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We address the question of the time needed by N particles, initially located on the first sites of
a finite 1D lattice of size L, to exit that lattice when they move according to a TASEP transport
model. Using analytical calculations and numerical simulations, we show that when N ≪ L, the
mean exit time of the particles is asymptotically given by TN (L) ∼ L + βN

√
L for large lattices.

Building upon exact results obtained for 2 particles, we devise an approximate continuous space and
time description of the random motion of the particles that provides an analytical recursive relation
for the coefficients βN . The results are shown to be in very good agreement with numerical results.
This approach sheds some light on the exit dynamics of N particles in the regime where N is finite
while the lattice size L → ∞. This complements previous asymptotic results obtained by Johansson
in [1] in the limit where both N and L tend to infinity while keeping the particle density N/L finite.

I. INTRODUCTION

The TASEP model (Totally Asymmetric Simple Ex-
clusion Process) is a unidirectional model of transport
of particles with exclusion on a one dimensional lattice
[2]. It has various interesting applications in traffic on
lanes, waiting times lists, directed transport of particles
through channels and more [3–5]. It can also be mapped
on models of interface growth [1, 6], providing alternate
interpretations of its results. Originally introduced in
the context of the kinetics of biopolymerization, it has
also been a paradigmatic model in the field of biological
transport since [7, 8].

Most theoretical investigations of the TASEP model
have been dedicated to obtaining results at stationarity
when the flux of particles entering and exiting the lattice
has reached a stationary value. In that respect, parti-
cle density and current properties have been thoroughly
studied [9–13]. But some results have also been obtained
in non-stationary regimes, especially in infinite lattices.
For instance, the exact Green functions of the continuous
time TASEP model on Z have been obtained by Schütz
in [14]. Related quantities have subsequently been used
to determine some asymptotic features of the time evo-
lution of the particle density when starting from a step-
initial condition where particles initially populate the
left half of the lattice only [15]. Much in the same vein,
the statistical features of the motion of certain (tagged)
particles along the lattice have been elucidated as well
[6, 16]. The question we address here pertains to that
class of non-stationary problems: how a set of particles,
transported according to the TASEP rules, evacuate a
finite lattice, especially when they start from a ”step-
like” configuration where all of them are located on the
leftmost sites of that lattice? To answer that question,
we shall study the distribution of their exit time and,
more specifically, their mean exit time.

Studies on exit times (also called evacuation times or
escape times) in single-file systems, that is in 1D sys-

tems where particles cannot pass each other, generally
involve bidirectional motion like in single-file diffusion
(SFD) problems (see for instance [17, 18] and references
therein). In this context, exit time distributions may be
analyzed via the first passage time density of a ”tracer”
(or tagged) particle moving within a crowd of like par-
ticles (see e.g. [19]). Analysis of these SFD problems
shows that the tracer position x(t) has a subdiffusive
behaviour leading to a mean-squared displacement that
scales as ⟨(x(t)−x0)

2⟩ ∝ t2H at long times whereH is the
Hurst exponent [20, 21]. This behaviour, due to crowd-
ing effects generated by 1D confinement at a given den-
sity of particles, contrasts with the ⟨(x(t)−x0)

2⟩ ∝ t scal-
ing typical of a diffusive behaviour for which H = 1/2.
In the particular case of the symmetric exclusion process
(SEP) for instance - a 1D hard-core lattice gas problem
equivalent to the TASEP model but where particles may
equally jump to the right or to the left provided the cor-
responding site is empty (see e.g. [22]) - the Hurst expo-
nent is H = 1/4 and the SEP problem has been shown
to be equivalent to a fractional Brownian motion (fBm)
that depends on the particle density [23].

The exit of particles following TASEP transport rules
from a finite size lattice share some similarities with SFD
systems. In particular, the motion of a given particle
is hindered by others (exclusion) and therefore cannot
perform a simple independent random walk. But there
are two main differences between SFD problems and the
question we address in this paper. First, the particle
density does not remain constant over time because par-
ticles progressively leave the system they start from and
free the motion of those that remain within the lattice.
In that respect, the escape of colloidal particles from
microfluidic channels studied in ref. [24] is a problem
closer to ours. Second, the motion of particles is unidi-
rectional (particles only move to the right) that is, trans-
port is totally biased. This situation is similar to emer-
gency evacuation in trains or aircrafts where individuals
have to quickly walk down a narrow seat aisle [25, 26].
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The evacuation of particles according to TASEP rules
might therefore provide some insight on emergency evac-
uation although pedestrian dynamics has a quite com-
plex stochastic structure [27, 28].

In this paper, we focus on a special setting of the
TASEP model: particles start from a step-like initial
state and no particle is injected at site 1. Moreover, all
particles exit the lattice as they reach site L + 1 (ab-
sorbing condition after the Lth site). At time t = 0, the
N particles are located on sites 1, ..N with N ≤ L, as
displayed in Figure 1. We are interested in the emptying
time of this model which is equal to the exit time of the
leftmost particle of the lattice. In particular, we shall
use analytical calculations and numerical simulations to
determine the mean exit time (MET).

After introducing the model and quantities of interest
in Section II, we present some exact results for 1 and
2 particles in Section III and Section IV. We then use
a continuous space and time description of the relative
motion of the particles with respect to the leading one to
calculate the exit time in the large L limit in Section V.
This approach provides a simple physical approximate
solution of the problem, yielding a recursive expression
for TN (L) in the large L limit. These results are then
compared to Gillespie simulations in Section VI. In sec-
tion VII, we discuss our asymptotic results and compare
them to those of Johansson [1] obtained in the finite den-
sity regime.

II. TRANSPORT MODEL AND ITS EXIT TIME
DISTRIBUTION

A. The TASEP Model

The Totally Asymmetric Simple Exclusion Process
(TASEP) is a paradigmatic dynamical model for the uni-
directional transport of particles on a lattice that takes
into account exclusion. It is generally defined by the
following rules: a particle may be loaded on the lattice
with probability rate α provided the first site is empty.
It then proceeds forward with a hopping rate p provided
the neighbouring site (on the right) is empty and leaves
the last lattice site with a probability exit rate β. In
what follows, we shall study the exit time distribution
of N particles initially located on the first (leftmost) N
sites of a lattice containing L ≥ N sites, see figure 1
for a pictorial view. We shall moreover assume that the
hopping rates on the lattice are homogeneous, p = β and
using 1/p as unit of time, we shall simply set p = β = 1.
Finally, the incoming rate α is set to zero in such a way
that no particle enters the lattice from t = 0 onward.

The TASEP model is a Markov process governed by
the master equation,

d|P (t)⟩
dt

= M |P (t)⟩ (1)

where the probability vector may be written as

|P (t)⟩ =
∑
σ

Pσ(t)|σ⟩ . (2)

Here, the configuration vector is |σ⟩ = |σ1⟩ ⊗ · · · ⊗ |σL⟩
with column vectors |σi⟩ = (1 − σi, σi)

T where σi = 1
when site i is occupied by a particle and σi = 0 other-
wise. The sum runs over all 2L particle configurations.
Within our settings, the Markov matrix M reads [29]

M =

L−1∑
i=1

1Ii−1 ⊗m⊗ 1IL−1−i + 1IL−1 ⊗ b . (3)

where 1I is the 2× 2 identity matrix and where

m =

0 0 0 0
0 0 1 0
0 0 −1 0
0 0 0 0

 ; b =

(
0 1
0 −1

)
. (4)

It is worth noting that, as the incoming rate α has been
set to zero, M is a 2L × 2L upper triangular matrix.

FIG. 1. Initial, intermediate and final configurations.

B. Exit time distribution

As the TASEP model is a random process, the time t
taken by N particles to empty an L-site lattice is a ran-
dom variable. We shall denote by pN,L(t) its probability
density function (PDF). In the terminology of the previ-
ous section, the probability that the lattice is empty at
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time t is given by P0(t) where 0 = (0, . . . , 0) is the con-
figuration where the L sites are empty. Now, the lattice
is empty at time t if the N particles have evacuated it by
a time τ ≤ t. Then, the probability Pr(τ ≤ t) that the
exit time of the N particles is less than t is exactly equal
to P0(t). The exit time PDF, pN,L(t) = dPr(τ ≤ t)/dt,
is therefore given by

pN,L(t) = Ṗ0(t) = P(0,...,0,1)(t) , (5)

where the dot denotes the time derivative and where the
last equality is obtained from the master equation (1).
It is thus sufficient to evaluate the probability that only
site L is occupied at time t to obtain the exit time PDF.

Taking the Laplace transform of the master equation
(1), we obtain the following algebraic system

(s−M)|P̃ (s)⟩ = |P (0)⟩ , (6)

where s is the parameter of the Laplace transform de-
fined by

f̃(s) =

∫ ∞

0

dt f(t)e−st . (7)

In Eq. (6), |P (0)⟩ is the initial probability vector with a
single nonzero component: P(1,...,1,0,...,0) = 1 with N 1’s
and (L−N) 0’s. Solving the triangular algebraic system
(6), one obtains the Laplace transform of P(0,...,0,1)(t)
and, from there, the PDF pN,L(t) itself. Of particular
interest is the Mean Exit Time (MET) of that distri-
bution. In the next sections, we shall be mainly inter-
ested in the asymptotic behavior of this quantity as L
becomes large while N remains finite. For that reason,
we shall denote the mean exit time of N particles from

a lattice {1, L} with L sites as T
(f)
N (L). The superscript

(f) emphasizes the fact that this MET is obtained for
a finite lattice with L sites and not for a section with
L sites [1, L] embedded in an infinite lattice. We shall
come back to that point in section IVB. Let us just note

for now that T
(f)
N (L) may be directly derived from the

Laplace transform of pN,L(t) as

T
(f)
N (L) = − dp̃N,L(s)

ds

∣∣∣∣
s=0

. (8)

A word is in order here. The solution of (6) is tech-
nically immediate, both because the system is triangu-
lar and because the results are rational fractions in s
whose inverse Laplace transforms are straightforward.
Nonetheless, it allows for an analytical determination of
the exit time distribution pN,L(t) and its MET for small
lattices only. The size of the Markov matrix grows in-
deed exponentially fast with L and we have not found
any compact way to express the analytical solution in
the general case (N ≤ L). Of course, starting from N
particles, only configurations with at most N particles
contribute to the dynamics of the system. The dimension
of the Markov matrix reduced to these configurations is

much smaller than 2L: for instance for N = 2, the to-
tal number of configurations with at most two particles
is L(L+ 1)/2 + 1 which grows algebraically as L2/2 for
large L. For L = 20, the reduced Markov matrix is then
roughly 200×200 vs 106 × 106 for the full one. However,
in spite of this drastic reduction, analytical expressions
become very lengthy whenever L > 20 and, although
exact, they are not particularly helpful in determining
asymptotic behaviors for large L. They provide results
that can be used as benchmarks for simulations though.
Examples of such results for N = 2, 3 are provided in
appendix A. In the next section, we shall therefore use a
different method to tackle the determination of the MET
for arbitrary large lattices.

III. ONE PARTICLE: BALLISTIC REGIME

We briefly treat here the exit time distribution of a
single particle initially located on site 1 of an L-site lat-
tice {1, L}. As it is more convenient, we switch from the
”Eulerian” description based on particle configurations,
that we have used so far to express probabilities, to a
”Lagrangian” approach where particles are traced. Let
us then call P (n; t) the probability that the particle lies
on site n ∈ {1, . . . , L + 1} at time t. The addition of a
virtual (L+ 1)th site allows the particle to exit the lat-
tice. This site is ”absorbing” and P (L+1; t) is then the
probability that the lattice {1, L} is empty. According

to Eq. (5), we then have p1,L(t) = P (L; t) = Ṗ (L+1; t).
In the Lagrangian terminology, the master equation (1)
translates into

Ṗ (1; t) = −P (1; t) (9)

Ṗ (n; t) = P (n− 1; t)− P (n; t) , n ∈ {2, . . . , L} .(10)

Taking the Laplace transform of equation (9) with an ini-
tial condition given by P (1; 0) = 1 (all other component

being zero) yields P̃ (n; s) = (1 + s)−n. Hence,

p̃1,L(s) = P̃ (L; s) = (1 + s)−L , (11)

which upon inversion yields the exit time distribution of
a single particle out of the {1, L} lattice,

p1,L(t) =
tL−1

(L− 1)!
e−t . (12)

This distribution is of the Poisson type, as expected: a
single particle indeed never experiences exclusion and
spends on each site a time that follows the same expo-
nential distribution (e−t). Therefore, the total amount
of time it spends on the lattice {1, L} is nothing but the
sum of L exponentially distributed variables which leads
to the Poisson distribution (12). Moreover, according to
equations (8) and (11), the mean exit time of the particle
is

T
(f)
1 (L) = L . (13)
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The particle spends on average a unit of time on each site
and thus travels at constant velocity. In that respect, its
motion is ballistic. The purpose of the next section is to
detail how this motion is hindered when another particle
seats initially next to its right side.

IV. TWO PARTICLES : EXACT AND
ASYMPTOTIC EXPRESSIONS FOR THE MET.

A. Finite lattice

Let us label the particles in their exiting order, namely
from right to left, and consider first the same problem
as in the previous section but with 2 particles initially
located on site 2 (first particle) and on site 1 (second par-
ticle) of the lattice {1, L}. We can show (see appendix B)
that the mean exit time of these two particles is exactly
given by

T
(f)
2 (L) = L+

L− 1

4L−2
×
(
2L− 3

L− 1

)
. (14)

where
(
m
n

)
= m!/(n!(m−n)!) is the binomial coefficient.

Asymptotically, for large L, we then find

T
(f)
2 (L) = L+

2√
π

√
L+O(L−1/2) . (15)

Comparing this expression to the 1 particle MET (13)
shows that the main effect of adding a particle next to
the first one at the start of the process is to delay its exit
by an amount of time that is proportional to the square
root of the distance it has to travel to exit. In the next
section, we shall interpret that result as a consequence
of the random motion of the second particle confined on
its right side by the random motion of the first one that
it cannot overtake.

B. Infinite lattice

We now consider a problem related to the previous one
although slightly different: what is the time T2(L) neces-
sary for 2 particles to exit the section [1, L] of an infinite
lattice, with the same initial positions as for the finite lat-
tice {1, L}? This problem has much simpler boundary
conditions than in IVA as particles keep moving on the
infinite lattice instead of being absorbed at site (L+ 1).
This will enable us to develop a connection with a diffu-
sion equation. The physical difference between the two
situations is that in this present case, a particle having
exited the [1, L] section still hinders the previous ones,
whereas in the finite domain problem, the dynamics of
a particle changes to a ballistic one each time its prede-
cessor exits the lattice {1, L}. However in the large L
limit, we expect the particles mean relative distances to
become large, and the additional constraint provided by

the following particles to be weak. Our following results
will sustain this claim.

We first use results developed in [14], which provides
an exact formula for the probability of 2 particles to be
at positions X1 and X2 at times t knowing their initial
positions Y1 and Y2 at time 0. From that we are able to
deduce (see appendix C):

T2(L) = L+
2√
π
× Γ(L+ 1/2)

Γ(L)
(16)

and this again yields the same asymptotic behaviour
than Equation (15) :

T2(L) = L+
2√
π

√
L+O(L−1/2) (17)

therefrom showing the equivalence of the finite and infi-
nite formulation of the exit problem in the large L limit.

We now make a connection between this problem and
a diffusion equation. The master equation for this two
particles case writes [14]:

∂tP (k2, k1; t) =

+P (k2 − 1, k1; t) + P (k2, k1 − 1; t)− 2P (k2, k1; t)

P (k, k + 1; t) = P (k, k; t)

P (1, 2; t = 0) = 1, or else 0 (18)

valid for any k2 < k1, the positions of the trailing and
leading particles, respectively. The boundary condition
elegantly accounts for the special case k1 = k2 + 1. The
probability P(χ; t) that the distance between the 2 par-
ticles be χ at time t then follows from

P(χ; t) =
∑
k2≥1

P (k2, k2 + χ; t) (19)

and satisfy

∂tP(χ; t) = P(χ+ 1; t) + P(χ− 1; t)− 2P(χ; t) (20)

with the boundary condition

J (χ = 0; t) ≡ P(0; t)− P(1; t) = 0 (21)

We notice that this is a discretized version of the diffu-
sion equation with a no flux condition (J = 0) originat-
ing from the exclusion constraint, and this will enable
us to develop an approach based on this equation in the
next section.
Solving equation (20) we obtain for the mean distance

(see appendix D)

⟨χ(t)⟩ = e−2t

2
[(4t+ 1)I0(2t) + 4tI1(2t)] +

1

2
(22)

where Ik is the modified Bessel function of order k. Con-
sequently, for large times t, the distance between the 2
particles varies like ⟨χ(t)⟩ ≃ 2√

π

√
t. In the context of the

exit of 2 particles initially at k2 = 1 and k1 = 2, particle
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1 reaches the end of the lattice after a time L, time at
which particle 2 is on average at a distance ⟨χ(L)⟩ ∝ L1/2

behind particle 1. Then particle 2 reaches the end of the
lattice with a delay ⟨χ(L)⟩. Finally, for L large, the exit

time of the 2 particles is T2(L) ≃ L + 2
√

L/π, which is
consistent with our previous exact results.

V. THE DIFFUSION APPROXIMATION

The former calculations suggest the following simple
physical approach : since the leading particle has on
average a ballistic motion with a constant velocity, it
is convenient to study the motion of the rear particles
in the reference frame of the leading one. As we saw
in equation (20) this leads to a diffusion equation for
the motion of the second particle with a no flux bound-
ary condition accounting for the exclusion. This can be
generalized to any of the (N − 1) trailing particles, the
preceding particle acting as an impenetrable wall due to
exclusion, to recursively find the average position of the
n-th particle with respect to the leading one.

FIG. 2. Mean exit times of the first two particles.

We denote by x the relative position of a particle with
respect to the leading one (particle 1), and X its ab-
solute position in the lab frame. Let us first consider
the occupancy probability P2(x; t) of the second parti-
cle. As we saw, this relative motion is simply described
by a continuous diffusion equation. We are then left with
the following set of equations in the domain x < 0 :

∂tP2(x; t) = ∂xxP2(x; t) , x < 0

P2(x; t) −−−−−→
x→−∞

0

P2(x; t = 0) = δ(x− 0−) (23)

J (0; t) ≡ −∂xP2(x = 0−; t) = 0

Some comments are in order : here the space domain
extends from x = 0 corresponding to the position of the
leading particle up to x = −∞ when the trailing parti-
cle stays at rest in the lab frame. At t = 0 particle 2 is
situated next to the leading particle, which in the contin-
uous limit gives the stated initial condition. Finally the
exclusion caused by the leading particle is described by a
no flux condition J (x = 0) = 0. The solution of this set
of equations is elementary and is twice the fundamental
solution of the 1D diffusion equation. This immediately
leads to the average position for the second particle with
respect to the first one: ⟨x2(t)⟩ = −2

√
t/π. When the

leading particle exits at a mean time T1 = L the second
one therefore sits at a position ⟨X2(L)⟩ = L − 2

√
L/π

in the lab frame. Since we demonstrated the equivalence
of the finite and infinite lattice frames for the exit prob-
lem, we can assume particle 2 to be then unconstrained.
Hence, it needs an additional time T2 − T1 = 2

√
L/π

to exit, (see Figure2 for a pictorial view). This repro-
duces the result obtained previously by our exact alge-
braic computations (15), and this validates our continu-
ous approach.

Encouraged by this first result, we seek a recursive
scheme to obtain the mean position of the (n + 1)-
th particle with time, assuming an average position
⟨xn(t)⟩ = −βn

√
t of the previous one, always relative

to the first particle. The set of evolution equations for
the (n+ 1)-th particle can then be written as:

∂tPn+1(x; t) = ∂xxPn+1(x; t) , x < ⟨xn(t)⟩
Pn+1(x; t) −−−−−→

x→−∞
0

Pn+1(x; t = 0) = δ(x− 0−) (24)

[∂xPn+1(x; t) + ⟨ẋn(t)⟩Pn+1(x; t)]x=⟨xn(t)⟩ = 0

The last condition can be established for example by

imposing d
dt

∫ ⟨xn(t)⟩
−∞ Pn+1(x; t)dx = 0 which results from

the normalization condition. It enforces a no flux condi-
tion at the moving boundary xn(t). The solution of Eqs
(24) is simply

Pn+1(x; t) =
1√

πt erfc(βn/2)
e−x2/4t (25)

One can check that both the normalization and the no-
flux condition, which are related, are satisfied by the
above solution when the boundary is moving ∝

√
t.

The average velocity d
dt ⟨xn+1(t)⟩ = −βn+1/(2

√
t) can

finally be calculated by taking the mean of the diffusion
equation as d

dt ⟨xn+1(t)⟩ = −Pn+1(0; t), and this allows
us to write the following recursion relation :

βn+1 =
2√
π

exp (−β2
n/4)

erfc(βn/2)
(26)

initiating at β1 = 0. This is the central analytical result
which allows to calculate the actual average position of
the nth particle as a function of time in the lab frame as
⟨Xn(t)⟩ = t− βn

√
t.
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In Figure 3, we have plotted the resulting mean trajec-
tories of the first 5 particles in the lab frame as a function
of time, (see dashed lines). For comparison we also plot-
ted in solid lines the mean trajectories obtained by a
direct Gillespie-type simulation of the TASEP over 1000
replicas and L = 2000 sites, see section VI. As is clear in
the insert, the continuous diffusion approximation breaks
down at short times, since TASEP particles can not have
negative velocities in the lab frame. It however works re-
markably well at larger times/positions, giving the exact
large L asymptotic for N = 1 and 2 and an error of the
order of a fraction of percent for small values of N (see
below).

Finally, for N particles and large L the asymptotic
behavior for the mean exit time is :

TN (L) ≃ L+ βN

√
L (27)

where βn is given by Eq. (26).

FIG. 3. Mean trajectories ⟨Xn(t)⟩ = t − βn

√
t of succes-

sive n = 1, 2, 3, 4, 5 TASEP particles from the continuous
approach (dotted lines). Inset is a zoom near the origin. In
comparison, the Gillespie-simulated trajectories in solid lines
for 1000 different histories show that that the diffusion ap-
proach is quite good, see section VI (note that the artefact at
the end of the simulation near X = 2000 is due to taking a
mean position over a non constant ensemble of particles, since
exiting particles are disappearing the simulation at L = 2000.

VI. GILLESPIE SIMULATIONS OF EXIT
TIMES

Numerical simulations were also done to compute di-
rectly the exit times. In order to compare our results
with real data, we simulated the emptying of a TASEP
from an initial step condition using a continuous time

Gillespie algorithm, see appendix E for details. The sim-
ulations were done with L = 300, 600 and 1000 sites, and
with up to N = 50 particles. The rather modest number
of copies was generally enough to ensure a reasonable
error on the mean exit time, since this quantity is in it-
self a mean of different Gillespie times along one single
history. The values of the coefficients βG

N (L) were then
computed using the definition

βG
N (L) ≡ TG

N (L)− L√
L

(28)

and compared to the values obtained by our recursion
equation (26) in figure 4, see the red-green-blue stars
and black solid curve respectively.

FIG. 4. Values of βG
N obtained directly by Gillespie sim-

ulations (stars : red, green, blue L = 300, 600, 1000 respec-
tively) compared to the values of βN obtained by the recursive
scheme based on the diffusion equation approach, equation
(26) (solid curve). The dashed line correspond to the limit
of vanishing densities of reference [1], see section VII below.

The agreement between these two independent methods
(diffusion approximation calculation and Gillespie simu-
lations) is excellent for L = 1000 and for small values of
N , with a vanishing relative error at N = 1 and 2 since
the diffusion method gives the exact result there, and a
relative error ranging from +1% for N = 3 to -0.7% for
N = 10. This ultimately validates our diffusion continu-
ous approach. We also note that for large N values, the
Gillespie simulations are getting closer to our estimation
(27) when increasing L, with an error of only -7% for
N = 50 and L = 1000. Actually we conjecture that our
diffusion scheme produces an exact result in the limit
L → ∞ and N → ∞ with N/L → 0 as we discuss in the
next section.
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VII. DISCUSSION AND CONCLUSIONS

In this work, we have considered the question of the
mean time taken by N particles to empty a lattice with
L sites while being transported according to the rules of
the TASEP model and starting from the leftmost sites
of that lattice (step initial condition). We have inves-
tigated two slightly different versions of that problem:
A) particles definitively exit the lattice as they leave
the site L and B) particles keep moving along an in-
finite lattice after they have crossed the Lth site. For
N = 2 particles, we have found the exact mean exit
time for both problems and we have shown that they
have a common asymptotic behaviour at large L equal
to T2(L) = L+ 2√

π

√
L+O(L−1/2).

Still for N = 2 particles and within the framework
of problem B, we have revisited that result by showing
that the probability distribution of the distance between
the particles obey a master equation that is a discrete
version of a diffusion equation. From there, we have cal-
culated the mean distance as a function of time and red-
erived the asymptotic behaviour of the mean exit time.
Then, generalizing this approach to N ≥ 3 particles, we
have devised an approximate diffusion model for the rel-
ative positions of consecutive particles that leads to a
mean exit time for N particles that behaves for large
L as TN (L) ∼ L + βN

√
L where βN can be calculated

recursively. Finally, we have confirmed the validity of
this approximation by Gillespie simulations for values of
N ≪ L.
Our diffusion model seems to work particularly well for

a small finite number of particles. In the limit where the
lattice size becomes infinite, L → ∞, the average particle
density N/L tends therefore to zero. It is nonetheless
tempting to try to extrapolate our results to a number
of particles proportional to the lattice size, N = µL (as
L → ∞) with a proportionality coefficient µ ≪ 1 in order
to keep N ≪ L. Assuming equation (26) to be still valid
for large values of N ≪ L, the asymptotic behaviour
βN ∼ 2N1/2 for large N obtained from Eq. (26) would
yield

TN (L) ≃ L+ 2
√
NL. (29)

Letting N = µL then provides the following asymptotic
behaviour

TµL(L) ∼ (1 + 2
√
µ)L, (L → ∞, µ ≪ 1) . (30)

This is to be compared to the exact known result
TµL(L) = (1+

√
µ)2L obtained by Johansson for N = µL

in the limit L → ∞ and µ finite (see ref. [1], theorem
1.6, Eq. (1.19) in which γ = 1/µ [30]). The corre-
sponding value of βJ

N defined as in equation (28) reads

βJ
N = (2 +

√
µ)
√
N . Using this result in the limit µ = 0

corresponding to our vanishing density regime, we have
also plotted in Figure 4 the corresponding βJ

N = 2
√
N

(black dashed line). We can see that our approximation

gives a much better estimate of TL(N) in the finite N
regime and behaves decently at N large, with the same
asymptotic value of βN . This leads us to conjecture that
equation (29) is exact in the limit L → ∞ and N → ∞
with the density µ = N/L → 0, a region outside of the
scope of ref. [1].

Another problem of interest is the exit time of N par-
ticles transported without exclusion. In that case, par-
ticles are all independent. They wait for a time t dis-
tributed according to the exponential distribution e−t

between two consecutive jumps to the right, may over-
take each other and occupy the same lattice site as oth-
ers. The particle to last exit the lattice among the N , ir-
respective of its initial location, sets the exit time. Eval-
uating the distribution obeyed by the latter thus simply
amounts to finding the distribution of the maximum of
the individual exit times of each of the N particles (that
depend on their initial location). For N = 2 particles
starting respectively from sites 1 and 2 of an L-site lat-
tice, it can be shown that the exit time asymptotically
reads T2(L) ∼ L+ 1√

π

√
L+O(1), for large L [31]. Strik-

ingly, we see that the
√
L correction to the mean exit

time of a single particle is not solely attributable to the
exclusion effect of the TASEP model. It also occurs in
independent particles as a by-product of the distribution
of the maximum of their individual exit times, although
with a different prefactor (half of the TASEP one for 2
particles). Preliminary analytical and numerical results
seem to show that for a large number N of particles, all
starting from site 1 of the lattice, the prefactor of the√
L correction of the exit time is proportional to lnN as

N → ∞. This behaviour is to be contrasted with the√
N correction obtained in presence of exclusion for the

TASEP model.

Finally, this study can be seen as a step towards the
calculation of exit times of some more refined transport
models. For example, one could try to test the diffusion
approximation used in this paper to compute probabili-
ties of interest studied in the clearance problem of [32].
Queuing problems [4] or experimental microfluidic setups
[33] could also benefit from our approach (e.g by relax-
ing the exclusion constraint for the queuing problem, or
allowing for bidirectional transport like in the ASEP or
SEP models, see[16, 22]).

Appendix A: Some exact results for small lattices

In table I, we list some exact results for the exit time
distributions and their MET that can be obtained from
the method exposed in section II B. As may readily be
checked from the third column of this table, the Mean
Exit time of N = 2 particles on a finite lattice {1, L}
(L ≤ 10) agrees with the exact formula provided in (14).
Laplace transforms of the time distributions have been
given up to L = 5 only for they then become some-
what lengthy. From L ≥ 3 onwards, the denominator of
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p̃2,L(s) is (s+1)L+1(s+2)2L−5. The constant coefficient
of the numerator polynomial is 22L−5 and its highest de-
gree coefficient (sL−3 for L ≥ 3) is the Catalan number

C(L) =
(
2L
L

)
/(L+1) (valid for L ≥ 2). As for p̃3,L(s), its

denominator is given by (s+1)L+2(s+2)2L−3(s+3)3L−14

for L ≥ 5.
Exact results for small lattices (up to L = 20) with

N = 2, 3 particles are typically obtained by Maple on a
basic laptop within less than a minute computation time.
These results may serve as benchmarks for simulations.

Appendix B: Exact MET for 2 particles, finite
lattice

To find the Mean Exit time of two particles initially
located on site 1 and 2 of the finite lattice {1, L}, it
is sufficient, according to Eqs. (5) and (8), to find the
Laplace Transform (LT) of the probability that particle
2 is on site L of that lattice while particle 1 has left
it. We shall denote that quantity by P̃o(L; s) where the
subscript o indicates that particle 1 has left the lattice.
We shall denote by P̃ (k2, k1; s) the LT of the probability
that particle 1 is at site k1 and particle 2 at site k2 with
1 ≤ k2 < k1 ≤ L. Let us write the master equation for
the LT P̃o(n; s), n ∈ [[1, L]]. Dropping the s dependence
for simplicity, one obtains,

sP̃o(1) = −P̃o(1) + P̃ (1, L)

sP̃o(k) = −P̃o(k) + P̃o(k − 1) + P̃ (k, L)

sP̃o(L) = −P̃o(L) + P̃o(L− 1) (B1)

where k ∈ [[2, L− 1]]. Solving for P̃o(L; s) yields

P̃o(L; s) =

L−1∑
n=1

P̃ (n,L; s)

(s+ 1)L−n+1
(B2)

We shall now take advantage of the fact that P (n,L; t) is
known exactly for it is the probability that two particles
located on sites 1 and 2 at t = 0 be located at site n and
L, respectively, at time t. This transition probability
is provided by Schütz in [14] who has solved this prob-
lem on an infinite lattice. Yet, as none of the particles
have left the section [1, L], this probability is exactly the
same as for the finite lattice {1, L}. This makes the nec-
essary connection between the finite and infinite lattice
problems. According to [14], we have

P (n,L; t) =

∣∣∣∣F0(n− 1; t) F−1(n− 2; t)
F1(L− 1; t) F0(L− 2; t)

∣∣∣∣ , (B3)

where

F0(k; t) =
tk

k!
e−t and F1(k; t) = 1− e−t

k−1∑
q=0

tq

q!

and where F−1(k; t) = F0(k; t)−F0(k+1; t). Expanding
P (n,L; t) in sums of products of exponentials and pow-
ers in t makes it easy to obtain its Laplace transform
P̃ (n,L; s). Reinstating the latter in Eq. (B2) and using

T
(f)
2 (L) = − dP̃o(L; s)

ds

∣∣∣∣∣
s=0

, (B4)

eventually yields, after a somewhat lengthy calculation,

T
(f)
2 (L) = L+

L− 1

4L−2
×

(
2L− 3

L− 1

)
. (B5)

Appendix C: Exact MET for 2 particles, infinite
lattice

The easiest way to obtain the exact Mean Exit Time
(MET) for 2 particles leaving a section [1, L] of an in-
finite lattice while being initially located on sites 1 and
2 of that section is probably to use the integral formula
given by Rakos and Schütz [15] for the probability that
the second leftmost particle of two initially side by side
particles has carried out at least L steps to the right at
time t. This probability, that is exactly the probability
that the two particles have left the section [1, L] by time
t, is given by

P (L, 2, t) = Z

∫
[0,t]2
dx1dx2(x1x2)

L−2e−(x1+x2)(x1 − x2)
2

(C1)
where

Z =
L− 1

2 [(L− 1)!]
2 . (C2)

From Eq. (C1), the corresponding exit time distribution

is given by p2,L(t) = Ṗ (L, 2, t), whence the MET

T2(L) =

∫ ∞

0

tṖ (L, 2, t) dt . (C3)

The probability P (L, 2, t) may be evaluated in terms of

incomplete gamma functions γ(n, t) =
∫ t

0
xn−1e−xdx as

P (L, 2, t) = Z
[
γ(L+ 1, t)γ(L− 1, t)− γ(L, t)2

]
. (C4)

Using this expression and (C3), T2(L) can eventually be
cast into the simple form

T2(L) = L+
2√
π

Γ(L+ 1
2 )

Γ(L)
, (C5)

where Γ(L) = γ(L,∞) is the complete gamma function.
If we compare the asymptotic expressions of T2(L) and

T
(f)
2 (L) (the MET of two particles leaving a finite lattice

{1, L} - see Eq. (14)), we find that they differ at order
L−1/2. More precisely,

T2(L)− T
(f)
2 (L) =

1√
πL

+O
(
L−3/2

)
. (C6)
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TABLE I. Exact Laplace transform and Mean Exit Time of the exit time distribution of a finite lattice {1, L} for L ≤ 10 and
N = 2, 3.

L p̃2,L(s) T
(f)
2 (L) p̃3,L(s) T

(f)
3 (L)

2
1

(s+ 1)3
3 n.a n.a

3
2

(s+ 1)4(s+ 2)

9

2

2

(s+ 1)5(s+ 2)

11

2

4
5s+ 8

(s+ 1)5(s+ 2)3
47

8

12s2 + 39s+ 32

(s+ 1)6(s+ 2)5
233

32

5
2(7s2 + 21s+ 16)

(s+ 1)6(s+ 2)5
115

16

110s3 + 495s2 + 751s+ 384

(s+ 1)7(s+ 2)7(s+ 3)

3409

384

6
...

1083

128

...
107617

10368

7
...

2485

256

...
13237775

1119744

8
...

11195

1024

...
2132010983

161243136

9
...

24867

2048

...
254084494957

17414258688

10
...

437075

32768

...
7491745364599

470184984576

As expected, the time needed by the two particles to exit
the section [1, L] of an infinite lattice is slightly longer
than the time needed to exit the finite lattice {1, L} given
that when the rightmost particle has gone out of {1, L},
the last one is free to move ahead while it can still be
hindered by the front particle on the infinite lattice.

Appendix D: Exact mean relative distance for 2
particles

To obtain the mean relative distance between two par-
ticles, initially side by side, on an infinite lattice, we first
take the Laplace transform of Eqs. (20) and (21):

sP̃(1; s)− 1 = −P̃(1; s) + P̃(2; s)

sP̃(χ; s) = −2P̃(χ; s) + P̃(χ+ 1; s) + P̃(χ− 1; s),

where χ ≥ 2. Solving for P̃(χ; s) and taking into account

the fact that
∑

χ≥1 P(χ; t) = 1 (i.e.
∑

χ≥1 P̃(χ; s) =

1/s), we obtain

P̃(χ; s) =
1− λ

s
λχ−1, (D1)

where

λ = 1 +
s

2
−
√(

1 +
s

2

)2

− 1 . (D2)

Then,

⟨χ̃(s)⟩ :=
∑
χ≥1

χP̃(χ; s) =
1

s(1− λ)
, (D3)

and, upon inverting that expression, we finally obtain

⟨χ(t)⟩ = e−2t

2
[(4t+ 1)I0(2t) + 4tI1(2t)] +

1

2
(D4)

where Ik is the modified Bessel function of order k:
I0(x) =

∑
n≥0 x

2n/[4n(n!)2] and I1(x) = xI ′0(x) where
the prime denotes derivatives wrt x.

Appendix E: Gillespie simulations details

Numerical simulation were performed using Octave on
a DELL XPS13. The continuous time Gillespie method
was used in order to produce an in-silico realization of
equation 1. In this method, each history simulate a
stochastic trajectory associated with the TASEP master
equation. Most of the simulations were done using 103

histories, in order to keep the computation time manage-
able on a laptop, especially for large values of N ≃ 50
and L ≃ 1000. To estimate the error for mean values
such as TG

N (L), we performed 20 independent simula-
tions of 103 histories and obtained a dispersion of values
of the order of ∆T ∼ 0.5 for TG

N (L) ∼ 300 − 1000. The
same procedure was then used with 104 histories and, as
expected, lowered this figure to ∆T ∼ 0.15.

The precision obtained with 103 copies was usually
enough to compare the simulations results with our the-
oretical value βN . For small N < 5 however, the values
of βN (L) estimated by the different methods and for dif-
ferent length L = 300 − 1000 are very close, and it was
necessary to use 104 copies to order the different values
of βN (L) properly. It was found that :

• for fixed N the values of βG
N (L) are systematically

decreasing when increasing L, as seen in Figure 4.

• for values of N > 10 our result (26) underestimates
the value of the coefficient, βN (L), while for small
values it is overestimating.
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• for N ≤ 10 the relative error of equation (26) with
respect to our best estimate of the exact βN , ob-
tained with the highest copy number and the high-

est L, is less than 1%, (0 for N = 1 and 2 since
our expression is then exact), and reaches -7 % for
N = 50.
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Phys. Rev. E 85, 036111 (2012).

[28] A. Kirchner and A. Schadschneider, Physica A: Statisti-
cal Mechanics and its Applications 312, 260 (2002).

[29] E. Ragoucy, Journal of Physics: Conference Series 804,
012037 (2017).

[30] In this theorem γ stands for the proportionality coeffi-
cient between the number M of steps undergone by a
particle and its rank N , M = γN . As the Nth particle
is our leftmost particle, it has to hop L times for the
lattice to be empty. Therefore M ≡ L and γ = 1/µ.

[31] The two first terms of this asymptotic behaviour would
be the same for 2 particles both initially located on site
1 of the lattice.

[32] J. Cividini and C. Appert-Rolland, Journal of Physics
A: Mathematical and Theoretical 50, 265002 (2017).

[33] E. Locatelli, F. Baldovin, E. Orlandini, and M. Pierno,
Phys. Rev. E 91, 022109 (2015).

https://doi.org/10.1007/s002200050027
https://doi.org/10.1007/s002200050027
https://doi.org/10.1002/bip.1968.360060102
https://cds.cern.ch/record/1564539
https://doi.org/10.1103/PhysRevE.80.051119
https://doi.org/https://doi.org/10.1016/j.trpro.2014.09.012
https://doi.org/https://doi.org/10.1016/j.trpro.2014.09.012
https://doi.org/10.1088/1742-5468/2007/07/P07007
https://doi.org/10.1088/1742-5468/2007/07/P07007
https://doi.org/https://doi.org/10.1016/S0370-1573(99)00117-9
https://doi.org/10.1007/s10955-011-0183-1
https://doi.org/10.1007/s10955-011-0183-1
https://doi.org/10.1007/bf01050430
https://doi.org/10.1007/bf01050430
https://doi.org/10.1088/0305-4470/26/7/011
https://doi.org/10.1088/0305-4470/26/7/011
https://doi.org/10.1088/1751-8113/44/31/315001
https://doi.org/10.1088/1751-8113/44/31/315001
https://doi.org/https://doi.org/10.1016/S0370-1573(98)00006-4
https://doi.org/10.1088/0034-4885/74/11/116601
https://doi.org/10.1088/0034-4885/74/11/116601
https://doi.org/10.1007/BF02508478
https://doi.org/10.1007/s10955-004-8819-z
https://doi.org/10.1007/s10955-004-8819-z
https://doi.org/https://doi.org/10.1016/j.nuclphysb.2004.08.016
https://doi.org/https://doi.org/10.1016/j.nuclphysb.2004.08.016
https://doi.org/10.1103/PhysRevE.107.044131
https://doi.org/10.1103/PhysRevLett.113.078101
https://doi.org/10.1103/PhysRevLett.113.078101
https://doi.org/10.1063/1.4707349
https://doi.org/10.1063/1.4707349
https://doi.org/10.1103/PhysRevE.81.041119
https://doi.org/10.1007/s002200050669
https://doi.org/10.1007/s002200050669
https://doi.org/10.1007/s10955-009-9830-1
https://doi.org/10.1007/s10955-009-9830-1
https://doi.org/10.1007/s10955-008-9595-y
https://doi.org/10.1007/s10955-008-9595-y
https://doi.org/10.1103/PhysRevLett.117.038001
https://doi.org/10.1103/PhysRevLett.117.038001
https://doi.org/https://doi.org/10.1016/j.physa.2018.06.079
https://doi.org/https://doi.org/10.1016/j.physa.2018.06.079
https://doi.org/https://doi.org/10.1016/j.physa.2018.06.079
https://doi.org/https://doi.org/10.1016/j.firesaf.2011.12.008
https://doi.org/https://doi.org/10.1016/j.firesaf.2011.12.008
https://doi.org/10.1103/PhysRevE.85.036111
https://doi.org/https://doi.org/10.1016/S0378-4371(02)00857-9
https://doi.org/https://doi.org/10.1016/S0378-4371(02)00857-9
https://doi.org/10.1088/1742-6596/804/1/012037
https://doi.org/10.1088/1742-6596/804/1/012037
https://doi.org/10.1088/1751-8121/aa72d4
https://doi.org/10.1088/1751-8121/aa72d4
https://doi.org/10.1103/PhysRevE.91.022109

	TASEP Exit Times
	Abstract
	Introduction
	Transport model and its exit time distribution
	The TASEP Model
	Exit time distribution

	One particle: ballistic regime
	Two particles : exact and asymptotic expressions for the MET. 
	Finite lattice
	Infinite lattice

	The diffusion approximation
	Gillespie simulations of exit times
	Discussion and conclusions
	Some exact results for small lattices
	Exact MET for 2 particles, finite lattice
	Exact MET for 2 particles, infinite lattice
	Exact mean relative distance for 2 particles
	Gillespie simulations details
	References


