,
let us start with a D-dimensional theory and assume we have identified a higher-curvature
operator On0(R) whose coefficient, aDn0

(ϕ), can be determined explicitly. Let us therefore focus
on the term

Scorr. =
MD−2

pl,D

2

∫
dDx

√
−gD aDn0

(ϕ)
On0(R)

M2n0−2
pl,D

. (2.8)

If we compactify this theory on a (D−d)-dimensional manifold with volume VMD−d
pl,D = V such

that
Md−2

pl,d = Md−2
pl,DV . (2.9)

Then, a dimensional reduction of the term in (2.8) yields

Scorr. →
Md−2

pl,d

2

∫
ddx

√
−gd

(
aDn0

(ϕ)V
2n0−2
d−2

) On0(R)

M2n0−2
pl,d

. (2.10)

The terms in the brackets can be identified as a contribution to the higher-derivative coefficient
in the lower-dimensional theory

adn0
(ϕ,V) = aDn0

(ϕ)V
2n0−2
d−2 + . . . , (2.11)

where the dots indicate corrections that arise in the lower-dimensional theory. However, since
aDn0

is exact, these corrections have to be sub-leading in the limit V → ∞. The species scale in
the limit V → ∞ is therefore given by(

Λs

Mpl,d

)2−2n0

= adn0
(ϕ,V) . (2.12)

Let us assume that we take a homogeneous decompactification limit such that we can write
V = e(D−d)σ. The metric for the field space spanned by σ is given by (cf. [11])

ds2 =
(D − 2)(D − d)

(d− 2)
(dσ)2 , (2.13)

such that, as a function of the field space distance ∆σ, the species scale in the limit σ → ∞
scales as

Λs

Mpl,d

∼ e
−
√

D−d
(D−2)(d−2)

∆σ , (2.14)

in accordance with our expectation (2.5) for a decompactification from d to D-dimensions.

Desert point. The benefit of defining the species scale via higher-derivative corrections is
that it allows us to calculate the species scale in the bulk of the moduli space, i.e., away from
the asymptotic regimes. Of particular interest are the points in the moduli space at which Λs is
maximized, i.e., the desert points of the theory [18]. Besides the location of these points in the
moduli space, the value of Λs at the desert is of interest as it gives an estimate for the smallest
number of light states a theory of gravity can have. Since light states can only decrease the
quantum gravity cut-off, we expect that the value of Λs at the desert point is bounded from
above by the Planck scale. We confirm this in the examples below. We also want to point out
that the species scale can have saddle points and not just maxima, as happens, e.g., for 10d
Type IIB at self-dual coupling, see section 3.2 for more details.
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Diameter of Moduli Space. Let us consider the low-energy EFT at a cut-off scale µ. Since
the species scale vanishes asymptotically in infinite-distance limits it eventually drops below µ
and the effective field description breaks down. Therefore, the part of the moduli space where
Λs ≥ µ and the EFT is valid is compact. A useful quantity that we can associate to this
compact space is its diameter, diam(µ), which is the maximum of the distance between any
pair of points on the moduli space. To get the largest distance in moduli space for a given µ,
at least one of the points needs to lie on the boundary of the region Λs ≥ µ. This means that
for small µ ≪ Mpl,d, this point needs to lie in one of the asymptotic regions where

Λs ∼ Ae−γ∆ϕ . (2.15)

The diameter for small µ then schematically takes the form

diam(µ) = −α log

(
µ

Mpl,d

)
+ b , (2.16)

where b accounts for the coefficient A and the size of the interior of the moduli space where
the species scale does not feature an exponential behavior. Via (2.5), α is (inversely) related
to the exponent γ of the species scale in infinite-distance limits. If the diameter is set by the
distance between two points lying in inequivalent asymptotic regions, the coefficient α will be
some combination of the (inverse) exponents of the species scale in the two regions. Whenever
the geodesic connecting these regions passes through the interior it will simply be their sum;
otherwise, it will depend on the structure of the moduli space, see section 3.3 on 9d M-theory
on T 2 for an example.

3 Species Scale and 32 supercharges

The first instance to which we apply our general approach corresponds to maximally super-
symmetric cases. Therefore, consider the first few higher-derivative terms in the effective su-
pergravity action in the following schematic form

Scorr. =
Md−2

pl,d

2

∫
ddx

√
−g

(
a2(ϕ)

M2
pl

R2 +
a3(ϕ)

M3
pl

R3 +
a4(ϕ)

M4
pl

R4 + . . .

)
(3.1)

Via (2.3), we can relate the ai(ϕ) to the species scale. However, in theories with 32 supercharges
the R2 and R3 corrections vanish identically implying â2 = â3 = 0. Therefore, we cannot use
these terms to infer the species scale, but instead we need to go to the operators involving four
powers of the Riemann tensor. Theories with 32 supercharges can be obtained from toroidal
compactifications of M-theory in eleven dimensions. In eleven-dimensional supergravity, there
exists a single independent contraction of four Riemann tensors

J0 = (t8t8 −
1

24
ϵ11ϵ11)R

4 , (3.2)

where t8 and ϵ11 are tensors whose exact form can be found, e.g., in Appendix B of [32]. Since
M-theory does not have a moduli space, the coefficient of this R4 is just a constant and the
species scale is simply given by Mpl,11. Given (2.3), we can hence read off â4 as the coefficient
of the R4-term in the effective action [21]

S11,R4 =
M3

pl,11

2

∫
d11x

√
−g â4 (t8t8 −

1

24
ϵ11ϵ11)R

4 , â4 =
1

18 · 214 · (2π) 10
3

. (3.3)
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As shown in [21], this term can be obtained by considering four-graviton scattering in eleven
dimensions at one loop with the state running in the loop corresponding to the massless su-
pergraviton in eleven dimensions. Since supersymmetry relates this term to the C3 ∧X8 term
in the effective action, it does not receive corrections beyond one-loop [21] and is therefore
exact. The non-renormalization of this term can be used to also argue for one-loop exactness
of the corresponding terms for toroidal compactifications. In a series of works [20–29], the
coefficient of this term has been determined exactly in toroidal compactifications of M-theory
for supergravities in dimensions d ≥ 3. These coefficients may be expressed through particular
(real-analytic) Eisenstein series given by sums over tensions and masses of BPS states in the
theory; see appendix A for details on the Eisenstein series appearing in these expressions. In
the following, we discuss the species scale for maximally supersymmetric gravitational theories
in d = 10, 9, and 8 of which the moduli spaces and the U-duality groups are summarized in
table 1.1. In all these examples, the species scale is determined by the coefficient of the t8t8R

4-
term in the respective higher-derivative action. Since this term is present in 11d M-theory, we
can use (3.3) to fix the coefficient â

(11)
4 appearing in (2.3).

d En+1(R) Kn+1 En+1(Z)

10A R+ 1 1

10B SL(2,R) SO(2) SL(2,Z)

9 SL(2,R)× R+ SO(2) SL(2,Z)

8 SL(3,R)× SL(2, R) SO(3)× SO(2) SL(3,Z)× SL(2,Z)

Table 3.1: The symmetry groups in maximal supergravity in d = 10 − n giving the moduli
space of these theories as En+1(Z)\En+1(R)/Kn+1.

3.1 10d Type IIA

We first consider Type IIA in ten dimensions, which is related to M-theory through a circle
compactifications. The compactified theory has a single modulus which corresponds to the
Type IIA dilaton e−λ, or equivalently, the radius of the circle can be expressed as follows

R11Mpl,11 = e2/3λ . (3.4)

The field space is spanned by the dilaton λ with metric ds2 = 1
2
dλ2. As in 11d M-theory,

the t8t8R
4-term is protected by supersymmetry which ensures that there are no perturbative

corrections to its coefficient beyond one-loop. Furthermore, since there are no BPS instantons
in 10d Type IIA, there are also no non-perturbative corrections to a4(λ). Therefore, a4(λ)
consists of two terms one of which arises as the dimensional reduction of the t8t8R

4-term in
(3.3) on a circle

S10,R4 ⊃
M8

pl,10

2

∫
d10x

√
−g â4

t8t8R
4

M6
pl,10

(
Mpl,10

Mpl,11

)6

. (3.5)

From our general expression in (3.1), in the large-radius/strong-coupling limit, we can identify

a
(10)
4 (λ) = â4

(
Mpl,10

Λs

)6
λ→∞−−−→ â4 (2π)

3/4eλ/2 , (3.6)
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Figure 1: The species scale (3.10) (left) and its slope (right) as functions of ∆λ =
√
2λ. The

limit ∆λ → −∞ corresponds to the emergent string limit and ∆λ → ∞ to the decompactification
limit to M-theory. The dashed and dotted curve show the respective contributions of the first
and second term in (3.10).

where we used
M8

pl,10

M8
pl,11

= 2πR11Mpl,11 . (3.7)

As is apparent from the dilaton dependence, this term arises at one-loop level. In fact, both the
tree- and one-loop contribution to the t8t8R

4-term can be computed directly in string theory.
These take on the following schematic form

S10,R4 ∼ M2
pl,10

∫
d10x

√
−g

(
2ζ(3)e−3λ/2 +

2π2

3
eλ/2

)
t8t8R

4 . (3.8)

This fixes the relative factor between the tree-level and the one-loop term. Comparison with
(3.5) fixes the overall normalization, as in (3.1), to be

S10,R4 =
M2

pl,10

2

∫
d10x

√
−g a

(10)
4 (λ) t8t8R

4 ,

with a
(10)
4 (λ) = â4

(
3 · 23/4ζ(3)

π5/4
e−3λ/2 + (2π)3/4 eλ/2

)
.

(3.9)

According to our general discussion, the species scale in ten-dimensional Type IIA string theory
for any value of λ is then given by

Λs =
1

(2π)1/8

(
3ζ(3)

π2
e−3λ/2 + eλ/2

)−1/6

. (3.10)

In figure 1, we illustrate how the species scale and its slope vary as a function of ∆ = λ/
√
2.

With this preparation, we can now discuss the properties of the species scale.

Slope of Λs. As expected on general grounds [11], the slope of the species scale is bounded
from above. From figure 1b, we conclude that the maximal value for the slope of the species

11



scale is achieved in the asymptotic weak-coupling limit which determines the O(1) constant c
in (2.6). This leads to the bound ∣∣∣∣∇Λs

Λs

∣∣∣∣2 ≤ 1

8
, (3.11)

in Planck units.

Asymptotic behavior. Next, we study the behavior of the species scale (3.10) in the two
asymptotic regions. In the weak-coupling limit λ → −∞, we find that the scaling of the species
scale in the canonically normalized field ∆λ = −

√
2λ on the moduli space is given by

Λs =
π5/24

21/8(3ζ(3))1/6
e−∆λ/(2

√
2) . (3.12)

This agrees with the expected coefficient 1/
√
d− 2 for an emergent string limit in d = 10

dimensions. In the strong coupling limit λ → ∞, we find it decays in ∆λ =
√
2λ as

Λs =
1

(2π)1/8
e−∆λ/(6

√
2) , (3.13)

which agrees with the general expectation for the coefficient (2.5) for a decompactification
from d = 10 to D = 11 dimensions. From the ten-dimensional Type IIA perspective it is in
fact rather remarkable that the one-loop contribution to the coefficient of the t8t8R

4 coupling
knows about the decompactification to 11d M-theory at strong coupling, as it gives us the right
behavior for the species scale in this limit. We therefore could have inferred the existence of
this higher-dimensional theory just from studying the higher-derivative terms without prior
knowledge about the light spectrum of states in Type IIA.

Desert point. We next identify the point in the one-dimensional dilaton field space that
maximizes the species scale (3.10). We find that this desert point is located at

eλ =
3

π

√
ζ(3) ≈ 1.05 , (3.14)

corresponding to λ ≈ 0.05. This leads to a value of the species scale at the desert point of

max(Λs) =

(
32

211πζ(3)

)1/24

≈ 0.755 . (3.15)

Notice that the species scale is localized close to but not exactly at λ = 0. This should not come
as a surprise since the two infinite-distance limits for λ → −∞ and λ → ∞ are inequivalent
and hence there is no symmetry exchanging the two limits while keeping λ = 0 fixed. Notice
further that the maximal value of Λs is below Mpl,10 as expected on general grounds.

Diameter. Lastly, we can compute the diameter of the effective field space available at some
cut-off scale µ. The constraint Λs ≥ µ determines the diameter of the field space to scale as

diam(µ) = −8
√
2 log[µ]−

√
2

3
log [24πζ(3)] . (3.16)
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Figure 2: Plot of the species scale for ten-dimensional Type IIB. Left: a contour plot of Λs

over the upper half plane, where the fundamental domain bis indicated by a dashed line. Right:
Λs along a fixed axion slice τ1 = 1/2 as a function of distance ∆τ in scalar field space.

The coefficient of the first term is simply the sum of the separate contributions
√
72 and

√
8

for the decompactification and emergent string limits. The negative shift takes the numerical
value

b = −
√
2

3
log [24πζ(3)] ≈ −2.12 , (3.17)

which is due to the leading coefficients in (3.12) and (3.13) appearing in the asymptotic scaling
of the species scale.

3.2 10d Type IIB

We now turn to ten-dimensional Type IIB string theory. In this case, the field space is spanned
by the axio-dilaton τ = τ1 + iτ2 which endows the field space with the standard hyperbolic
metric

ds2 =
dτdτ̄

2τ 22
. (3.18)

Again, the relevant term in the effective action corresponds to the t8t8R
4 coupling. Thanks to

supersymmetry, the dependence of the coefficient a4(τ, τ̄) of this term on τ can be calculated
explicitly. As in Type IIA, there do not exist any perturbative contributions to a4(τ, τ̄) beyond
one-loop. However, there are contributions coming from D(−1)-instantons. As shown in [20],
the full τ -dependence of the t8t8R

4 coupling is captured by the SL(2,Z)-invariant Eisenstein
series E 3

2
(τ, τ̄) given by

E 3
2
(τ, τ̄) =

∑
(p,q) ̸=(0,0)

τ
3/2
2

|p+ qτ |3
. (3.19)

This expression can be understood as summing M−6
p,q for every (p, q)-string in the BPS spectrum

with tension Mp,q. This Eisenstein series gives the dependence of the species scale on τ ; in order
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√
2

in scalar field space, along the constant axion slice τ1 = 1/2.

to obtain the correct normalization, we consider the weak-coupling limit τ2 → ∞ in which the
Eisenstein series behaves as

E 3
2
(τ, τ̄) = 2ζ(3)τ

3/2
2 +

2π2

3
τ
−1/2
2 + 8π

√
τ2
∑
p ̸=0

∞∑
n=1

∣∣∣p
n

∣∣∣K1(2πτ2|p|n)e2πipnτ1 . (3.20)

The infinite sum corresponds to the exponentially suppressed contributions from D(-1)-instantons.
Recalling that τ2 = e−λ with λ the Type IIB dilaton, we recognize the first term as a tree-level
contribution and the second term as the one-loop term of which both were also present in Type
IIA. Comparison with (3.9) then fixes the normalization of the species scale to

Λs =

(
3

21/4π5/4
E 3

2
(τ, τ̄)

)−1/6

. (3.21)

We have depicted the behavior of Λs over the moduli space in figure 2. We also show the slope
of this species scale along a slice in moduli space for fixed τ1 = 1/2 in figure 3. Similar to Type
IIA, we find that the slope of Λs is bounded from above by 1/

√
8 everywhere in moduli space.

Asymptotic behavior. Due to the SL(2,Z)-duality, there is only a single kind of infinite-
distance limit for ten-dimensional Type IIB string theory corresponding to τ2 → ∞. All other
infinite-distance limits are related to this one via duality transformations and, due to the
SL(2,Z)-invariance of the Eisenstein series, the species scale (3.21) is the same in all infinite-
distance limits. From (3.21), we then find that the species scale has a power-law behavior
Λs ∼ (τ2)

−1/4 in the string coupling. In terms of the field space distance ∆τ given asymptotically
by ∆τ = 1√

2
log[τ2], we find

Λs =
π5/24

21/8(3ζ(3))1/6
e−∆τ/(2

√
2), (3.22)

which is indeed the expected coefficient 1/
√
d− 2 for d = 10.

Desert point. We next identify the desert point in the moduli space where the species scale
(3.21) is maximized. To this end, we first notice that due to the SL(2,Z) duality symmetry of
the species scale, the extrema of Λs are located at i) the point τ = i — fixed by S-duality —

and ii) the third root of unity τ = ρ ≡ −1
2
+ i

√
3
2

— fixed by the combination of S-duality and
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axion shift τ → τ + 1. We can compute the Eisenstein series numerically over all of moduli
space — as illustrated by figure 2 — confirming that τ = ρ is the desert point. At these special
points we can also compute the Eisenstein series exactly by number theoretical methods; for a
detailed analysis we refer to appendix A.1, but let us nevertheless include the values here

E 3
2
(i,−i) = 4ζ(3

2
)β(3

2
) ≈ 9.03 , E 3

2
(ρ, ρ̄) =

(√
3
2

)1/2
ζ(3

2
)
(
ζ 1

3
(3
2
)− ζ 2

3
(3
2
)
)
≈ 8.89 , (3.23)

where β denotes the Dirichlet beta function and ζa(s) the generalized zeta function, see appendix
A.1 for their precise definitions. The species scale at the desert point is accordingly given by

Λmax.
s = Λs(τ = ρ) ≈ 0.756 , (3.24)

whereas the species scale at τ = i is slightly lower

Λs(τ = i) ≈ 0.754 . (3.25)

It is instructive to compare these values with the Type IIA result (3.15), which lies in between
them. The difference between the IIA and IIB species scales is given solely by the instanton
sum in (3.20): along the line τ1 = 0, this gives a positive contribution to the Eisenstein series,
and hence a lower species scale value for IIB at τ = i compared to IIA; however, by moving
along the IIB axion τ1, we can alter the signs in this instanton sum and achieve a maximal
value at τ = ρ for the species scale. We also want to stress that this example shows there
can be points where Λs has a saddle point, which here occurs for τ = i, where dΛs = 0, but
it is neither a minimum nor a maximum. We refer to appendix A.1 for the eigenvalues of the
Hessian at both of these points.

Diameter. To determine the diameter of the effective field space set by the bound Λs ≥ µ,
we consider a geodesic starting from τ = ρ along a fixed axion slice τ1 = −1/2 up to the point
where Λs = µ. Note that any other axion value −1/2 ≤ τ1 ≤ 1/2 for the endpoint would
correspond to an exponential correction, as the length of this segment becomes exponentially
small asymptotically. We find that the length of this geodesic and hence the diameter as a
function of µ is given by

diam(µ) = −2
√
2 log[µ] +

1

6
√
2
log

[
23π5

37ζ(3)4

]
. (3.26)

The coefficient corresponds to the expected behavior for an emergent string limit. The shift
takes the value

b =
1

6
√
2
log

[
23π5

37ζ(3)4

]
≈ −0.073 . (3.27)

This small shift can be attributed to the contributions − log[
√
3/2]/

√
2 ≈ 0.102 from the short

distance between the desert point τ2 =
√
3/2 to τ2 = 1 and −

√
2 log[3ζ(3)23/4π−5/4]/3 ≈ −0.175

coming from the overall coefficient in the scaling of the species scale in (3.22).

3.3 M-theory on T 2

We next consider nine-dimensional supergravity obtained from compactifying M-theory on T 2.
In this case, the t8t8R

4-coupling has been computed in [21,27] and takes the schematic form

SR4 ∼ Mpl,9

∫
d9x

√
−g V6/7

(
V−3/2E 3

2
(τ, τ̄) +

2π2

3

)
t8t8R

4 , (3.28)
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where 4π2V is the volume of the torus in 11d M-theory units and τ is the complex structure of
the torus. Furthermore, the kinetic terms can be determined by the metric2

ds2 =
dτdτ̄

2τ 22
+

9

14

dV2

V2
. (3.29)

Along trajectories with constant axion τ1, we can introduce canonically normalized scalar fields

∆τ = log[τ2]/
√
2 , ∆V =

√
14/9 log[V ] . (3.30)

Similar to 10-dimensional Type IIA string theory, we can fix the relation between the species
scale and the higher-derivative coefficient a

(9)
4 (τ,V) by comparison with 11d M-theory. We

therefore realize that in the limit V → ∞, the species scale should simply be given by Mpl,11.
In analogy to (3.5), we can consider the term

S9,R4 ⊃ Mpl,9

2

∫
d9x

√
−gâ4

t8t8R
4

M6
pl,9

(
Mpl,9

Mpl,11

)6

, (3.31)

leading to the identification

a
(9)
4 (λ) = â4

(
Mpl,10

Λs

)6
λ→∞−−−→ â4 (4π

2V)6/7 . (3.32)

This fixes the normalization of the species scale such that, from (3.28), we obtain in Planck
units

Λs =
1

(4π2V)1/7

(
3

2π2

E 3
2
(τ, τ̄)

V3/2
+ 1

)−1/6

. (3.33)

In figure 4a, we show a plot of the species scale in terms of ∆τ and ∆V . If one wishes, these
M-theory coordinates τ,V can be mapped to the IIA or IIB dilaton λA/B and circle radius rA/B.
The precise correspondence between these quantities is given by

e−2DA/B =
τ
7/4
2

V3/4
, rA = V3/4τ

1/4
2 , rB =

1

rA
, (3.34)

where we defined the nine-dimensional dilaton DA/B as

e−2DA/B = e−2λA/BrA/B . (3.35)

By substituting these expressions into (3.28) and (3.29), one may obtain the R4-term and scalar
field metric in the IIA/B coordinates though we choose to work in the M-theory coordinates in
this section.

Asymptotic behavior. Let us now consider how the species scale (3.33) behaves along
infinite-distance limits. For theories with maximal supersymmetry in 9d, there are four distinct
limits (see also [12]): a 9d emergent string limit, two decompactification limits to 10d Type IIA
or IIB supergravity, and a decompactification limit to 11d M-theory.

2The coefficient of the dV2 term agrees with the general expectation for a KK reduction (see e.g., [11]) from
D = 11 to d = 9 dimensions.
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Figure 4: Plots of the species scale (left) and slope (right) for M-theory on T 2 with constant
axion τ1 = 1/2. Left: a contour plot of Λs, where arrows 1 and 2 correspond to the geodesic
distances (3.43) and (3.45) respectively. Right: the slope |∇Λs|2/Λ2

s, bounded from above by
1/7.

• We begin with the 9d emergent string limit. In the IIA or IIB coordinatesDA/B, rA/B, this
limit corresponds to sending the nine-dimensional dilaton to weak-coupling DA/B → −∞
while keeping the radius rA/B constant. Equivalently, using the dictionary (3.34), this
corresponds to τ2 ∼ V−3 → ∞ with τ2V3 kept fixed. The scaling of Λs in the distance ∆
along this trajectory is given by

Λs ∼ e−∆/
√
7 . (3.36)

This scaling with ∆ is obtained straightforwardly in the coordinates ∆τ ,∆V defined in
(3.30), as we then only need to compute Euclidean distances. The coefficient 1/

√
7 is

consistent with our expectation (2.5) for the 9d emergent string limit.

• Next, we consider the two distinct decompactification limits to 10d. The limit to 10d
Type IIA supergravity is obtained by sending τ2 ∼ V → ∞ while keeping τ2/V fixed;
equivalently, this corresponds to scaling the radius rA → ∞ while keeping the dilaton λA

fixed.3 The limit to 10d Type IIB supergravity corresponds to V → 0 while keeping the
dilaton τ2 fixed. Let us write down the scaling of Λs in terms of the volume V in these
limits explicitly

IIA : τ2,V → ∞ ,
τ2
V

∼ cst, Λs =
1

7
√
4π2 6

√
3
π2 ζ(3)

(
τ2
V

)3/2
+ 1

V−1/7 ,

IIB : V → 0 , τ2 = cst, Λs ∼
1

7
√
4π2 6

√
3

2π2E 3
2
(τ, τ̄)

V3/28 ,
(3.37)

where τ2/V , τ are kept fixed in the Type IIA and the Type IIB case, respectively. We kept
track of the overall factors explicitly, as we will need to tune these later in the computation

3Otherwise we would obtain a decompactification limit super-imposed by a ten-dimensional emergent string
limit.
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of the diameter of the field space. Using the Euclidean metric on the coordinates ∆τ ,∆V
defined in (3.30), we find for both trajectories that Λs scales with the moduli space
distance ∆ as

Λs ∼ e−∆/
√
56 , (3.38)

which is consistent with the expectation of (2.5).

• Finally we consider the decompactification limit to 11d M-theory. This limit corresponds
to decompactifying the T 2 by sending V → ∞ while keeping τ fixed. For the species
scale, this gives the scaling of Λs with the distance as

Λs =
1

(2π)2/7
V−1/7 ∼ e−

√
2∆/3

√
7 , (3.39)

which is also consistent with (2.5). Here, we also kept track explicitly of the leading
coefficient, as this factor is relevant to the length (3.43) of the first geodesic considered
for the diameter.

Species scale polygon. In figure 4a, we have provided a plot of constant species scale
contours. These contours asymptote to a bilateral triangle for which we briefly elaborate on
the physical significance of its corners and sides in relation to the asymptotic limits discussed
above. The top left/right corners correspond to V ∼ τ2 → ∞ and V ∼ 1/τ2 → ∞, respectively,
which both lead to a decompactification limit to ten-dimensional Type IIA; the corner at the
bottom corresponds to the limit V → 0, i.e., the decompactification limit to ten-dimensional
Type IIB. In addition, we consider the lines normal to the sides of the triangle passing through
the origin: for the top side of the triangle, this corresponds to a decompactification limit to
11d M-theory, while for the left and right side, these yield 9d emergent string limits.

Slope. The slope of the species scale is depicted in figure 4b. As indicated in the figure 4b,
the slope is bounded from above, everywhere in the moduli space, by

|∇Λs|2

Λ2
s

≤ 1

7
. (3.40)

In this figure, the limit ∆V → ∞ corresponds to a decompactification to 11d M-theory while
the limit ∆V → −∞ corresponds to the decompactification to 10d Type IIB. The valley along
∆V ,∆τ → ∞ is identified with the decompactification to 10d Type IIA. The plateau corresponds
to the 9d emergent string limit.

Desert point. Since the field space factorizes between τ and V , the location of the desert
point can be found straightforwardly by first extremizing with respect to the complex structure
modulus τ and subsequently with respect to V . The first step is analogue to our ten-dimensional
Type IIB discussion and singles out the third root of unity τ = ρ as the location of the desert.
In turn, extremizing the species scale with respect to the volume V yields

V =
34/3

4π4/3

(
E 3

2
(ρ, ρ̄)

)2/3 ≈ 1.009 , (3.41)

where we have used the numerical value for E 3
2
(ρ, ρ̄) computed in (3.23). Thus, we find the

species scale at the desert point to be

Λs =
1

31/4271/6
(
πE 3

2
(ρ, ρ̄)

)2/21 ≈ 0.513 , (3.42)
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which is substantially lower than the values encountered in ten dimensions for IIA and IIB.

Diameter. For the diameter of the field space we compare the length of two geodesics: 1) a
path connecting V = 0 and V = ∞ with fixed axio-dilaton – corresponding to a vertical line
through the center of the triangle in figure 4; 2) a path along the edge of this triangle connecting
its bottom and top-right corner, i.e., from V → 0 to V ∼ τ2 → ∞. For these endpoints, we
need to specify certain order-one constants in the asymptotic behavior in (3.37): for path 1),
we need to specify the fixed value for τ , whereas for path 2), we need to specify the ratio V/τ2
in the limit V , τ2 ≫ 1. Below, we work out these two cases in detail.

• Path 1) from V → 0 (10d IIB supergravity) to V → ∞ (11d supergravity). To maximize
the distance, we must set τ = ρ since this minimizes E 3

2
(τ, τ̄), and therefore maximizes

the coefficient in (3.37). We then find the maximal length ℓ1(µ) of path to be

ℓ1(µ) = −7
√
7√
2

log µ+ b1 . (3.43)

The coefficient of the logarithm is the sum of
√
7 · 9/2 from decompactification to 11d

M-theory and
√
7 · 8 from decompactification to 10d Type IIB. The constant shift of the

diameter is given by

b1 = −
√
14

3
log
[
12πE 3

2
(ρ, ρ̄)

]
≈ −7.25242 . (3.44)

where we plugged in the numerical value for E 3
2
(ρ, ρ̄) from (3.23).

• Path 2) from V → 0 (10d IIB supergravity) to V , τ2 → ∞ (10d IIA supergravity). The
discussion above tells us that we have to set τ = ρ in the first limit to 10d Type IIB to
maximize the length of path 2). For the second endpoint, we need to determine the ratio
τ2/V . The value for this ratio that maximizes the length of path 2) will be determined in
the end. Continuing with a generic τ2/V for now, we find the length ℓ2(µ) of path 2) to
be given by

ℓ2(µ) = −14 log µ+ b2(τ2/V) . (3.45)

Note that the coefficient of the logarithm is not given by the sum of the contributions
coming from the two separate infinite-distance limits, as path 2) does not pass through
the center of the moduli space. Instead, it is the length of the side of the bilateral triangle
in figure 4a with height 7

√
7/2 and width 7

√
2. The constant shift b2(τ2/V) is given by

b2
(τ2
V
)
= −31

24
log[12] + 1

4
log
[τ2
V
]
− 7

6
log

[
E 3

2
(ρ, ρ̄)

(
π2 +3

(τ2
V
)3/2

ζ(3)
)]

+
2 log π

3
. (3.46)

We can maximize this coefficient as a function of τ2/V straightforwardly and find that
the maximum is reached for

τ2
V

=
π4/3

34/3(2ζ(3))2/3
, b2 = − 1

24
log
[
238311

(
7E 3

2
(ρ, ρ̄)

)28(
π8ζ(3)

)4] ≈ −7.97766 , (3.47)

where we evaluated E 3
2
(ρ, ρ̄) numerically using (3.23).

For small µ, the shortest distance between two points is maximized if they are connected via
path 2). Therefore, out of (3.43) and (3.45), the diameter diam(µ) as a function of µ is given
by

diam(µ) = ℓ2(µ) ≈ −14 log µ− 7.97766 . (3.48)
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3.4 M-theory on T 3

As a final setup with maximal supersymmetry, we consider eight-dimensional supergravity
arising from M-theory compactified on T 3, or equivalently, Type IIB on T 2 following [22, 27].
From table 3.1, we infer that the moduli space of maximal supergravity in 8d is given by

M8 = (SL(3,Z)× SL(2,Z))
∖SL(3,R)× SL(2,R)

SO(3)× SO(2)
. (3.49)

In particular, the SL(3,R) factor is interesting since its structure differs from the SL(2,R) and
R+ moduli spaces encountered in the previous examples. For definiteness, we consider Type
IIB on T 2 in the following. The kinetic terms in the eight-dimensional Einstein frame read

S8 =
M6

pl,8

2

∫
d8x

√
−g

(
R− 1

6

∂ν2

ν2
− 1

2

∂U∂Ū

U2
2

− 1

2

∂τ∂τ̄

τ 22
− ν

|τ∂BN + ∂BR|2

2τ2

)
. (3.50)

Here, U = U1+iU2 is the complex structure parameter of the T 2, τ = τ1+iτ2 is the axio-dilaton
of ten-dimensional Type IIB string theory, BN(BR) are the scalars obtained from reducing the
NS-NS(R-R) two-form along the T 2, and we defined ν = 1/(τ2V2) where 4π2V is the string
frame volume of the T 2. The complex structure U spans the SL(2,R) component of the moduli
space M8, whereas the SL(3,R)-part is parameterized by ν, τ and BN,R.

The action (3.50) may be brought into a form invariant under the SL(3,Z) U-duality group
by introducing [33]

M = ν1/3


1
τ2

τ1
τ2

Re(B)
τ2

τ1
τ2

|τ |2
τ2

Re(τ̄B)
τ2

Re(B)
τ2

Re(τ̄B)
τ2

1
ν
+ |B|2

τ2

 , (3.51)

where B = BR + τBN . In terms of M , the action (3.50) can then be rewritten as

S8 =
1

2κ2
8

∫
d8x

√
−g

(
R− 1

2

∂U∂Ū

U2
2

+
1

4
Tr(∂M∂M−1)

)
. (3.52)

Again, we consider the coefficient of the t8t8R
4-coupling in the effective action which is given

by
E (2)(M,U, Ū) = E

SL(3)
3
2

(M) + E
SL(2)
1 (U, Ū) . (3.53)

Here, the term corresponding to the SL(3) part of the moduli space is defined as

ESL(3)
s =

∑
(m1,m2,m3)∈Z3

(m1,m2,m3 )̸=(0,0,0)

ν−s/3

(
|m1 +m2τ +Bm3|2

τ2
+

m2
3

ν

)−s

, (3.54)

for s = 3
2
. On the other hand, the SL(2)-term is given by

ESL(2)
s =

∑
(p,q) ̸=(0,0)

U s
2

|p+ qU |2s
, (3.55)

for s = 1. In eight dimensions, the t8t8R
4-term is conformally invariant and its coefficient

in (3.53) is divergent due to the contribution of massless modes to the conformal anomaly.
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Both terms appearing in (3.53) therefore need to be properly regularized. Evaluating (3.55) for
s = 1 + ϵ and subtracting the pole, one finds

Ê
SL(2)
1 = −2π log(U2|η(U)|4) . (3.56)

up to a constant infrared ambiguity. This is reminiscent of the situation in the vector multiplet
sector of Type II string theory compactified on a Calabi–Yau threefold Y3. There, the conform-
ally invariant R2-term also has a coefficient that diverges due to the contributions of massless
modes. Regularizing this coefficient yields an expression similar to (3.56) [14, 34] for the case
of Y3 = (K3× T 2)/Z2.

Similarly, the regularization of E
SL(3)
3
2

has been carried out in detail in [22]. The finite part

is given by

Ê
SL(3)
3
2

= 2
τ
3/2
2

ν1/2
ζ(3) +

2π2

3
T2 + 4π log ν1/3 + ID +

∑
(p,q)=1

Ip,q . (3.57)

Here ID represents the D(−1)-instanton contribution given by

ID = 8π

√
τ2
ν

∑
p ̸=0

∞∑
n=1

∣∣∣p
n

∣∣∣K1(2πτ2|p|n)e2πipnτ1 , (3.58)

with K1 denoting the Bessel function. On the other hand, we have

Ip,q = −8πRe log

[
∞∏
n=1

(
1− e2πinTp,q

)]
, Tp,q = (qBR − pBN) + i|p+ qτ |V , (3.59)

encoding the contributions from Euclidean [p, q]-strings wrapping the T 2.
To relate this higher-derivative correction to the species scale, we need to fix its normal-

ization. We therefore realize that in the limit of large-radius and weak-coupling, the species
scale should be given by the species scale of ten-dimensional Type IIB string theory discussed
in section 3.2. In the limit V , τ2 → ∞, the t8t8R

4-coupling is dominated by the first term in
Ê

SL(3)
3
2

in (3.57) such that

E (2) ∼ 2ζ(3)τ 22V + . . . . (3.60)

Dimensional reduction of ten-dimensional Type IIB string theory on a torus with volume 4π2V ,
we find that in eight-dimension, the coefficient of the t8t8R

4-term should be given by

a
(8)
4 (τ,V) τ2,V→∞−−−−−→ â4

(
12ζ(3) τ 22V + . . .

)
. (3.61)

Comparison with (3.60) determines the species scale in eight-dimensional maximal supergravity
to be

Λs =
1

41/6

(
Ê

SL(3)
3
2

− 2π log(U2|η(U)|4)
)−1/6

. (3.62)

In figure 5, we show the behavior of this species scale Λs over the moduli space.

Species scale polygon. In figure 5a, we show the part of (saxionic) field space for which the
bound Λs ≥ µ for µ = 10−4Mpl,8 is satisfied in terms of the three saxionic coordinates

∆ν = log[ν]/
√
6 , ∆τ = log[τ2]/

√
2 , ∆U = log[U2]/

√
2 . (3.63)
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∆U

∆τ

∆ν

(a) Plot of the region Λs ≥ 10−4Mpl,8.

∆ν ∆τ

|∇Λs|2
Λ2

s

(b) Plot of slope |∇Λs|2/Λ2
s.

Figure 5: Plot of the species scale and its slope of M-theory on T 3 as a function of ∆U , ∆τ

and ∆ν defined in (3.63). We have set all axions to zero τ1 = U1 = BR = BN = 0. Left:
the region where the species scale obeys the lower bound Λs ≥ 10−4Mpl,8. Right: the slope of
the species scale in the (∆τ ,∆ν)-plane together with the plateau at |∇Λs|2/Λ2

s = 1/6 for the 8d
emergent string limit.

The triangular side is parameterized by ∆τ and ∆ν spanning the SL(3,R) factor of the moduli
space, while the transverse direction is parameterized by ∆U parameterizing SL(2,R) compon-
ent. The geodescis passing through the corners of the polygon correspond to decompactification
limits to 9d, while geodesics normal to rectangular side correspond to emergent string limits in
8d. We will discuss the asymptotic structure of this field space in more detail momentarily.

Slope. Figure 5b shows the slope |∇Λs|2/Λ2
s in the (∆τ ,∆ν)-plane of SL(3,R) which can be

identified with the triangular side of the polygon in figure 5a. More precisely, the corners of this
triangle — corresponding to the directions of 9d decompactification limits — are identified as
the valleys for the slope, while the normals to the edges of this triangle — corresponding to 8d
emergent string limits — are identified with the maximal plateaus for the slope. Note that the
slope surpasses the emergent string value 1/6 along these directions; we will explain, in section
6, why this behavior is unphysical and that the slope should instead be bounded from above by
1/6 everywhere. This is achieved by removing zero mode contributions — logarithmic terms in
U2 and ν in (3.55) and (3.57) — to the R4-term that should not be included in the species scale.

Asymptotic behavior. The parametric behavior of the species scale in the asymptotic limits
of the theory has been in analyzed in detail in [12]. Below we show that our proposal (3.62)
correctly reproduces the expected parametric behavior of the species scale.

• Emergent string limit. For this limit, we take the 8d string coupling gs,8 = 1/(V τ 22 ) =
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ν1/2/τ
3/2
2 to zero while keeping τ2ν (and U2) constant. In this limit, the first term in the

species scale (3.62) diverges the quickest. We can express it in terms of the canonically
normalized scalars (3.63) as

Λs ∼ e
− 1

2
√
2
∆τ− 1

2
√
6
∆ν . (3.64)

For the emergent string limit, we then consider the trajectory (∆τ ,∆ν) = (
√
3/2, 1/2)∆

with ∆ the geodesic distance, giving us the scaling

Λs ∼ e−∆/
√
6 , (3.65)

with the expected coefficient 1/
√
d− 2 in d = 8.

• Decompactification to 11d. This limit corresponds to taking the large-complex structure
limit, U2 → ∞, for the T 2 on which we compactified Type IIB while keeping the volume
of T2 and the 10d string coupling τ2 constant. To see that this limit indeed corresponds
to a decompactification to 11d M-theory, let us for simplicity consider a rectangular torus
T 2 = S1

1 × S1
2 such that

U2 =
r1
r2

T2 = r1r2 , (3.66)

with r1/2 the radii of the respective S1’s. To reach the proposed limit for U2 and T2, we
hence need to consider the scaling

r1 ∼
1

r2
→ ∞ . (3.67)

The light states in this limit are the KK-modes on S1
1 and the winding modes of both

the fundamental string of Type IIB and the D1-brane on S1
2 . We therefore have three

KK-like towers. Performing a T-duality on S1
2 , we hence decompactify to 10d Type IIA.

Since we keep the Type IIB string coupling constant, the Buscher rules imply that the
limit (3.67) corresponds to a strong coupling limit in Type IIA

gIIA ∼ r1 , (3.68)

such that, indeed, we obtain a decompactification to eleven dimensions. As far as the
species scale is concerned, in this limit the last term in (3.62) dominates. In terms of the
canonically normalized scalar ∆U defined in (3.63), we find the scaling

Λs ∼ e
− 1

3
√
2
∆U = e

−
√

11−8
(11−2)(8−2)

∆U , (3.69)

which indeed has the correct exponent (2.5) for a decompactification from d = 8 toD = 11
dimensions.

• Decompactification to 10d. This limit corresponds to keeping the dilaton τ2 and the
complex structure U2 of the torus fixed while sending the volume of the torus V → ∞. For
this limit, the first two terms in (3.62) dominate, both leading to the scaling Λs ∼ V−1/6.
From the kinetic terms in (3.52) we find that the volume scales as V ∼ exp(

√
3/2∆) in

terms of the moduli space distance ∆ along this trajectory. For the species scale we then
find that

Λs ∼ e
− 1

2
√
6
∆
, (3.70)

which agrees with the expected coefficient (2.5) for a decompactification from d = 9 to
D = 10 dimensions.
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• Decompactification to 9d. Finally, we can take a decompactification limit to 9d by taking
the large-volume and large-complex structure limit for the T 2 simultaneously, i.e., sending
V , U2 → ∞ while keeping V/U2 fixed. To see that this limit decompactifies to one
dimension higher, note that for a rectangular torus — V = r1r2 and U2 = r1/r2 — this
limit corresponds to taking r1 → ∞ while keeping r2 fixed. For this limit, the dominant
terms in the species scale are the second and third term in (3.62). Along this trajectory
we find by using the kinetic terms (3.52) that the moduli U2,V scale with the field space

distance ∆ as U2 ∼ V ∼ e
√

6/7∆. We then find

Λs =
1

6
√
4 6

√
E 3

2
(τ, τ̄) + 2π2

3
U2

√
ν
ν1/12 ∼ e

− 1√
42

∆
. (3.71)

Here we kept track explicitly of the leading coefficient for the computation of the diameter
of the field space later; note in particular that the D-instanton sum in (3.58) is finite in
this limit, and combines with the other τ2 dependent terms into E 3

2
(τ, τ̄) given in (3.20).

The exponent agrees with (2.5) for a decompactification from d = 8 to D = 9 dimensions.

Desert point. We next determine the point that maximizes the species scale (3.62). The
extremization of the SL(2,R) moduli space factor yields the third root of unity U = ρ, as its
dependence is given by the same function as the species scale of (K3× T 2)/Z2 studied in [13].
For the extremization over SL(3,R), we have scanned over duality fixed points of SL(3,Z).
We find that the lattice that minimizes E 3

2
(M) is given by

MA3 = 2−2/3

 2 −1 0
−1 2 −1
0 −1 2

 , τ = −1

2
+
i
√
3

2
, ν =

3
√
3

4
, BR = −1

3
, BN = −2

3
, (3.72)

with MA3 the Cartan matrices of the A3 root lattice, also known as the face-centered cubic
(FCC) or hexagonal close-packed (HCC) lattice. The value of the Eisenstein series and species
scale is given by

E
SL(3)
3
2

(MA3) = 8.79961 , Λmax
s =

1

6

√
E

SL(3)
3
2

(MA3) + E
SL(2)
1 (ρ, ρ̄)

≈ 0.5038 (3.73)

In appendix A.3, we collect the values at other fixed points of SL(3,Z) and show that, indeed,
the value of the species scale is smaller at these points. Moreover, we computed the Hessian
confirming that MA3 gives a maximum for the species scale.

Diameter. We next determine the largest distance between two points inside a finite moduli
space region set by Λs ≥ µ. For simplicity, we ignore the axions in the infinite-distance regions,
as these only contribute exponential corrections to the diameter.

• Let us first consider the S-duality transformations in SL(3,Z) × SL(2,Z) that cut out
our fundamental domain. The S-duality of SL(2,Z) simply restricts us to the |U | ≥ 1
regime as usual — it cuts the polygon in figure 5a down the middle of the ∆U axis. The
S-duality transformations of SL(3,Z) then act on the (∆τ ,∆ν)-plane, corresponding to
the triangular-shaped cross section of the remaining half-polygon. As discussed in more
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detail in appendix A.2, these S-dualities partition this triangle into 6 fundamental regions.
We focus on the fundamental regime set by τ2 ≥ 1 and ντ2 ≤ 1, in which the instanton
corrections in (3.58) and (3.59) are suppressed. In particular, these duality transforma-
tions tell us that all corners of the polygon in figure 5a are identified, corresponding to the
same decompactification limit to D = 9. This means that the longest distance between
two points cannot be given by one of the sides of the polygon; rather, we should consider
a geodesic from an interior point — which we take to be the desert point (3.72) — to a
corner corresponding to the decompactification to D = 9.

• Next we examine this decompactification limit to D = 9 more closely. We parameterize
this limit by sending U2 ∼ 1/

√
ν → ∞ while keeping their ratio U2

√
ν and τ2 fixed. We

have to maximize the distance over these fixed parameters. To this end, it is useful to
consider the leading behavior of the species scale in this limit given in (3.71): we see that
τ appears only in E 3

2
(τ, τ̄) in the leading coefficient, which is maximized for τ = ρ. The

other parameter U2

√
ν we will keep generic for now, and extremize after the computation

of the distance.

• With the above preparations in place, let us next compute the distance between the desert
point (3.72) and a point along the D = 9 decompactification limit U2 ∼ 1/

√
ν → ∞ with

τ = ρ and U2

√
ν fixed arbitrarily. We then find that the diameter is given by

diam(µ) = −
√
42 log[µ] + b(U2

√
ν) . (3.74)

The coefficient
√
6 · 7 corresponds to a decompactification limit to 9d. The shift is a

function of the remaining parameter U2

√
ν, given by

b =
−14 log

[
2π2U2

√
ν + 3E 3

2
(ρ, ρ̄)

]
+ 6 log[U2

√
ν] + 17 log(3)− 30 log(2)

2
√
42

. (3.75)

Extremizing this coefficient for the fixed parameter U2

√
ν gives us a maximum at

U2

√
ν =

9E 3
2
(ρ, ρ̄)

8π2
, (3.76)

with the shift value being

b = −
8 log(E 3

2
(ρ, ρ̄)) + 12 log(π) + 14 log(7)− 15 log(3) + 20 log(2)

2
√
42

≈ −4.309 , (3.77)

which, again, is negative.

4 Species scale and 16 supercharges

After having discussed the cases with maximal supersymmetry in some detail, we now turn to
theories with minimal supersymmetry in ten and nine dimensions. To that end, we consider
theories arising from Hořava–Witten theory, Type I string theory, and the two heterotic strings.
Again, we focus on the higher-derivative terms involving contractions of four Riemann tensors.
The situation is therefore similar to the maximally supersymmetric case, but there are some
crucial differences:
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• Unlike for theories with 32 supercharges, the t8t8R
4-interaction in theories with 16 super-

charges is not 1/2-BPS. In maximal supergravity, this property ensured that the t8t8R
4-

coupling does not receive any perturbative corrections beyond one-loop level. Such a
protection is absent in theories with 16 supercharges even though, as reviewed in [30],
there is evidence that higher-loop corrections to t8t8R

4 are also absent in this case.

• Compared to maximal supergravity, there exist two other terms at the eight-derivative
level that contribute to the effective action corresponding to t8 trR

4- and t8(trR
2)2-

couplings. A priori, there is an ambiguity for the coefficients of the individual couplings
due to the identity

t8t8R
4 − 24t8 trR

4 + 6t8(trR
2)2 = 0 . (4.1)

There exists, however, one combination of these couplings that is related via supersym-
metry to the anomaly-cancelling term, i.e., −12ϵ10BY

(gs)
8 which arises at one-loop in the

effective heterotic action. Here, the eight-form Y
(gs)
8 is given, in the absence of a field

strength F for the gauge group, by

Y
(gs)
8 (R,F = 0) = trR4 +

1

4
(trR2)2 . (4.2)

Since it is related to an anomaly, the coefficient of −12ϵ10BY
(gs)
8 does not receive correc-

tions beyond one-loop. Expressing the higher-derivative terms through the superinvari-
ants (cf. [30])

X1 = t8 trR
4 − 1

4
ϵ10B trR4 , X2 = t8(trR

2)2 − 1

4
ϵ10B(trR2)2 ,

I2 = J0 − 24(X1 −
1

4
X2) ,

(4.3)

where J0 = t8t8R
4 − 1

8
ϵ10ϵ10R

4, one realizes that −12ϵ10BY
(gs)
8 is contained in the com-

bination [30]

−I2 + 24X1 + 18X2 = 24 t8 trR
4 + 18 t8(trR

2)2 +
1

4
ϵ10ϵ10R

4 − 12ϵ10BY
(gs)
8 . (4.4)

Therefore, the coefficient of the coupling

Ianom = 24 t8 trR
4 + 18 t8(trR

2)2 +
1

4
ϵ10ϵ10R

4 , (4.5)

is also protected by supersymmetry and does not receive corrections beyond one loop. In
addition, there exists a term involving (trR2)2 that already arises at tree-level in heterotic
string coming from the t8(trF

2 − trR2)2 which is unrenormalized beyond tree level.

• Given that, compared to the maximally supersymmetric case, we now have three terms
appearing at the eight-derivative level. Hence, we need to be more careful when defining
the species scale in terms of the eight-derivative terms. Schematically, the effective action
at order R4 in d-dimension takes the form

SR4,d =
Md−8

pl,d

2

∫
ddx

√
−g
(
a4,t8(ϕ) t8t8R

4 + a4,anom(ϕ) Ianom + a4,tree(trR
2)2
)
, (4.6)
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where ϕ denotes any scalar field in the theory. The species scale is then given by(
Mpl,d

Λs(ϕ)

)6

= max

{
a4,t8(ϕ)

â4
,
a4,anom(ϕ)

â4
,
a4,tree
â4

}
, (4.7)

where, similar to (2.3), we divided by a constant â4 that sets the overall normalization of
the species scale.

In the following, we discuss the species scale in theories with minimal supersymmetry restricting
to ten and nine dimensions.

4.1 Heterotic E8 × E8 in 10d

The eight-derivative terms for the heterotic E8×E8 string in ten dimensions have been computed
in [35–37] and take the schematic form

SHE,R4 ∼ M2
pl,10

∫
d10x

√
−g

[(
2ζ(3)

g
3/2
he

+
2π2

3
g
1/2
he

)
t8t8R

4 − (trR2)2

2g
3/2
he

+
2π2

3
g
1/2
he Ianom

]
, (4.8)

where we disregarded terms involving the B-field. Here, ghe is the string coupling of the
heterotic E8 × E8 string. The above expression fixes the relative factor between the different
terms, but does not fix the overall normalization â4 for the species scale. As in the Type IIA
case discussed in section 3.1, we can determine the relation between the species scale and the
coefficients appearing in (4.8) by comparing to the eleven-dimensional M-theory compactified,
in this case, on S1/Z2, i.e., Hořava–Witten theory. Denoting the radius of the S1 again by R11,
we can equate

ghe = (R11M11)
3/2 , (4.9)

and repeat the analysis of section 3.1 while keeping in mind that the length of the interval
S1/Z2 is πR11. In the large-R11 limit, the eight-derivative action is dominated by the one-loop
terms. In fact, from (4.8), we find that

lim
ghe→∞

a4,t8(ghe) = lim
ghe→∞

a4,anom(ghe) = â4π
3/4g

1/2
he . (4.10)

Comparing with the general form of the effective action (4.6), we can determine the coefficients
to be

a4,t8(ghe) = â4

(
3 · ζ(3)
π5/4

g
−3/2
he + π3/4 g

1/2
he

)
,

a4,anom(ghe) = â4 π
3/4g

1/2
he ,

a4,tree(ghe) = â4
3

4π5/4
g
−3/2
he .

(4.11)

From our definition of the species scale in (4.7), we see that a4,t8 always yields the species scale
for any value of the coupling whereas a4,anom is comparable only in the strong-coupling limit.
Therefore, the analysis of the asymptotic regimes proceeds completely analogous to the Type
IIA case which we, therefore, do not repeat here. Again, the desert point is located at

ghe =
3

π

√
ζ(3) ≃ 1.05 , (4.12)
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whereas the value of the species scale at the desert is slightly higher

max(Λs) ≈ 0.823 . (4.13)

Let us stress again that this result is derived under the assumption that there are indeed no
corrections to the t8t8R

4-term beyond one-loop. While there is evidence for this from the
vanishing of the next-order terms, it is by no means at the same level as the supersymmetric
non-renormalization theorems. We note, however, that from the perspective of the species
scale, it is at least consistent that higher-loop terms are indeed absent. In fact, our species
scale analysis provides further evidence for the absence of such higher-loop corrections to this
coupling. Similar to the Type IIA case, we can determine the diameter of the field space, for
which Λs ≥ µ is satisfied, to be

diam(µ) = −8
√
2 log [µ]−

√
2

3
log[3πζ(3)] , (4.14)

with the constant shift taking the numerical value of

b = −
√
2

3
log[12π · 21/4ζ(3)] ≈ −1.14 . (4.15)

4.2 Heterotic SO(32) and Type I string

Let us now turn to the heterotic SO(32) string. At tree- and one-loop level, the eight-derivative
contribution to the effective action in the gravity sector takes the same form as (4.8) where we
replace the string coupling by gho. Again, following the arguments presented in [30], one may
expect there to be no higher-loop corrections to the t8t8R

4-term in the effective action whereas
the term proportional to Ianom is one-loop exact as a consequence of supersymmetry. However,
this cannot be the full answer since the strong-coupling behavior of the heterotic SO(32) string
is distinctively different from the strong-coupling behavior of the heterotic E8 × E8 string:
instead of being a decompactification limit, it corresponds to a weak-coupling limit for the
Type I string. Hence, the behavior of the species scale cannot be the same in the strong-
coupling limits for SO(32) and E8 × E8. This necessarily implies that the higher-derivative
terms need to be different.

In [30], non-perturbative corrections to the t8t8R
4-coupling have been computed explicitly,

giving rise to the effective eight-derivative action which schematically takes the form

SHO,R4 ∼ M2
pl,10

∫
d10x

√
−g

[
E 3

2
(ig−1

ho )t8t8R
4 − (trR2)2

2g
3/2
ho

+
2π2

3
g
1/2
ho Ianom

]
. (4.16)

Notice that the coefficient of the t8t8R
4-term is similar to the one of Type IIB in ten dimensions

discussed in section 3.2. The relation between the species scale and the higher-derivative terms
can be inferred by recalling that the heterotic E8 × E8 string on S1 with Wilson lines chosen
to break each E8 to SO(16) is T-dual to the heterotic SO(32) string on S1 with Wilson lines
breaking SO(32) to SO(16) × SO(16). Using this duality, we can translate the normalization
(4.11) to the SO(32) string, leading to

a4,t8(gho) =
3â4
2π5/4

E 3
2
(ig−1

ho ) ,

a4,anom(gho) = â4 π
3/4g

1/2
ho ,

a4,tree(gho) =
3â4
4π5/4

g
−3/2
ho .

(4.17)
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Similar to the other heterotic theory, our definition of the species scale in (4.7) singles out the
coefficient of the t8t8R

4-coupling as the species scale defined everywhere in the moduli space.
The behavior of the species scale in the asymptotic limits gho → 0,∞ parallels that of the species
scale in Type IIB and we correctly reproduce the scaling of the species scale in an emergent
string limit in 10d. Therefore, the corrections computed in [30] are precisely of that form
to ensure that the eight-derivative terms correctly capture the species scale, again, providing
further evidence for the exactness of the computation of [30]. For the heterotic SO(32) string,
the desert point is located at gho = 1 where the species scale is given by

max(Λs) = Λs(gho = 1) = 0.822 . (4.18)

We can again determine the diameter of the field space region for which Λs ≥ µ to be

diam(µ) = −4
√
2 log [µ]−

√
2

6
log

[
34ζ(3)4

π5

]
. (4.19)

Compared to Type IIB, we now have two inequivalent limits for gho → 0 and gho → ∞.
Therefore, the prefactor of the log µ-term differs by a factor of two from (3.26). The shift
evaluates to

b = −
√
2

6
log

[
34ζ(3)4

π5

]
≈ 0.140 , (4.20)

which, unlike in all previous examples, is positive.

4.3 16 supercharges in 9d

Let us move one dimension down and compactify heterotic string theories on S1.4 For simplicity,
we choose the Wilson lines in both circle-compactified heterotic theories such that the respective
gauge group in each theory is broken to SO(16)×SO(16). Since in this case, the two heterotic
theories are T-dual to each other, the small-radius limit for the S1 in either theory can be well-
described. In this setting, the eight-derivative action has been calculated for both heterotic
string theories in [30]. Focusing on the HO theory, the effective 9d action continues to be given
by (4.6) with

a4,t8(gho, r) =
3â4
2π5/4

(
2πr

g
1/4
ho

)6/7(
E 3

2
(ig−1

ho ) +
2π2

3

g
1/2
ho

r2

)
,

a4,anom(gho, r) = â4 π
3/4

(
2πr

g
1/4
ho

)6/7

g
1/2
ho

(
1 +

1

r2

)
,

a4,tree(gho, r) =
3â4
4π5/4

(
2πr

g
1/4
ho

)6/7

g
−3/2
ho .

(4.21)

In the following, we are only interested in the dependence that these coefficients have on the
radius r. We first notice that the functional dependence of a4,t8 and a4,anom is similar up to
order-one factors. To study the asymptotics of the species scale, we can hence examine either
of the two terms. In the limit r → ∞, the scaling of Λs in the field space distance ∆r is then
given by

Λs
r→∞−−−→ e

− 1√
56

∆r , (4.22)

4For an in-depth analysis of the asymptotic limits in 9d N = 1 theories see [38].
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Figure 6: Left: The behavior of the terms appearing in the definition of the species scale
(4.7) for the heterotic SO(32) string on S1 given in (4.21) plotted as a function of σ = log r
for gho = 1/100. Right: The slope of the coefficients at eight-derivative level for the SO(32)
heterotic string on S1.

as expected for a decompactification limit from d = 9 to D = 10 dimension. On the other hand
for r → 0 we obtain

Λs
r→0−−−→ e

−
√

2
3
√
7
∆r , (4.23)

suggesting that this limit is a decompactification limit from d = 9 to D = 11 dimensions. And,
indeed, recalling that T-duality relates the coupling and radii of the two circle-compactified
heterotic string theories via

ghe =
gho
rho

, rhe =
1

rho
, (4.24)

we observe that the rho → 0 limit corresponds to a large-radius strong-coupling limit for the
heterotic E8×E8 string, i.e., to the decompactification limit to 11d Hořava–Witten theory. Our
definition of the species scale in (4.7) singles out the largest coefficient among those in (4.21)
to give the species scale. Since

a4,t8 ≥ a4,anom , (4.25)

for any r and fixed gho, the species scale continues to be given by the coefficient of the t8t8R
4-

coupling. We illustrated this in figure 6. Even though for r ≳ O(1), the coefficient a4,anom of
the term in the effective action protected by supersymmetry differs by O(1) factors from the
species scale and would for instance predicts a different location of the desert point, it captures
the asymptotic scalings of the species scale correctly. Since terms in the effective action, that
are protected by supersymmetry, are oftentimes expressed in terms of index-like quantities, one
would in general expect that these terms provide an upper bound for the species scale. The
example of the heterotic SO(32) string illustrates that the term protected by supersymmetry
can indeed be used as a reasonable upper bound on the species scale.

5 Species scale and 8 supercharges

We now turn to theories with eight supercharges. Of particular interest to us are 6d theories
with N = (1, 0) supersymmetry and 5d N = 1 theories. The case of N = 2 theories in four
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dimensions has been extensively covered in [11,13,19]. In theories with eight supercharges, the
moduli space factorizes as

M = MH ×MV,T , (5.1)

where the first factor denotes the hypermultiplet sector which has the same structure in six,
five, and four dimensions. The second factor corresponds to the vector multiplet moduli space
in five and four dimensions and the tensor multiplet space in six dimension. The structure of
this space differs significantly between six, five, and four dimensions. Due to the small amount
of supersymmetry, most of the higher-curvature terms are not BPS protected, making their
exact computation difficult. Unlike in the theories studied in the previous sections, theories
with eight supercharges allow for non-trivial R2-terms implying that â2 ̸= 0 in general. In
particular, there exists a four-derivative coupling whose coefficient can be computed explicitly.
In 4d N = 2, the coefficient of this term is given by the topological genus-one free energy F1

which has been used in [11, 13, 19] to study the dependence of the species scale on the vector
multiplet moduli space.

In four dimensions, this term is protected from perturbative corrections and can be evalu-
ated explicitly. If we consider Type IIA compactifications on a Calabi–Yau threefold Y3, the
contributions to F1 can be split into a classical piece, which is proportional to the second Chern
class, and a sum over worldsheet instantons. If we lift this Type IIA setup to a five-dimensional
theory with N = 1 supersymmetry corresponding to M-theory compactified on Y3, the contri-
bution from worldsheet instantons vanishes and we are left with the classical piece only. This
piece can equivalently be obtained by reducing the t8t8R

4-term on the Calabi–Yau background.
Using [39]

t8t8R
4 = 3 · 28 trR2(c2 ∧ J) , (5.2)

one obtains

SR2,5 =
Mpl,5

2

(
b2

24V1/3

∫
Y3

c2 ∧ J

)∫
M1,4

d5x trR2 , b2 =
1

24(2π)10/3
, (5.3)

where J is the Kähler form on Y3 and V = 1
6

∫
J3 is the volume of Y3. It is convenient to expand

the Kähler form as
J = XIJI , (5.4)

where JI is a basis of 2-forms. The coefficient of the trR2-coupling is therefore independent of
an overall rescaling of J corresponding to a modulus in a hypermultiplet. As in 4d N = 2, the
coefficient of the tr R2-coupling in (5.3) is exact and does not receive any further corrections.

In case Y3 is genus-one fibered, i.e., Y3 : T 2 → B2 for some Kähler surface B2, we can
further lift to a six-dimensional theory with N = (1, 0) supersymmetry corresponding to F-
theory on Y3. Given the fibration structure of Y3, it is natural to split the Kähler moduli,
XI , I = 1, . . . , h1,1(Y3), of Y3 into base moduli, Xa

b , a = 1, . . . , h1,1(B2), and fibral moduli,
Xα

f , α = h1,1(B2) + 1, . . . , h1,1(Y3). To obtain the six-dimensional limit, one first realizes that
F-theory on Y3 × S1 is dual to M-theory on Y3. The duality identifies [40]

rS1M11 =
1

τ
, (5.5)

where M11 is the fundamental M-theory scale and τ the volume of the generic fiber which is
related to the fibral volumes

τ =

h1,1(Y3)∑
α=h1,1(B2)+1

cαv
α
f , (5.6)
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for some cα that are fixed by the precise geometry of the fibration. The six-dimensional theory
is obtained in the rS1 → ∞ limit corresponding to τ → 0. Since the overall volume of Y3 has
to remain constant in this limit, the actual F-theory limit corresponds to the scaling

Xα
f → λ−1 , Xa

b → λ1/2 , λ → ∞ . (5.7)

Since the effective action of F-theory is obtained as a scaling limit of M-theory, this in particular
includes the tr R2-term in (5.3). We therefore need to consider the F-theory lift of the coefficient
of trR2 in (5.3). Interpreting c2(Y3) as a curve class on Y3, we have only its components along
the base survive in the F-theory limit. For Y3 a smooth Weierstrass model with zero section
S0, we can use the adjunction formula

c2(Y3) = c2(B2) + 11c1(B2)
2 + 12S0 ∧ c1(B2) . (5.8)

Here, only the last term corresponds to a curve in the base whereas the first two terms do not
contribute to

∫
c2∧J in the F-theory limit. In principle, there could be additional contributions

to c2 surviving in the F-theory limit in case we do not have a smooth Weierstrass model as is,
e.g., the case in the presence of a non-Higgsable cluster. In this case, Y3 is singular and we
need to perform a (series of) small resolutions to obtain a smooth Ỹ3. Let [P1] denote the class
of the exceptional curves introduced by the small resolutions. The second Chern class of Ỹ3 is
then related to that of Y3 via (see e.g., [41])

c2(Ỹ3) = c2(Y3)− [P1] . (5.9)

Since in the F-theory limit, the volume of the resolution P1s vanishes, we find that∫
Ỹ3

c2(Ỹ3) ∧ J
F-theory→

∫
Y3

c2(Y3) ∧ J = 12

∫
B2

c1(B2) ∧ Jb , (5.10)

such that the trR2-term in the 6d F-theory effective action reads

SR2,6 =
M2

pl,6

2

(
b2

2V1/2
B2

∫
B2

c1(B2) ∧ JF

)∫
M1,5

d6x trR2 . (5.11)

Here, JF is the Kähler class of the base B2 and VB2 is the volume of B2, both measured in
Type IIB string units.

We thus identified a higher-curvature term in supergravity theories with minimal super-
symmetry in both six and five dimensions whose coefficient can be calculated explicitly since
it is protected by supersymmetry. We can use these terms to study the behavior of the species
scale on the scalars in the vector/tensor sector in five and six dimensions. Notice that the pro-
tected coefficients are not sensitive to the scalars in the hypermultiplet sector such that they
only provide an upper bound for the species scale. Even though the parametric dependence
of the coefficients in (5.3) and (5.11) on the scalars in the vector/tensor sector is expected
to reflect the scaling of the species scale, recall from section 4 that in theories with reduced
supersymmetry, the actual species scale can differ from the one obtained from terms protected
by supersymmetry by O(1) factors. Therefore, also in the vector/tensor sector, the coefficients
in (5.3) and (5.11) provide an upper bound for the species scale.

In the following, we first consider the properties of the species scale as derived from (5.11)
in simple examples of six-dimensional F-theory compactifications and then discuss a five-
dimensional M-theory example.
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5.1 Species scale in 6d N = (1, 0) supergravity

We start by considering the properties of the species scale in six-dimensional theories with
N = (1, 0) supersymmetry. We focus on F-theory compactifications on elliptically-fibered
Calabi–Yau threefolds for which, as described above, the dependence of the species scale on the
scalars in the tensor multiplets is captured by

Λs =

(
1

V1/2
B2

∫
B2

c1(B2) ∧ Jf

)−1/2

, (5.12)

up to the order-one constant â2 introduced in (2.3). Notice that, unlike in the previous cases,
we cannot fix this constant as the relation between the higher-derivative term and the species
scale can no longer be read off from eleven-dimensional M-theory. The reason for this is that
the coupling in question is independent of the overall volume of the Calabi–Yau threefold such
that it is insensitive to the eleven-dimensional decompactifictation limit to M-theory, which is
necessary for the matching. We therefore take the definition as in (5.12) keeping in mind that
it is an upper bound for the species scale up to an O(1) constant.

5.1.1 General discussion

The tensor multiplet moduli space for six-dimensional F-theory has dimension nT = h1,1(B2)−1
and is embedded in the Kähler moduli space of B2 as the hypersurface corresponding to the
solution of

ΩαβX
αXβ = 1 , (5.13)

where Ωαβ is an SO(1, nT ) invariant inner product. The tensor moduli jα parameterize this
hypersurface. The relevant part of the 6D effective action then reads

S6d =
M4

pl,6

2

∫
d6x

√
−G

(
R6d −

1

2
gαβ∂µj

α∂µjβ + . . .

)
. (5.14)

Here, the field space metric is defined as

gαβ = 2jαjβ − Ωαβ , (5.15)

where we use Ωαβ to raise and lower indices. Given that the signature of the tensor branch is
(1, nT ), this implies that there is just one kind of infinite-distance limit we can consider in this
theory — an emergent string limit [42,43]. In each of these limits, a movable curve with trivial
normal bundle shrinks to zero size which is compensated by blowing up other curves in B2 to
keep the volume of B2 fixed. Denoting the shrinking curve by C0, the triviality of the normal
bundle implies C2

0 = 0 and the Kähler form can be expanded as

J = X0C0 + Jrest , (5.16)

with the emergent string limits corresponding to X0 → ∞. These limits fall into two classes
depending on whether [43]∫

B2

C0 · c1(B2) = 2 or

∫
B2

C0 · c1(B2) = 0 . (5.17)
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In the former case, a D3-brane on C0 is dual to a heterotic string that becomes weakly-coupled
in the limit X0 → ∞ with tension

T

M2
pl,6

∼ 1

X0
. (5.18)

On the other hand, the higher-curvature term predicts, via (5.12), a scaling of the species scale

Λs →
(
X0

∫
B2

c1 ∧ C0 + . . .

)−1/2

∼ 1√
X0

, (5.19)

which is consistent with the expectation that in an emergent string limit, the species scale is
given by the string scale (5.18). In terms of the distance, ∆, on moduli space, the species scale
scales as

Λs ∼ e−
1
2
∆ , (5.20)

consistent with (2.5) for a six-dimensional emergent string limit. Notice that in the second case
in (5.17), the protected higher-derivative term does not correctly reproduce the species scale
since the leading term in (5.19) vanishes. This is, however, not surprising since in this limit
the asymptotically tensionless string corresponds to a Type II string with very mildly broken
N = 4 supersymmetry which provides stronger protection to the R2-terms causing a systematic
cancellation among the contributions to a2. As a consequence, the R2-term in this limit is not
a good approximation to the species scale, and instead higher-curvature corrections should be
considered.

To study the species scale in the interior of the moduli space, we need to specify more
details of the geometry of B2. We, therefore, consider in the following a few simple examples
to illustrate the properties of the species scale away from asymptotic regimes.

5.1.2 F-theory on del Pezzo surfaces

As a first class of examples, we study the family of bases corresponding to del Pezzo surfaces
dPr, i.e., blow-ups of P2 in r generic points. A basis of curves on dPr is given by the hyperplane
class L, inherited from P2, and the r exceptional blow-up curves, Ei. The intersection pairing
in this basis is given by

L.L = 1 , Ei.Ej = −δij , L.Ei = 0 . (5.21)

Field space and metric. Let us first characterize the field space and its metric. We do so
by expanding the Kähler form as

J = X0L−
r∑

i=1

X iEi , (5.22)

with coordinates XI = (X0, X i) on the (r + 1)-dimensional moduli space. We want to restrict
to the r-dimensional constant volume submanifold. By using the intersection data given in
(5.21), we find this constraint to be

F =
(
X0
)2 − r∑

i=1

(
X i
)2

= 1 . (5.23)
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Thus, we parameterize this fixed volume submanifold by

X0 = cosh[x] , X i = ui sinh[x] ,
r∑

i=1

(ui)2 = 1 , (5.24)

where the coordinates ui are restricted to the sphere Sr−1, which may for instance be para-
meterized by the standard spherical coordinates. The pull-back metric on the fixed volume
submanifold then reads

ds2 = dx2 + sinh[x]2dΩ2
r−1 , (5.25)

where dΩ2
r−1 denotes the metric on Sr−1. We still have to supplement this characterization of

the field space by the Mori cone constraints on the volumes of the curves. To this end, it is
instructive to consider the case of dP2. Its Mori cone is generated by E1, E2, L− E1 − E2 (we
refer to [44, 45] for an overview of the generators for all del Pezzo surfaces). We parameterize
the S1 by (u1, u2) = (cos θ, sin θ), such that a positive volume for E1,2 requires θ ∈ [0, π/2]. The
volume of L− E1 − E2 reads

cosh[x]− sinh[x](cos θ + sin θ) ≥ 0 . (5.26)

The infinite-distance limits correspond to x → ∞, for which the above constraint reduces to
cos θ+sin θ ≤ 1 which can only be satisfied for θ = 0, π/2. We therefore find that there are only
two possible infinite-distance limits in this field space, corresponding to sending x → ∞ along
one of these two directions. A more detailed depiction of this field space has been included
in figure 7a. For the other del Pezzo surfaces dPr>2, one encounters a similar picture where
emergent string limits correspond to particular (one-dimensional) rays in the (r − 1)-sphere
along which we send x → ∞; for dP1≤r≤3, these rays always lie along the standard axes, while
for dPr≥4, additional rays have to be considered, cf. the emergent string limit for (5.29).

Species scale and asymptotics. Let us next characterize the physics underlying this field
space. We begin with the species scale, which may be determined from the first Chern class of
the del Pezzo surface according to (5.12). For dPr, we have c1(dPr) = 3L −

∑
i Ei, such that

we find the species scale to be given by

Λs =
1

(3X0 −
∑

i X
i)1/2

. (5.27)

To study the behavior of the species scale in asymptotic limits, without loss of generality, we
can consider the direction ui = (1, 0, . . . , 0) on the sphere Sr−1. Any other direction in the
Kähler cone (at constant overall volume) yields the same asymptotics. In the limit x → ∞, we
find

Λs = e−x/2 . (5.28)

The coefficient 1/
√
4 = 1/2 in the exponent here matches the expectation (2.5) for an emergent

string limit in d = 6. Also note that in the normalization in (5.12), the coefficient of Λs is
always one.5

5For this, it is important that we only consider directions inside the constant volume submanifold that also
lie in the Kähler cone. For example, for dP2 we consider only ui = (1, 0) and ui = (0, 1), but no angles in
between these two directions, for which Λs would have a different leading coefficient. In general, it follows from
the fact that for any emergent Type II string limit, the curve wrapped by the D3-brane has degree 2 under
c1(dPr), see (5.17).

35



X0

X1

X2

(a) Field space.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

X1

X2 6

ES

- ES

Λs

(b) Species scale.

Figure 7: Left: The tensor moduli space of dP2 (solid orange region) corresponding to the
constant volume hypersurface (X0)2 − (X1)2 − (X2)2 = 1 inside the Kähler cone defined by
X1, X2 ≥ 0 and X0 − X1 − X2 ≥ 0 (opaque orange region). Right: The behavior of Λs

according to (5.27) along the constant volume hypersurface. The black dot indicates where Λs

is maximized and the dashed line indicates the Z2 symmetry of the field space.

Tensionless strings and the Weyl group. The strings that become tensionless along the
infinite-distance limits come from D3-branes wrapped on curves with vanishing self-intersection.
For dPr=1,2,3, these are simply the curves L−Ei with i = 1, . . . , r, where for a given curve the
corresponding emergent string limit is given by X0 ∼ X i → ∞ (for fixed i, and keeping
all others constant). For higher del Pezzo surfaces, however, we have to consider a broader
spectrum of strings. Starting with dPr≥4, we have to introduce additional curves of the form

Cijkl = 2L− Ei − Ej − Ek − El , with i < j < k < l . (5.29)

These curves also have self-intersection 0 and satisfy c1(dPr).Cijkl = 2. Importantly, these
strings are all related under the Weyl group of Er, which acts naturally on the curves. While
we refer to e.g., [46] for details on this Weyl group, let us summarize some of the main points
relevant to our discussion here. In general, a root α ∈ H2(dPr,Z) (that is, α2 = 0 and
c1(dPk).α = 0) defines a transformation that acts as

C → C + (C.α)α . (5.30)

By this transformation rule, we find that simple roots αi = Ei−Ei+1 act by exchanging Ei and
Ei+1; this allows us to exchange all curves L−E1, . . . , L−Er with one another. On the other
hand, one straightforwardly verifies that αk = L−E1 −E2 −E3 acts by relating, for instance,
L−E4 to 2L−E1−E2−E3−E4. The main take-away is that (for dPr<9) all emergent strings
lie in the same Weyl orbit, and hence just correspond to the same limit in a different duality
frame.

Slope of Λs. The slope of the species scale |∇Λs|2/Λ2
s vanishes at the desert point (5.31) in

the moduli space and asymptotes to the emergent string value 1/4. We have provided a plot of
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Figure 8: Slope of the species scale |∇Λs|2/Λ2
s for dP2 in the (X1, X2)-plane (with X0 fixed

by the constant volume constraint (5.24). The blue plateau indicates the emergent string bound
at 1/4.

this slope in figure 8 for dP2, which illustrates that this slope is indeed bounded from above by
1/4 everywhere in moduli space. This result extends to all other del Pezzo surfaces dP1≤r≤8.
For dP9, one has to be more careful, as in addition to the emergent heterotic string limits, there
also is a Type II string limit; we will elaborate more on this case later.

Desert point. Let us next identify the desert point in the moduli space where the species
scale is maximized. By symmetry considerations, we can directly restrict to the symmetric
locus X1 = . . . = Xr, reducing it to effectively a one-dimensional problem along the constant
volume submanifold (5.24). Extremization of the species scale (5.27) along this symmetric locus
then yields the location for the desert point

X0
des =

3√
9− r

, X i
des =

1√
9− r

, (5.31)

where Λs takes its maximal value

Λs

∣∣
des

=
1√
9− r

. (5.32)

Note that, again, this analysis does not apply directly to r = 9 which we consider later on.
Other than that, the value of the species scale does increase with r as we switch between the
del Pezzo surfaces.

Diameter. Let us finally compute the diameter of the field space. We consider a geodesic
that runs from the desert point (5.31) out towards any of the emergent string limits. As these
are related by duality under the Weyl group, we can take simply the one along ui = (1, 0, . . . , 0)
and send x → ∞. Using the asymptotic behavior given in (5.28) for the species scale, we find
that Λs crosses the cut-off scale µ at x = −2 log[µ]. We have carried out the computation of
the geodesic distance in appendix B. Taking the main result (B.9) and plugging in the cut-off
scale µ, we find

diam(µ) = −2 log[µ] + log
2√
9− r

. (5.33)
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The coefficient of log µ matches with the expectation from (2.5) for an emergent string limit in
6d, while the constant shift decreases as we increase the index r of the del Pezzo surface dPr.

Rank 9 del Pezzo. Finally, the del Pezzo dP9 deserves some special attention, as most of
our discussion does not apply directly to this case. Namely, our analysis so far breaks down
when we consider the following limit

X0 =
√
1 + 9λ2 , X i = λ , (5.34)

where we send λ → ∞. Along this limit, we have a tensionless string obtained from wrapping
a D3-brane on the curve given by c1(dP9) = 3L −

∑
i Ei. The difference to the cases before

is that this curve has degree zero d = c1(dP9).c1(dP9) = 0, whereas all other curves had
degree two. As discussed in the beginning of this subsection, the limit therefore corresponds
to a Type II emergent string limit. As these Type II strings have only very mildly broken
N = 4 supersymmetry, there are systematic cancellations that cause the coefficient of the R2-
term to vanish rather than diverge asymptotically. For this reason, one should consider other
gravitational corrections — say at order R3 or R4 — in these limits and, similar to the case of
maximal and half-maximal supergravities discussed in section 3 and 4, take these as definition
for the species scale instead of the coefficient of the trR2-coupling.

5.1.3 F-theory on Hirzebruch surfaces

For our next class of bases, we consider Hirzebruch surfaces Fn. We can consider these surfaces
as base for elliptic fibrations — and hence as compactification manifold for our 6d F-theory
supergravities — for n = 1, . . . , 8, and n = 12 (see [47]). Our basis of curves on Fn is given by
the generators of the Mori cone, H,F which satisfy

H.H = −n , F.H = H.F = 1 , F.F = 0 . (5.35)

For convenience, we can expand the Kähler form in the dual basis as

J = hH̃ + fF̃ . (5.36)

This choice of basis is related to (H,F ) via the identification F̃ ∼ F and H̃ ∼ H + nF such
that the intersection pairing between H̃, F̃ is given by

H̃.H̃ = n , F̃ .H̃ = H̃.F̃ = 1 , F̃ .F̃ = 0 . (5.37)

Thus, demanding positive volumes for the Mori cone generators H,F (no tilde) amounts to

h, f ≥ 0 . (5.38)

The constant volume submanifold is then given by

F = 2hf + nh2 = 1 . (5.39)

We parameterize this field space by the canonically normalized scalar ∆ as

h(∆) = e−∆ , f(∆) =
1

2
(e∆ − ne−∆) , (5.40)
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such that the positivity constraint (5.38) is satisfied when ∆ ≥ log[n]/2.
Having characterized the field space, we next turn to the species scale. Using c1(Fn) =

2H̃ + (2− n)F̃ from (5.12), we obtain

Λs =
1√

2f + (2 + n)h
=

1√
3 cosh∆− sinh∆

. (5.41)

Interestingly, the species scale does not depend on the degree n of the Hirzebruch surface Fn.

Slope of Λs. The behavior of the species scale and its slope for all Fn are plotted in figure 9.
In particular, we observe that as in the ∆ → ∞, the volume of F̃ asymptotes to f(∆)+nh(∆) =
e∆/2 → ∞. This corresponds to an emergent string limit for which, as we infer from figure 9b,
the slope |∇Λs|2/Λ2

s approaches 1/4 from below in this limit — the correct exponential behavior
for the emergent string. However, for each Fn, ∆ must satisfy (5.38). Hence for each Fn, Λs

and |∇Λs|2/Λ2
s plotted in figure 9 should only be considered for ∆ ≥ log[n]/2 as indicated by

the gray vertical dashed lines in the figures.

Desert point. We next determine the point where the species scale (5.41) is maximized.
Extremizing for ∆ gives us a maximum at

∆ = 1
2
log[2] . (5.42)

However, we note that for n ≥ 3, this point does not lie inside the Kähler cone, as we can recall
from demanding f ≥ 0 in (5.40) that ∆ ≥ log[n]/2 for Fn; in these cases, the species scale is
actually maximized at the boundary of their respective Kähler cones. In summary, we find the
species scale at the desert point for Hirzebruch surfaces to be

Λs

∣∣
des

=

2−3/4 at ∆ = log[2]/2 for n = 1, 2 ,( √
n

2+n

)1/2
at ∆ = log[n]/2 for 3 ≤ n ≤ 8 and n = 12 .

(5.43)

Diameter. Let us now turn to the field range set by some cut-off scale µ. Setting Λs = µ
and inverting (5.41), we obtain the position in the field space as a function of the cut-off scale
µ

∆ = log

[
1 +

√
1− 8µ2

2µ2

]
. (5.44)

Therefore, computing the diameter of field space at small µ for Fn in the field space metric
ds2 = d∆2 yields the following expression

diam(µ) = −2 log[µ]− 1

2
log[n] . (5.45)

The coefficient of log[µ] agrees with the emergent string limit. Thus, this is in agreement with
(5.20).

5.2 Species scale in 5d N = 1 supergravity

In this section we consider M-theory compactifications on Calabi–Yau threefolds. We study
the vector multiplet moduli spaces arising in these 5d N = 1 supergravity theories, where we
investigate the shape and size of the effective field space cut out by the species scale.
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Figure 9: Species scale (left) and slope |∇Λs|2/Λ2
s (right) for F-theory base B2 = Fn as

a function of ∆ defined in (5.40). The gray vertical dashed lines indicate the range of the
boundaries ∆ = log[n]/2 of the tensor branch for F2≤n≤12; the boundary of the field space for
F1 corresponds to the vertical axis.

5.2.1 General discussion

Let us first discuss some general features of vector multiplet moduli spaces for Calabi–Yau
threefold compactifications of M-theory. These spaces are spanned by the Kähler moduli of the
Calabi-Yau manifold, subject to the constraint that the overall volume stays fixed

F(X) =
1

6
CIJKX

IXJXK = 1 , (5.46)

where XI (with I = 1, . . . , h1,1) are the Kähler moduli and CIJK are the intersection numbers
of the Calabi-Yau manifold. Let us denote the h1,1−1 scalar fields that parameterize the F = 1
hypersurface by ϕi. The metric on this field space is then obtained as a pull-back as

gij = GIJ(X(ϕ)) ∂iX
I(ϕ)∂jX

J(ϕ) , GIJ = −1

2
∂I∂J logF(X) . (5.47)

where the factor of 1
2
accounts for the normalization of the kinetic terms.

Having characterized the field space, let us next describe the species scale Λs. To this end,
let us recall the expression given in (5.3). Thus, the species scale for M-theory compactified on
a Calabi–Yau threefold is

Λs =

[
1

12
c2,IX

I

]−1/2

, (5.48)

where c2,I denote the integrated second Chern class numbers. As in the F-theory case discussed
previously, also for M-theory on Calabi–Yau threefold, we cannot fix the exact coefficient of the
species scale in terms of the higher-derivative coefficient, â2 in (2.3). In the following, we work
with the above expression keeping in mind that we did not fix this exact O(1) coefficient.6

6We keep the factor of 1
12 such that the overall O(1) factor in M-theory agrees with that in F-theory discussed

in the previous section.
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Again, we can first study the general behavior of (5.48) in asymptotic regimes. We therefore
recall from [2, 48] that in the 5d N = 1 vector multiplet moduli space, there exist only three
types of infinite-distance limits:

• Limits of Type T 2/Decompactification limits to 6d : For these limits to exist, Y3 needs to
allow for a torus fibration Y3 : T 2 → B2. The infinite-distance limit corresponds to the
limit where the fiber shrinks and the base B2 grows homogeneously

V−1
T 2 ∼ VB2 ∼ λ → ∞ . (5.49)

This corresponds to the F-theory limit and we obtain an effectively six-dimensional theory
signalled by light KK-modes corresponding to wrapped M2-branes on T 2. This leads to
a species scale that asymptotically vanishes like

Λs ∼
1

λ1/2
. (5.50)

On the other hand, the scaling (5.49) implies that the Kähler moduli corresponding to
curves in the base scale like λ1/2, such that our proposal (5.48) correctly reproduces
the expected scaling for the decompactification limit to 6d. In terms of the field space
distance, ∆, it is straight-forward to check that the scaling (5.50) translates to

Λs ∼ e
− 1

2
√
5
∆
, (5.51)

in agreement with (2.5).

• Limits of Type K3/Emergent heterotic string limits : In this case, Y3 allows for a K3-
fibration Y3 : K3 → P1

b and the infinite-distance limit corresponds to the limit of homo-
geneously shrinking the K3 fiber while growing the base P1

b as

V−1
K3 ∼ VP1

b
∼ λ → ∞ . (5.52)

In this limit, an M5-brane wrapping the K3-fiber becomes light. The resulting string
in five dimensions is dual to a weakly-coupled heterotic string. Accordingly, the species
scale in this limit is set by the tension of this string

Λs ∼
1

λ1/2
. (5.53)

Since the volume of the P1
b also diverges as λ and c2(Y3) = c2,0[P1

b ] + . . . with c2,0 = 24,
our species scale (5.48) reproduces this scaling in the emergent string limit. In terms of
the field space distance, we have

Λs ∼ e
− 1√

3
∆
, (5.54)

in accordance with (2.5).

• Limits of Type T 4/Emergent Type II string limits : In this case, Y3 needs to allow for
an Abelian fibration Y3 : T 4 → P1

b . Similarly to the previous case, the infinite-distance
limit corresponds to the fiber shrinking homogeneously and the base becoming large. As
a result, the M5-brane wrapping the T 4 fiber becomes light leading to a tensionless string
in 5d dual to a Type II string. In this case, (5.53) does not serve as a good description
of the species scale since for the limits of Type T 4, the component of c2(Y3) along Pb

1
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vanishes, i.e., c2,0 = 0. Therefore, (5.48) does not correctly reproduce the species scale in
this limit. As in the analogue limit in 6d F-theory, the reason is again supersymmetry
enhancement in the asymptotic limit causing the R2-coupling to be sub-leading due to
systematic cancellations occuring in the supersymmetric protected coupling.

In the following, we consider a simple example of a Calabi–Yau manifold that possesses a
heterotic emergent string limit and use (5.48) to study the properties of the species scale in the
interior of the vector multiplet moduli space.

5.2.2 Example: Calabi–Yau threefold with (h1,1, h2,1) = (2, 86)

We consider the Calabi-Yau threefold given by the intersection of bidegree (4,1) and bidegree
(1,1) hypersurfaces inside P4 × P1. This manifold was initially studied in [49, 50] and in the
CICY representation can be written as

X(2,86) =

(
P4 4 1
P1 1 1

)2

−168

. (5.55)

The Hodge numbers for this threefold are (h1,1, h2,1) = (2, 86) such that we refer to it as X(2,86).
Following the conventions in [51], the prepotential in phase I is

F (I) =
5

6
X3 + 2X2Y with Kähler cone KI = {X, Y ≥ 0}, (5.56)

where X, Y correspond to curves in P4 and P1. There is a second phase which can be reached
via a flop wall located at Y = 0 where the geometry develops 16 conifold singularities. Passing
through the flop wall, we obtain phase II of our moduli space where the prepotential takes on
the following form

F (II) =
5

6
X ′3 + 8X ′2Y ′ + 24X ′Y ′2 + 24Y ′3 with Kähler cone KII = {X ′, Y ′ ≥ 0} . (5.57)

The coordinate change between KII and KI is given by X ′ = X + 4Y and Y ′ = −Y . We can
then write down the prepotential in KII in the coordinates X, Y as

F (II) =
5

6
X3 + 2X2Y − 16

6
Y 3 with Kähler cone KII = {X ≥ −4Y ≥ 0} . (5.58)

Thus, the extended Kähler cone is K∞[X(2,86)] = KI ∪ KII . The F = 1 hypersurface in KI can
be conveniently parameterized as

X = e−∆/
√
3 and Y = − 5

12
e−∆/

√
3 +

1

2
e2∆/

√
3 , (5.59)

where ∆ is the canonically normalized scalar in the single vector multiplet moduli space. In
terms of ∆, the flop boundary corresponds to

∆flop =
1√
3
log

6

5
. (5.60)

There is only one infinite-distance limit which corresponds to ∆ → ∞. This is an emergent
heterotic string limit.7

7KII is bounded by a flop wall at Y = 0 and a CFT boundary at Y = −1/(2 · 31/3). Therefore, the distance
traversed in KII is always finite. Furthermore, the finite contribution to diam(µ) at small µ from KII is then
simply the distance between these two boundaries.
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Figure 10: Species scale (left) and slope |∇Λs|2/Λ2
s (right) for M-theory on X(2,86) in KI as a

function of ∆ defined in (5.59). The black dot on the left indicates the local maximum of the
species scale in KI .

We are interested in how the species scale varies over this moduli space, which may be
computed in terms of the second Chern class via (5.48). In general, the second Chern class
changes as we pass through a flop wall. For completeness, we provide the integrated second
Chern class for this example in the two possible phases∫

X(2,86)

c
(I)
2 ∧ J = 50X + 24Y ,

∫
X(2,86)

c
(II)
2 ∧ J = 50X + 56Y . (5.61)

As we are interested in the asymptotic behavior of the species scale and KII does not have an
infinite-distance limit, let us only write down the species scale (5.48) in KI :

Λ(I)
s =

[
1

12
(50X + 24Y )

]−1/2

=

(
10

3
e−∆/

√
3 + e2∆/

√
3

)−1/2

. (5.62)

Slope of Λs. In figure 10a, we show the species scale as a function of the modulus ∆ and
in (10b) the slope |∇Λs|2/Λ2

s is shown. We see that the latter is bounded by 1/3 everywhere
in moduli space with the bound being saturated for ∆ → ∞ in accordance with our general
expectation for a heterotic emergent string limit.

Desert point. In phase KI , we find an extremum for the species scale as illustrated in
figure 10. Its precise location and the value of the species scale at this point is given by

Λ(I)
s

(
∆ =

1√
3
log

5

3

)
=

1

31/6 · 51/3
, (5.63)

which lies below the 5d Planck scale. However, the expression in (5.48) for X(2,86) is continuous,
but not differentiable across the flop wall, and the actual maximum of the species scale is reached

43



in phase KII along the CFT boundary at Y = −1
4
X = −1/(2 · 31/3) where we have

Λmax.
s =

1√
2 · 31/3

≈ 0.490 , (5.64)

which is roughly a factor of two lower than the Planck scale.8

Diameter. Finally, we can evaluate the diameter of the region in moduli space where Λ ≥ µ
for some cut-off scale µ. As before, we set Λs = µ and invert (5.62) to compute the distance
from the flop wall to ∆

∣∣
Λs(∆)=µ

in KI . The distance between these two points take the following

form in the small µ expansion

∆ =
√
3 log[µ]− 1√

3
log[1440] +O(µ3) . (5.65)

We also need to consider the bulk contribution which is the finite diameter of KII . Upon
numerical integration, we obtain ∆bulk,II ≈ 0.294.9 Combining everything together, we obtain
the diameter of field space for M-theory compactified on X(2,86) as

diam(µ) ≈ −
√
3 log[µ]− 3.903 . (5.66)

The coefficient appearing in front of log[µ] agrees with the analysis for a heterotic emergent
string limit, i.e., (5.54).

6 Refined Bound on the Species Scale

One of the main motivations to study the relation between higher-curvature corrections and
the species scale was to extract general patterns for the species scale not specific to certain
examples with fixed dimension. Of particular interest is the validity of the bound (2.6) on the
slope of the species scale. It was noticed in [11], based on the emergent string conjecture [2],

that asymptotically there is a bound on the slope of the species scale |∇Λs|2
Λ2
s

≤ M2−d
pl

d−2
. Motivated

by this bound, it was argued, based on the consistency of the higher-derivative expansion of the
effective theory of gravity, that a similar upper bound on the slope exists everywhere including
the interior of the moduli space. However, this qualitative argument did not allow us to fix
the coefficient c appearing in the bound above which was just argued to be O(1), and counter-
examples were found for the original hope that the bound is given by c = 1

d−2
. Nevertheless,

given the large set of explicit examples in various dimensions studied in this work, we are in a
position to revisit the O(1) factor in the expression (2.6) and propose the originally motivated
sharper bound

|∇Λs|2

Λ2
s

≤ 1

d− 2
. (6.1)

8Close to the flop transition, the states becoming massless at this wall in the moduli space should be
integrated into the field theory description. In this regime, their effect on the higher-derivative corrections
should therefore be subtracted carefully leading to a definition for the species scale that is differentiable across
the flop wall. The effect of the light EFT states at the flop wall is the five-dimensional avatar of the logarithmic
divergences appearing in 4d that we revisit in section 6.

9Here, we only include the numerical value of ∆bulk,II. However, its closed-form expression may be computed
and is included in the ancillary Mathematica notebook.
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In all the examples we studied, this bound is indeed satisfied everywhere in moduli space —
with two notable exceptions that we revisit now.

As we already mentioned, in [11] it was found that the bound (6.1) is naively violated in
the vector multiplet sector of 4d N = 2 theories arising from Type II compactifications on
Calabi–Yau threefolds Y3. Given the proposal [13] of identifying the species scale with the
genus-one topological free energy

Λs ∼
1√
F1

, (6.2)

it was shown in [11] that, with this identification, the constraint (6.1) is already not satisfied
in asymptotic emergent string limits. This violation of the proposed bound can be traced back
to the behavior of F1 at sub-leading order in the asymptotic regimes. In asymptotic regimes
(t → ∞), the topological genus-one free energy can be schematically written as

F1 =
1

12
c2 t− β log t+ . . . , (6.3)

where c2 is related to the integrated second Chern class of Y3 and the coefficient β depends
on the Hodge numbers of Y3 (see [11] for a detailed discussion of β). If β > 0, it was shown

in [11] that the slope of Λs = F
−1/2
1 approaches its asymptotic value from above. In particular,

there exist simple examples of emergent string limits for which β > 0 which violate the bound
(6.1). A similar situation arises already in eight-dimensional maximal supergravity discussed in
section 3.4. Using the notation introduced in that section, the emergent string limit corresponds
to

τ2 ∼ λ , ν ∼ λ−1 , λ → ∞ , (6.4)

while keeping U fixed. In this limit, the species scale then scales as

Λs =
1

41/6

(
2ζ(3)λ2 − 4π

3
log λ+ . . .

)−1/6

, (6.5)

where the . . . indicate suppressed terms in the limit λ → ∞. We notice that the structure
of the term in the brackets is very similar to (6.3) in that the first sub-leading term in the
definition of the species scale depends logarithmically on the parameter that is taken to be
large in the emergent string limit.

Therefore, as illustrated in figure 11a, the bound (6.1) seems to be violated in the limit
(6.4). To understand the origin of the corrections responsible for this violation, we notice
that in general the contribution of light modes with mass m to dimension-n operators in d-
dimension is by dimensional analysis expected to contribute to the effective coupling as 1/mn−d

and logarithmically if n = d. Therefore, the contribution of states describable in the EFT to the
couplings diverges if n ≥ d as m → 0. Since the R2-term in four dimensions and the R4-term
in eight dimensions have n = d, these states lead to logarithmic divergence of the coupling
whereas in higher dimensions, they do not lead to a divergence. A similar situation arises close
to the conifold where, as shown in [11], the slope of the F1 diverges such that, naively, also the
slope of the species scale violates the bound (6.1). The divergence in this case is due to the
additional hypermultiplet that becomes massless at the conifold and hence should be included
in the EFT and not contribute to the moduli-dependence of the species scale. In the following,
we first want to discuss how the violation of the bound (6.1) is avoided in infinite-distance
regions and then subsequently discuss how a proper treatment of the conifold is consistent with
the bound (6.1).
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6.1 Contribution of EFT states at infinite distance

In 8d maximal supergravity, the logarithmic dependence of the R4-term on the moduli shows
up when regularizing E

SL(3)
3
2

and E
SL(2)
1 , whereas in four dimensions it arises when regulating

the IR divergence arising in the definition of

F1 =
1

2

∫
F

d2τ

τ2
Tr(−1)FFLFRq

H0 q̄H̄0 , (6.6)

due to the zero modes. In fact, in the latter case the term in F1 depending logarithmically
on the moduli is fixed by the holomorphic anomaly [14]. As argued in [52], the holomorphic
anomaly precisely arises due to the propagation of massless states. Therefore, the logarithmic
term in F1 is a consequence of the running of the R2-coupling due to massless modes. Similarly,
in eight dimensions, the coefficient Ê 3

2
satisfies the Laplacian equation

∆Ê 3
2
= 4π , with ∆ = 4τ 22∂τ ∂̄τ̄ +

|∂BN
− τ∂BR

|2

ντ2
+ 3∂ν(ν

2∂ν) , (6.7)

which can be viewed as the analogue of the holomorphic anomaly equation in four dimensions
(see [53,54]) and precisely captures the logarithmic divergence due to massless particles. Since
the logarithmic terms parameterizes the running of the higher-curvature couplings due to mass-
less particles, it should not affect the scaling of the species scale as a function of moduli which
should capture the effect of the massive states. We, therefore, propose that to define the species
scale correctly we need to subtract the term corresponding to the running of the coupling due
to integrating out states that are already part of the EFT. The exact subtraction scheme is
dependent on the exact point in moduli space and chosen duality frame. Notice that since in
higher dimensions, the light states do not lead to a divergence of the higher-curvature coupling,
we did not need to subtract the moduli-dependent EFT state contribution in, e.g., 10d maximal
supergravity.

In eight dimensions, the subtraction of the moduli-dependent contribution of EFT states
amounts to refining our identification of the species scale in (3.62) to

Λ̂s =
1

41/6

(
Ê

SL(3)
3
2

− 4π log ν1/3 − 2π log(|η(U)|4)
)−1/6

. (6.8)

Notice that the resulting expression is not U-duality invariant anymore — neither with respect
to SL(2) nor SL(3). From figure 11a, we see that the slope |∇Λ̂s|2/Λ̂2

s is indeed bounded by
1/6 in accordance with our bound (6.1).

We can proceed similarly in four dimensions. For simplicity, we focus here on the Enriques
Calabi–Yau Y3 = (K3 × T 2)/Z2. For this manifold, the genus-one topological free energy is
given by [55]

F1

(
K3× T 2

Z2

)
= −6 log

[
i(t− t̄)|η(t)|2

]
+ FK3

1 (s, s̄) , (6.9)

where t is the complexified volume of the torus factor and s collectively stands for the moduli
of K3. Here, we are interested in the Im t → ∞ limit while keeping s constant. This is an
emergent string limit and, as shown in [11], the slope of F1 approaches its asymptotic value
1/2 from above in the limit Im t → ∞. Since we keep s constant, the details of FK3

1 are not
important to us, but we can effectively treat it as a positive constant.

In (6.9), the term proportional to log[i(t− t̄)] is precisely the term that at large Im t is fixed
by the holomorphic anomaly equation [14]. According to our general discussion, in the limit
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Figure 11: Left: the slope of the species scale 8d M-theory on T 3 along the path (τ2, ν) =
(λ, 1/λ) (with U2 = 1 and all axions set to zero): the dashed line denotes the emergent string
bound 1/6, the yellow curve the species scale without logarithmic terms, blue the species scale
with logarithmic terms. Right: the slope of species scale along the 9d decompactification limit
(τ2, ν, U2) = (1, λ−2, λ) (with axions set to (τ1, BR, BN , U1) = (1

2
,−1

3
,−2

3
, 1
2
)), where the blue

curve denotes the species scale without logarithmic terms.

Imt → ∞, we hence should subtract this term to obtain the correct behavior for the species
scale such that we can define

Λ̂s =
(
−6 log |η(t)|2 + F̂K3

1 (s, s̄)
)−1/2

, (6.10)

where F̂K3
1 is obtained by similar subtractions to FK3

1 for which the details are, however, not
important to our present discussion. The slope of Λ̂s is shown in figure 12 from which we
can see that, indeed, the bound (6.1) is satisfied for d = 4. Notice that to satisfy the bound,
it is crucial to have the additional t-independent F̂K3

1 contributing positively to the species
scale. If this term was absent, the bound (6.1) can be violated as illustrated in figure 12. In
general, for emergent string limits in dimensions less than 10, we always expect such a constant
contribution depending on additional moduli. The fact that their contribution can never be
entirely absent reflects the fact that the weakly-coupled strings arising in the emergent string
limits still have additional moduli corresponding to the compactification manifold in the dual
frame. If the additional contributions to the species scale would vanish in the emergent string
limit, this would mean that we could find a genuinely lower-dimensional critical string. The
analysis of [56, 57] illustrates, however, that such limits are expected to be obstructed at the
quantum level implying that, indeed, there is always a constant contribution to the species
scale in emergent string limits such that the slope |∇Λ̂s|2/Λ̂2

s approaches its asymptotic value
from below.

Notice that this does not mean that, for other type of limits, the species scale necessarily
approaches its asymptotic value from below. However, this does not imply a violation of
the bound (6.1) since the asymptotic value for decompacitfication limits is well-below the
value for emergent string limits. To illustrate this point, consider again eight-dimensional
maximal supergravity with species scale given by (6.8). In this theory, we can consider the
decompactification to 9d by taking the limit (see section 3.4) V , U2 → ∞. From (3.57) and
(6.8), we see that, in this limit, the first subleading term in Λ̂s is given by exponentials such
that the sign of the correction to the asymptotic behavior of Λ̂s depends on the value of the
axionic coordinates. The slope of the species scale for the choice of axions (τ1, BR, BN , U1) =

47



2 3 4 5

0.2

0.3

0.4

0.5

0.6

τ2

|∇Λs|2/Λ2
s

Figure 12: Plot of the slope of the species scale for (K3×T 2)/Z2 along a constant axion slice
τ1 = 1/2. For blue curve FK3

1 (s, s̄) is set to zero while for the yellow curve FK3
1 (s, s̄) = 1. The

dashed line indicates the emergent string bound 1/2 for the slope.

(1
2
,−1

3
,−2

3
, 1
2
) is shown in figure 11b. It is clear from there that even though the slope of the

species scale approaches its asymptotic value from above, it does not violate the bound (6.1)
anywhere in moduli space.

6.2 Refined treatment of the conifold

It was already noticed in [13] that upon identifying F1 = Λ−2
s in 4d N = 2 theories the conifold

point requires careful treatment. The reason for this is that close to the conifold, F1 diverges
logarithmically

F1 = − 1

12
log |u|2 + . . . , (6.11)

where u = 0 ∈ C corresponds to the conifold locus. This term is generated by the hypermultit-
plet that becomes massless at u = 0 and hence needs to be included in the EFT. Similar to the
contributions of the massless states to F1 in the asymptotic limits discussed above, the relevant
term in F1 generated by the additional hypermultiplet in the EFT depends logarithmically on
the conifold modulus u. As for the slope |∇F1|/F1, it was shown in [11] that for u → 0 it
diverges as

|∇F1|
F1

∼ 1

|u|2(− log |u|)3
, (6.12)

implying that, naively, the bound (6.1) is violated for small u. However, since F1 is calculated
in string perturbation theory, it does not include the additional hypermultiplet in the EFT.
Therefore, F1 only captures the species scale correctly as long as the mass of the hypermultiplet
is above the Type II string scale, i.e.,

u

gs
≥ 1 . (6.13)

In order to ensure the validity of the perturbative string description in the limit u → 0, we need
to co-scale gs ∼ u. Since gs is part of a hypermultiplet, the dependence of the species scale on
gs is not directly captured by F1 and we cannot give a closed form for it at finite gs. However,
since the limit gs → 0 corresponds to an emergent string limit, we know that Λs ∼ Ms ∼ gs in
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this limit. We account for this by effectively adding a u-independent contribution to F1

F1 = − 1

12
log |u|2 +N(gs) , (6.14)

where the additive contribution depends on gs. In the scaling limit gs ∼ u for which the mass
of the conifold state does not drop below the string scale, we can still trust the EFT and check
if the conjectured bound on the slope of Λs is still satisfied. The field space metric for the
dilaton in four-dimensions and u for u, gs ≪ 1 is given by

ds2 = 2g2s dg
2
s − log |u|2 du2 . (6.15)

Using this, we evaluate the slope of the species scale to be∣∣∣∣∇Λs

Λs

∣∣∣∣2 ∼ g2s
8

(∂gsN(gs))
2

(− 1
12
log |u|2 +N(gs))2

− 1

4 log |u|2
1

|u|2(− log |u|2 + 12N(gs))2

gs=|u|∼ 1

2
+

1

12
|u|2 log |u|2 − 1

576

|u|2

log |u|2
+O(|u|4) .

(6.16)

In the last step, we used N(gs) ∼ g−2
s , set gs = |u| and expanded around |u| = 0. We note that

in the second line the u-dependent terms vanish in the limit |u| → 0. For small |u|, the term
proportional to log |u|2 is negative and dominates over the positive contribution from the term
proportional to 1/ log |u|2. Therefore, in the limit |u| ∼ gs → 0 the slope |∇Λs|2/Λ2

s approaches
1/2 from below and hence satisfies the bound (6.1).

After accounting correctly for the effect of the zero modes on the higher-curvature couplings,
we hence see that all our examples satisfy the bound (6.1) at every point in moduli space,
providing strong evidence that this bound is satisfied in general. We therefore have a proposed
sharp constraint on the species scale and hence the light states in the theory that may be valid
at any point in moduli space.
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A Eisenstein series for SL(n,Z)
In this appendix we detail the computation of real-analytic Eisenstein series for SL(n,Z). These
series show up as coefficients of the R4-corrections in maximal supergravities in 8, 9 and 10
dimensions considered in this work. In general the Eisenstein series for SL(n,Z) is defined as

ESL(n)
s (M) =

∑
p∈Zn\{0}

1

|pTMp|s
. (A.1)

where we take M to be any positive-definite, symmetric matrix with determinant detM = 1. In
the following we consider this Eisenstein series at s = 1, 3

2
for SL(2,Z) and s = 3

2
for SL(3,Z).
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A.1 Eisenstein series for SL(2,Z)
In this subsection we consider the Eisenstein series E1(τ, τ̄) and E 3

2
(τ, τ̄) for SL(2,Z) which we

parameterize by the usual coordinate τ on the upper half-plane. The relation with the matrix
M used in (A.1) is then given by

M =
1

τ2

(
1 τ1
τ1 τ 21 + τ 22

)
. (A.2)

There are two special points for this Eisenstein series: τ = i and τ = ρ ≡ 1
2
+ i

√
3
2
. In the

following we will evaluate the various Eisenstein series and their derivatives at these points.

Eisenstein series Ê1(τ, τ̄)

Here we consider the Eisenstein series E1(τ, τ̄). It arises as coefficient of the R4-correction for 8d
M-theory on T 3 discussed in section 3.4. As this sum is divergent, we consider the regularized
version

Ê1(τ, τ̄) = −2π log τ2|η2(τ)|2 , (A.3)

where η(τ) is the Dedekind eta function. This expression may be obtained by expanding around
s = 1 + ϵ and subtracting the divergent 1/ϵ term with an appropriate constant. We now want
to evaluate this Eisenstein series at the special points τ = i and τ = ρ. As we know the values
of the Dedekind eta function at these points, we find that

Ê1(i,−i) = 2π log
16π3

Γ[1
4
]4

≈ 6.6268 , Ê1(ρ, ρ̄) = 2π log
32π4

Γ[1
3
]6

≈ 6.49379 . (A.4)

We next compute the Hessian of the Eisenstein series at these special points, that is, 2τ 22∂i∂jÊ1

with i, j = τ1, τ2. Here we included the factor of 2τ 22 to ensure the correct normalization of the
kinetic terms for the scalars. For the eigenvalues of the Hessian we find

2τ 22∂i∂jÊ1(τ, τ̄)

∣∣∣∣
τ=ρ

=

(
−1.87372 0

0 8.1569

)
,

2τ 22∂i∂jÊ1(τ, τ̄)

∣∣∣∣
τ=ρ

=

(
4.18879 0

0 4.18879

)
.

(A.5)

We conclude that τ = i is a saddle point of Ê1 while τ = ρ is a (global) minimum. The
instability of τ = i is due to a negative eigenvalue along the axionic direction. It is also
remarkable that for τ = ρ the two eigenvalues are precisely equal.

Eisenstein series Es(τ, τ̄)

Here we consider the Eisenstein series Es(τ, τ̄) for s > 1. We are interested in the exact
computation of these infinite series at τ = i, ρ, which we achieve by number theoretic methods
(see [58] for a review). In general, the Eisenstein series may be computed exactly whenever τ
lies in an imaginary quadratic field τ ∈ Q(i

√
d), with d some positive integer, i.e., when the

elliptic curve associated to τ has complex multiplication. We write this value for τ as

τ = − b

2a
+

i
√
−b2 + 4ac

2a
, (A.6)
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where d = 4ac − b2. For these values of τ we can rewrite the Eisenstein series into a so-called
Epstein zeta function as

ζQ(s) =
∑

(p,q)∈Z2\0

1

Q(p, q)s
, Q(p, q) = (p, q)

(
a b/2
b/2 c

)(
p
q

)
= ap2 + bpq + cq2 . (A.7)

where d is now the determinant of this matrix. For the values τ = i, ρ this yields

Es(i,−i) = ζQi
(s) , Es(ρ, ρ̄) =

(√
3
2

)s
ζQρ(s) , (A.8)

where we defined

Qi =

(
1 0
0 1

)
, Qρ =

(
1 1/2
1/2 1

)
. (A.9)

The general strategy of evaluating these Epstein zeta functions is to rewrite the lattice sum
into the product of two one-dimensional sums. One of the two factors will be ζ(s), while the
other factor depends on the precise bilinear Q that specifies the sum. In the following we carry
out these summations for τ = i and τ = ρ.

Value at τ = i. Let us first compute the Eisenstein series for τ = i. We can rewrite it in
terms of an L-function value as

Es(i,−i) = 4ζ(s)L(s, χi) = 4ζ(s)
∞∑
n=1

χi(n)

ns
, (A.10)

with the character χi given by

χi(n) =


0 if n = 0 mod 2,

1 if n = 1 mod 4,

−1 if n = 3 mod 4.

(A.11)

By writing out the sum over n explicitly one recognizes the Dirichlet beta function β(s) as

Es(i,−i) = 4ζ(s)β(s) = 4ζ(s)
∞∑
n=0

(−1)n

(2n+ 1)s
. (A.12)

Value at τ = ρ. We next consider the Eisenstein series at the third root of unity. Similar to
τ = i we can rewrite the lattice sum into an L-function value as

Es(ρ, ρ̄) = 6

(√
3

2

)s

L(s, χρ) . (A.13)

The character χρ associated to this sum is now given by

χρ(n) =


0 if n = 0 mod 3,

1 if n = 1 mod 3,

−1 if n = 2 mod 3.

(A.14)

This allows us to evaluate the Eisenstein series to be

Es(ρ) = 6
(√

3
2

)s
3−s
[
ζ 1

3
(s)− ζ 2

3
(s)
]
, (A.15)

where we defined the generalized Riemann zeta functions

ζa(s) =
∞∑
n=0

1

(n+ a)s
. (A.16)

51



Eisenstein series E 3
2
(τ, τ̄)

Finally we specialize to s = 3
2
, in which case the Eisenstein series computes the R4-correction

to 10d Type IIB discussed in section 3.2. Here we will investigate the stability at τ = i, ρ more
closely. Let us begin by evaluating the Eisenstein series at these points explicitly. By using
(A.12) and (A.15) we find that

E 3
2
(i,−i) = 4ζ(3

2
)β(3

2
) ≈ 9.03362 , E 3

2
(ρ, ρ̄) =

(√
3
2

)1/2
ζ(3

2
)
(
ζ 1

3
(3
2
)− ζ 2

3
(3
2
)
)
≈ 8.89275 .

(A.17)
We note that these numerical values may also be obtained by taking the expression (3.20)
and including only the first few D(-1)-instanton corrections. We next consider the Hessian
2τ 22∂i∂jE 3

2
(τ, τ̄), where the factor 2τ 22 represents the normalization by the metric and i, j =

τ1, τ2. We find that

2τ 22∂i∂jE 3
2
(τ, τ̄)

∣∣∣∣
τ=i

=

(
−3.96778 0

0 17.5182

)
,

2τ 22∂i∂jE 3
2
(τ, τ̄)

∣∣∣∣
τ=ρ

=

(
6.66956 0

0 6.66956

)
.

(A.18)

We thus arrive at the same conclusions as for Ê1(τ, τ̄): there is a global minimum at τ = ρ
while τ = i is a saddle point (again due to the negative eigenvalue along the τ1 direction). Also
note that the eigenvalues of the Hessian at τ = ρ are equal as before.

A.2 Fundamental domain of SL(3,Z)
In this subsection we characterize the fundamental domain of SL(3,Z). Recall from section 3.4
that this field space is spanned by two saxions τ2, ν and three axions τ1, BR, BN . For simplicity
we restrict our attention to vanishing axions τ1 = BR = BN = 0. Here we will work out the
precise S-duality transformations inside SL(3,Z) on the remaining moduli space spanned by
τ2, ν.

Let us begin by considering the three analogues of the familiar S-duality of SL(2,Z). These
are generated by the matrices

S1 =

0 −1 0
1 0 0
0 0 1

 , S2 =

1 0 0
0 0 −1
0 1 0

 , S3 =

 0 0 1
0 1 0
−1 0 0

 . (A.19)

We can infer the action of these S-duality transformations by acting on the matrix M , given
in (3.51), that parameterizes our moduli space as M → SMST . From this transformation we
read off the action on the coordinates τ2, ν (in the case of vanishing axions) as

(τ2, ν) → (1/τ2, ν) , (τ2, ν) → (

√
τ2
ν
,

1

ν1/2τ
3/2
2

) , (τ2, ν) → (
√
τ2ν,

τ
3/2
2

ν1/2
) . (A.20)

There are two additional S-duality transformations, that may be obtained by combining two
out of three operators S1, S2, S3 above. Concretely, we take

S4 = S1S2 =

0 0 1
1 0 0
0 1 0

 , S5 = S1S3 =

 0 −1 0
0 0 1
−1 0 0

 . (A.21)
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These transformations act on the coordinates as

(τ2, ν) → (

√
ν

τ2
,

1

τ
3/2
2 ν1/2

) , (τ2, ν) → (

√
ν

τ2
,
τ
3/2
2

ν1/2
) . (A.22)

Altogether this gives us 5 S-duality operators. From the validity of the instanton expansion in
(3.20) we know that we have a fundamental domain given by τ2 > 1 and

√
ντ2 < 1. In total

there are six such patches in the (τ2, ν)-plane that are mapped to each other by the S-duality
transformations above. This proves to be useful for us in extending (3.20) to these other regimes
— for instance in producing figure 5 — as we can simply plug this coordinate change into the
instanton expansion.

A.3 Eisenstein series for SL(3,Z)
In this appendix we analyze the Eisenstein series E 3

2
(M) of SL(3,Z). It arises as the R4-

coupling of 8d M-theory on T 3 discussed in section 3.4. As this lattice sum is divergent, we
have to regularize it by expanding around s = 3

2
+ ϵ and subtracting the 1/ϵ term with an

appropriate constant. The resulting series expansion for Ê 3
2
(M) has been given explicitly in

(3.20). In the following we use this series to analyze the special points in moduli space and
their stability.

Cubic lattice. We begin with the standard cubic lattice. It corresponds to the following
point in the SL(3,R)/SO(3) moduli space

MI =

1 0 0
0 1 0
0 0 1

 , τ = i , ν = 1 , BR = BN = 0 . (A.23)

For this point we compute the Eisenstein series and the eigenvalues of its (normalized) Hessian
numerically. We find these to be

Ê 3
2
(MI) = 9.13479 ,

eigvals(Gik∂k∂jÊ 3
2
(M))

∣∣
M=MI

= (19.0355, 19.0355,−4.31275,−4.31275,−4.31275) .
(A.24)

This lattice thus gives a saddle point due to the three (equal) negative eigenvalues.

A3 root lattice. We next consider the A3 root lattice, also called the face-centered cubic
(FCC) or hexagonal close-packing (HCC) lattice. It corresponds to the following point in the
SL(3,R)/SO(3) moduli space

MA3 = 2−2/3

 2 −1 0
−1 2 −1
0 −1 2

 , τ = −1

2
+

√
3i

2
, ν =

3
√
3

4
, BR = −1

3
, BN = −2

3
. (A.25)

For this point we compute the Eisenstein series and the eigenvalues of its (normalized) Hessian
numerically. We find these to be

Ê 3
2
(MA3) = 8.79961 ,

eigvals(Gik∂k∂jÊ 3
2
(M))

∣∣
M=MA3

= (7.58637, 7.58637, 7.58637, 1.18682, 1.18682) .
(A.26)

From comparison to other special points we find that the A3 root lattice is the global minimum
of Ê 3

2
. Also note that it has only two distinct eigenvalues.
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A∗
3 root lattice. We next consider the A∗

3 root lattice; this lattice is dual to the A3 root lattice,
and also known as the body-centered cubic (BCC) lattice. It corresponds to the following point
in the SL(3,R)/SO(3) moduli space

MA∗
3
= 2−4/3

 3 −1 −1
−1 3 −1
−1 −1 3

 , τ = −1

3
+

2
√
2i

3
, ν =

√
2 , BR = BN = −1

2
. (A.27)

For this point we compute the Eisenstein series and the eigenvalues of its (normalized) Hessian
numerically. We find these to be

Ê 3
2
(MA∗

3
) = 8.8031 ,

eigvals(Gik∂k∂jÊ 3
2
(M))

∣∣
M=MA∗

3

= (7.90579, 7.90579, 7.90579, 0.707685, 0.707685) .
(A.28)

This lattice thus gives another minimum of Ê 3
2
, although it is not a global one.

B Geodesic distances for del Pezzo surfaces

In this appendix we discuss some details about the computation of geodesic distances in the field
space of del Pezzo surfaces. This analysis is of interest to the study of 6d F-theory field spaces
in section 5.1. As was already discussed there, the metric on the constant volume submanifold
reduces to the generalized hyperbolic metric

ds2 = dx2 + sinh2 xdΩ2
r−1 . (B.1)

Recall that geodesics on any sphere Sr−1 lie along great circles, i.e., circles on the sphere
whose origin coincides with that of the sphere. For this metric (B.1) this allows us to reduce
the problem of finding geodesics by considering an appropriate great circle S1 ⊂ Sr−1. If we
parameterize this coordinate by θ, the metric then reduces to

ds2 = dx2 + sinh2 xdθ2 . (B.2)

Note that this metric is just that of the hyperbolic plane, for which we know that geodesics are
either lines of constant θ or described by

tanh[x] =
tanh[x0]

cos(θ − θ0)
, (B.3)

here (x0, θ0) is the point closest to the origin. The distance between two points (x1, θ1), (x2, θ2)
is given by

∆ = arccosh[cosh x1 coshx2 − sinhx1 sinhx2 cos(θ2 − θ1)] . (B.4)

We will now be interested in finding geodesics between the desert point and a point along any
of the emergent string limits. Concretely, we have the begin and endpoints

XI
1 = (X0

1 , X
i
1) = (

3√
9− r

,
1√
9− r

) , XI
2 = (coshx, sinhx, 0, . . . , 0) , (B.5)
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where we chose the second endpoint to lie along the emergent string limit of H −E1. In terms
of the coordinates x and ui on the (r − 1)-sphere defined by (5.24) we find that these points
are mapped to

x1 = arccosh[
3√
9− r

] , ui
1 =

1√
r
, x2 = x, ui

2 = (1, 0, . . . , 0) . (B.6)

Let us now fix a great circle S1 ⊂ Sr−1 that passes through ui
1 and ui

2 such that ui
2 lies at θ2 = 0

and ui
1 within θ2 ∈ [0, π/2). Then we can compute the angle θ1 simply from the inner product

of the vectors ui
1 and ui

2 to be

θ1 = arccos[
1√
r
] . (B.7)

With all of these preparations in place, we are ready to compute the geodesic distance for
the diameter of field space. Let us first summarize what are the begin and endpoints in the
(x, θ)-coordinates we have established

(x1, θ1) = (arccosh[
3√
9− r

], arccos[
1√
r
]) , (x2, θ2) = (x, 0) . (B.8)

Plugging this into the distance formula (B.4) we find that

∆ = arccosh

[
3 coshx− sinhx√

9− r

]
≈ x+ log

2√
9− r

, (B.9)

where we approximated for large x ≫ 1 in the second step.
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