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Abstract

The problem of the detachment of a sufficiently large flat indenter from a
plane adhesive viscoelastic strip of thickness “b” is studied. For any given
retraction speed, three different detachment regimes are found: (i) for very
small “b” the detachment stress is constant and equal to the theoretical
strength of the interface, (ii) for intermediate values of “b” the detachment
stress decays approximately as b−1/2, (iii) for thick layers a constant detach-
ment stress is obtained corresponding to case the punch is detaching from
a halfplane. By using the boundary element method a comprehensive nu-
merical study is performed which assumes a linear viscoelastic material with
a single relaxation time and a Lennard-Jones force-separation law. Pull-off
stress is found to consistently and monotonically increase with unloading
rate, but to be almost insensitive to the history of the contact. Due to vis-
coelasticity, unloading at high enough retraction velocity may allow punches
of macroscopic size to reach the theoretical strength of the interface. Finally,
a corrective term in Greenwood or Persson theories considering finite size
effects is proposed. Theoretical and numerical results are found in very good
agreement.
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1. Introduction

Soft materials are of great interest in the scientific community as for their
applicability in many engineering fields ranging from the automotive sector
[1], biomechanics [2], soft robotics [3, 4], manipulators [5], tires grip[1], sealing
of syringes[6], finger-touch-pad interactions [7, 8], soft tissue adhesion for
regenerative medicine [9, 10]and pressure-sensitive adhesives [11]. With soft
polymers macroscopic adhesion due to van der Waals adhesive interactions
remains strong [12], whereas in hard materials it is easily canceled by the
inevitable surface roughness.

In many of these applications the bond strength is a crucial mechani-
cal property and it is often quantified by measuring the apparent adhesion
strength as given by the maximum pulling force per unit area in a tensile
bond test [13]. Peng et al. [13] have already elucidated how the critical
pull-off force of a flat rigid axisymmetric punch adhered to an elastic film of
finite thickness depends by two dimensionless parameters. The former shows
a transition from uniform detachment (DMT-like) to crack-like propagation
(JKR-like), while the latter is a correction factor due to finite thickness of
the film.

However, in many of the applications mentioned above, soft materials
(polymers, elastomers) are employed, which are known to be viscoelastic, i.e.
they exhibit a frequency-dependent modulus and dissipation [14], and this
complicates their mechanical adhesive behaviour. Numerous experiments in
steady state conditions have shown that the apparent surface energy ∆γ,
i.e. the energy per unit area needed to separate two ideally parallel surfaces,
during the crack opening is related to the crack speed V through a power law
function [15, 16, 17, 18], commonly referred as the Gent and Schulz empirical
law [19]

∆γ (V )

∆γ0
= 1 +

(
V

Vref

)n

, (1)

where ∆γ0 is the adiabatic surface energy (or thermodynamic work of ad-
hesion), V is the crack velocity, Vref = (kanT )

−1 and k, n are constants with
0 < n < 1 and aT is the WLF factor to translate viscoelastic modulus results
at various temperatures T [20]. In its simplest form Gent and Schulz em-
pirical law Eq. (1) is generally a good phenomenological model for opening
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cracks, while for closing cracks a reduced apparent surface energy ∆γ is ob-
served which generally shows the reciprocal of that law [21, 22, 23, 24, 25, 26].
There is no indication in the law of a limit enhancement, nor it is clear how
far it can be used for transient conditions. Finally, and most importantly, in
this empirical law, there is no indication on possible size effects, i.e. on how
the parameters of the law should be affected by geometry, and ∆γ(V )

∆γ0
> 1

which instead we shall find is not always true, even for advancing crack.
There are two main approaches which have been attempted to capture

more fundamentally the propagation of viscoelastic crack propagation. One is
based on the description of the processes occurring at the crack tip through
a cohesive zone model [27, 25, 26, 28], and as such is rather general as it
can take into account of initiation of the crack, transient propagation, and
steady state. Also it may show a transition to a cohesive rupture for small
enough cracks (what Peng et al. [13] call uniform DMT-like detachment
in their case, see also [29, 30, 31]), in principle it may be generalized to
rate-dependent cohesive laws, and to non linear materials. In practice, it
attempts to model the real processes occurring at the crack tip. The other,
developed by Persson and coauthors [22, 23, 24], takes an “energy-based”
approach and is restricted to linear materials and to steady state conditions.
It is derived by equating the power input in the system with the power
dissipated by viscoelastic losses and by the rate at which energy is spent to
create new surfaces. The energy-based approach finds different results for
finite size systems where it seems to show non-monotonic ∆γ (V ) /∆γ0 and
also ∆γ (V ) /∆γ0 > 1 [23], which is in contrast to the limit case of cohesive
failure where ∆γ (V ) /∆γ0 can decrease down to zero for very small crack (see
[29]), as we shall discuss in details here with respect to our geometry. Only
for a semi-infinite system and linear material both approaches yield a very
similar monotonically increasing behavior of ∆γ (V ) /∆γ0 with respect to V
up to the theoretical “high-frequency” limit of ∆γ/∆γ0 = E∞/E0, where E∞

and E0 respectively represent the glassy (high frequency) and the rubbery
(low frequency) modulus of the viscoelastic material [32]1. Furthermore, the
cohesive model has been applied modelling of bi-materials crack (one elastic,
one viscoelastic) [33] showing transient dissipation can be arbitrarily large
while loads remain finite and hence dissipation should not be taken as an

1In their basic form, both approaches consider ∆γ0 to be an intrinsic material property
and therefore rate-independent, as we shall also assume here.
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indication of true fracture energy [34].
Recently, it has been shown that, depending on the indenter geometry, the

loading history may or may not affect the detachment force. For a Hertzian
indenter, Afferrante and Violano [30, 31] have shown that the loading ve-
locity and the maximum indentation reached during the loading phase can
significantly influence the pull-off force. One the other hand, Papangelo and
Ciavarella [29] found that when considering an axisymmetric flat punch, the
loading history has a relatively weak effect, and the primary determinant of
the pull-off force is largely the unloading velocity. This is partly related to
the fact that, for a given preload, the contact area achieved at maximum
indentation strongly depends on the loading history only for a Hertzian in-
denter, while it remains fixed for a flat punch. This interpretation is somehow
confirmed by the recent work of Muller et al. [35] which further considers
the contact of a flat punch indenter with superimposed small scale rough-
ness. Their study focuses on the significant hysteresis that is observed during
crack closure and opening which is obtained by the concurrent presence of
viscoelasticity and adhesion. They find that small scale roughness can indeed
leads to loacal jumps -in and -out of contact, which causes the dependence
of the detachment force on the preload.

While previous works have focused on the detachment from viscoelastic
semi-infinite substrates [29, 36, 37], the influence of the layer thickness on
the detachment process has been mostly overlooked. Nevertheless, the latter
has a broad interest in engineering applications where often a thin layer
of viscoelastic material is used, as in Figure 1, as well as to exploit the thin
layer testing geometries, like in Peng et al. [13] which could permit to extract
cohesive properties as well as surface energy properties.

Hence, in the present study, we focus on the detachment problem of
a flat punch indenting a thin adhesive viscoelastic layer of finite thickness
b in plane strain conditions. The remainder of the paper is organized as
follows. In Section 2 the elastic solution for halfplane contact is recalled. In
Section 3, the case of a thin layer is considered leveraging on the the “thin
strip” assumption by Johnson [38] and applying the Griffith energy balance.
This serves to determine the limiting solutions within which the viscoelastic
results should be confined. In Section 4 the numerical scheme is introduced
which is based on the boundary element method and it assumes a standard
linear model for the viscoelastic layer and a Lennard-Jones force-separation
law for the contact interactions, which is rate-independent. In Section 5 the
numerical results are presented and compared with Greenwood theory for
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(a)

(b)

(c)

(d)

Figure 1: Practical engineering applications where thin polymeric layers are used: (a)
rubber tape, (b) polymeric carpet, (c) gasket, (d) soft gripper for delicate handling and
manipulation (UCSD Jacobs School of Eng., CC BY-NC-SA 4.0).

viscoelastic crack propagation [21] which we extend for finite size effects. In
Section 6 the conclusions are drawn. The study is carried on with particular
emphasis on the effect of (i) the loading history, (ii) the layer thickness and
(iii) the unloading velocity on the pull-off force and on the effective adhesive
energy.

2. Detachment from a halfplane

Let us consider the plane contact problem of a flat punch of semi-width
a indenting an elastic adhesive frictionless halfplane with Young modulus E
and Poisson ratio ν. By applying the Griffith energy balance, the pull-off
force [39, 40] is given by

Ppo = L
√

2πE∗∆γ0a , (2)

where L is the layer width, E∗ = E/ (1− ν2) is the plane strain elastic
modulus. Hence the mean interfacial stress at pull-off is

σpo =

√
πE∗∆γ0

2a
, (3)

which has the classical Linear Elastic Fracture Mechanics (LEFM) square-
root dependence with respect to the punch semiwidth a. Overbar indicates
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here the mean value. This implies that smaller punches have a higher pull-off
stress, potentially reaching the theoretical strength (or the cohesive strength)
of the interface, denoted as σ0. This is typically observed for punches with a
semi-width less than the following typical fracture length

a0 =
π

2

E∗∆γ0
σ2
0

. (4)

In what follows in the paper we shall assume that the punch size is a >>
a0 as we are interested in the transitions due to the finite size of the layer
rather than the size of the punch. For the latter effect the reader is referred
to Ref. [29].

Hence, in dimensionless form, we have the following relations

σ̂po =
σpo

σ0
=

1√
a/a0

, (5)

a0
h0

=
9
√
3π

32Σ0

≈ 1.53

Σ0

, (6)

where we have assumed a Lennard-Jones force-separation law, for which
∆γ0 = αLJh0σ0, where h0 is the range of interaction and αLJ = 9

√
3

16
is a

constant, â = a/h0, Σ0 = σ0/E
∗ is usually in the range of [0.1÷ 1] for soft

polymers [41, 42, 40], implying a0 to be 1 to 10 times higher than the range of
attractive forces. For a true crystal, this would imply a range of few nanome-
ters, but for soft materials, the range of adhesive forces may be larger. If
a viscoelastic material with relaxed modulus E0 and instantaneous modulus
E∞ is considered, then in the limit of very slow and very fast unloading rate
we will have





σ̂po =
√

9
√
3π

32Σ0â
= 1√

a/a0
; slow limit E = E0 ,

σ̂po =
√

9
√
3π

32Σ0kâ
= 1√

ka/a0
; fast limit E = E∞ ,

(7)

where k = E0/E∞ and â = a/h0.

3. Detachment from a thin layer

If the substrate has a finite thickness, it is necessary to consider the
effect of thickness in the analysis. Hence, here we focus on the plane contact
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problem of a flat punch with a semi-width of a indenting an adhesive layer
with a thickness of b (Fig. 2). We first focus on the linear elastic solution,
and then we will provide the limiting solutions for the viscoelastic problem
based on the elastic formulation.

3.1. Elastic layer

Let us consider the layer in plane strain and supported by a rigid foun-
dation. In the following the case of frictionless contact between the layer
and the rigid substrate is considered while the correction due to the Poisson
effect for the case of a layer perfectly bonded to the substrate is shown in
the Appendix-I.

 ! =  "

 # =
 " $

 " +  $
% = & $

standard linear viscoelastic material 

At interface LJ 

force-separation law

Figure 2: On the left is a sketch of a flat punch being loaded on a viscoelastic adhesive
layer of thickness b. The numerical implementation employs the Lennard-Jones force-
separation law, while the viscoelastic material is represented using a standard linear model,
as depicted in the lower-right panel.

Following Johnson [38], we assume that plane sections remain plane upon
loading. Hence for the case of no friction between the layer and the rigid
substrate, the load P and the corresponding elastic strain energy UE stored
in the layer are

P = −2aLE∗ δ

b
, (8)

UE = aLE∗ δ
2

b
, (9)

7



where δ is the indentation considered positive when the flat punch is ap-
proaching the substrate, consequently, P is positive when tensile. At un-
loading, the Griffith energy balance requires the elastic strain energy released
per unit area to be equal to the surface energy. Hence, assuming detachment
occurs immediately, we have the following relations

1

2L

∂UE

∂a
= ∆γ →





δpo = −
√

2b∆γ
E∗

,

σpo =
√

2E∗∆γ
b

,
(10)

where, δpo and σpo are the indentation and the average interfacial stress at
pull-off respectively. Notice that the pull-off stress depends on the layer
thickness as σpo ∝ b−1/2, hence it is possible to define a characteristic thick-
ness b0 of the substrate where σpo reaches the theoretical interfacial strength
σ0, i.e.

b0 =
2E∗∆γ

σ2
0

=
4

π
a0 ≈ 1.27a0 , (11)

which is of the same order of magnitude of a0. Experiments with PDMS
elastomers in Peng et al. [13], show that this b0 is of the order of 0.1 mm,
where clearly their loading rate corresponds to a certain effective elastic mod-
ulus. On the other hand, in the limit of a very thick layer, we should obtain
the half-plane solution, for which we can utilize Eq. (3) and Eq. (10) to
determine a length scale

b1 =
4a

π
, (12)

with the meaning that for substrates thicker than b1 one should anticipate
the half-plane behaviour. Notice that, while b0 is a characteristic lengthscale
that depends on the material and interfacial properties, b1 depends on the
punch semi-width. Overall as indicated by Eq. (11) and Eq. (12), and as
illustrated in Fig 3, we identify the following three regimes





σpo = σ0 , b < b0

σpo =
√

2E∗∆γ
b

, b0 ≤ b ≤ b1

σpo =
√

πE∗∆γ
2a

, b > b1

(13)
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or, in dimensionless form,





σ̂po = 1 , b/a0 <
4
π

σ̂po =
√

9
√
3

8Σ0 b̂
=
√

4
(b/a0)π

, 4
π
≤ b/a0 ≤ 4

π
a
a0

σ̂po =
√

9
√
3π

32Σ0â
= 1√

a/a0
. b/a0 >

4
π

a
a0

(14)

3.2. Limiting solutions for a viscoelastic layer

Let us assume that the layer is constituted by a viscoelastic material with
relaxed Young modulus E0 and instantaneous Young modulus E∞ so that
k = E0/E∞. In the limit of very slow/very fast unloading rate the substrate
behaves as elastic. Thus, for the case of no friction between the substrate
and the layer, according to Eq. (10), one can anticipate the following two
scenarios 




σpo =
√

2E∗

0
∆γ

b
, “very slow”

σpo =
√

2E∗

∞
∆γ

b
, “very fast”

(15)

or in dimensionless form




σ̂po =
√

4
(b/a0)π

, “very slow”

σ̂po =
√

4
k(b/a0)π

, “very fast”
(16)

where, one should notice that for rapid unloading (very fast scenario) the
pull-off stress will reach the cohesive strength by the following value of the
substrate thickness:

b0∞ =
4a0
kπ

. (17)

However, for a thick layer, the halfplane limit will be always obtained at
b1 = 4a/π, irrespective of the unloading rate. Figure 3 schematically displays
the elastic limits at low and high retraction speed that constitute the bounds
for the possible viscoelastic solutions.

Form Eq.s (12) and (17) it follows that if a/a0 < E∞/E0 then b0∞ > b1. In
other words, if a < a0/k at a high enough retraction velocity, it is possible to
reach the adhesive strength of the interface. It is easy to find elastomers with
E∞/E0 ≃ 103 ÷ 104 [43]. This implies that punches with semiwidth a much
larger than a0 can still reach the theoretical interfacial strength if unloading
is performed fast enough. Also, this holds for layer thickness. If we assume
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that the experiments with PDMS in Peng et al. [13] were conducted relatively
slowly, when b0 was of the order of 0.1 mm, then clearly b0∞ could reach
very large values, provided the punch is also large enough. This peculiarity
may be exploited in the future as a technique to improve/enhance interfacial
adhesion in micro-structured interfaces by optimizing not only the micro-
pillar geometry, but also the unloading protocols.

Figure 3: Schematic representation of the three possible detachment regimes.

4. Numerical implementation of the adhesive viscoelastic contact

problem

In this section, the numerical scheme used to solve the adhesive viscoelas-
tic contact problem is introduced. We utilized the boundary element method,
which necessitates the discretization solely of the interface. A similar code
has been used in previous works for solving both adhesive elastic [44] and
viscoelastic [29] axisymmetric contact problems, therefore, in this section, we
will focus on the essential adaptations required to tailor the implementation
for a plane viscoelastic strip.

The flat punch interacts with the viscoelastic layer according to the
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Lennard-Jones 3-9 force-separation law defined as

σ (h) =
8∆γ

3h0

[(
h0

h

)3

−
(
h0

h

)9
]

, (18)

where σ is the traction (σ > 0, when it is tensile), h is the interfacial gap
and h0 is the equilibrium distance. The theoretical strength of the interface
(maximum tensile stress) is then equal to σ0 = ∆γ/(αLJh0) and takes place
at a separation equal to h = 31/6h0. The gap is a function of the in-plane
coordinate x as

h(x) = −δ + h0 + v (x) , (19)

where, v (x) is the deflection of the viscoelastic layer with respect to the origin
(0, 0) (v (x) is positive as shown in Fig. 2). Here, Eq. (19) is solved numer-
ically in a discrete manner at the N = M + 1 nodes, being M the number
of equally spaced elements with the length of c = 2a/M . Following Bentall
and Johnson [45] we implemented the method of overlapping triangles, i.e.
for the n-th node the pressure is 0 at node xn−1, rises linearly to pn at node
xn and then falls linearly to 0 at node xn+1, which gives overall a linear vari-
ation of the contact pressure p (x) over the considered domain. With respect
to the case of constant pressure elements, a picewise-linear distribution of
normal tractions produces a displacement field which is everywhere smooth
and continuous. Hence, according to Bentall and Johnson [45] the vertical
deflection at node m of an elastic layer relatively to the origin (x, y) = (0, 0)
due to a triangular distribution of pressure centered in xn is

vm = aB
4

πE∗
[IA0 + IA [m− n] + 4zIAR [m− n]] pn , (20)

where {m,n} are integers numbers, pn is the pressure acting on the n-th node
determined using Eq. 18 ( pn > 0 when it is tensile), B = b/a, z = c/4b =
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1/2BM and IA0, IA, IAR are the following integral functions2

IA0 =
2

z

∫ ∞

0

(
1− cosh β

β + sinh β

)
sin2 (βz)

β3
dβ , (21)

IA [m− n] = −4

z

∫ ∞

0

(
1 +

1− cosh β

β + sinh β

)
sin2 (βz)

β3
sin2 (βz (m− n)) dβ ,

(22)

IAR [m− n] =

∫ ∞

0

sin2 (η) sin2 (η (m− n))

η3
dη, η = βz . (23)

By applying the superposition principle, the normal deflection vm at node m
due to a piecewise linear distribution of pressure can be written as

vm =
1

E∗

N∑

n=1

Gmnpn, (24)

where each column of the compliance matrix {(1/E∗)G}NxN corresponds to
the displacement field due to a unity triangular pressure centered at node
n being all the other nodes unloaded. Therefore, the displacement field
and, correspondingly, the compliance matrix can be readily computed using
Eq. (20). Once the elastic solution is obtained, the displacement field of
the viscoelastic layer v (x, t), can be determined by the elastic-viscoelastic
correspondence principle in the form of Boltzmann integrals [46] as

v (x, t) =
1

E∗
0

∫
G(x, s)

∫ t

−∞

c(t− τ)
dp(s, τ)

dτ
dτds , (25)

where c(t) is the dimensionless creep compliance function, the strain variation
after an application of a constant unit stress, and, in our discrete formulation,

the Green function G(x, s) is replaced by the appropriate tensor {G}NxN , so
that the viscoelastic nodal displacements {v(t)}Nx1 at time t are

{v(t)}Nx1 = {G}NxN ∗
{

1

E∗
0

∫ t

−∞

c(t− τ)
dp

dτ
dτ

}

Nx1

, (26)

2Care should be taken when integrating IA0 which converges slowly. The Appendix
3 of Bentall and Johnson [45] suggests a convenient integration strategy we have also
adopted. Notice that Bentall and Johnson [45] contains a misprint as the second part in
which IA0 is split up should be integrated over the interval [δ,+∞].
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where the symbol “∗” stands for the row by column product. For the linear
viscoelastic material, the standard model is assumed with a single relaxation
time τ , composed by a spring placed in series with an element constituted by
a dashpot and a spring in parallel (see Fig. 2), for which the dimensionless
creep compliance function is as follows

c(t) =

[
1 + (k − 1) exp

(
− t

τ

)]
. (27)

being τ the relaxation time of the material. Hence, by using a sequential
time-marching continuation, we solved Eq.s (18,19,26), where at each time
step an iterative scheme is used to determine the equilibrium solution.

5. Results

Here the results of the numerical investigations are shown by using the
following dimensionless parameters

â =
a

h0

; σ̂(x) =
σ(x)

σ0

; σ̂ =
P

2aLσ0

; δ̂ =
δ

h0

; t̂ =
t

τ
, (28)

and σ̂po is the (dimensionless) average stress at pull-off and is defined as
σ̂po = max(σ̂). If not stated differently, in our simulations we considered
M = 200, Σ0 = 0.05, and k = 0.1.

5.1. History dependence

Viscoelastic materials typically exhibit a “history-dependent” response
and this tremendously affects the detachment force in Hertzian indenters
[30, 31]. Hence, first we aimed to explore how different loading scenarios
affect the detachment characteristics of the flat indenter we considered, while
keeping the unloading rate constant. The simulations were carried out under
displacement control using a trapezoidal function (see inset in Fig. 4.a)
which main parameters are shown in Table 1. We define the dwell time as
t̂dwell = t̂2 − t̂1, the unloading rate r̂ = (δ̂load − δ̂unload)/(t̂3 − t̂2), and the

loading rate as r̂load = (δ̂load − δ̂0)/(t̂1) with reference to the the inset of
Figure 4.a. We endeavored to investigate the impact of different loading
protocols meticulously although the unloading curves presented in Figure 4
are restricted to the six different protocols described in Table 1.
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(a)

# 1
# 2
# 3
# 4
# 5
# 6

(b)

Figure 4: (a) Unloading curves for Σ0 = 0.05, k = 0.1 and punch of radius â/â0 = 64.85
from a fully relaxed viscoelastic surface with different loading protocols. (b) The identical
curves displayed in (a) are reiterated here subsequent to a horizontal axis shift equal to

δ̂P=0.
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Table 1: Description of parameters governing the loading protocols for the curves presented
in Figs. 4 and 5 .

Loading protocol δ̂0 δ̂load r̂load r̂ t̂dwell

# 1 1 1 very fast 10 0
# 2 1 1 very slow 10 0
# 3 0 1 5 10 0
# 4 2 2 very fast 10 0
# 5 2 2 very slow 10 0
# 6 0 2 5 10 0

These loading scenarios included: (i) Unloading from a fully relaxed sub-
strate after a slow loading process, indicated by the black curves (2,5). (ii)
Unloading following rapid loading, causing the substrate to exhibit an elas-
tic response with E(t = 0) = E∞, as denoted by the blue curves (1,4). (iii)
Unloading after indenting the substrate at a constant loading rate r̂load = 5,
represented by the red curves (3,6). It’s important to note that while the
loading phase is not shown for curves (1, 2, 4, 5), we accounted for the pre-
loading effect in our simulations. Furthermore, the maximum indentation
depth δ̂load was kept at δ̂load = 1 for curves (1, 2, 3) (solid lines) and set to

δ̂load = 2 for curves [4, 5, 6] (dashed lines). The punch has a/a0 = 64.85, and
the viscoelastic layer’s (dimensionless) thickness is B = b/a = 0.005 which is

equivalent to b̂/â0 = 0.3242.
The primary result from Fig. 4 is that, regardless of the significant vari-

ations in loading conditions, the magnitude of the pull-off stress remains
consistent across various loading histories. Indeed, one can conclude that
the pull-off stress remains nearly unaffected by the loading history. In Fig-
ure 4.b, we present the same curves as in Fig. 4.a, but with a shift in the
horizontal axis by δP . This shift corresponds to the indentation depth at
which the normal load vanishes during unloading. It helps to better observe
the slight changes in the unloading trajectories. Furthermore a comprehen-
sive investigation on the effect of the different loading scenario was conducted
for various layer thicknesses. In Figure 5, we illustrate σ̂po versus the varia-
tion in thickness b/a0. The legend in Figure 5 clarifies that the plot presents
results derived from all the loading conditions in Table 1, all with the same
unloading rate. Remarkably, these plots closely overlap, indicating very sim-
ilar values across the various simulations for all the thicknesses tested. To
further quantify the distinctions between these loading cases, we examined
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Figure 5: Normalized pull-off stress as a function versus the normalized layer’s thickness
for different loading protocols.

the relative changes in pull-off stress with respect to one specific case that
serves as the foundation for our subsequent investigations. The results are
plotted in the inset of Figure 5 as a relative change for various thickness
values. It’s evident that within a certain accuracy we can state that the
detachment force of a flat indenter from a viscoelastic adhesive strip is neg-
ligibly influenced by the loading history of the contact. For the remainder of
the paper we will consider unloading the viscoelastic strip from a fully re-
laxed condition, unless explicitly stated otherwise, we assume δ̂0 = δ̂load = 1,
t̂dwell = 0.

5.2. Dependence on the unloading rate

After establishing that the loading history does not influence the pull-off
stress σ̂po, we examine how σ̂po varies with respect to the layer thickness for
four different unloading rates: r̂ = [0.1, 1, 10, 100] represented in Fig. 6 by
black diamonds, green circles, red squares, and pink triangles, respectively.
Figure 6 shows a comprehensive analyses for the punch semi-width â/â0 =
64.85. The results are obtained starting from a fully relaxed substrate. For
b < b0 ≃ 1.27a0, we reach the cohesive limit, where the pull-off stress remains
independent on both the unloading rate and the layer thickness, approaching
the theoretical value σ̂po = 1. Most importantly, for b0 < b < b1, the curves
align well with the LEFM (Linear Elastic Fracture Mechanics) solution we
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have derived in Section 3 showing a scaling of ∝ b−1/2. Here, the pull-off
stress increases with the unloading rate, and the pull-off data consistently
stay well by the “slow” and “fast” limits we derived, represented by the blue
dashed and solid black lines, respectively. For a thickness larger than b1 the
curves align with the half-plane solution and, for a given unloading rate, the
pull-off stress remains constant independently on the layer thickness.

100 102
10-1

100
B=0.001 B=0.25

B=10

Figure 6: Normalized pull-off stress as a function of the normalized layer’s thickness for
different unloading rates of a punch with â/â0 = 64.85.

Notice that in the theoretical elastic solution the detachment happens
with no propagation (ac = a, being ac the semi-width of the crack liga-
ment). Clearly, this condition is never achieved in a more refined cohesive
zone model, as it is the one we have implemented numerically. This accounts
for the small deviations we found in the limiting case of very fast and very
slow unloading between numerical and theoretical results. Nevertheless, to
ascertain the correctness of the numerical viscoelastic results, the plots also
include the curves obtained unloading an elastic strip with modulus E0 (filled
blue stars) and E∞ (empty blue stars). One easily recognizes that the vis-
coelastic solutions are perfectly bounded between the two limiting elastic
cases.

To support our conclusion we focus on the mechanism of crack propaga-
tion and stress distribution at the interface from the unloading onset up to
pull-off. Figures 7 show the stress distribution for three specific cases out of
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the 120 cases shown in Fig. 6. All the cases are for unloading rate r̂ = 100.
The punch radius in Figure 7 is â/â0 = 64.85. The corresponding points for
these three cases are highlighted with red squares in Fig. 6. According to
Fig. 7, during unloading, the crack propagates at the interface hence the
semi-width of the crack ligament ac is smaller than the punch semi-width
a when pull-off happens. This explains the difference between the expected
pull-off stress from the analytical limits and the actual pull-off stress.

Figure 7 displays three distinct cases with different values of B (0.001,
0.25, and 10), denoted as Figures 7a, 7b, and 7c, respectively. Figure 7a
pertains to the cohesive zone, where the detachment occurs at ac ≃ a and
with a uniform distribution of tensile tractions at the interface. For a more
comprehensive understanding of crack propagation and the detachment pro-
cess, we have included gap plots on the right side of Figure 7. These plots
represent the gap H(x) = h(x)/h0 − 1 between the rigid punch and the vis-
coelastic layer as a function of the in plane coordinate x. Figure 7a illustrates
that in the cohesive region the gap is uniformly distributed at the interface,
with no crack formation. This is, in fact, the reason why we can achieve
σ̂po numerically with the same results as the expected analytical results (see
Figure 6 for B = 0.001). In contrast, for the other two cases, as depicted in
Figures 7b and 7c, we observe crack propagation, with detachment occurring
at ac < a. Notably, for larger values of B, a reduction in the ratio ac/a
is evident, resulting in the small deviation observed in Fig. 6 between the
numerical and the analytical results.
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Figure 7: Gap function (the right plots) and the stress distribution (the left plots) on the
surface of a layer with parameters Σ0 = 0.05, k = 0.1, and â/â0 = 64.85 are presented for
various geometries: (a) B = 0.001, (b) B = 0.25, and (c) B = 10, all under an unloading
rate of r̂ = 100. Each plot displays results for three different moments, with pull-off data
highlighted in red.

A more detailed view on the dependence of the pull-off stress on rate
effects is shown in Fig. 8 that shows σ̂po as a function of the crack speed at
pull-off, defined as

Vc = −dac/dt , (29)

where ac represents the crack ligament semi-width, which decreases as the
crack propagates at the interface. The results are closely related to the
interaction between adhesion and viscoelastic dissipation in the strip (see
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also [33]), indeed it represents one of the major objective of viscoelastic crack
propagation theories [27, 25, 26, 28, 22, 23, 24]. Consequently, we conducted
additional analyses to examine this effect. We selected four different cases
with a punch radius of â/â0 = 64.85 and the corresponding thickness ratios

of b̂/â0 = [3.24, 6.48, 12.97, 32.42], corresponding to the blue, orange, yellow,
and purple curves, respectively. We conducted numerical experiments with
20 different unloading rates ranging from r̂ = 0.1 to r̂ = 100 to obtain curves
representing a wide range of the dimensionless crack velocity V̂c = Vcτ/h0 at
pull-off. The analysis of Fig. 8 illustrates clearly the trend: thin layers and

102 104 106
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0.4

0.6

0.8

1

Figure 8: Normalized pull-off stress as a function of the normalized crack velocity at pull-
off for four different values of b/a0 for a punch with â/â0 = 64.85 unloaded from a fully
relaxed viscoelastic surface at different unloading rates.

high retraction velocity favour high pull-off stress. Nevertheless, this effect
is mitigated when the b ≈ a0 ≈ b0 as, in the cohesive region, the detachment
tends to happen at a uniform stress.

Although, the pull-off force reduces increasing the layer thickness the
enhancement in terms of effective surface energy remains the same when
moving from low to high unloading rates, provided that b > b0. Based on
the thin layer elastic solution Eq. (10) we define the effective surface energy
as

∆γeff =
σ2
pob

2E∗
0

(
a

ac

)2

, (30)
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Figure 9: Normalized effective surface energy as a function of the crack velocity at pull-off
for four different values of b/a0 for a punch with â/â0 = 64.85 unloaded from a fully
relaxed viscoelastic surface at different unloading rates. Dashed lies are obtained with Eq.
(36). Maximum enhancement for the dimensionless effective surface energy as a function
of b/a0. Inset: maximum enhancement of the effective surface energy obtained numerically
at very high unloading rates for a/a0 = [32.42, 64.84, 129.69], respectively red circles, green
stars, blue triangles. The solid black line shows the prediction of Eq. (32).

where we considered that in general the detachment happens at ac < a.
Hence, in dimensionless form,

∆̂γeff =
∆γeff
∆γ0

=
σ̂
2

poΣ0b̂

2αLJ

(
â

âc

)2

. (31)

Fig. 9 shows that the normalized effective surface energy ∆̂γeff increases

monotonically with respect to the crack velocity V̂c at pull-off up to a certain
plateau value. In the case of b/a0 = 32.42, the normalized effective surface

energy reaches its theoretical upper limit ∆̂γeff = 1/k (all our simulations
are for k=0.1). Notice that for any thickness of the layer larger than b0∞ one
would get the maximum possible enhancement 1/k. Care should be taken
when interpreting the data using Eq. 31 as, if the latter is used for b > b1
this may lead to unrealistic enhancements ∆̂γeff , which is due to the fact
that for b > b1 the halfplane solution should be considered.

It’s important to note that, due to the finite size effect, for cases with
b < b0∞, we observe the maximum enhancement of the normalized effective
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surface energy to be lower than 1/k. This happens because, for the very thin
layer, the cohesive region is approached, namely the DMT-type failure rather
than the JKR-type, in the Peng et al. [13] terminology. In the latter case,
if we assume σ̂po = 1, and â = âc, and with the acquisition of Eq. (6), one
can obtain the following relation for the maximum enhancement that can be
reached at high retraction rates

∆̂γeff |max =
(π
4

)( b

a0

)
, (32)

which turns out to be solely dependent on the ratio b/a0. In order to validate
our upper bound enhancement factor (Eq. (32)), we considered three dis-
tinct values of punch semi-width a/a0, on fully relaxed viscoelastic substrate
with varying b/a0 ratios, unloaded at a high unloading rate r̂ = 100. The
inset of Fig. 9 shows that the maximum enhancement obtained numerically
compared very well with Eq. (32).

We incorporated this correction in Greenwood (2004) theory [21] for crack
propagation in viscoelastic semi-infinite media, which, in its original form
gives

∆̂γeff =

[
k + (1− k)

α

2

∫ 1

0

H (ξ) exp (−α (1− ξ)) dξ

]−1

, (33)

where

H (ξ) = 2ξ1/2 − (1− ξ) ln

(
1 + ξ1/2

1− ξ1/2

)
, (34)

α =
π

4Σ0

∆̂γeffαLJ

V̂c

. (35)

Equation (33) for very slow propagation gives ∆̂γeff = 1, while at high speed

provides the maximum enhancement ∆̂γeff

∣∣∣
max

= 1/k. This picture, on

which all present theories agree, is valid for semi-infinite solids, nevertheless,
in agreement with recent results [30, 31, 29], we have found that due to finite
size effects the maximum enhancement may be consistently reduced. For the
present problem, if b < b0∞, the maximum enhancement will be given by

∆̂γeff

∣∣∣
max

= (π/4) (b/a0), so we propose here a generalization of Eq. (33)

for b0 < b < b0∞
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∆̂γeff

(
V̂c,

b

a0

)
=

[
4

π (b/a0)
+

(
1− 4

π (b/a0)

)
α

2

∫ 1

0

H (ξ) exp (−α (1− ξ)) dξ

]−1

,

(36)
where we have explicitly indicated that now the velocity dependent effective
surface energy depends not only on the crack speed, but also on the ratio
between the layer thickness and the fracture length a0. Notice that for b >
b0∞ Eq. (33) remains valid, while for b < b0 the effective energy is velocity

independent and equal to ∆̂γeff

∣∣∣
max

= (π/4) (b/a0). Figure 9 compares the

predictions obtained with the finite size Greenwood model (Eq. (36)) against
the numerical results, which are found in fairly good agreement. This result
(Eq. (32)), obtained with the more general cohesive-based theory, could
also be used to correct the theory of Persson-Brener (2005) [22] and Persson
(2017) [23], as we shall do in Appendix-II.

One important parameter to examine is the work of separation, which is
defined as

ŵsep =
wsep

2aL∆γ0
=

∫ ∞

δ̂P

σ̂ dδ̂ . (37)

which indicates the energy spent during the unloading phase to separate the
contact. We calculated this parameter for four different layer thicknesses,
specifically b/a0 = [3.24, 6.48, 12.97, 32.42], which corresponds to the blue,
orange, yellow, and purple curves in Fig. 10. Similarly to previous research
works [30, 31, 29] the ŵsep has a typical bell shape; at low and high velocity
there is little energy expenditure to separate the contact as the material
behaves essentially as elastic, but for intermediate regimes ŵsep presents a
maximum related to the dissipative phenomena happening in the viscoelastic
layer.

6. Conclusions

The plane problem of the detachment of a large flat punch from an ad-
hesive viscoelastic layer of finite thickness b has been studied. First, we have
derived an elastic model based on the “thin strip” assumption by Johnson
[38]. It was found that the pull-off stress decays as ∝ 1/

√
b. Nevertheless,

this functional dependence is bounded (i) for very thin layer by the cohesive
limit where the pull-off stress equals the theoretical stress of the material,
(ii) for very thick layer by the halfplane limiting solution. The elastic model
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Figure 10: Normalized work of separation as a function of the crack velocity at pull-off for
four different values of b/a0 for a punch with â/â0 = 64.85 unloaded from a fully relaxed
viscoelastic surface at different unloading rates.

provided the bounds for the viscoelastic analysis. We found that if the layer
is thin, particularly at high enough retraction velocity, the theoretical limit
of the material could be reached. This turns particularly interesting as for
soft polymers E∞/E0 may easily be of the order of 103 ÷ 104 and this am-
plifies the layer thickness for which the theoretical strength can be observed.
Clearly, this behavior will be hindered by the fact that during unloading the
crack starts to propagate at the interface hence, at pull-off, the actual crack
ligament ac is smaller than the punch semi-width.

Theoretical predictions have been compared with boundary element nu-
merical simulations for a standard linear viscoelastic material and using a
Lennard-Jones force-interaction law. We have shown that the loading condi-
tions have a negligible effect on the pull-off force, in contrast with what was
shown for a Hertzian geometry. Instead, the pull-off force consistently in-
creases with the unloading rate up to a certain plateau given by the cohesive
strength of the interface.

Finally, we have shown that when the data are represented in terms
of effective surface energy, at high velocity the theoretical enhancement
given by E∞/E0 is reached only when the layer thickness is larger than
a characteristic lengthscale b0∞. For b0 < b < b0∞ the maximum adhe-
sion enhancement is limited by finite size effect and in particular we found
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∆̂γeff |max = (π/4) (b/a0). Hence, we have proposed an extension of Green-
wood and Persson crack propagation theories accounting for finite size effects
which we found in good agreement with numerical results.
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Appendices

Appendix-I. Perfectly bonded layer

For the case of a layer perfectly bonded to the rigid substrate, following
Johnson [38], we only need to correct the previous results for the Poisson

effect with ζ = (1−ν)2

1−2ν
(this requires ν . 0.45, [38]), so that we have

δpo =

√
2b∆γ

ζE∗
, σpo =

√
2ζE∗∆γ

b
, (38)

where σpo equals the cohesive strength of the material for the layer thickness

b0 =
2ζE∗∆γ

σ2
0

=
4

π
ζa0 . (39)
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Appendix-II. An extension of Persson and Brener viscoelastic crack

propagation theory accounting for finite size effects

Using Persson and Brener theory [22] for a single relaxation time material
gives an implicit equation for the effective adhesion energy [32]

∆̂γeff

(
V̂c

)
=


1− (1− k)

∆̂γeff

βV̂c




√√√√1 +

(
βV̂c

∆̂γeff

)2

− 1







−1

, (40)

being β = 64Σ0/
(
9
√
3
)
. Eq. (40) can be extended to finite size systems

by accounting that for a very thin layer the maximum enhancement will be

reduced to ∆̂γeff

∣∣∣
max

= (π/4) (b/a0), so we propose here a generalization of

Eq. (40) in order to take into account finite size systems, i.e. for b0 < b < b0∞

∆̂γeff

(
V̂c,

b

a0

)
=


1−

(
1− 4

π (b/a0)

)
∆̂γeff

βV̂c




√√√√1 +

(
βV̂c

∆̂γeff

)2

− 1







−1

,

(41)
where we have explicitly indicated that the normalized effective surface en-
ergy depends not only on the crack speed, but also on the ratio between
the layer thickness and the fracture length a0. A comparison between the
numerical results and Eq. (41) is shown in Fig. 11.
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Figure 11: Normalized effective surface energy as a function of the crack velocity at pull-
off for four different values of b/a0 for a punch with â/â0 = 64.85 unloaded from a fully
relaxed viscoelastic layer (k = 0.1). Dashed lines are obtained with Eq. (41).
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